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Abstract

The Web contains an abundance of useful semi-gtegttinformation
about real world objects, and our empirical stutipves that strong
sequence characteristics exist for the Web infaonatbout the objects
of the same type across different Web sites. Tagepintroduces a two
dimensional Conditional Random Fields model, inocoating the
sequence characteristics and the 2D neighborhopeéndencies, to
automatically extract object information from theelv We also present
the experimental results comparing our model withlinear-chain CRF
model in the domain of product information extraoti The
experimental results show that our model signifiigaroutperforms
existing CRF models.

1. Introduction
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Figure 1. An object block with 6 elements in a Web page

Intuitively, the sequence order of the attributduea
appearing in an object block is similar to thataobther
block about an object of the same type. If thisusege
characteristic is suitable for Web objects of iatts,

While the Web is traditionally used for hypertext Condition Random Fields (CRF) models (Lafferty bt a

publishing and accessing, there are actually varidonds

of objects embedded in static Web pages and dynamigiraction

2001) are the state of the art approaches in irdtiom
taking the advantage of the sequence

Web pages generated from online Web databasese Thetharacteristics to do better labeling. To show ttt

is a great opportunity for us to extract and insgall the
related Web information about the same object tegets
an information unit. These information units ardlezh

sequence order is similar among the Web objecthef
same type, we have conducted some statistical estudi
over a set of randomly selected Web sites. Theltsesu

Web objects in (Nie et al., 2005). Typical Web objects are (see table 1) show that strong sequence chardictgris

products, people, papers, organizations, etc. Cartyno

exist for Web objects of the same type across rdiffe

objects of the same type obey the same structure @fep sites.

schema. We can imagine that once these objects are ) ) ]

extracted and integrated from the Web, some larg&lowever, in order to use a linear-chain structu@iRi-
databases can be constructed to perform furthgnodel for Web object information, we have to first
knowledge discovery and data management tasks. Thi@nvert a two dimensional object block into a seqeeof
paper studies how to extend the existing infornmatio Object elements. Given the two dimensional natdirthe

extraction techniques to automatically extract obje ©Object blocks, how to sequentialize them in a megfoi

information from Web pages.

The information about an object in a Web page islig
grouped together as a block, as shown in Figukésing
existing Web page segmentation technologies (Cal.gt
2004; Liu et al., 2003), we can automatically detbese

way can be very challenging. Moreover, as showioury
empirical evaluations, using the 2D neighborhood
dependenciesi.é. interactions between labels of the
neighbors of the current element in both verticatl a
horizontal directions) in Web object extraction kbu
significantly improve the extraction accuracy, amady

Web object blocks, which are further segmented intqonsidering one dimensional neighbor will lead to

atomic extraction entities calledbject elements. Each
object element provides (partial) information abaut
single attribute of the Web object. Given an objgotck
B with a set of elements ={e}', , the Web object
extraction task is to assign an attribute name ftbm
attribute sep ={a} ", to each object elemes.

* Technical Report. Microsoft ReseardSR-TR-2005-44
* This work is done when the author is visiting kisoft Research Asia.

ineffective solutions.

In this paper, we first propose a two dimensional
Conditional Random Fields model with the graph &pa
lattice (as see Figure 2). Then we deduce the fakwa
backward algorithm for 2D CRFs based on the madrice
expressed conditional distribution for efficientrpaeter
estimation and labeling. Since the model is two
dimensional, exact inference can be very expensiveg



suboptimal method is used to perform approximatéProblem. For the per-state normalization of thet istate
inference. To handle the irregular neighborhooddistribution, MEMMs take little notice of observais at
dependencies caused by the elements’ arbitrarg siza the states which have low-entropy next state 8istion
Web page, we introduce the conceptwiofual elements  and just ignore the observations at the stateshnhéve
andempty elements to map an object block with arbitrary only one next state.

sized elements into a 2D lattice. CRFs or conditional random fields were introduced b

