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Abstract 

This paper proposes a new method for programming 
and controlling distributed tasks. Applications declare 
behavior patterns that are used to automatically predict 
and reserve resources needed by applications in a 
heterogeneous distributed environment. The paper 
introduces a stochastic quality sampling driven scheduler 
and a rendezvous mechanism for matching pre-planned 
activities with actual payload data. 

The system is built around the first real-time SOAP 
implementation, also presented in this paper. It extends the 
XML Web Services interoperability benefits that have 
proven themselves in e-business into two new areas:  
embedded and real-time. The paper presents an efficient 
implementation that runs on common microcontrollers and 
other computers. 

1. Introduction 

Embedded real-time computing systems for entertain-
ment and other consumer–as well as industrial–uses are 
increasingly built out of distributed components that are 
manufactured by multiple vendors. This means that 
interoperation becomes the number one issue in any 
communications paradigm. Meeting real-time predictability 
standards becomes ever harder as the devices get more 
diverse and the number of temporal uncertainties in their 
interaction increases. 

This paper proposes a self-tuning planning mechanism 
for such environments. It uses an on-line, sampling driven 
statistical model to predict resource requirements needed to 
meet application's quality of service needs. Open standards 
based XML Web Services are used both for application and 
for system communication in order to maximize 
interoperability. 

The system attempts to keep applications simple by 
separating temporal behavior from actual work. The 
separation allows an automated advance planning phase 
and facilitates power savings and real-time guarantees 
through admission control. 

Temporal behavior is represented by behavior patterns. 
The patterns describe the resources needed at each node 
involved in a task and when they are needed. The 
description is expressed in a declarative high-level 

language in XML syntax. Patterns are instantiated into 
planned actions that are negotiated with the schedulers at 
each node.  

While the scheduler is tuned to work with incomplete 
information, it carefully preserves the knowledge that is 
available by extending a precise constraint based scheme 
(time constraints are defined in [5]). These extended 
constraints, coined planned actions, can exist before the 
precise execution parameters have been determined. This 
allows a time delay between separate planning and 
execution phases. Through inference from the predicted 
execution it is possible to determine when resources are not 
needed and can be shut off as well as for clustering usage. 
The longer a device can be turned off the more power is 
saved. 

The scheduling is divided into distinct phases, both 
temporally into long and short term plans and spatially into 
distributed task and local node processing. Execution and 
control flows are separated and a continuation based 
rendezvous mechanism combines them back together. A 
wild card rendezvous captures both time driven 
spontaneous execution and message driven execution [4] 
into a common abstraction.  An implementation that is 
available to the public and runs on multiple platforms is 
introduced and measurements show that it is functional and 
highly efficient. 

1.1. Sample Applications 

Examples of usage areas include: 1) A home 
entertainment and automation system built by multiple 
manufacturers. Different media types have different jitter 
tolerances, some activities are repeating and others are not. 

Instigator

Producer 

Consumer

Sensor readings                

Scheduling   

Scheduling       

Sampling      



 

  

Various inhabitants instigate multiple activities. Energy 
efficiency reduces noise and unwanted heat. 2) Industrial 
robot control. An assembly line stops for 10 seconds every 
minute. Welding a door handle takes 4 seconds. If the robot 
welds a door handle outside the correct time window, it 
destroys the car. A proportional schedule would not work. 3) 
Sensor and actuator data streaming. The figure above 
examines #3 in further detail and the performance section 
shows measurements. 

A sensor node reads a sensor at regular intervals and 
sends the data to an actuator node that reflects the sensor 
state. The actuator node knows when to expect data from 
the sensor so it can turn off its receiver while not expecting 
data. Energy efficiency lengthens battery life. An instigator 
node initiates the data flow and adjusts the timing 
according to measurements (quality control sampling). 
There can be multiple instigators as well as multiple sensor 
nodes. 

1.2. Key Contributions 

The system described in this paper: 
Extends stochastic quality control paradigm to 

distributed embedded computer scheduling and allows 
adaptive real-time scheduling in the presence of many 
unknowns such as is the case in heterogeneous systems. 

Splits distributed jobs into behavior pattern, temporal 
instantiation, spatial instantiation, service objects, and data 
driven actual work. This allows an advance planning phase 
facilitating a simple but informed and power-efficient low-
level scheduling during the execution phase. The resulting 
system automates programming tasks allowing more 
abstract development. 

Applies XML Web Services to a completely new area 
and lets real-time applications interoperate with legacy 
systems in a meaningful way. 

