
Shrinking Reductions in SML.NET

Nick Benton1, Andrew Kennedy1, Sam Lindley2, and Claudio Russo1

1 Microsoft Research, Cambridge {nick,akenn,crusso}@microsoft.com
2 LFCS, University of Edinburgh Sam.Lindley@ed.ac.uk

Abstract. One performance-critical phase in the SML.NET compiler
involves rewriting intermediate terms to monadic normal form and per-
forming non-duplicating β-reductions. We present an imperative algo-
rithm for this simplification phase, working with a mutable, pointer-
based term representation, which significantly outperforms our existing
functional algorithm. This is the first implementation and evaluation of
a linear-time rewriting algorithm proposed by Appel and Jim.

1 Introduction

SML.NET [3,4] is a compiler for Standard ML that targets the .NET Com-
mon Language Runtime [7]. Like most other compilers for functional languages
(e.g. GHC [10]), SML.NET is structured as the composition of a number of
transformation phases on an intermediate representation of the user program.
As SML.NET is a whole program compiler, the intermediate terms are typically
rather large and good performance of the transformations is critical for usability.

Like MLj [5], SML.NET uses a monadic intermediate language (MIL) [2]
that is similar to Moggi’s computational metalanguage. Most of the phases in
SML.NET perform specific transformations, such as closure conversion, arity
raising or monomorphisation, and are run only once. In between several of these
phases, however, is a general-purpose ‘clean-up’ pass called simplify. Running
simplify puts the term into monadic normal form [6,8], which we have previ-
ously called cc-normal form and is essentially the same as A normal form or
administrative normal form for CPS [8]. The simplify pass also performs shrink-
ing reductions: β-reductions for functions, computations, products that always
reduce the size of the term.

Appel and Jim [1] describe three algorithms for shrinking reductions. The first
‘näıve’ and second ‘improved’ algorithms both have quadratic worst-case time
complexity, and the third ‘imperative’ algorithm is linear, but requires a mutable
representation of terms. Appel and Jim did not implement the third algorithm,
which does not integrate easily in a mainly-functional compiler. Both SML/NJ
and SML.NET use the ‘improved’ algorithm, which is reasonably efficient in
practice. Nevertheless, SML.NET spends a significant amount of time performing
shrinking reductions. We have now implemented a variant of the imperative
algorithm in SML.NET, and achieved significant speedups.

This paper makes several contributions. It gives the first implementation
and benchmarks of the imperative algorithm in a real compiler. It extends the

imperative algorithm to a richer language than considered by Appel and Jim. It
introduces a ‘one-pass’ traversal strategy, giving a weak form of compositionality.
An extended version of this work appears in the third author’s PhD thesis [9].

2 Simplified MIL

For purposes of exposition we present a simplified version of MIL:

Atoms a, b ::= x | c
Values v, w ::= a | pair(a, b) | proj1(a) | proj2(a) | inj1(a) | inj2(a)
Computations m,n, p ::= app(a, b) | letfun f(x) be m in n

| val(v) | let x be m in n | case a of (x1)n1 ; (x2)n2

where variables are ranged over by f, g, x, y, z, and constants are ranged over by
c. Note that the letfun construct binds a possibly recursive function.

We say that a reduction is a shrinking reduction if it always reduces the size
of terms (counting the number of nodes). The most important reductions are
given by the shrinking β-rules:

(→ .β0) letfun f(x) be n in m −→ m, f /∈ fv(m)
(→ .β1) letfun f(x) be m in C[app(f, a)] −→ C[m[x := a]], f /∈ fv(C[·],m, a)
(T.β0) let x be val(v) in m −→ m, x /∈ fv(m)
(T.βa) let x be val(a) in m −→ m[x := a]
(×.β) let y be val(pair(a1, a2)) in C[proji(y)]

−→ let y be val(pair(a1, a2)) in C[ai]
(+.β) let y be val(inji(a))

in C[case y of (x1)n1 ; (x2)n2]

−→ let y be val(inji(a)) in C[ni[xi := a]]

We write Rβ for the one-step reduction relation defined by the β-rules. The
simplify transformation also performs commuting conversions. These ensure that
bindings are explicitly sequenced, which enables further rewriting.

(T.CC) let y be (let x be m in n) in p

−→ let x be m in let y be n in p

(→.CC) let y be (letfun f(x) be m in n) in p

−→ letfun f(x) be m in let y be n in p

(+.CC) let y be (case a of (x1)n1 ; (x2)n1) in m

−→ letfun f(y) be m in case a of (x1)let y1 be n1 in app(f, y1)
; (x2)let y2 be n2 in app(f, y2)

We write RCC for the one-step reduction relation defined by the CC-rules, and
R for Rβ ∪RCC . Unlike the β rules, the commuting conversions are not actually

shrinking reductions. However, T.CC and →.CC do not change the size, whilst
+.CC gives only a constant increase in the size.

