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Abstract     
The Web contains an abundance of useful semi-structured information 
about real world objects, and our empirical study shows that strong 
sequence characteristics exist for the Web information about the objects 
of the same type across different Web sites. This paper introduces a two 
dimensional Conditional Random Fields model, incorporating the 
sequence characteristics and the 2D neighborhood dependencies, to 
automatically extract object information from the Web. We also present 
the experimental results comparing our model with the linear-chain CRF 
model in the domain of product information extraction. The 
experimental results show that our model significantly outperforms 
existing CRF models. 

1.  Introduction 

While the Web is traditionally used for hypertext 
publishing and accessing, there are actually various kinds 
of objects embedded in static Web pages and dynamic 
Web pages generated from online Web databases. There 
is a great opportunity for us to extract and integrate all the 
related Web information about the same object together as 
an information unit. These information units are called 
Web objects in (Nie et al., 2005). Typical Web objects are 
products, people, papers, organizations, etc. Commonly, 
objects of the same type obey the same structure or 
schema. We can imagine that once these objects are 
extracted and integrated from the Web, some large 
databases can be constructed to perform further 
knowledge discovery and data management tasks. This 
paper studies how to extend the existing information 
extraction techniques to automatically extract object 
information from Web pages. 

The information about an object in a Web page is usually 
grouped together as a block, as shown in Figure 1. Using 
existing Web page segmentation technologies (Cai et al., 
2004; Liu et al., 2003),  we can automatically detect these 
Web object blocks, which are further segmented into 
atomic extraction entities called object elements. Each 
object element provides (partial) information about a 
single attribute of the Web object. Given an object block 
B with a set of elements

1{ } T
i iB e == , the Web object 

extraction task is to assign an attribute name from the 
attribute set

1{ } m
i iA a ==  to each object element 

ie .  

————— 
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Figure 1. An object block with 6 elements in a Web page 

Intuitively, the sequence order of the attribute values 
appearing in an object block is similar to that of another 
block about an object of the same type. If this sequence 
characteristic is suitable for Web objects of interests, 
Condition Random Fields (CRF) models (Lafferty et al., 
2001) are the state of the art approaches in information 
extraction taking the advantage of the sequence 
characteristics to do better labeling. To show that the 
sequence order is similar among the Web objects of the 
same type, we have conducted some statistical studies 
over a set of randomly selected Web sites. The results 
(see table 1) show that strong sequence characteristics 
exist for Web objects of the same type across different 
Web sites. 

However, in order to use a linear-chain structured CRF 
model for Web object information, we have to first 
convert a two dimensional object block into a sequence of 
object elements. Given the two dimensional nature of the 
object blocks, how to sequentialize them in a meaningful 
way can be very challenging. Moreover, as shown by our 
empirical evaluations, using the 2D neighborhood 
dependencies (i.e. interactions between labels of the 
neighbors of the current element in both vertical and 
horizontal directions) in Web object extraction could 
significantly improve the extraction accuracy, and only 
considering one dimensional neighbor will lead to 
ineffective solutions. 

In this paper, we first propose a two dimensional 
Conditional Random Fields model with the graph as a 2D 
lattice (as see Figure 2). Then we deduce the forward-
backward algorithm for 2D CRFs based on the matrices 
expressed conditional distribution for efficient parameter 
estimation and labeling. Since the model is two 
dimensional, exact inference can be very expensive, so a 



 

 

suboptimal method is used to perform approximate 
inference. To handle the irregular neighborhood 
dependencies caused by the elements’ arbitrary sizes in a 
Web page, we introduce the concepts of virtual elements 
and empty elements to map an object block with arbitrary 
sized elements into a 2D lattice. 

We compare our model with linear-chain CRF models for 
product information extraction and the experimental 
results show that our model significantly outperforms 
linear-chain CRF models in scenarios with 2D 
neighborhood dependencies. 