We compare our model with linear-chain CRF modets f Lafferty et al. (2001) to take the advantages ofditional
product information extraction and the experimentalmodels and also to avoid the Label Bias problernfesed
results show that our model significantly outpemier by MEMMs. CRFs are undirected graphical models, so
linear-chain CRF models in scenarios with 2Dthe single joint probability distribution over thabel
neighborhood dependencies. sequence given the observation rather than thestpts-
. . . distributions over the next states given the curate
The rest of this paper is organized as follows. déeuss .., "o "shecified. CRF models have been shown to
the related work in the next section. In sectio@3D . yoerform other models in modeling sequential ¢&tea
CRF_modeI is presente_d, the parameter estimatiah ar  pereira. 2003: Peng & McCallum, 2004). Dynamic
Iab_elmg meth_ods_ are d|scgssed._ Section 4 pr_emths conditional random fields (DCRFs) (Sutton et aD02)
object extraction in a two dimensional sense. biisa 5, re a generalization of linear-chain CRFs to renes
we setup our experiments in the domain of prOOIUCElomplex interaction between labels in sequencelitape
information extraction and give the experimentautts. As a specific model, the factorial CRF model isc a
Section 6 brings this paper to a conclusion. natural-language chunking task and the approximate
inference is performed using loopy belief propawati
2. Related Work (Murphy, Weiss & Jordan, 2002).

For information extraction, there have been man)):;]re\gous work fon 2D models was m?jincl:y carried out i
probabilistic models. In the past, as the IE wasniya e domains of Image processing and Computer Vision

taken as a sequential labeling task, so the mossgg AMOng these models are 2D HMMs (Li, Najmi & Gray,
were generally linear-chain models for simplicities 2000), MRF models (Besag, 1974; Li, 2001), and DRFs
Among this type of models are HMMs, MEMMs, CRFs, (K_umar & Hebert, 2003; Kumar & Hebe_rt, 2004). TH 2
etc. In the following, we us andy to denote the Hidden Markov models proposed by Li et al. (2008 f
observation and label sequences respectively. HMMLNage classification are also generative modelssesoe
(Bikel et al., 1997; Leek, 2000) or Hidden Markov independence assumptions are made for computational
Models, are generative models which define thetjointractability. The fast algorithms developed to @éhntly
probability distribution p(x,y) . But for information ~€Stimate the model and perform classification acetiw
extraction, the conditional distributiop(y|x) is of noting. Markov Random Fields are generally usedain
interest, so these models must enumerate all pessibProbabilistic generative framework, but unlike 2IMMs,
observation sequences to compute the conditiond//RFS model the prior distributiop(y) over labels as a
distribution. If the observations have long-dis@nc markov random field. For computational tractabijlitiie

dependencies, this is intractable. In order to eaghi lIkelihood modelp(x | y)is usually also assumed to have
computational tractability, the independence asgiomp & factorized form as in the 2D HMMs. Some reseasche

is made: the observation at timeis conditionally (Cheng & Bouman, 2001; Wilson & Li, 2003) have

independent from other observations given the saate Noticed that this assumption is too restrictive $ome
time t . This assumption is too strong when the@pplications. To take advantages of the conditional

observations have long-distance dependencies dipfeul M0dels, DRFs or Discriminative Random Fields were
interacting features. To relax the strong assumptio proposed by.Ku.mar et.al. (2003) in the case of gina
conditional models are proposed. A conditional ntode/Mage classification, which are based on CRFs andein

specifies the probabilities of possible label seges the association potential as local discriminativedsl as

given an observation sequence. Therefore, it doetake eIl as the interactions between the neighboritgsson
any effort on modeling the observations and the?D lattices. To make the parameter learning a conve
conditional probability over the label sequences ca ProPlem, a simplified interaction potential form sva
depend on arbitrary, over-lapping features of thd’TOPOsed by Kumar et al. (2004). It has been shihan
observations. MEMMs (McCallum, Freitag & Pereira, DRFs o_utperform MRFs in the natural image
2000) or maximum entropy markov models are models Ocla35|f|cat|on._ However, th_e_ proposed DRFs  are
this type. MEMMs use the state-observation tramsiti concerned with binary classification, so they capét
distribution p(y, | y,,,x ) to replace the state transition applied to our application.

probability p(y, |y,.,) and the observation probability

p(x, | y;) in HMMs. However, as pointed out by Lafferty, 3 2D Conditional Random Fields

McCallum and Pereira (2001), MEMMs and some

discriminative models are brittle to the Label BiasIn this section we first introduce the basic conseyf the



Figure 2. The graphical structure of 2D CRF, wheXeis the
observed random variabl¥(i, j) is the state variable which is
indexed by the verteg, j) in the 2D lattice.

linear—chain Conditional Random Fields models, teah
we discuss the conditional probability over lalafls 2D
CRF model, and finally we discuss how to estimae t
parameters and how to perform labeling.