An alternative to the +.CC rule is:

(+.CC ′) let y be case a of (x1)n1 ; (x2)n2 in m

−→ case a of (x1)let y1 be n1 in m1 ; (x2)let y2 be n2 in m2

where y1, y2 are fresh, mi = m[y := yi]. This rule duplicates the term m and can
exponentially increase the term’s size. The +.CC rule instead creates a single
new abstraction, shared across both branches of the case, though this inhibits
some further rewriting. We write R′

CC for the one-step relation defined by the
CC-rules where (+.CC) is replaced by (+.CC ′), and R′ for Rβ ∪R′

CC .

Proposition 1. R′ is strongly-normalising.

Proof. First, note that Rβ is strongly-normalising as Rβ-reduction strictly de-
creases the size of terms. We define two measures |·|β and |·|cc on terms:

|a|β = 1
|proji(a)|β = |inji(a)|β = 2
|app(a, b)|β = |pair(a, b)|β = 3

|letfun f(x) be m in n|β = |m|β + |n|β + 1
|let x be m in n|β = |m|β + |n|β + 1

|val(v)|β = |v|β + 1

|case a of (x1)n1 ; (x2)n2|β = max (|n1|β , |n2|β) + 2

|a|cc = 1
|proji(a)|cc = |inji(a)|cc = 2
|app(a, b)|cc = |pair(a, b)|cc = 3

|letfun f(x) be m in n|cc = |m|cc + |n|cc + 1

|let x be m in n|cc = |m|2cc + |n|cc + 1
|val(v)|cc = |v|cc + 1

|case a of (x1)n1 ; (x2)n2|cc = max (|n1|cc, |n2|cc) + 2

The lexicographic ordering (|·|β , |·|cc) is a measure for R′-reduction. Each shrink-
ing β-reduction decreases |.|β , whilst each CC-reduction decreases |.|cc and leaves
|.|β unchanged. ut

Proposition 2. R is strongly-normalising.

The proof uses R′-reduction to simulate R-reduction. The full details are
omitted, but the idea is that for any R-reduction a corresponding non-empty
sequence of R′-reductions can be performed. Thus, given that all R′-reduction
sequences are finite, all R-reduction sequences must also be finite. The proof is
slightly complicated by the fact that no non-empty sequence of R′-reductions
corresponds with the β-reduction of a function introduced by the +.CC rule. A
simple way of dealing with this is to count a +.CC ′-reduction as two reductions.

Note that R-reductions are not confluent. The failure of confluence is due to
the (+.CC) rule. Replacing (+.CC) with (+.CC ′) does give a confluent system.
Confluence can make reasoning about reductions easier, but we do not regard
failure of confluence as a problem. In our case, preventing exponential growth in
the size of terms is far more important.

f ax

let be in

appval

pair

Fig. 1. Pictorial representation of let x be app(f, a) in val(pair(x, x))

3 Previous Work

Appel and Jim [1] considered a calculus which is equivalent to a sub-calculus of
our simplified MIL. In our setting the reductions that their algorithms perform
are equivalent to: → .β1-, ×.β-, T.β0-, and a restriction of → .β0-reduction.
Appel and Jim show that their calculus is confluent in the presence of these
reductions, and other ‘δ-rules’ satisfying certain criteria.

The reductions rely on knowing the number of occurrences of a particu-
lar variable. The quadratic algorithms store this information in a table Count
mapping variable names to their number of occurrences. Appel and Jim’s näıve
algorithm repeatedly (i) zeros the usage counts, (ii) performs a census pass over
the whole term to update the usage counts and then (iii) traverses the term
performing reductions on the basis of the information in Count, until there are
no redexes remaining.

The improved algorithm, used in SML/NJ and SML.NET, dynamically up-
dates the usage counts as reductions are performed. This allows more reductions
to be performed on each pass, and only requires a full census to be performed
once. The improved algorithm is better in practice, but both algorithms have
worst-case time complexity Θ(n2) where n is the size of the input term.

Appel and Jim’s imperative algorithm runs in linear time and uses a pointer-
based representation of terms which directly links all occurrences of a particular
variable. This enables an efficient test to see if removing an occurrence will
create any new redexes, and an efficient way of jumping to any such redexes.
The algorithm first traverses the program tree collecting the set of all redexes.
Then it repeatedly removes a redex from the set and reduces it in-place (possibly
adding new redexes to the set), until none remain.

4 A Graph-based Representation

Our imperative algorithm works with a mutable graph representation comprising
a doubly-linked expression tree and a list of pairs of circular doubly-linked lists
collecting all the recursive (respectively non-recursive) uses of each variable. Such
graphs can naturally be presented pictorially as shown by the example in Fig. 1.