The rest of this paper is organized as follows. We discuss 
the related work in the next section. In section 3, a 2D 
CRF model is presented, the parameter estimation and 
labeling methods are discussed. Section 4 presents web 
object extraction in a two dimensional sense. In section 5, 
we setup our experiments in the domain of product 
information extraction and give the experimental results. 
Section 6 brings this paper to a conclusion. 

2.  Related Work 

For information extraction, there have been many 
probabilistic models. In the past, as the IE was mainly 
taken as a sequential labeling task, so the models used 
were generally linear-chain models for simplicities. 
Among this type of models are HMMs, MEMMs, CRFs, 
etc. In the following, we use x  and y  to denote the 
observation and label sequences respectively. HMMs 
(Bikel et al., 1997; Leek, 2000) or Hidden Markov 
Models, are generative models which define the joint 
probability distribution (x, y)p . But for information 
extraction, the conditional distribution (y | x)p is of 
interest, so these models must enumerate all possible 
observation sequences to compute the conditional 
distribution. If the observations have long-distance 
dependencies, this is intractable. In order to achieve 
computational tractability, the independence assumption 
is made: the observation at timet is conditionally 
independent from other observations given the state at 
time t . This assumption is too strong when the 
observations have long-distance dependencies or multiple 
interacting features. To relax the strong assumption, 
conditional models are proposed. A conditional model 
specifies the probabilities of possible label sequences 
given an observation sequence. Therefore, it does not take 
any effort on modeling the observations and the 
conditional probability over the label sequences can 
depend on arbitrary, over-lapping features of the 
observations. MEMMs (McCallum, Freitag & Pereira, 
2000) or maximum entropy markov models are models of 
this type. MEMMs use the state-observation transition 
distribution

1(y | y ,x )t t tp − to replace the state transition 
probability

1(y | y )t tp − and the observation probability  
(x | y )t tp  in HMMs. However, as pointed out by Lafferty, 

McCallum and Pereira (2001), MEMMs and some 
discriminative models are brittle to the Label Bias 

Problem. For the per-state normalization of the next state 
distribution, MEMMs take little notice of observations at 
the states which have low-entropy next state distribution 
and just ignore the observations at the states which have 
only one next state.  

CRFs or conditional random fields were introduced by 
Lafferty et al. (2001) to take the advantages of conditional 
models and also to avoid the Label Bias problem suffered 
by MEMMs. CRFs are undirected graphical models, so 
the single joint probability distribution over the label 
sequence given the observation rather than the per-state 
distributions over the next states given the current state 
can be specified. CRF models have been shown to 
outperform other models in modeling sequential data (Sha 
& Pereira, 2003; Peng & McCallum, 2004). Dynamic 
conditional random fields (DCRFs) (Sutton et al., 2004) 
are a generalization of linear-chain CRFs to represent 
complex interaction between labels in sequence labeling. 
As a specific model, the factorial CRF model is used for a 
natural-language chunking task and the approximate 
inference is performed using loopy belief propagation 
(Murphy, Weiss & Jordan, 2002).  

Previous work on 2D models was mainly carried out in 
the domains of Image processing and Computer Vision. 
Among these models are 2D HMMs (Li, Najmi & Gray, 
2000), MRF models (Besag, 1974; Li, 2001), and DRFs 
(Kumar & Hebert, 2003; Kumar & Hebert, 2004). The 2D 
Hidden Markov models proposed by Li et al. (2000) for 
image classification are also generative models, so some 
independence assumptions are made for computational 
tractability. The fast algorithms developed to efficiently 
estimate the model and perform classification are worth 
noting. Markov Random Fields are generally used in a 
probabilistic generative framework, but unlike 2D HMMs, 
MRFs model the prior distribution(y)p over labels as a 
markov random field. For computational tractability, the 
likelihood model (x | y)p is usually also assumed to have 
a factorized form as in the 2D HMMs. Some researchers 
(Cheng & Bouman, 2001; Wilson & Li, 2003) have 
noticed that this assumption is too restrictive for some 
applications. To take advantages of the conditional 
models, DRFs or Discriminative Random Fields were 
proposed by Kumar et al. (2003) in the case of binary 
image classification, which are based on CRFs and model 
the association potential as local discriminative model as 
well as the interactions between the neighboring sites on 
2D lattices. To make the parameter learning a convex 
problem, a simplified interaction potential form was 
proposed by Kumar et al. (2004). It has been shown that 
DRFs outperform MRFs in the natural image 
classification. However, the proposed DRFs are 
concerned with binary classification, so they can’t be 
applied to our application. 

