Continuous Resources Allocation in Internet Data Centers

Youssef Hamadi
Microsoft Research Ltd.
7 JJ Thomson Avenue
Cambridge CB3 OFB,
United Kingdom
youssefh@microsoft.com

Abstract

Internet data centers (IDCs) perform multi-customer
hosting on a virtualized collection of resources while Grid
computing generalizes distributed computing by focusing
on large scale resource sharing [8]. When we consider
the problem of resource allocation, the connection between
Grid and IDC is obvious. Indeed, both systems are using
similar resource reservation patterns. Mainly, service level
agreement for IDC, advanced resource reservation in Grid
systems[11]. In each world, those reservation patterns are
deemed to precisely represent resources requirements. This
work presents an autonomous systemfor onlineresourceal-
locations. The simulated architecture represents some IDC
but our problem solving concepts are applicableto Grid in-
frastructures. Our system takes advantage of monitoring
information to reconsider its mathematical modelling of the
components. This results in a continuous adaptation of the
allocated resources.

Keywords: Resource Management and Scheduling

1 Introduction

A data center infrastructure consists of a "farm” of mas-
sively parallel, densely packaged servers interconnected by
high-speed, switched LANs. Current data centers contain
tens of thousands of servers; projected infrastructures are
even larger [2]. Typically, these computing farms have to
host a large set of e-commerce applications which raises
a set of important issues. Besides management and secu-
rity considerations we find the important problem of re-
source allocations. The combinatorial nature of this prob-
lem makes it hard to solve. Moreover, hosted customers in-
creasingly require support for peak loads that are orders of
magnitude larger than what they experience in their normal
state. Thus, a hosting environment needs a fast turnaround

time in adjusting the resources (bandwidth, servers, and
storage), assigned to each customer.

Our work has two main contributions to solve the previ-
ous problem. First of all, it presents what we think is the
first Constraint Programming [5] solution for resource allo-
cation in large-scale IDCs. Second, it embeds this solution
in an online architecture which can autonomously adapt to
its moving environment.

We start from a pre-defined reservation pattern (repre-
sented by any SLA or advanced reservation item) which
represents the founding of our CP modelling. This pattern
is then repaired to cope with observed variations and then to
perform on-the-fly adaptation to resource selections. In the
following, section two presents some previous work. Sec-
tion three gives the details of our CP modelling for resource
allocation. Then, section four presents the components of
the online problem solving architecture. Finally, before giv-
ing a general conclusion in section six, experimental results
are presented in section five.

2 Redated work

The Oceano [7] project has designed and developed a pi-
lot prototype of a scalable, manageable infrastructure for a
large scale “computing utility power plant”. Oceano’s goal
was to introduce high levels of automation to dynamically
adjust web sites to actual traffic demands over a massively
parallel array of shared and distributed servers. Via Oceano
a group of servers can be automated to handle the IT needs
of many users, including on-the-fly changes in the load re-
quirements. The adaptation levels of Oceano are very close
to our proposal. However, Oceano embraces a large scope
(redundancy, reliability, etc.) while our work is focused on
efficient resource allocation.

The work of [12] presents the allocation of multi-tier
e-commerce applications. Authors use mathematical inte-
ger programming (MIP) mixed with dedicated heuristics to

solve this hard problem. Our approach is much more versa-
tile and adaptive since we perform successive reallocations
through monitoring.

[4] discusses several approaches to define and prototype
a data model devoted to IDC configuration. Their main ob-
jective is to alleviate the management of large scale Internet
data center. The authors are interested in the modelling of
the information model of these centers. This work is impor-
tant and helpful to define a realistic CP modelling for this
problem.

The goal of the Eole project [9] was to build an online
optimization framework dedicated to telecom applications.
The framework can consider environmental events, tempo-
ral constraints and resource constraints. This work was able
to enhance the Quality of Services of network providers, by
increasing their overall flexibility.