Figure 2 shows the β-reductions for functions in this pictorial form. We find
the pictorial representation intuitively very useful, but awkward to reason with

m n

n

f x

letfun be in (→.βÆ)0

m n
n

app
m

letfun be in

y ...x ...f y

(→.βÆ)1

m n n

app m

letfun be in

x ...f ...c c c

(→.βÆ)1

m n n

app m

letfun be in

x ...f ...* * *

(→.βÆ)1

Fig. 2. Graph reductions

or use in presenting algorithms. Hence, like Appel and Jim, we will work with a
more abstract structure comprising an expression tree and a collection of maps
which capture the additional graphical structure between nodes of the tree.

The structure of expression trees is determined by the abstract syntax of
simplified MIL. In order to capture mutability we use ML-style references. Each
node of the expression tree is a reference cell. We call the entities which reference
cells contain objects. Given a reference cell l, we write !l to denote the object of
l, and l := u to denote the assignment of the object u to l.

Atoms !a, !b ::= r | c
Values !v, !w ::= a | pair(a, b) | proj1(a) | proj2(a) | inj1(a) | inj2(a)
Computations !m, !n, !p ::= app(a, b) | letfun f(x) be m in n

| val(v) | let x be m in n | case a of (x1)n1 ; (x2)n2

e ::= v | m d ::= e | x | r

where f, g, x, y, z range over defining occurrences, and r, s, t over uses. We write
parent(e) for the parent of the node e. A distinguished sentinel node, root , marks
the top of the expression tree. The object dead (omitted from the grammar) is
used to indicate a dead node. If a node is dead then it has no parent. The root
node is the parent of the proper expression tree and is always dead. We define
children(e) of an expression node to be the set of nodes appearing in !e.

Initially both parent and children are entirely determined by the expression
tree. However, in our algorithm we take advantage of the parent map in order
to classify expression nodes as active or inactive. We ensure that the following
invariant is maintained: for all expression nodes e, either

– e is active: parent(d) = e, for all d ∈ children(e);
– e is inactive: !(parent(d)) = dead for all d ∈ children(e); or
– e is dead: !e = dead.

f x ... g y

m

n

f x ...

m

n

C

n

C

C

letfun be in

letfun be in

letfun be in

app

Fig. 3. Triggering non-local reductions

We define splicing as the operation which takes one subtree m and substitutes
it in place of another subtree n. The subtree m is removed from the expression
tree and then reintroduced in place of n. The parent map is adjusted accordingly
for the children of m. We define splicing a copy as the corresponding operation
which leaves the original copy of m in place. The operation dqe returns a new
node containing q, with parent root . When embedded in an enclosing node e[dqe],
the parent of dqe is e. In patterns, d·e matches against the contents of a node.

The def-use maps abstract the structures used for representing occurrences:

– def (r) gives the defining occurrence of the use r.
– non-rec-uses(x) is the set of non-recursive uses of the defining occurrence x.
– rec-uses(x) is the set of recursive uses of the defining occurrence x.

In the real implementation occurrences are held in a pair of doubly-linked circular
lists, such that each pair of lists intersects at a defining occurrence. We find it
convenient to overload the maps to be defined over all occurrences and also define
some additional maps:

non-rec-uses(r) = non-rec-uses(def (r))

rec-uses(r) = rec-uses(def (r)) def (x) = x

occurrences(r) = uses(r) ∪ {def (r)} uses(r) = non-rec-uses(r) ∪ rec-uses(r)

None of these additional definitions affects the implementation.
The graph structure allows constant time movement up and down the expres-

sion tree in the normal way, but also allows constant time non-local movement
via the occurrence lists. For example, consider the dead-function eliminations:

letfun f(x) be m in C[letfun g(y) be app(f, y) in n]
−→(→.β0) letfun f(x) be m in C[n] −→(→.β0) C[n]

where f, g 6∈ fv(C, n), illustrated in Fig. 3. After one reduction, g is dead, so its
definition can be deleted, removing the only use of f . Since this use is connected
to its defining occurrence, we can detect that the definition of f is now dead. The
defining occurrence is connected to its parent (root) so the new dead-function
redex can be reduced under the parent.

5 A One-pass Algorithm

In contrast to Appel and Jim’s imperative algorithm, the algorithm we have
implemented operates in one-pass. Essentially, the one-pass algorithm performs
a depth-first traversal of the expression tree, reducing redexes on the way back
up the tree. Of course, these reductions may trigger further reductions elsewhere
in the tree. By carefully deactivating parts of the tree, we are able to control
the reduction order and limit the testing required for new redexes. Here is an
outline of our one-pass imperative algorithm:

contract(e) = reduceCCs(e)
deactivate(e)
apply contract to children of e
reactivate(e)
reduce(true, e)

reduce(initial , e) = if e is a redex then
reduce e in place
perform further reductions triggered by reducing e

The operation reduceCCs(e) performs commuting conversions on the way
down the tree. The order of commuting conversions can have a significant ef-
fect on code quality, a poor choice leading to many jumps to jumps. We have
found that the approach of doing them on the way down works well in prac-
tice (although the contract algorithm would still be valid without the call to
reduceCCs).