3.  2D Conditional Random Fields 

In this section we first introduce the basic concepts of the 



 

 

Figure 2. The graphical structure of 2D CRF, where X  is the 
observed random variable; ( , )Y i j is the state variable which is 
indexed by the vertex ( , )i j  in the 2D lattice. 

linear–chain Conditional Random Fields models, and then 
we discuss the conditional probability over labels of a 2D 
CRF model, and finally we discuss how to estimate the 
parameters and how to perform labeling. 

3.1  Linear-chain CRFs 

Conditional random fields (Lafferty et al., 2001) are 
undirected graphs. As defined before, { }i i VX X ∈= is a 
random variable over the observed data to be labeled, 
and { }i i VY Y ∈= is the corresponding random variable over 
labels, where iY range over a finite label alphabetY . The 
random variables X  and Y  are jointly distributed, but in a 
discriminative framework, a conditional model( | )p Y X  
is constructed from paired observations and labels, and 
the marginal ( )p X  is not explicitly modeled. 

CRF Definition: 

Let ( , )G V E=  be an undirected graph such that Y is 
indexed by the vertices of G . Then ( , )X Y is said to be a 
conditional random field if, when conditioned on X , the 
random variables

iY obey the Markov property with 
respect to the graph:

{ }( | , ) ( | , )
ii V i i Np Y X Y p Y X Y− =  

where { }V i−  is the set of nodes in the graph except the 
node i , 

iN  is the set of neighbors of the node i in G . 

Thus, a CRF is a random field globally conditioned on the 
observationsX . By the Hammersley-Clifford Theorem 
(Hammersley & Clifford, 1971), the joint distribution 
over the labels y  given the observations x  of a linear-
chain CRF has the form, 

where y |S  is the set of components of y  associated with 
the vertices in the sub-graph S , 

kf  is a transition feature 
function and 

kg  is a state feature function, 
kλ  and 

kµ  are 
parameters to be estimated from the training data, (x)Z  is 
the normalization factor, also known as partition function, 
which has the form, 

( )
y , ,

x exp ( ,y | ,x) ( ,y | ,x)k k e k k v
e E k v V k

Z f e g vλ µ
∈ ∈

 
= + 

 
∑ ∑ ∑  

3.2  2D CRFs 

Figure 3. The diagonal state sequences of a 2D lattice 

For 2D CRFs, the underlying graph is a 2D lattice (see 
Figure 2). The cliques in this graph are edges and vertices. 
Therefore, the conditional distribution has the same form 
as the linear-chain CRFs, but with hv EEE ∪= , and vE ,  

hE are the sets of vertically and horizontally oriented 
edges respectively.  

For linear-chain CRF (Lafferty et al., 2001), the forward-
backward algorithm is used to carry out efficient 
inference based on the matrix formatted conditional 
distribution. Similarly, for 2D CRF, we present the 
conditional distribution in a matrix form to deduce the 
forward-backward vectors for efficient parameter 
estimation and labeling (see Section 3.3 & 3.4). 

We first introduce some notations we use as follows: 

1) The sequence of states on the diagonali , 

,0 1,1 0,{ , , , }i i iY Y Y− L  is denoted by
1iT + , as shown in 

Figure 3. 

2) The label sequence on diagonal i , 

,0 1,1 0,{y , y , , y }i i i− L  is denoted by 
1yi+ . 

3) Two special state sequences are added: 
0T start=  

and 
N MT stop+ = . 

4) The diagonal on which the state 
,i jY  lies is denoted 

by ( , )i j∆ . 