3 Constraint programming modelling

3.1 Internet data center

A data-center infrastructure consists of a "farm” of mas-
sively parallel, densely packaged servers interconnected by
high-speed, switched LANs. We present here the formal-
ization of each element of such farm.

Figure 1. Internet data center topology

Figure 1 presents an abstraction of an IDC. It is com-
posed by a set of interconnected resources (computation
nodes and storage nodes) and by networking components
(switches, routers, etc). They have a tree-like structure or-
ganized in three layers of switches [12].

The switch mesh (SM) is the root of the IDC; this com-
ponent is connected to the outside world and to a collection
of edges switches (SE). These switches are connected to
a set of rack switches (SR) that are connected to a set of
servers (S). Duplex links are used for the interconnection of
the different switches/servers. Each link has a fixed band-
width limit. The presented topology has three layers but the
present work can be generalized to any tree-like architec-
turel.

1The tree structure gives a unique path between resources; this feature
is used for efficient solving.

3.1.1 Topology

We detail here the constraint formalization of the previous
architecture. Each resource is represented by its related lim-
itations/capacities.

An IDC is delimited by its size:

e S. number of SE switches

e S, number of SR switches per SE switch

e S number of Servers per SR switch
With the previous definitions, the size of an IDC is S, x
S, x S.
3.1.2 Switches

The delay for communication in the different switches is
ignored . But each switch has some bandwidth limits.

e BS,,.,IBS,,, represent the input/output bandwidth
limits of the SM switch

e BS., IBS., represent the input/output bandwidth
limits of the k" SE switch

e BS,, IBS,, represent the input/output bandwidth
limits of the £** SR switch

3.1.3 Servers

Each server node Sj, has several attributes to express its
hosting capacities.

o Scpu,, represents the number of CPUs for the server
® Sspeeq, frequency of the server’s Cpu(s)?

® Sirem, Memory size

® Sstorage, StOrage capacities

® Spiskspeea, hard drive speed

e BSS;, IBSS,, represent the input/output bandwidth
limits of the server

3.2 Multi-tier application

Figure 2 presents the typical structure of a classical e-
commerce application. In these applications, clients send
their requests via the Internet. At the top level, some load
balancing mechanism routes this traffic to a set of n; web
servers. Each web server is able to satisfy requests for
static resources. If a web server cannot satisfy a request,

2In a multi-processor architecture we assume the same speed for each
CPU.

it forwards it to one of the ns application servers. Appli-
cation servers run scripts and make use of the ns data base
servers to support information retrieval, transactional order
management and personalization [1]. They prepare html
responses, which are addressed to customers via the web
Servers.

Internet

Tier 1 1

Figure 2. Typical e-commerce application

We model an application A with a graph A = (X, E),
where X is the set of processes required by the application
(|X| = n1 + n2 + n3) and E the set of duplex connection
among processes. Each process Py, of the application has a
set of lower bounds requirements.

e Pcyy, represents the number of CPUs required by the
process

o Pspeea, frequency of the required CPUs
® Pirem, Size of the required memory

® Psiorage, required storage space

® PpiskSpeed, hard drive speed

The bandwidth requirements for duplex connections are
represented by the following values:

e bco expresses the required bandwidth between a client
and a web server.

e bcya, required bandwidth between a web server and an
application server.

e bcos, required bandwidth between an application
server and a data base server.

3.3 Resource allocation

From the previous modelling, we can build a constraint
programming solution to our problem. We first define a set
of constrained variables and then we connect these variables
with relevant constraint relations in order to compute cor-
rect allocations.

3.3.1 Variables

Before defining the constrained variables of this problem,
we need to define some notation (see definition 3.3.1).

DEFINITION 3.3.1
x : Var : [lb..ub], represents a constraint variable = com-
posed by the integer [b to ub.

Internet data center
The SM switch uses two constrained variables to express
respectively its input/output bandwidth load.

S, 2 Var : [0.BSp,], Sm, : Var : [0..BS,,,]

The k* SE switch uses two constrained variables to
express respectively its input/output bandwidth load.