reduceCCs(e) = case !e of
(let y be e′ in p) ⇒

if reduceCC (e, y, e′, p) 6= ∅ then reduceCCs(e) else skip
() ⇒ skip

reduceCC (e, y, e′, p) = case !e′ of
(letfun f(x) be m in n) ⇒

splice dlet y be n in pe in place of e′

splice dletfun f(x) be m in e′e in place of e
return {e′}

(let x be m in n) ⇒
splice dlet y be n in pe in place of e′

splice dlet x be m in e′e in place of e
return {e′}

(case a of (x1)n1 ; (x2)n2) ⇒
splice dlet y1 be n1 in dapp(f, y1)ee in place of n1

splice dlet y2 be n2 in dapp(f, y2)ee in place of n2

splice dletfun f(y) be p in dcase a of (x1)n1 ; (x2)n2ee
in place of e (where f is fresh)
return {n1, n2}

() ⇒ return ∅
Note that commuting conversions can also be triggered by other reductions. The
return value for reduceCC will be used in the definition of reduce in order to
catch reductions which are triggered by applying commuting conversions.

deactivate(e) deactivates e: parent(d) is set to dead for every d ∈ children(e).
reactivate(e) reactivates e: parent(d) is set to e for every d ∈ children(e).

Deactivating nodes on the way down prevents reductions from being triggered
above the current node in the tree. On the way back up the nodes are reactivated,
allowing any new redexes to be reduced. Because subterms are known to be
normalised, fewer tests are needed for new redexes. Consider, for example:

let y be (let x be m in n) in p −→T.CC let x be m in let y be n in p

Because we know that let x be m in n is in normal form, m cannot be of the
form let(. . .), letfun(. . .), case(. . .) or val(. . .). Hence, it is not necessary to check
whether let x be m in let y be n in p is a redex. (Of course, let y be n in p may
still be a redex, and indeed exposing such redexes is one of the main purposes
of performing CC-reduction.)

5.1 Reduction

The reduce function is the heart of the algorithm. Rather than maintaining a
global ‘work-list’ of redexes, as Appel and Jim do, reduce(initial , e) reduces any
new redexes created inside e (but none that are created above e in the expression
tree). initial is boolean flag indicating whether this call to reduce originates from
contract rather than some other recursive call. If reduce(initial , e) is invoked on
an expression node which is not a redex, then no action is performed. The reduce
function also returns a boolean to indicate whether a reduction took place. As
we shall see, this is necessary in order to detect the triggering of new reductions.
We now expand the definition of reduce.

reduce(initial , e) = case !e of
(letfun f(x) be m in n) ⇒

if non-rec-uses(f) = ∅ then
splice n in place of e
reduceOccs(cleanExp(m))
return true

else if rec-uses(f) = ∅ and non-rec-uses(f) = {f ′} then
let focus = parent(parent(f ′))
case !focus of
(app(f ′, a) ⇒

splice n in place of e
splice m in place of focus
let (occs, redexes) = substAtom(x, a)
reduceOccs(occs ∪ cleanExp(a))
reduceRedexes(redexes)
return true

() ⇒ return false
else return false

(let x be dval(v)e in n) ⇒

if uses(x) = ∅ then
splice n in place of e
reduceOccs(cleanExp(parent(v)))
return true

else if v is an atom a then
splice n in place of e
let (occs, redexes) = substAtom(x, a)
reduceOccs(occs ∪ cleanExp(parent(a)))
reduceRedexes(redexes)
return true

else case !v of
(pair(a, b)) ⇒

if initial then
let redexes = reduceProjections(e, x, a, b, uses(x))
if redexes = ∅ then return false
else

reduceRedexes(redexes)
reduce(false, e)
return true

else return false
(inji(a)) ⇒

if initial then
let (occs, redexes) = reduceCases(e, x, i, a, uses(x))
if redexes = ∅ then return false
else

reduceOccs(occs)
reduceRedexes(redexes)
reduce(false, e)
return true

else return false
() ⇒ return false

(let y be e′ in p) ⇒
let redexes = reduceCC (e, y, e′, p)
for e′′ ∈ redexes do reduce(false, e′′)
return true

() ⇒ return false

The first case covers β-reductions on functions, with two sub-cases:

– (→ .β0) If the function is dead, its definition is removed, the continuation
spliced in place of e, and any uses within the dead body deleted, possibly
triggering new reductions.

– (→ .β1) If the function has one occurrence, which is non-recursive, it is
inlined. The continuation of e is spliced in place of e, the function body is
inlined with the argument substituted for the parameter, and the argument
deleted. Substitution may trigger further reductions.

The second case covers β-reductions on computations as well as some instances
of β-reduction on products and sums. It is divided into four sub-cases.