5) The set of indices of the states on diagonald , 
{( , ), ( , ) }i j i j d∆ =  is denoted by ( )I d . 

6) The set of edges between diagonals1d − andd  
' ' ' '{(( , ),( , )) : ( , ) ( 1)  ( , ) ( )}i j i j E i j I d and i j I d∈ ∈ − ∈  is denoted 

by ( )E d . 

For each diagonal position i , we define the 1i iS S− ×Y Y  
matrix random variable '

1(x) [ (y , y | x)]i i i iM M −=  by  
' '

1 1(y , y | x) exp( (y , y | x))i i i i i iM − −= Λ  

where 
1iS −  and 

iS are the state numbers on diagonals 1i −  
and i  respectively, and ' '(( , ), ( , ))e w u w u=  is an edge 
between diagonal 1i −  and diagonal i , and ( , )v w u=  is a 
vertex on diagonal i . 

( )
, ,

1
y | x exp ( , y | , x) ( , y | , x)

(x) k k e k k v
e E k v V k

p f e g v
Z

λ µ
∈ ∈

 
= + 

 
∑ ∑

(0: 1)i N −

(0: 1)j M−

X

( ),Y i j

1T

2T

NT

M

1NT + 1N MT + −L

(0 : 1)j M −

(0 : 1)i N −

' '

' '
1 , ,,

( ), ( ),

(y ,y | x) ( , , ,x) ( , ,x)  (1)i i i k k wu k k wuw u
e E i k v I i k

f e y y g v yλ µ−
∈ ∈

Λ = +∑ ∑ L



 

 

Thus, when given the observations x  and the parameters, 
the matrices can be computed as needed. Then the 
normalization factor (x)Z  can be expressed as the 
( , )start stop  entry of the product of these matrices:   

( )1 2 ( , )
(x) (x) (x) (x)M N start stop

Z M M M += L  

So, the conditional probability over labels y  given the 
observations x  has the form, 

 

 

 

 

 

where 
0y start=  and yN M stop+ = . 

3.3  Parameter Estimation 

Given the training data 
1{(y , x )}i i N

iD == with the empirical 
distribution (x, y)p% , the log-likelihood of (x, y)p%  with 
respect to a conditional model(y | x, )p Θ is defined as, 

 

 

The parameter estimation problem is to find a set of 
parameters

1 2 1 2{ , , ; , , }λ λ µ µL L  that optimize the convex 
log-likelihood function. The function can be optimized by 
the techniques used in other maximum-entropy models 
(Lafferty et al., 2001; Berger et al., 1996). We choose L-
BFGS (Liu & Nocedal, 1989) for that it has been shown 
to outperform other optimization algorithms for linear-
chain CRFs (Malouf, 2002; Sha et al., 2003). Each 
element of the gradient vector is given by 

 

 

where 
(x,y)[ ]p kE f

%
is the expectation with respect to the 

empirical distribution, and 
(y|x, )[ ]p kE fΘ is the expectation 

with respect to the conditional model distribution. For 
transition feature functions, 

where ' '(( , ), ( , ))e i j i j=  is an edge, and for state feature 
functions, 

So the computation of the marginal probabilities, which 
are needed to compute the gradients at every iteration, is 
the main contribution to the complexity. The idea of 
forward-backward algorithm can be extended here to 
simplify the computation. As the conditional distribution 
has the form in equation (2), the state sequence 

iT  is in 

fact an “isolating” element in the expansion of ( | )p Y X , 
which plays the same role of a state at a single unit of 
time in linear-chain CRFs. 