Se, :Var:[0..BS.,], Se, :Var:[0..BS,,]
k k k k

The kt* SR switch uses two constrained variables to
express respectively its input/output bandwidth load.

Sy, Var:[0..BS

Tik

), Sy, : Var:[0.BS,,]

Each server k uses the following set of constrained vari-
ables

e Processy : Var : [0..n1 + n2 + ns] which represents
the identification of the hosted process. Remark that
among these ny + no + n3 + 1 values, the last one
represents a special value expressing that the server is
not hosting anything.

e Tiery, : Var : [0..1] boolean variable set to 1 if the
hosted process is part of the first tier of the multi-tiered
application, i.e., Processy, between O and n; — 1.

e Tiery, : Var : [0..1] boolean variable set to 1 if the
hosted process is part of the second tier of the multi-
tiered application.

e Tiers, : Var : [0..1] boolean variable set to 1 if the
hosted process is part of the third tier of the multi-
tiered application.

The application
Each process k of the multi-tiered application has one
constrained variable.

e Servery : Var : [0..S. * S + S — 1] represents the
hosting server for the k" process.

3.3.2 Constraints

In order to limit Process; and Servery to possible allo-
cation sets we start with a static pruning of their possible
values:

VSk, VP, k' € Processy iff Scpu, > Popu,,
SS’peed,c > PSpeedk/) SMem;c > PMemk/)
SStoragek > PStoragekla SDiskSpeed;C > PDiskSpeedk/

VP, VSy, k' € Servery iff Popu, < Scpu,,
-PS’peed;c < SSpeedk/) -PMem;c < SMemk/a
-PStorage;c < SStoragekm -PDis}h‘S'peed;c < SDiskS’peedk/

In order to correctly compute the required bandwidth at
each server, we define three boolean vectors.

DEFINITION 3.3.2

tierl[k] = 1 if Py is in the first tier of the application, 0
otherwise. tier2[k] = 1 if Py is in the second tier of the
application, 0 otherwise. tier3[k] = 1 if Py is in the third
tier of the application, 0 otherwise.

These vectors are used to define the values of the T'ier;,
variables in relation with the hosted process Processy:

e clement(tierl, Processy, Tiery,)
e clement(tier2, Processy, T'iers,)
o clement(tier3, Processy, Tiers,)

The operational semantic of an element constraint can
be seen as an indirection between constrained variables.
element(T, X,Y) enforces T[X] = Y. In our case, the
Tier;, variables will receive a correct value 0 or 1 corre-
sponding to the hosted process’s tier.

In order to verify that Processy, = k' = Servery =k
we need another element constraint. This time, the vector
Tab is made by the set of Processy, variables:

Y Servery, element(Tab, Servery, k)

Now, since two servers cannot host the same process, we
put an alldif f constraint between them. Such a constraint
ensures that a set of variables are using different values.
However since some server can be unallocated which for
us is interpreted by the hosting of the extra process ranked
n1 + no + ng, this peculiar value is not considered by our
alldiff.

alldiff (Processy,)

To respect the bandwidth limitations of each SR switch,
we define the ingoing traffic S;, ~as the traffic addressed

by the external processes toward processes hosted® by S, :

VSry, Sy = (szk’esrk Tiery,,) x beor +
(m _szk/esw Tiery,,)x (ZVSWGS% Tiers,,) xbeia+
(ny = szk/es"‘k Tiers,) X (szk/e&k Tiery, +
ZVSWGS% Tiers,,) x (bciz + beaz) + (n3 —

ZVSVGS% Tiers,,) x (Evsk/e&k Tiers,,) X beas

The previous equation is decomposed in four products.
The first one represents the traffic routed from the Internet
clients toward the hosted web servers. The second rep-
resents the traffic routed from the external web servers,
i.e., the web server not hosted by the switch; toward the
hosted application servers. The third product represents
the traffic incoming from the external application servers
to the hosted web servers and data base servers. Finally,
the fourth product represents the traffic upcoming from the
external data base servers toward the hosted application
servers. Since we assumed a symmetric bandwidth between
related tiers, S,, =S, .