– (T.β0) If a value is dead, then its definition can be removed. The continuation
is spliced in place of e. Then the uses inside the dead function body are
deleted, possibly triggering new reductions.

– (T.βa) If a value is atomic, then it can be inlined. First the continuation of e
is spliced in place of e. Then the atom is substituted for the bound variable.
Finally the atom is deleted.

– (×.β) If a pair is bound to a variable x, and this is the initial visit of e,
then any projections of x are reduced. For efficiency, new projections will
subsequently be reduced as and when they are created.

– (+.β) This follows exactly the same pattern as ×.β-reduction. The only
difference is that the reduction itself is more complex, so can trigger new
reductions in different ways.

The third case deals with commuting conversions.
The algorithm ensures that the current reduction is complete before any new

reductions are triggered. Potential new redexes created by the current reduction
are encoded and executed after the current reduction has completed.

reduceUp(e) reduces above e as far as possible:

reduceUp(e) = if reduce(false, e) then reduceUp(parent(e)) else skip

reduceRedexes reduces a set of expression redexes, whilst reduceOccs reduces a
set of occurrence redexes:

reduceRedexes(redexes) = for each e ∈ redexes do reduceUp(e)
reduceOccs(xs) = for each r ∈ xs do

if isSmall(r) then reduceUp(parent(def (r))) else skip
isSmall(r) = r /∈ rec-uses(r) and |non-rec-uses(r)| ≤ 1

cleanExp(e) removes all occurrences and subexpressions inside e and returns a
set of occurrence redexes.

cleanExp(e) = case !e of
(r) ⇒

e := dead
return deleteUse(r)

(letfun f(x) be m in n) ⇒
e, f, x := dead
return cleanExp(m) ∪ cleanExp(n)

(app(a, b)) ⇒
e := dead
return cleanExp(a) ∪ cleanExp(b)

. . .

Remark Marking nodes as dead ensures that unnecessary work is not done on
dead redexes. A crucial difference between the imperative algorithms and the
improved quadratic one is that reduction in the former immediately detects new
redexes, whereas the improved quadratic algorithm only detects new (non-local)
redexes on a subsequent traversal.
deleteUse(r) removes r and returns a set of 0 or 1 occurrence redexes:

deleteUse(r) =
if r is already dead then return ∅
let s = nextOcc(r)
uses(s) := uses(s)− {r}
return {s}

nextOcc(r) =
let x = def (r)
if r is non-recursive then return s ∈ (non-rec-uses(x) ∪ {x})− {r}
else if r is recursive then return s ∈ (rec-uses(x) ∪ {x})− {r}

reduceProjections(e, x, a1, a2, xs) reduces projections indexed by xs. e is an ex-
pression node of the form let x be val(pair(a1, a2)) in m, and xs is a subset of
the uses of x.

reduceProjections(e, x, a1, a2, xs) =
let redexes := ∅
for each s ∈ xs do

let focus = parent(parent(s))
case !focus of
(proji(s)) ⇒

splice a copy of ai in place of focus
redexes := redexes ∪ {parent(focus)}

() ⇒ skip
return redexes

All the projections in which a member of xs participates are reduced, and a set
of expression redexes is constructed. Each projection can trigger the creation of
a new T.βa-redex. For instance, consider:

let x be val(pair(a, b)) in let y be val(proj1(x)) in m

−→×.β let x be val(pair(a, b)) in let y be val(a) in m

−→T.βa
let x be val(pair(a, b)) in m[y := a]

reduceCases(e, x, i, a, xs) reduces case-splits indexed by xs. e is an expression
node of the form let x be val(inji(a)) in m, and xs is a subset of the uses of x.

reduceCases(e, x, i, a, xs) =
let occs := ∅
let redexes := ∅

for each s ∈ xs do
let focus = parent(parent(s))
case !focus of
(case s of (x1)n1 ; (x2)n2) ⇒

occs := occs ∪ cleanExp(n3−i)
deleteUse(s)
splice ni in place of focus
let (occs ′, redexes ′) = substAtom(xi, a)
occs := occs ∪ occs ′

redexes := redexes ∪ redexes ′ ∪ {parent(focus)}
x1, x2 := dead

() ⇒ skip
return (occs, redexes)

The structure of reduceCases is similar to that of reduceProjections. However, it
is slightly more complex because a single +.β-reduction inlines multiple atoms,
splices one branch of a case and discards the other. Discarding the branch which
is not taken gives a set of occurrence redexes as well as the expression redexes.