For each diagonal index 0, ,d M N= +L , the forward 
vectors (x)dα  are defined with base case 

 

 

and with recurrence 
1(x) (x) (x)d d dMα α −=  

Similarly, the backward vectors (x)dβ  are defined by 

 

 

and                       T
1 1(x) (x) (x)d d dMβ β+ +=  

Thus, the marginal probability of being in label sequence 
yd

 at diagonal d  given the observations x  is 

 

 

So the marginal probability of being in state 
,i jy  at 

,i jT  on 
diagonal d is 

 

 

Similarly, the marginal probability of being in label 
sequence '

1yd−  at diagonal 1d −  and yd
 at diagonal d  

given the observations  x  is 

So the marginal probability of being in state 
' '

'

,i j
y  at 

' ',i j
T  

and 
,i jy  at 

,i jT  is, 

where ' '(( , ), ( , ))i j i j  is an edge between diagonals 1d −  
and d . 

3.4  Labeling 

Labeling is the task to find a labels y∗  that best describes 
the observations x , that is, 

( )
y

y max y | xp∗ =  

Dynamic programming algorithm is the desirable method 
for this problem. A variant of viterbi algorithm is used by 
Lafferty et al. (2001) for linear-chain CRFs. In the 2D 
case, viterbi algorithm can also be extended for the 
labeling task using the “isolating” element

iT (Li et al., 
2000). The difference from the normal Viterbi algorithm 
is that the number of possible state sequences at every 
position in the viterbi transition diagram is exponential to 
the number of states on 

iT .  

( )
1

1

1 ( , )

(y , y | x)
(y | x)        2

(x)

M N

i i i
i

M N

i
i start stop

M
p

M

+

−
=
+

=

=
 
 
 

∏

∏
L

1    y
(y | x)

0  
M N

N M M N

if stop

otherwise
β +

+ +

=
=


(y | x) (y | x)
(y | x)

(x)
d d d d

dp
Z

α β=

0
0 0

1    y
(y | x)

0   

if start

otherw ise
α

=
= 


,

,
y :y ( , )

( | x) (y | x)
d d i j

i j d
i j y

p y p
=

= ∑

' '
' 1 1 1

1

(y | x) (y , y | x) (y | x)
(y , y | x)

(x)
d d d d d d d

d d

M
p

Z

α β− − −
− =

x,y

( ) (x, y) log (y | x, )L p pΘ = Θ∏ %

(x,y) (y|x, )

( )
[ ] [ ]p k p k

k

L
E f E f

λ Θ
∂ Θ = −

∂ %

' ' ' '

'
' ' ,,

' '
(y|x, ) , ,, ,

x ,

[ ] (x) ( , | x) ( , , ,x)
i ji j

p k i j k i ji j i j
e E y y

E f p p y y f e y yΘ
∈

=∑ ∑ ∑%

,

(y|x, ) , ,
x ( , )

[ ] (x) ( | x) ( , ,x)
i j

p k i j k i j
v i j V y

E g p p y g v yΘ
= ∈

=∑ ∑ ∑%

' '

' ' ' ' '
,1 1 ' ',

' '
, 1,

y :y ( , )y :y ( , )

( , | x) (y , y | x)
d d i jd d i j

i j d di j
i j yi j y

p y y p
− −

−
==

= ∑ ∑



 

 

4.  Modeling an Object Block 

As described in the introduction section, an object block 
is composed of some atomic extracted entries called 
object elements. The object blocks and their elements 
can be located using some existing web page 
segmentation technologies like (Cai et al., 2004; Liu et 
al., 2003). However, when using the proposed 2D CRF 
model to model the interactions between neighborhood 
states for Web object extraction, we need to handle the 
irregular neighborhood dependencies caused by the 
elements’ arbitrary sizes in a Web page. Take the block 
in Figure 1 as an example, the element 

2e is so large that 
the elements 

1e , 3e , 4e and 5e are its neighbors. But for 
the lattice structured model, if we associate each element 
with only one state as in Figure 4(a), the association 
result can not represent the desired neighborhood 
dependencies between state pairs 

2 4( , )e e  and 
2 5( , )e e . 