2. Architecture 

Distributed tasks communicate through messages and 
execute service methods on individual nodes. The 
middleware described in this paper exploits similarity in 
communication patterns and resource needs between 
similar tasks that exhibit behavioral patterns. The system 
separates the temporal and spatial behavior and controls 
execution and scheduling based on the patterns and 
predicted behavior and needs. The planning is done at an 
earlier time than actual messaging and communication thus 
facilitating resource planning at an earlier point of time 
than when the execution actually occurs. The actual data 
later drives the actual work but the plan pre-reserves the 
necessary resources assuring that the actual work can be 
completed successfully. Due to variations to the actual 

work and random delays, the planner needs to over-reserve 
resources to account for the variations. A statistical model 
is used to predict just exactly how much needs to be 
reserved to assure the level of quality a specific task needs. 
The more critical the application, the higher the required 
quality is and the more resources it needs. 

An instigator is the application that drives a task. The 
instigator declares a behavior pattern and the criticality of a 
task as well as medium dependent tolerance to jitter and the 
desired deadline when the specific instance of the task 
should be completed. The middleware planner instantiates 
the behavioral pattern into a spatial and temporal plan. The 
middleware derives a specific action and resource plan for 
each node that is needed to execute the task (that is an 
instance of the pattern). It then negotiates the resources 
with each node. The application then gets the task going by 
calling a method on an initial object that makes the 
middleware send an initial message to an initial service. 

While the task executes, the middleware monitors its 
progress and measures its timing and resource consumption. 
The middleware on the worker nodes send samples of the 
collected information back to the planner on the instigator 
according to a predetermined sampling schedule. The 
instigator planner adjusts its model that produces updated 
predictions on the resource needs. If the quality of the 
measured performance does not match that specified by the 
application, the planner will attempt to renegotiate the plan 
with the worker nodes. Commonly the adjustment will be 
downwards as the quality of the stochastic distribution itself 
increases with more samples and thus less over-reservation 
is needed. 

The rest of this section examines in further detail 
behavior patterns, their instantiation through planning, how 
sampling is used to derive improved plans and adapt to 
changes, the scheduling and mechanisms needed at each 
node, and how the actual execution is matched with the 
given plans. 

2.1.  Behavior Patterns 

A behavior pattern identifies what sequence of actions 
is needed, what messages are expected, and what types of 
resources are required to execute a task. The behavior does 
not express where, when, and how much, neither does it 
express the content of the messages or the method for 
processing the messages. It does name the object that 
provides the methods, however. 

It is envisioned that behavior plans can eventually be 
automatically created, either based on a model or by 
observation of instrumented execution. The patterns used 
for this paper have been hand authored.  However, their 
temporal instantiation is automated by the planner as will 
be shown. 

 
 



 

  

<behavior name="SensorDemo"> 
<action name="DemoInstigator" endpoint="node:instigator/COB/sensormain.cob"> 

<message destination="SensorProducer/*"/> 
</action> 
<action name="SensorProducer" endpoint="node:sensor/COB/sensor.cob"/> 

      <repeat count="100" Period="P1.5S"/> 
      <message destination="SensorConsumer"/> 
   </action> 
   <action name="SensorConsumer" endpoint="node:consumer/COB/sensor.cob"/> 
      <repeat count="100" period=”P1.5S”/> 
    </action> 
    <sampling destination="node:instigator" interval="20" number="2"/> 
</behavior> 
FIGURE 2: Example behavior pattern for three node demo scenario. 

The pattern in figure 2 expresses a pattern for the sensor 
demo [figure 1] that runs on three nodes. The instigator 
sends an asynchronous message to sensor that is directed to 
all 100 of the SensorProducer action instances. The sensor 
producer then runs the method expressed in the eventual 
message for one hundred times, each run offset by a second 
and a half. The producer also sends a message each time to 
the consumer, which expects one message per action 
instance. The pattern also states that sampling should be 
done at a double sampling schedule every 20 invocations. 

The pattern is instantiated to spatial plan by a discovery 
service. It resolves the roles into precise URLs and network 
addresses. The discovery, trust, and security issues are 
discussed in a companion paper [3]. 

The pattern is instantiated temporally by the planner. 
The planner uses a stochastic process and sampling to 
predict how many resources are needed for a given 
application specified quality standard. It estimates how 
much time will be needed at each node and how far before 
a deadline an action needs to start. The planner also offsets 
the various actions relative to each other so that the overall 
deadline can be met. 