5.2 Substitution

substAtom(x, a) substitutes the atom a for all the uses of the defining occurrence
x. It returns a pair of a set of occurrence redexes and a set of expression redexes.

substAtom(x, a) = case (!a) of
(r) ⇒ substUse(x, r)
() ⇒

for each r ∈ uses(x) do
splice a copy of a in place of r
x := dead

return (∅, ∅)

This is straightforward for non-variable atoms, as it cannot generate new redexes.
In contrast, substituting a variable can trigger ×.β- and +.β-reductions.
substUse(x, r) substitutes r for all the uses of the defining occurrence x.

substUse(x, r) =
let xs = uses(x)
if r ∈ rec-uses(r) then

rec-uses(r) := rec-uses(r) ∪ xs
else if r ∈ non-rec-uses(r)

non-rec-uses(r) := non-rec-uses(r) ∪ xs
x := dead
let e = parent(def (r))
case !e of
(let y be val(dpair(a1, a2)e) in m) ⇒

for each s ∈ xs do def (s) := def (r)

let redexes = reduceProjections(e, y, a1, a2, xs)
return (∅, redexes)

(let y be val(dinji(ai)e) in m) ⇒
for each s ∈ xs do def (s) := def (r)
let (occs, redexes) = reduceCases(e, y, i, ai, xs)
return (occs, redexes)

() ⇒ return (∅, ∅)

Substitution is implemented by merging two sets together. Concretely, this
amounts to the constant-time operation of inserting one doubly-linked circu-
lar list inside another. In addition, if x is bound to a pair, then projections are
reduced, or if x is bound to an injection, then case-splits are reduced.

6 Analysis

There are two obvious operations mapping terms from the functional to the
imperative representations, which we call mutify and demutify , respectively. We
have a semi-formal argument for the following:

Proposition 3. Let e be a term and e′ = (demutify ◦contract ◦mutify)(e). Then
e′ is a normal form for e.

The argument uses the invariants of Sect. 4, plus the invariant that the children
of the current node are in normal form. When new redexes are created, this
invariant is modified such that subterms may contain redexes, but only those
stored in appropriate expression redex sets or occurrence redex sets. It is rea-
sonably straightforward to verify that the operations which update the graph
structure do in fact correspond to MIL reductions. When contract terminates,
all the redex sets are empty and the term is in normal form.

6.1 Complexity without Commuting Conversions

Although our approach of performing CCs on the way down the tree works
well in practice, the worst case time complexity is still quadratic in the size
of the term. We define a version of our algorithm contractβ which does not
perform commuting conversions. This is obtained simply by removing the call to
reduceCCs from contract , and the test for commuting conversions from reduce.

Proposition 4. contractβ(e) is linear in the size of e.

The argument is very similar to that of Appel and Jim [1] for their imperative
algorithm. Essentially most operations take constant time and shrink the size of
the term. The only exception is substitution. In the case where a non-variable is
substituted for a variable x, the operation is linear in the number of uses of x.
But it is only possible to substitute a non-variable for a variable once, therefore
the total time spent substituting atoms is linear. In the case where a variable
y is substituted for a variable x, the operation is constant, providing y is not

bound to a pair or an injection. If y is bound to a pair or an injection, then the
operation is linear in the number of uses of x. Again, once bound to a pair or
an injection, a variable cannot be rebound, so the time remains linear.

Crucially, this argument relies on the fact that back pointers from uses back
to defining occurrences are only maintained for pairs and injections. In our
SML.NET implementation we found that maintaining back pointers from all
uses back to defining occurrences does not incur any significant cost in practice.
Even when bootstrapping the compiler (∼ 80,000 lines of code) there was no
discernible difference in compile time. Maintaining back pointers also allows us
to perform various other rewrites including η-reductions. In the presence of all
back pointers, optimising the union operation to always add the smaller list to
the larger one guarantees O(n log n) behaviour. Using an efficient union-find
algorithm would restore essentially linear complexity.

6.2 Complexity with Commuting Conversions

Naively reducing commuting conversions can give quadratic behaviour. For in-
stance, consider the following (innermost first) reductions:

let xk be (let xk−1 be . . . let x1 be m1 in m2 in . . .mk) in n

−→∗ (S(k − 1) T.CC-reductions)
let xk be (let x1 be m1 in . . . let xk−1 be mk−1 in mk) in n

−→∗ (k − 1 T.CC-reductions)
let x1 be m1 in . . . let xk be mk in n

The total number of reductions is given by the recurrence: S(1) = 0, S(k) =
S(k − 1) + k − 1. This has solution S(k) = k(k − 1)/2. Assuming each of the
mis and n have constant size, then k is linear in the size of the term. Hence the
number of reductions is quadratic in the size of the term. If the contract function
directly performed these reductions, then it would also be quadratic.