Moreover, we should not further segment them into 
smaller elements to represent the neighborhood 
dependencies because they are atomic extracted entries. 
Thus, we use virtual elements and empty elements to 
handle this problem. By denoting the object elements as 
real elements, the virtual elements are defined as the 
mirrors of the real elements which must have the same 
attributes. The empty elements are introduced just for the 
denotation of missing states, which are ignored during 
the inference. In the following, we denote the empty 
element by 

1e− , and the virtual element of real element 

ie  by 
ie∗ , where i  is a unique index ranging from 0  to 

1n −  and n is the number of elements in a block. To  

 

 

 

 

 

 

 

Figure 4(a). Direct association result 

 

 

 

 

 

 

 

 

Figure 4(b). Association result with virtual elements 

model the neighborhood dependencies in the 2D lattice, 
we define four neighbors (left, top, right and bottom) for 
each element as the neighbors of the state with which it is 
associated. The indices of the neighbors are denoted by a 
quad-tuple( , , , )i i i il t r b . If 

ie  has only one left, top, right, 
or bottom neighbor, then the corresponding index is just 
the index of that neighbor; If 

ie  has more than one left or 
right neighbors, then 

il  or 
ir  is the index of the highest 

one; If 
ie has more than one top or bottom neighbors, then 

it or 
ib is the index of the most left one. If a neighbor 

doesn’t exist, the index is 1−  accordingly. Thus, the 
neighbors of each element in Figure 1 are: 

 

 

 

 

 

 

The association result with virtual elements is shown in 
Figure 4(b). The states are real, virtual or empty states if 
the elements associated with them are real, virtual or 
empty elements. Since the empty states are ignored during 
inference, a diagonal state sequence is composed of the 
real and virtual states on that diagonal. Thus, the diagonal 
state sequences in Figure 4(b) are: 

 

 

 

 

 

 

The virtual states are half-real for that an edge associated 
with them is normal clique if its another end is associated 
with a different real element; otherwise it’s a virtual 
clique. In Figure 4(b), we have denoted normal cliques as 
solid edges and virtual cliques as dotted edges. The 
virtual cliques do not contribute to the probability 
distribution, but indicate strong constraints between the 
same virtual states or between the virtual states and their 
real states that they must have the same state values when 
a transition takes place. Thus, equation (1) can be 
reformed as: 

where ( )vE i  is the set of virtual cliques between 
diagonals 1i −  and i , ( )rE i  is the set of normal cliques, 
and ( )rI i  is the set of indices of the real states on 
diagonal i and ' '(( , ), ( , ))e w u w u= is an edge between 

( )
( )
( )
( ) ( )
( ) ( )
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diagonals 1i −  and i , and ( , )v w u= is a vertex on 
diagonal i . So, the transition matrix from 

2T  to 
3T  with 

{0,1}=Y  is, 

The elements 
02m , 

03m , 
10m and 

11m are zeros for the 
strong constraints between states 

1,1T  and 
2,1T . 

As the dimensions of the transition matrices (x)iM are 
exponential to the state numbers on diagonals 1i −  and i  
respectively, the computational complexity is really high. 
In order to achieve polynomial-time complexity, we use 
the path-constrained suboptimal method proposed by Li et 
al. (2000). We apply this method to compute the 
approximate gradients in L-BFGS algorithm to train our 
model and to find the best state sequence using variable-
state Viterbi algorithm. 

5.  Experimental Studies 

In this section, we first conducted some statistical work to 
demonstrate that strong sequence characteristics exist for 
Web objects of the same type across different Web sites. 
Then we compare our model with linear-chain CRF in the 
domain of product information extraction. The 
experimental results show that our model outperforms 
sequential models in Web object extraction. 

5.1  Statistical Results 

To show that the sequence characteristics are universal in 
Web object blocks, we conducted some statistical work in 
two types of Web objects: products and researchers’ 
homepages. We randomly selected 100 product pages 
containing 964 product blocks from different Web sites 
and 120 homepages. Some key attributes are surveyed for 
each type. For product objects, the attributes “name”, 
“image”, “price” and “description” are considered and for 
researchers’ homepages, we considered the attributes 
“name”, “telephone”, “email” and “address”. We decide 
the sequence order of the elements in a web page in a top-
down and left-right manner based on their position 
information. Basically, the element in the top level will be 
ahead of the all the elements below it and for the elements 
at the same level, the left elements will be ahead of their 
right elements. In Table 1 we show the statistics about the 
sequence orders of the attribute pairs for objects from 
both product pages and homepages. 