3.1 Linear-chain CRFs

Conditional random fields (Lafferty et al., 2001ljea
undirected graphs. As defined beforg,={X},, is a

iov

random variable over the observed data to be labele

andy ={Y iov,
labels, wherd&’ range over a finite label alphabet The
random variables< andY are jointly distributed, but in a
discriminative framework, a conditional modsly | X)

is constructed from paired observations and labels, andl)

the marginalp(X) is not explicitly modeled.
CRF Definition:

Let G=(V,E) be an undirected graph such thaty is
indexed by the vertices of G . Then(X,Y)is said to be a
conditional random field if, when conditioned on X , the
random variables Y obey the Markov property with
respect to the graph: p(Y |X,Y, ;)= p(Y, X Yy )
where vV —{i} is the set of nodes in the graph except the
node I, N, isthe set of neighbors of thenode I'in G .

Thus, a CRF is a random field globally conditioned on the 5)
observationX . By the Hammersley-Clifford Theorem
(Hammersley & Clifford, 1971), the joint distribution

over the labelsy given the observationg of a linear-
chain CRF has the form,

p(vl><)=%ex d;kﬁk f. €.yl ,X)Fvgkﬂkgk vyl 'XB

wherey | is the set of components gfassociated with
the vertices in the sub-graf, f, is a transition feature
function andg, is a state feature functiop, and y, are
parameters to be estimated from the training dagr) is
the normalization factor, also known as partitiandtion,
which has the form,

Z(x) :;ex

3.2 2D CRFs

zAkfk (e!yl !X)+ Z/jkgk g!y\J ’Xﬂ

dEk

is the corresponding random variable OVers nward-backward

j(0:M -1)

Taa : LIV
Figure 3. The diagonal state sequences of a 2D lattice

For 2D CRFs, the underlying graph is a 2D lattiseg(
Figure 2). The cliques in this graph are edgesvantices.
Therefore, the conditional distribution has the sdorm
as the linear-chain CRFs, but with-E, O E,, andE,,
E, are the sets of vertically and horizontally oriehte
edges respectively.

For linear-chain CRF (Lafferty et al., 2001), tloavfard-
backward algorithm is used to carry out efficient
inference based on the matrix formatted conditional
istribution. Similarly, for 2D CRF, we present the
onditional distribution in a matrix form to dedudee
vectors for efficient parameter
estimation and labeling (see Section 3.3 & 3.4).

We first introduce some notations we use as follows
The sequence of states on the diagonal

{Y. oY, Yo} is denoted by, , as shown in
Figure 3.

2) The label sequence  on diagonali
YioYiae Yol isdenoted by, .

3) Two special state sequences are addge:start
andT,,,, =stop.

4) The diagonal on which the staye lies is denoted
by A(, j)- |

The set of indices of the states on diagahal
{(i, ), ACi, j) =d} is denoted byl (d).

The set of edges between diagorthisl andd
{((i: ). (i, ) DE: (i, ) Di(d-Dand ()01 @)} is denoted
by E(d) -

For each diagonal position we define they S x
matrix random variablevl, (x) =[M.(y,_,, Y, | X)] by

M, (yli—liyi [ X) = exp{\, (yi—l Y %),
/\i(y.i—l'yi |X): Z Aka (ely\l,\;yu' !yw,u ’X)+ Z MG Qliyw,u 'X)"' (1

€E(i).k v (i).k
where §_ and Sare the state numbers on diagonatd
and i respectively, ande=((w,u),(w,u)) is an edge
between diagonal-1 and diagonal , andv =(w,u) is a
vertex on diagonail .

6)

Y [




Thus, when given the observatioxsand the parameters, fact an “isolating” element in the expansion pfy | X),
the matrices can be computed as needed. Then théhich plays the same role of a state at a single afn
normalization factorz(x) can be expressed as thetime in linear-chain CRFs.