The specific start time is finally calculated from an 
application supplied overall deadline. The fully instantiated 
pattern is now an action plan, a list of actions with their 
corresponding locations, resources, and times. After this the 
middleware negotiates the resources with the worker nodes. 
It is now up to the application to provide the data for the 
initial message that sets the plan in motion. 

2.2. Planned Actions 

Planned actions express temporal behavior of a program.  
Action scheduling is an extension of earliest deadline first 
and constraint based scheduling. Planned actions are also 
instantiations of behavior patterns, bound to a specific time 
and place. The actions list what resources are needed for a 
task, at what time those resources are needed, and where 
those resources are located plus how much time variance 
can be tolerated. At any one time and place the action is a 
multi-dimensional resource vector that enumerates all the 
various resources needed (CPU cycles, memory, I/O 
bandwidth, etc.). The planned actions also describe the 
relationship between related actions through triggers. One 
action can trigger another action or itself. 

<task name="SensorDemo-123456"> 
<action name="SensorProducer" deadline=”2004-12-11T02:51:48.7001508Z” 

               tolerance=”P0.005S” duration=”P0.02S”> 
      <trigger maxCount="100" offset="P1.5S">SensorProducer</trigger> 
   </action> 
    <sampling destination="http://10.10.10.10/COB/statistics.cob" interval="20" number="2"/> 
</task> 
FIGURE 3: Action plan for producer node that corresponds to the pattern in figure 2. 

The planned action model proposed in this paper is an 
extension of the constraint based scheduler (CBS), itself 
and extension of earliest deadline first (EDF). Rather than 
having a thread declare its constraint, the resource plan is 
separated from execution. The action plan is a constraint 
with a state machine, where execution is possible only in 
the right state. Once an action is entered into the local 
schedule, it reserves the time just like a constraint. 
However, unlike a constraint, a planned action needs more 

than just the correct time to run. First it needs to be 
triggered (see below) and secondly it needs to have 
something (a continuation) to run associated with it. In 
other words, what is executed is separated from when 
something is executed and in which sequence. The action's 
triggers control the sequencing, the action's deadline control 
when. The what is controlled by the implementation of the 
services and the methods that are called and the specific 



 

 

patterns – in other words the content of the payload 
messages. 

A planned action item is a tuple <Deadline, Estimate, 
Tolerance, Triggers; SeqNo, State;  Consumed>. The 
deadline is the same as in EDF and CBS, the Estimate is the 
same as in CBS, The Tolerance corresponds to the Start 
time in CBS (Tolerance = Deadline - Estimate - Start) but is 
a somewhat more meaningful number to applications. The 
Triggers is a list of actions to trigger once the current action 
is completed. The sequence number distinguishes one 
instance of a repetitive action from another. Once a worker 
node has accepted an action, the middleware executes a 
state machine on the action. The state is one of initial, wait-
trigger, wait-message, wait-start-time, run, terminated. The 
service application gets to execute once the state machine 
reaches the Run state. 

 
A repetitive action is one that triggers itself with a time 

offset. A sequence of actions is one where actions trigger 
each other in a chained fashion. A one-time action is one 
where there is only one action that does not trigger anything. 
An action that is not triggered by any action other than 
itself is considered automatically triggered initially.  A 
trigger is the tuple <WhatAction, TimeOffset, 
RepeatCount> 

While actions form trees in the middleware that creates 
and interprets them, they are represented as simple XML 
blocks while in transit. The messaging middleware 
automatically serializes them. An example of a serialized 
planned action is shown in figure 3. 

2.3. Action Scheduling Roles 

Scheduling of planned actions is split into three distinct 
phases: 1) instantiating a behavior pattern into a concrete 
action plan by the instigator (planning); 2) negotiation of 
the plan with the worker nodes (admission control); and 3) 
executing the action plan and state machines on the worker 
nodes. 

The planning (#1) is done by an instigator, who drives a 
specific task. There may be multiple instigators driving 
multiple instances of multiple tasks. Each task can be 
planned in isolation and its resource needs can be estimated 
in isolation. Similarly each node knows how to best execute 
the work that is delivered to it (#3). It will, within the given 
constraints, try to execute the schedule in an optimal order, 
presumably to save energy. 

The admission control (#2) can either be done at the 
worker node or it could be done at a central machine that 
knows the schedules for all the machines. The advantage of 

the decentralized model is that it works in an ad-hoc peer-
to-peer type environment. The advantage of the centralized 
model is that the central node could be more powerful and 
have more complete information. A central node could also 
schedule shared resources such as radio bandwidth and pick 
the best node to execute a given action when there is a 
choice. The implementation described in this paper 
provides a simple decentralized admission checker. 