The statistical results show that strong sequence 
characteristics universally exist among most attribute 
pairs in both types of objects. For example, a product’s 
name is always ahead of its description in all the pages. 

 

Table 1. Statistical results from 100 randomly selected product 
web pages and total 964 product blocks. the results are from 120 
randomly selected homepages. We have used “DESC” instead 
of “DESCRIPTION” and “TEL” instead of “TELEPHONE” for 
space. 

  PRODUCT BEFORE HOMEPAGE BEFORE 

(NAME, DESC) 1.000 (NAME, TEL) 1.000 
(NAME, PRICE) 0.987 (NAME, EMAIL) 1.000 
(IMAGE, NAME) 0.941 (NAME, ADDRESS) 1.000 
(IMAGE, PRICE) 0.964 (ADDRESS, EMAIL) 0.847 
(IMAGE, DESC) 0.977 (ADDRESS, TEL) 0.906 

5.2  Performance Evaluation 

To fully test our model, we carried out our experiments in 
the domain of product object information extraction for its 
plentiful spatial information. In the experiments, we 
considered four attributes, “name”, “image”, “price”, and 
“description”. 

5.2.1  DATASETS 

We setup our datasets with 572 randomly crawled product 
Web pages 1, and we use the Web page segmentation 
technology (Cai et al., 2004) to segment the crawled Web 
pages and collect all the blocks that contain product 
information. The block elements can be further segmented 
using this technology at a finer granularity. An 
appropriate segmentation granularity is important when 
segmenting the elements, because either over-
segmentation or less-segmentation will affect the 
extraction accuracy. In our experiments, we prefer over-
segmentation, that is, we always prefer smaller elements 
when there is segmentation uncertainty. 

We collect totally 2500 product blocks from 572 Web 
pages to form our data set. There are two types of these 
blocks, the first type is that whose elements are just in a 
sequence, do not have two dimensional dependencies in 
our model. So, for this type of data, our model really 
performs in a one dimensional sense as a linear-chain 
CRFs model. This data set is denoted by ODS. The 
second type is that whose elements have two dimensional 
dependencies when being associated with our model’s 
states. This type of dataset is denoted by TDS. ODS 
contain 1000 blocks and TDS also contains 1000 blocks. 
The remaining 500 blocks form our training data. All the 
blocks are manually labeled. 

5.2.2  MODEL CONSTRUCTION AND TRAINING 

When testing our model, we focused on the effectiveness 
of using more spatial information for web information 
extraction. To compare our model with other sequential 
models, we chose linear-chain CRF model for its 
outstanding performance over other sequential models. 

————— 
1URL of the data is omitted for double-blind reviewing. 
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We construct both the linear-chain CRF and 2D CRF 
models with the same set of feature functions. In our 
experiments, we used an html-parser to accurately get all 
the needed features, such as, 

Text: the most commonly used information. For example, 
“price” must contain numbers and may also contain “$” 
or “%”, etc. 

Position: the most important information in our model to 
locate the object elements. The accurate position 
information is crucial for the association procedure. 

Element’s area: as necessary as the position information 
to find the neighborhood dependencies between elements. 
Currently we approximate the elements’ areas by a 
quadrangle’s area. The quadrangle’s height and width can 
be got with the same parser. 

And some other features, such as font, link-URL, image’s 
source URL, etc, are also used to improve the accuracy. 

Both models are trained on the same training data set. We 
use L-BFGS (Liu et al., 1989) algorithm to train our 
models. For linear-chain CRF model, the gradients are 
exactly computed, and for 2D CRF model, the gradients 
are approximately computed using the suboptimal method 
(Li et al., 2000). We used the convergence criterion, 

    

    

where, the relative tolerance is set 710ε −= as in Malouf 
(2002). With 500 training samples and the same initial 
parameters, the linear-chain CRF model converges within 
12 iterations, and the 2D CRF model converges within 13 
iterations. 