(start, stop) entry of the product of these matrices: For each diagonal inded=0.--M+N , the forward

Z(x) = (Ml(X)M L0 My, .y (X))(san <o) vectorsa, (x) are defined with base case
So, the conditional probability over labejsgiven the 1 if vy, = start
observationsx has the form, a,(Yolx)= .
0 otherwise

and with recurrencer, (x) = a,_,(X)M, (x)
M (i Yi %) Similarly, the backward vectorg, (x) are defined by

Py [ X) = = = (2
[ j(start,stop)

M +N

L if Wy, =Sop
IBN+M (yM+N | X) _{0 atherwise
and By (X)T =My, (X) B2 (X)

Thus, the marginal probability of being in labefjsence
y, atdiagonald given the observations is

Given the training dat® ={(y', x')} ¥, with the empirical By, | ) =24 Va 1% (¥ [X)
distribution p(x,y) , the log-likelihood of p(x,y) with Z(x)

respect to a conditional modsty | x,0)is defined as, So the marginal probability of being in stage, atT,, on
L(©) =[] P(x.y)logp(y|x.0) diagonald is
Xy

U M (x)

wherey =start andy . =stop.

3.3 Parameter Estimation

p(y;; 1x) = Z P(Yq |%)
The parameter estimation problem is to find a det o YaYa (1120,
parameter§i, A, - iy, [, -} that optimize the convex  gimijarly, the marginal probability of being in lab

log-likelihood function. The function can be optired by ' t di Id - d t di |
the techniques used in other maximum-entropy modeIgfvl%e%%e%%ée?vatilgg;niasd L &Y, 8t diagonald

(Lafferty et al., 2001; Berger et al., 1996). Weabe L-
BFGS (Liu & Nocedal, 1989) for that it has beenwho ,
to outperform other optimization algorithms for dar- PVg-1 Ya | X)=
chain CRFs (Malouf, 2002; Sha et al.,
element of the gradient vector is given by

oL(©) _
W - Ep(x,y)[ fll- Ep(y|x,e>[ fl

where Eppnl fil is the expectation with respect to the Lo ,
empirical distribution, andE, [ f,]is the expectation Where((i,j),(,j)) is an edge between diagonals-1
with respect to the conditional model distributidror ~ @nd

transition feature functions,

Evyixol fil =Zf(x)z Z F(V,J' ¥ii ¥ (e yil"j'lyi,j /X)

dE )/;'.1")/"1

ad-l(y;i—l | X)Md (yld—]_i yd | X)ﬁd (yd | X)
Z(x)
2003) Eact‘éo the marginal probability of being in staje . atT. .
and y,, atT is, i i

p(yiv"j'!yi,j | x)= Z Z p(yld—liyd | X)

YaaYoa (i)=Y YaYa (DY

3.4 Labeling

Labeling is the task to find a labey$ that best describes

wheree=((i,j),(i,])) is an edge, and for state featurethe observations:, that s,

functions, y'=maxp(y|x
Dynamic programming algy]orithm is the desirable radth
EouxolOd =2 00 D D p(y, X0V Y, %) for this problem. A variant of viterbi algorithm ised by
X v=(i, DV ¥ Lafferty et al. (2001) for linear-chain CRFs. Inet2D

So the computation of the marginal probabilitiesiich  case, viterbi algorithm can also be extended far th
are needed to compute the gradients at everyigards  labeling task using the “isolating” elementLi et al.,
the main contribution to the complexity. The ideh o 2000). The difference from the normal Viterbi algfom
forward-backward algorithm can be extended here tdis that the number of possible state sequenceseay e
simplify the computation. As the conditional dibtrition  position in the viterbi transition diagram is exgatial to
has the form in equation (2), the state sequande in  the number of states on.