Bandwidth limitations at the edge level (SE) are ex-
pressed similarly, S, =S

8Ok .

VSek’Seik = (szk/esek Tiery,,) x beor +
(nl_ZVSk/eSek Tiery,,) x (szk/esek Tiers,,) X bcia+
(ne = s, es,, Tiera,) x (Lys, es,, Tier,, +
ZVSWES% Tier3k,) X (b012 + b023) + (n3 —

szk,es% Tiers,,) x (szk,es% Tiers,,) X beas

We use a similar formulation for the SM switch.

3.3.3 Optimization

The previous set of equations gives correct solutions for the
allocation of a multi-tiered application in an IDC. However,
the hierarchical structure of the hosting infrastructure al-
lows us to distinguish between these solutions. The optimal
solution to this resource allocation problem minimizes
communication latency. We express this optimization
function with the following constraint:

min(Z

VServery,Server,,

dist(k, k') x band(k, k"))

In the previous equation, dist(k, k') represents the dis-
tance (links) within the IDC (2, 4, or 6) between the two
servers hosting processes k and &’. This value is weighted
by the required bandwidth (bcio or beog). The solver will
have to minimize the previous cost function to find out the
optimal allocation. A lower bound can easily be computed

3A switch “hosts” the processes hosted in the switch’s subtree.

by relaxing bandwidth constraints. The obtained value rep-
resents the weighted addition of minimal distances between
communicating processes.

3.3.4 Breaking symmetrical solutions

The high level of symmetries occurring in the network in-
frastructure and within the applications raises a large set
of equivalent solutions. If we consider that the size of the
search space is O((n1 +na +mng)%*5<5) it becomes cru-
cial to remove symmetries. We decided to remove the vast
majority of symmetries by the addition of some arithmetic
constraints.

At theinfrastructurelevel

We can break symmetries within each .S, switch iff the
following proposition (checked after the initial filtering)
holds:

PROPERTY 3.3.1
vS;, S; € Sy, Process; = Process;

That means that the two servers are equivalent, i.e., they
can host the same subset of processes. Moreover, since
they are connected to the same SR switch any combination
of hosting between them has the same impact on the cost
function (see 3.3.3). E.g., (Process; = a, Process; =
b) = (Process; = b, Process; = a). In order to break
these symmetries, we add the following new constraint
when the property holds:

InfEqual(Process;, Process;)

We cannot use a tighter condition (Inf, i.e., < instead of
<) since IDC’s servers express their availability by hosting
a fake process (see above).

Between SE switches (and within the SM switch) the
calculation of an equivalence condition between servers be-
comes harder since their routing costs are different.

At the application level

Within each tier of the application, the processes are
equivalent. We can directly remove some symmetry with
the following constraint applied to any equivalent pair of
processes P; and P;:

Inf(Server;, Server;)

4 Online Optimization in Internet Data Cen-
ters

The traffic of a given application can greatly vary over
time and similarly, the IDC topology can vary according to

failures or to maintenance operations. In this section we first
show how to integrate these variations in our CP modelling.
We then detail an online optimization architecture which
constantly monitor the environment and efficiently update
the solution.

4.1 Changing traffic

E-commerce applications usually experience very large
traffic variations. In figure 3, we present the annual day-
load of a successful commercial website [1]. In this figure,
several large variations can be observed. Among these vari-
ations, some can be predicted and some cannot. The adver-
tising campaign can be predicted. The typical variation up-
coming from classical Christmas and bank holiday can also
be predicted. However, the sudden failure of a competitor
could report some of its customers to your application. This
sudden raise of traffic cannot be predicted.

#requests

agreed| /\

SLA

! ! annual load

Advertising Competitor Bank Christmas
campaign failur holiday

Figure 3. Web site annual load

During these sudden peaks, the current resource alloca-
tion which is based on some agreed service level agreement
(SLA) will not be able to cope with this new traffic. The
obvious solution is to raise the agreed SLA but this over
sizing is wasteful.