5.2.3  EXPERIMENTAL RESULTS 

We compare our model with linear-chain CRF model on 
the data sets ODS and TDS. The performance is 
evaluated by precision, the percentage of returned 
elements that are correct; recall, the percentage of correct 
elements that are returned; and their harmonic mean F1, 
of each attribute. We also define two comprehensive 
evaluation criteria: (1) block instance accuracy as the 
percentage of blocks of which the key attributes (name, 
image, and price) are correctly labeled, (2) AVG_F1 as 
the average of F1 values of different attributes.  

5.2.4  ANALYSIS 

The experimental results (both table 2 and table 3) show 
that for the dataset ODS, there is no significant difference 
between linear-chain CRF model and 2D CRF model 
because of data’s sequential properties. But for really two 
dimensional dataset TDS, the accuracy improvements of 
different attributes are significant. The precision and 
recall of attribute “name” are both improved by 12%. 
Although the precision of attribute “description” is not 
significantly improved, only by 2.1%, the recall is 
improved by 13.4%. For attributes “image” and “price”,  

Table 2. Precision, recall, F1 and AVG_F1 values of the 
attributes “NAME”, “IMAGE”, “PRICE” and 
“DESCRIPTION” on the datasets TDS and ODS. We have used 
“DESC” in stead of “DESCRIPTION” for space. 2D stands for 
2D CRF model and LINEAR stands for linear-chain CRF model. 

 TDS 

2D       LINEAR 

ODS 

2D           LINEAR 

NAME 0.911 0.790 0.794 0.762 
IMAGE 0.963 0.917 0.993 0.979 
PRICE 0.969 0.932 0.977 0.952 

PRECISION 

DESC 0.849 0.828 0.772 0.813 
NAME 0.883 0.762 0.767 0.734 
IMAGE 0.963 0.917 0.993 0.979 
PRICE 0.919 0.895 0.942 0.945 

RECALL 

DESC 0.803 0.669 0.792 0.816 
NAME 0.897 0.776 0.781 0.745 
IMAGE 0.963 0.917 0.993 0.979 
PRICE 0.944 0.913 0.959 0.949 

F1 

DESC 0.824 0.740 0.782 0.814 
AVG_F1  0.907 0.837 0.879 0.872 

Table 3. Block instance accuracy of linear-chain CRF and 2D 
CRF on datasets ODS and TDS. 

   TDS ODS 

LINEAR-CHAIN CRF 0.600 0.755 
2D CRF 0.756 0.782 

 

the improvements are not so significant, because these 
two attributes have notable state-information, that is, they 
can be well labeled only with the state feature functions. 
For example, prices must contain formatted numbers in 
the Web pages, and images are all with empty texts and 
non-empty image source URLs. Only using this 
information can give good results, so the neighborhood 
dependencies, which are represented by the transition 
feature functions in the model, does not contribute so 
much. From the average F1, we can also see the 
contribution of the spatial dependencies to improve the 
extraction accuracy. For one dimensional dataset ODS, 
the improvement of AVG_F1 is neglectable; but for TDS, 
the improvement is 7.7%. The block instance accuracy in 
table 3 says the same thing: the improvement of using 2D 
CRF on the dataset TDS is 15.6%, but the improvement 
on the dataset ODS is just 2.7%. Thus, the proposed 
model significantly outperforms linear-chain CRF models 
for the two dimensional Web information extraction. 
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6.  Conclusions 

In this paper, we propose a two dimensional Conditional 
Random Fields model. This model provides a way to 
incorporate 2D neighborhood dependencies to improve 
the performance for web information extraction. As the 
model is two dimensional, the exact inference can be very 
expensive, so a suboptimal method is used to efficiently 
estimate the model’s parameters and to perform labeling 
task. When the model is applied for product information 
extraction, the experimental results show that our model 
significantly outperforms linear-chain CRF models. 
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