4. Modeling an Object Block model the neighborhood dependencies in the 2Dcéatti

] ) ) ) ) we define four neighbors (left, top, right and bat) for
As described in the introduction section, an obf#otk  each element as the neighbors of the state witbhihis
is composed of some atomic extracted entries callegssociated. The indices of the neighbors are derintea
object elements. The object blocks and their el¢snen quad-tuplgl.t ,r. b ). If & has only one left, top, right,
can be located using some existing web paggyr pottom ﬁei’gHbc')r, then the corresponding indejiss
segmentation technologies like (Cai et al., 2004 & the index of that neighbor; & has more than one left or
al., 2003). However, when using the proposed 2D CRFight neighbors, them or r is the index of the highest
model to model the interactions between neighbaihoogne; I ¢ has more than one top or bottom neighbors, then
states for Web object extraction, we need to hatfle ¢ or  is the index of the most left one. If a neighbor
irregular neighborhood dependencies caused by thgpesn't exist, the index is-1 accordingly. Thus, the
elements’ arbitrary sizes in a Web page. Take thekb  peighbors of each element in Figure 1 are:
in Figure 1 as an example, the elemejis so large that

the elements, €, € and §are its neighbors. But for e, : (-1-1-1,1)
the lattice structured model, if we associate edement _
with only one state as in Figure 4(a), the assioriat § 1 (=10,2-1)
result can not represent the desired neighborhood e (1,-1,3-1)
dependencies between state pgigge,) and (e, e,) - e, : (2,-1-1,4)
Moreover, we should not further segment them into e, : (2,3-1,5)
. 4 1Yy 1

smaller elements to represent the neighborhood

e :(2,4-1-1)

dependencies because they are atomic extractedsentr
Thus, we usevirtual elements and empty elements to
handle this problem. By denoting the object elemest The association result with virtual elements isvamdn

real elements, the virtual elements are defined as the Figure 4(b). The states areal, virtual or empty states if
mirrors of the real elements which must have theesa the elements associated with them aeal, virtual or
attributes. Thempty elements are introduced just for the empty elements. Since the empty states are ignoredgiurin
denotation of missing states, which are ignoredndur inference, a diagonal state sequence is composgigeof
the inference. In the following, we denote thepty  real andvirtual states on that diagonal. Thus, the diagonal
element by e ,, and thevirtual element of real element state sequences in Figure 4(b) are:

e by €', wherei is a unique index ranging frof to

n-1 andnis the number of elements in a block. To T, : 0(0,0
T, : 11,0
eO. € &, T, 1 2(1,9)
e e T, :2(23,412
‘o0 0 T, :2(337,422
e, e, e4. T, : 5(3.,9)
The virtual states are half-real for that an edggpeiated
e with them is normal clique if its another end is@sated
& - e‘ with a different real element; otherwise it's a twal

cligue. In Figure 4(b), we have denoteat mal cliques as
solid edges andirtual cligues as dotted edges. The
virtual cliques do not contribute to the probability
& e, e, distribution, but indicate strong constraints bedwehe
® same virtual states or between the virtual statelstheir
real states that they must have the same statesvalben

el'_ez._es. a transition takes place. Thus, equation (1) can be

reformed as:

e e
1 0—@ | <, 00, )LOE T (3ty, 2y,
/\(yi-l-yi |X): /Uk(eyw,u'ywu'x)"' Z 149 (.Y, ), othernis

0 .
€ eﬁ 4E ()k v, ()k
where E (i) is the set of virtual cliques between
diagonalsi -1 andl, E (i) is the set of normal cliques,
and | (i) is the set of indices of the real states on
diagonal I and e=((w,u’),(w,u)) is an edge between

Figure 4(a). Direct association result

Figure 4(b). Association result with virtual elements



diagonalsi-1 and i , andv=(w,u) is a vertex on
diagonall . So, the transition matrix from, to T, with
Y ={0,1} s,

T,: 00 11

0(my,, m 0 O
M,(x)=T,: o0 ot
110 o m, m,f,,

12
The elementsm,, m,, m,and m, are zeros for the
strong constraints between stalesandT, ,.

01 10

As the dimensions of the transition matrideis(x) are
exponential to the state numbers on diagonals andi

respectively, the computational complexity is ngdligh.
In order to achieve polynomial-time complexity, wse
the path-constrained suboptimal method proposdd by

Table 1. Statistical results from 100 randomly selecteodprct
web pages and total 964 product blocks. the reardtérom 120
randomly selected homepages. We have used “DES(fédd
of “DESCRIPTION” and “TEL” instead of “TELEPHONE"of
space.