Another possible variation for an application is the
change in traffic classes. This can happen with the use of
personalization technology. Initially, the knowledge on a
given user is empty. You then provide basic (static) content
to this user. With time, you can learn user’s profile and then
provide dedicated (dynamic) content. The previous changes
traffic classes (from static to dynamic) without changing the
amount of external traffic. With successful personalization
technologies the second and third tiers of your application
will become more solicited. As said previously the current
allocation based on some agreed SLA (n2 and n3) could be
too weak to support these variations.

40f course you must bet on a bit of communication between marketing
and IT.

4.2 Changing infrastructure

Large computing infrastructures like Internet data cen-
ters are prone to component failures. Moreover such large
systems involve important maintenance and update opera-
tions. These breakdowns and updates can greatly jeopardize
the hosted applications. An IDC provider needs an efficient
mechanism in order to maintain an acceptable service level
while performing essential maintenance operations.

4.3 Dynamic Constraint Programming modelling

In this section we show how to extend our initial problem
modelling in order to cope with the previous variations. The
idea is to take advantage of the versatility of Constraint Pro-
gramming. Indeed, in this formalism, any problem P can be
transformed in a new problem P’ by some addition/removal
of constraints [6].

4.3.1 Application

To successfully face traffic variations (amount and classes),
we start with a modelling which can manage the worst
loads. We then select within this large set of components
a subset which can satisfy some initial SLA (this set cor-
responds to the initial allocation). Remaining units will be
selected and added to the application with respect to traffic
variations. Figure 4 presents these two sets.

Initial requirement Possible enlargements

Figure 4. Dynamic modelling of an e-
commerce application

In order to disconnect the remaining components from
the initial set we use the following constraints:

e Server, = S. x S, x S, this constraints allocate a
fake server® to the remaining process k.

e BSS; =0, BSS,, = 0, in the previous modelling
and for the sake of simplicity these variables were set
as constant. In the dynamic modelling we have to
use constrained variables to apply constraints on them.

SRemember that allocated servers range from0t0 S x Sy x S — 1

The transformation is seamless. Thanks to these two
constraints process & has no impact of the cost func-
tion.

The practical result of these constraints is a “logical” dis-
connection of the remaining part from the modelling. To
add more processes we just have to change the allocated
values on the previous constraints. For example to integrate
process k:

o Servery : Var:[0..S. xS, xS —1]

e BSS;, : Var : [BSS,, ..BSS;] BSS,, : Var :
[BSS,,..BSS,,]. These two variables are initialized
with the initial requirements for process k.

Thanks to the previous transformations, the CP solver
can allocate the correct number of processes. When fac-
ing traffic variations our architecture will just have to
add/remove components by changing these few constraints.

4.3.2 Infrastructure

Similarly, changes in the IDC topology can be integrated in
the CP modelling by addition/removal of constraints. Fig-
ure 5 features a small data center where the right part rep-
resents a possible extension (second SE switch). Our CP
modelling can integrate these resources from the beginning
and avoid their allocation thanks to some extra constraints.
In case of component failure, constraints can similarly dis-
connect faulty components.

Figure 5. Dynamic modelling of an Internet
data center

For instance, in order to disconnect the second SE
switch:

BS.,, =0,BS., =0

601

These two constraints allocate null bandwidth capacities
to the switch. The outcome of that is that related com-
ponents will not be part of any feasible solution. In the
same way, when a failure is detected, the same kind of
constraints can be used to disconnect faulty parts. On the
figure, the second SR switch becomes deficient. In order to

disconnect it we apply the following constraints:

BS

Tiy

=0,BS,, =0
When the damaged component is replaced, the resource
allocation can use it again thanks to these two constraints:

BS,, : Var
[BS;,, -BS;, |

'f‘ol

[BS,, .-BS:, |, BS,, : Var

The same mechanism can be applied for any server ad-
dition or removal.