Another problem is that +.CC-reductions can introduce ‘useless functions’:

let z be (let y be (case a of (x1)n1 ; (x2)n2) in m) in p

−→∗ letfun f(y) be m
in let z be case a of (x1)let y1 be n1 in app(f, y1)

; (x2)let y2 be n2 in app(f, y2)
in p

−→∗ letfun f(y) be m
in letfun g(z) be p

in case a of (x1)let y1 be n1 in let z1 be app(f, y1) in app(g, z1)
; (x2)let y2 be n2 in let z2 be app(f, y2) in app(g, z2)

The function g is useless in the sense that it is always applied to the result of
applying f to an argument. One might hope that g be composed with f . If we

change the reduction order, such that the commuting conversions are performed
outermost first, then it is:

let z be (let y be (case a of (x1)n1 ; (x2)n2) in m) in p

−→∗ let y be (case a of (x1)n1 ; (x2)n2) in let z be m in n

−→∗ letfun f(y) be let z be m in p
in case a of (x1)let y1 be n1 in app(f, y1)

; (x2)let y2 be n2 in app(f, y2)

Fortunately, given the limited ways in which commuting conversions can trigger
other reductions, the full imperative algorithm can get away with performing
commuting conversions outermost first, with an initial call to reduceCCse be-
fore recursively contracting e’s children. The operation reduceCCs(e) repeatedly
checks e to see if it is a CC-redex. If it is, then it performs the commuting
conversion, and iterates. If not, then it returns.

The previous example of quadratic behaviour due to commuting conversions
becomes linear with this reduction strategy. However, quadratic behaviour can
still arise through inlining functions that trigger further commuting conversions:

letfun fk(xk) be let yk be app(g, xk) in app(g, yk)
fk−1(xk−1) be let yk−1 be app(fk, xk−1) in app(g, yk−1)

...
f1(x1) be let y1 be app(f2, x1) in app(g, y1)

in app(f1, a)

contract takes quadratic time to reduce this term. In order to get a linear number
of reductions, one would have to inline all the functions first, before performing
any commuting conversions.

7 Performance

We have extended our one-pass imperative algorithm contract to the whole of
MIL and compared its performance with the current implementation of simplify.
Replacing simplify with contract is not entirely straightforward, as all the other
phases in the pipeline are written to work on a straightforward immutable tree
datatype for terms, which is incompatible with the representation used in con-
tract. We therefore make use of mutify and demutify to change representation
before and after contract . Since both mutify and demutify completely rebuild
the term, they are very expensive – calling mutify and demutify generally takes
longer than contract itself. Ideally, of course, all the phases would use the same
representation. However, using two representations allowed us to compare the
running times of simplify and contract on real programs.

Table 1 compares the total compile times (tsimplify vs tcontract) of several
benchmark programs for the existing compiler, using simplify, and for the mod-
ified one, using demutify ◦ contract ◦ mutify. Table 2 compares the time simp

Table 1. Total compile time (in seconds)

Benchmark Lines of SML/NJ MLton
code tsimplify tcontract tsimplify tcontract

sort 70 2.11 3.47 0.46 0.52
xq 1,300 13.1 14.4 2.46 1.76
mllex 1,400 11.6 16.0 2.39 2.03
raytrace 2,500 18.1 24.0 4.30 3.03
mlyacc 6,200 57.3 43.8 10.0 6.04
hamlet 20,000 219 156 43.7 26.2
bootstrap 80,000 1310 1190 289 221

Table 2. Shrinking reduction time (in seconds) under SML/NJ and MLton

Under SML/NJ Under MLton
Benchmark Total Breakdown Total Breakdown

simp mcd m c d simp mcd m c d

sort 1.00 2.00 0.87 0.70 0.43 0.22 0.11 0.02 0.07 0.02
xq 5.86 5.98 1.90 3.61 0.47 1.46 0.54 0.35 0.15 0.06
mllex 6.09 7.49 3.31 3.16 1.02 1.21 0.57 0.27 0.23 0.07
raytrace 9.32 11.8 5.16 5.44 1.17 2.13 0.65 0.37 0.19 0.09
mlyacc 33.2 20.0 9.42 8.60 1.94 5.63 1.26 0.68 0.37 0.21
hamlet 84.5 56.4 26.2 21.5 8.59 23.3 5.54 1.85 2.77 0.92
bootstrap 439 282 130 100 53.0 107 36.6 11.8 18.4 6.38

spent in simplify with the times m, c, d spent in each of mutify, contract and
demutify and their sum mcd. Each benchmark was run under two different ver-
sions of SML.NET. One was compiled under SML/NJ [12] and the other under
MLton [13]. Benchmarks were run on a 1.4Ghz AMD Athlon PC equipped with
512MB of RAM and Microsoft Windows XP SP1.

The first five benchmarks are demos distributed with SML.NET. The sort
benchmark applies quicksort to a list of integers; xq is an interpreter for an
XQuery-like language for querying XML documents; mllex and mlyacc are ports
of SML/NJ’s ml-lex and ml-yacc utilities; raytrace is a port to SML of the win-
ning entry from the Third Annual ICFP Programming Contest. The remaining
benchmarks are much larger: hamlet is Andreas Rossberg’s SML interpreter,
whilst bootstrap is SML.NET compiling itself.