PRODUCT BEFORE HOMEPAGE BEFORE
(NAME, DESQ) 1.000 (NAME, TEL) 1.000
(NAME, PRICE) 0.987 (NAME, EMAIL) 1.000
(IMAGE, NAME) 0.941 | (NAME, ADDRESY 1.000
(IMAGE, PRICE) 0.964 | (ApDREsSSEMAIL) | 0.847
(IMAGE, DESQ 0.977 (ADDRESS TEL) 0.906

5.2 Perfor mance Evaluation

al. (2000). We apply this method to compute the

approximate gradients in L-BFGS algorithm to traim
model and to find the best state sequence usirigbles
state Viterbi algorithm.

5. Experimental Studies

In this section, we first conducted some statitigark to
demonstrate that strong sequence characterististfex
Web objects of the same type across different Welk.s
Then we compare our model with linear-chain CREha
domain of product information extraction.

To fully test our model, we carried out our expets in
the domain of product object information extractionits
plentiful spatial information. In the experimentse
considered four attributes, “name”, “image”, “pricand

“description”.

5.2.1 DATASETS

We setup our datasets with 572 randomly crawledymrb
Web pages, and we use the Web page segmentation
technology (Cai et al., 2004) to segment the crdawléeb

The Pages and collect all the blocks that contain pcbdu

sequential models in Web object extraction.

5.1 Statistical Results

To show that the sequence characteristics are ngaivia
Web object blocks, we conducted some statisticakwo

using this technology at a finer granularity. An
appropriate segmentation granularity is importaiemw
segmenting the elements, because either over-
segmentation or less-segmentation will affect the
extraction accuracy. In our experiments, we prefesr-
segmentation, that is, we always prefer smallemefds

two types of Web objects: products and researchersvhen there is segmentation uncertainty.

homepages. We randomly selected 100 product pag

containing 964 product blocks from different Wekesi

and 120 homepages. Some key attributes are surveyed
each type. For product objects, the attributes ‘&fam

“image”, “price” and “description” are considereddafor

researchers’ homepages, we considered the atiibut

“name”, “telephone”, “email” and “address”. We ddei
the sequence order of the elements in a web pag¢op-

down and left-right manner based on their positio

information. Basically, the element in the top lewél be

ahead of the all the elements below it and forelleenents
at the same level, the left elements will be ahefatheir

right elements. In Table 1 we show the statistimsua the
sequence orders of the attribute pairs for objéatm

both product pages and homepages.

The statistical
characteristics universally exist among most aitgb
pairs in both types of objects. For example, a pctd
name is always ahead of its description in allghges.

n

We collect totally 2500 product blocks from 572 Web
pages to form our data set. There are two typebese
blocks, the first type is that whose elements ast ijn a
sequence, do not have two dimensional dependeirties
our model. So, for this type of data, our modelllyea
ﬁerforms in a one dimensional sense as a lineancha
CRFs model. This data set is denoted ®RS. The
second type is that whose elements have two dimealsi
dependencies when being associated with our model’s
states. This type of dataset is denoted THyS. ODS
contain 1000 blocks an@DS also contains 1000 blocks.
The remaining 500 blocks form our training datal. the
blocks are manually labeled.

5.2.2 MODEL CONSTRUCTION ANDTRAINING

results show that strong sequenc®hen testing our model, we focused on the effentgs

of using more spatial information for web infornaeti
extraction. To compare our model with other segaént
models, we chose linear-chain CRF model for its
outstanding performance over other sequential nsodel

YURL of the data is omitted for double-blind reviegi



We construct both the linear-chain CRF and 2D CRFrable 2. Precision, recall, F1 and AVG_F1 values of the

models with the same set of feature functions. Um o attributes

experiments, we used an html-parser to accurattialy
the needed features, such as,

“NAME”, “IMAGE”, “PRICE” and
“DESCRIPTION” on the datase¥®S andODS. We have used
“DESC” in stead of “DESCRIPTION” for space. 2D stianfor

. . 2D CRF model andINEAR stands for linear-chain CRF model.
Text the most commonly used information. For example,

“price” must contain numbers and may also cont&ih “

or “%”, etc. TDS oDS
Position the most important information in our model to 2D LINEAR | 2D LINEAR
locate the object elements. The accurate position