4.3.3 Online Optimization

In section 3.3.3 we wanted to minimize communication la-
tency. In this online extension, it is worthwhile to minimize
both latency and turnaround time between successive allo-
cations. We can integrate this second goal in a new cost
function:

min(w X Z

VServery,Servery,
W' x Z dist(k,p(k)))
VServery

In the previous equation, w and w’ are the weights asso-
ciated to latency and to turnaround objectives. Thanks to
these weights one can favor one of the criterions. The his-
tory is represented by the function p(k) which gives the lo-
cation of process k in the previous allocation. When k was
not part of the previous solution, which occurs when this
process is added to cope with increased traffic, the function
returns 0.

dist(k, k") x band(k, k") +

4.4 Global architecture

We have defined a complete CP solution to solve the
problem of resource allocation in IDCs. We have also pre-
sented simple extensions to compensate environmental vari-
ations. Our extensions use a new objective function which is
able to minimize both latency i.e., quality of the allocation,
and turnaround, i.e., cost of a reallocation. In this section
we present the integration of our work in an online problem
solving architecture, figure 6. This architecture takes ad-
vantage of successive re-allocations to incrementally raise
its performances. It implements two major components.

Themanagement component This component is used to
setup applications into the IDC according to search results.
Beside that, this unit can use the search capabilities during
pre-stage customer negotiation. During SLAS negotiation,
the architecture is useful to know about the feasibility/cost
of the hosting.

P oy

phase
transition

Infrastructure

e

traffic/itopology | gearch | Stistics

variaions paramefers
™~ Search —
alocation Control
> cost results
negotiation feasibility

Figure 6. Online optimization architecture

The search components The search control module is
principally connected to monitoring and to management.
From this latter component, it receives allocation demands
and returns information on feasibility (is there a solution?),
cost, physical allocation results. The monitoring component
addresses this module to report fluctuating traffic and infras-
tructure variations. This component is able to extend/reduce
the amount of allocated resources in response to environ-
mental changes which are directly reported in the CP mod-
elling by simple additions/removals of constraints. Beside
these fundamental services, the online situation of our ar-
chitecture authorizes it to constantly improve its problem
solving performances. Indeed, it is connected to a learn-
ing component which stores statistics on previous searches.
This knowledge can be used to increase the practical perfor-
mances of future searches.

5 Experiments

Projected data centers will use thousands of servers.
However, infrastructures will be logically partitioned in
smaller farms with accessible sizes [12]. To achieve these
results we used the sequential branch & bound algorithm of
[10]. We defined an IDC with 1024, (S. = 8,5, = 8,5 =
16) servers. This IDC was derived in two topologies. The
first one called “Symmetric” uses the following bandwidth
limitations, BS,,, = BS,,, = 10, BS% = BSE% =
15,35% = BST% = 25. The second one called “Asym-
metric” uses for each previous parameter a random value
between 1 and the previous limitation. This is interesting
to simulate allocation in partially loaded IDCs. Indeed, it
corresponds to the real situation where e-commerce appli-
cations are successively added to a data center [12]. Servers
were partitioned in three classes able to host respectively,
the web servers, the web servers and the application servers,
anything. Their bandwidth limitations were setto BSS;, =
BSS,, = 50. We used several applications figured by their
respective characteristics ((n1, n2,n3), (bco1, beiz, beis)).

Symmetric IDC

Application cost time(sec.) #btrks #nodes
((31,1),(1,2,2)) 24* 50.64 35 16264
((31,1),(2,4,4)) 48* 51.14 34 16138
(3.2,2),(1,2,2)) 84 625.05 273 180728

Asymmetric IDC
Appli. cost time(sec.) #btrks #choices
(31,1),(1,2,2)) 24* 34.04 33 11917
((31,1),(2,4,4)) 48* 4.09 14 1352
((3.2,2),(1,2,2)) 84 190.40 224 79433