Figure 4 gives a graphical comparison of both tables. On small benchmarks,
the current compiler is faster (tcontract/tsimplify). But for medium and large
benchmarks, we were surprised to discover that contract is faster than simplify,
even though much of the time is spent in useless representation changes. Under
SML/NJ, tcontract/tsimplify shows a decrease of nearly 30% in the total compile
time in some cases; under MLton, there is a decrease of up to 40%. This is a
significant improvement, given that in the existing compiler only around 50%
of compile time is spent performing shrinking reductions. Comparing the actual
shrinking reduction times c and simp, contract is up to four times faster than

Fig. 4. Comparing contract with simplify

simplify under SML/NJ, and up to 15 times faster under MLton (on mlyacc).
The level of improvement under MLton is striking. Our results suggest that
MLton is considerably better than SML/NJ at compiling ML code which makes
heavy use of references.

As an exercise, one of the other transformations deunit , which removes re-
dundant unit values and types was translated to use the new representation.
The contract function is called before and after deunit , so this enabled us to
eliminate one call to demutify and one call to mutify . This translation was easy
to do and did not change the performance of deunit . We believe that it should
be reasonably straightforward, if somewhat tedious, to translate the rest of the
transformations to work directly with the mutable representation.

8 Conclusions and Further Work

We have implemented and extended Appel and Jim’s imperative algorithm for
shrinking reductions and shown that it can yield significant reductions in compile
times relative to the algorithm currently used in SML/NJ and SML.NET. The
improvements are such that, for large programs, it is even worth completely
changing representations before and after contract , but this is clearly suboptimal.
The results of this experiment indicate that it would be worth the effort of
rewriting other phases of the compiler to use the graph-based representation.

Making more extensive use of the pointer-based representation would allow
many transformations to be written in a different style, for example replacing
explicit environments with extra information on binding nodes, though this does
not interact well with the hash-consing currently used for types. We also believe
that ‘code motion’ transformations can be more easily and efficiently expressed.

It is unfortunate that CCs and inlining conspire to produce quadratic com-
plexity. Sabry and Wadler’s study of CPS translations offers an interesting in-
sight [11]. In their variant of Moggi’s computational lambda calculus λc∗∗, terms
are in CC-normal form by definition, and β-reduction of an application is com-
bined with CC-normalisation of its enclosing let-expression: adopting this more
refined notion of redex may allow us to achieve linear complexity.

More speculatively, we would like to investigate more principled mutable
graph-based intermediate representations. There has been much theoretical work
on graph-based representations of proofs and programs, yet these do not seem to
have been exploited in compilers for higher-order languages (though of course,
compilers for imperative languages have used a mutable flow-graph representa-
tions for decades). With a careful choice of representation, some of our trans-
formations (such as T.CC) could simply be isomorphisms and we believe that
a better treatment of shared continuations in the other commuting conversions
would also be possible.

References

1. Andrew W. Appel and Trevor Jim. Shrinking lambda expressions in linear time.
Journal of Functional Programming, 7(5):515–540, 1997.

2. N. Benton and A. Kennedy. Monads, effects and transformations. In 3rd Interna-
tional Workshop on Higher Order Operational Techniques in Semantics (HOOTS),
Paris, volume 26 of ENTCS. Elsevier, September 1999.

3. N. Benton, A. Kennedy, and C. Russo. SML.NET. http://www.cl.cam.ac.uk/

Research/TSG/SMLNET/, June 2002.
4. N. Benton, A. Kennedy, and C. Russo. Adventures in interoperability: The

SML.NET experience. In Proc. 6th ACM-SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP), August 2004.

5. Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to
Java bytecodes. In Proc. ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98), volume 34(1), pages 129–140, 1999.

6. O. Danvy. A new one-pass transformation into monadic normal form. In Proc.
12th International Conference on Compiler Construction, number 2622 in Lecture
Notes in Computer Science, pages 77–89. Springer, 2003.

7. Ecma International. ECMA Common Language Infrastructure standard, De-
cember 2002. http://www.ecma-international.org/publications/standards/

Ecma-335.htm.
8. J. Hatcliff and O. Danvy. A generic account of continuation-passing styles. In Proc.

21st Annual Symposium on Principles of Programming Languages. ACM, 1994.
9. Sam Lindley. Normalisation by evaluation in the compilation of typed functional

programming languages. PhD thesis, The University of Edinburgh, 2005.
10. S. L. Peyton Jones and A. L.M. Santos. A transformation-based optimiser for

Haskell. Science of Computer Programming, 1998.
11. Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Transactions

on Programming Languages and Systems, 19(6):916–941, 1997.
12. Standard ML of New Jersey (SML/NJ) compiler: http://smlnj.org/.
13. Stephen Weeks, Matthew Fluet, Henry Cejtin, and Suresh Jagannathan. MLton

whole-program optimizing compiler: http://mlton.org/.

http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://smlnj.org/
http://mlton.org/