: - . -~ PRECISION NAME | 0911 0.790| 0.794 0.762
information is crucial for the association procesur wvace | 0963 0917 | 0993 0979
Element’s area as necessary as the position information PRICE | 0.969 0.932| 0977 0.952
to find the neighborhood dependencies between eltsme pEsc | 0.849 0.828| 0772 0.813
Currently we approximate the elements’ areas by a NAME | 0883 0762 | 0.767 0.734
guadrangle’s area. The quadrangle’s height anchvadh RECALL ot | 0963 0917|0993 0979
be got with the same parser. pRICE | 0.919 0.895 | 0.942 0.945
And some other features, such as font, link-URLageis pesc | 0.803 0.669| 0.792 0.816
source URL, etc, are also used to improve the acyur 1 NAME | 0.897 0.776| 0.781 0.745
Both models are trained on the same training dztta/ée mace | 0963 0.917| 0993 0.979
use L-BFGS (Liu et al., 1989) algorithm to trainrou PRICE | 0.944 0.913| 0959 0.949
models. For linear-chain CRF model, the gradieme;_ a DESC 0824 0740!| 0.782 0814
exactly cor_nputed, and for 2D CRF model, th_e gradien Ave.Fl 0907 0837 0879 0872
are approximately computed using the suboptimahaukt

(Li et al., 2000). We used the convergence critgrio

L(e)-L(e"™)

Table 3. Block instance accuracy of linear-chain CRF abd 2
CRF on dataset®DS andTDS.

<&
)
L (G) ) TDS ODS
where, the relative tolerance is get10” as in Malouf
(2002). With 500 training_samples and the samé@ln!t LINEAR-CHAIN CRF 0.600 0.755
parameters, the linear-chain CRF model converg#srwi 2DCRE 0.756 0.782

12 iterations, and the 2D CRF model converges willd
iterations.

the improvements are not so significant, becausseth
5.2.3 EXPERIMENTAL RESULTS two attributes have notable state-information, thathey
We compare our model with linear-chain CRF model orcan be well labeled only with the state featurecfiams.
the data setsODS and TDS. The performance is For example, prices must contain formatted numhers
evaluated Dby precision, the percentage of returned the Web pages, and images are all with empty taxts
elements that are correcécall, the percentage of correct non-empty image source URLs. Only using this
elements that are returned; and their harmonic midan information can give good results, so the neighbodh
of each attribute. We also define two comprehensivelependencies, which are represented by the tramsiti
evaluation criteria: (1) block instance accuracyths feature functions in the model, does not contribsie
percentage of blocks of which the key attributesnta, much. From the averag&l, we can also see the
image, and price) are correctly labeled, (2) AVG dsl contribution of the spatial dependencies to imprtve
the average df1 values of different attributes. extraction accuracy. For one dimensional dat&et,
the improvement of AVG_F1 is neglectable; but T@S,
5.2.4 ANALYSIS the improvement is 7.7%. The block instance acguiac
The experimental results (both table 2 and tablsh®w table 3 says the same thing: the improvement ofguD
that for the datas€DS, there is no significant difference CRF on the datastDS is 15.6%, but the improvement
between linear-chain CRF model and 2D CRF modebn the dataseODS is just 2.7%. Thus, the proposed
because of data’s sequential properties. But fallyrvéwo  model significantly outperforms linear-chain CRF dats
dimensional dataséfDS, the accuracy improvements of for the two dimensional Web information extraction.
different attributes are significant. The precisiand
recall of attribute “name” are both improved by 12%
Although the precision of attribute “descriptiors hot
significantly improved, only by 2.1%, the recall is
improved by 13.4%. For attributes “image” and “pfic



6. Conclusions Li, S. Z. (2001). Markov Random Field Modeling in

) ) ) . Image Analysis, Springer-Verlag, Tokyo.
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Random Fields model. This model provides a way td-iu, B., Grossman, R. & Zhai, Y. (2003). Mining dat
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expensive, so a suboptimal method is used to effili  |;, p c. & Nocedal. J (1989). ON THE LIMITED
estimate the model’s parameters and to performitghe \MEMORY BEGS METHOD FOR LARGE SCALE

task. When the model is applied for product infdio  pT|MIZATION. Mathmetical Programming 45, pp.
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