Table 1. Experimental results

Results are presented in table 1. Optimal cost results are
labeled with a “star”. Indeed, when the experiments were
too time consuming, we decided to stop them roughly after
10 minutes. We can see that the allocation in the “Symmet-
ric” IDC is much harder than in the “Asymmetric” one. In-
deed, similar bandwidth capacities raise a high level of sym-
metry which generates a larger solution space. These sym-
metries come from the edge and mesh switches and were
not removed in our “symmetry break” section. With the
asymmetric IDC, the switches are distinguished and some
of them cannot route the required traffic. The previous lim-
its the space of feasible solutions. As we can see, the num-
ber of nodes developed by the search process in the asym-
metric infrastructure is less important than in regular ones.
This results implies that the solver was able to prune the
space earlier thanks to bandwidth limitations. In regular
IDCs the solver had to rely on the cost function to bound
the search close to the leaf level.

Interestingly, a more general result comes from these ex-
periments. It concerns the time granularity of our online
re-allocation scheme. Indeed, from the previous we can
see that the system computes optimal or good allocations
within minutes. If we then add the time for resource mi-
grations, we can infer the responsiveness of our architec-
ture to sudden fluctuations in resource demands. Roughly,
if we consider that data bases relocations which are the most
expensive migrations are achieved within minutes, we can
consider that our online architecture can easily handle intra
day variations.

6 Conclusion

We have presented a Constraint Programming solution
which efficiently allocates multi-tier e-commerce applica-
tions in Internet data centers. Our solution was extended to
compensate environmental changes. Moreover, we showed
how to integrate it in an online problem solving architec-
ture. The experiments demonstrated the feasibility of our

approach to tackle very large infrastructures. Our results
are competitive with the one from [12]. We learned from
these experiments that allocating applications in partially
loaded infrastructure was far easier since the impact of pre-
vious allocation is to break the high level of symmetry of
this problem. As a future work we are planning to apply
Constraint Programming to Grid resource sharing [3].

References

[1] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characteriz-
ing the scalability of a large web-based shopping system.
ACM Transactions on Internet Technology (TOIT), 1(1):44—
69, August 2001.

[2] S. Banerjee and X. Zhu. Internet data centers: A survey of
key players and market growth. Technical Report 2001-39,
Hewlett-Packard lab., 2001.

[3] M. Bartlett, A. M. Frisch, Y. Hamadi, I. Miguel, and
C. Unsworth. Efficient algorithms for selecting advanced
reservations. Technical Report 2004-132, Microsoft Re-
search, Dec 2004.

[4] J. L. de Verga, J. Guijarro, P. Goldsack, and C. Todman.
Modeling and developing the information to manage an
Internet data center. Technical Report 2001-44, Hewlett-
Packard lab., 2001.

[5] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[6] R. Dechter and A. Dechter. Belief Maintenance in Dynamic
Constraint Networks. In Proc. National Conference on Arti-
ficial Intelligence, 1988.

[7] T. Eilam. Neptune: A dynamic resource allocation and
planning system for a cluster computing utility. In 2nd
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID’02), pages 57-64, May 2002.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. Lecture Notes
in Computer Science, 2150:1-??, 2001.

[9] S. Givry, Y. Hamadi, J. Mattioli, P. Gérard, M. Lemaitre,
G. Verfaillie, A. Aggoun, I. Gouachi, T. Benoist, E. Bour-
reau, F. Laburthe, P. David, S. Loudni, and S. Bourgault.
Towards an on-line optimisation framework. In CP-2001
Workshop on On-Line combinatorial problem solving and
ConstraintProgramming (OLCP’01), pages 45-61, Paphos,
Cyprus, December 1 2001.

[10] Y.Hamadi. Disolver: A Distributed Constraint Solver. Tech-
nical Report 2003-91, Microsoft Research, Dec 2003.

[11] J. MacLaren. Advanced reservation: State of the art. GWD-
I, Global Grid Forum (GGF), june 2003.

[12] X. Zhu and S. Singhal. Optimal resource assignment in
internet data centers. In Ninth International Symposium
in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems MASCOTS’01, pages 61-69,
August 2001.