It is interesting to note the temporal shift in the 
scheduling in addition to the location differences. The 
planning and admission control are done at the time of 
instigation, when work is initially started (e.g. the TV 
remote was pressed to start a movie). The execution of the 
plan, the local scheduling, is done much later, while the 
movie is playing, with full knowledge of everything that 
needs to be done. This allows the local scheduler flexibility 
as it knows all it needs to do. It can for example attempt to 
cluster all execution so as to turn off itself for the time in 
between. Note that an action plan for listening for button 
presses on the remote is needed for the most aggressive 
power savings not to shut out task creation. Similarly plans 
can be provided for other spontaneous activities with the 
expected patterns that follow. 

An action plan does not mandate that any execution 
actually results. It is merely a reservation that guarantees 
that the resources will be available when needed. The cost 
of a task thus consists of a reservation cost in addition to 
the work itself. The reservation cost depends on what other 
plans were not admitted as a result and depends on the 
amount of resource in addition to the degree of inflexibility. 
In other words a plan that requires high confidence and 
little jitter is more expensive as there is more potential 
conflict with other plans. 

2.4. Estimating Resource Consumption of Actions 

The behavior pattern given to the scheduler lists some 
of the resources that are needed for executing instances of 
the pattern. Others, in particular CPU and memory, are 
needed by almost all actions so those can be inferred 
automatically. Yet more can be detected in the sampling 
phase. The planner also needs to estimate overall time. The 
simplest planner only needs to consider overall time. This is 
the case with the planner presented in the implementation 
section of this paper. A multi-resource scheduler that also 
deals with real-time C# has been demoed by the author at 
the Microsoft Faculty Summit and will be presented in a 
separate paper. 

The heart of the planner is a stochastic filter. It stores 
previous samples in a table. It calculates the distribution of 
the samples. It integrates the distribution up to the 
application supplied confidence interval (see figure 4). The 
integral gives the amount of resource (time) required to 
assure the work will be complete within the interval with 
the given probability (the confidence). The size if the 
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integral depends on 1) the median 2) the deviation 
(volatility) of the measurement, and 3) the quality of the 
measurement itself. In order to stabilize the estimate, a 
negative feedback loop is added. This works by mixing the 
old median and deviation into the new estimate when new 
samples replace the old. 

 

FIGURE 4: The confidence is the probability that a task 
completes in the time reserved. The reservation needed 
is the inverse integral of the distribution up to the 
required confidence. 

The planner uses the samples to calculate a distribution 
function. It reserves enough resources to achieve the 
required quality (confidence). The higher the required 
quality the more resources are needed. Similarly, the more 
jitter there is in the measurements the more resources will 
be reserved. Uncertainty about the distribution itself also 
adds to the resource requirements. Initially, when there are 
no measurements, the planner uses application supplied 
guesses. A dry-run can also be used to prime the 
distribution function. 

The implementation uses pre-calculated values of the 
integral of the normal distribution and fixed point integer 
arithmetic to avoid expensive calculations. The integral is 
roughly log10 of the confidence, e.g. when going from 99% 
probability to 99.99% probability the amount of time 
needed increases by twice the median. 

If the planning is done in a centralized way, or as a 
service in its own right on a powerful machine, the 
calculations could be done by e.g. Matlab or some 
modeling tool but a microcontroller needs to keep the 
calculation to a minimum, while pre-calculated values can 
be a significant saving. 

One of the benefits of the stochastic approach is that it 
works even when information is incomplete. When the 
quality of information increases the planner is able to make 
more tight plans but even in the presence of significant 
uncertainty (like non-real-time nodes) it can still make a 
plan with confidence. 

2.5. Quality Control Sampling 

The sampler measures the time and resources consumed 
at each invocation on the worker nodes with the help of the 
operating system.  The middleware sends samples back to 

the planner according to a predetermined sampling 
schedule. By adhering to the schedule, the sampler avoids 
overwhelming the network and the nodes themselves with 
excessive sampling messages and keeps the overhead at an 
acceptable level while still facilitating a sufficient quality 
control and accurate predictions. 

The planner integrates the new samples into the 
distribution function. When it detects a significant enough 
change, it renegotiates the action plans with the worker 
nodes and either releases resources for other use or requests 
more as appropriate. 

2.6. Scheduling of Action Plans 

Once the planner has instantiated the location and 
timing of the behavior pattern, it negotiates with each 
required worker node for acquiring a reservation for 
executing the plan. It sends a task description [Figure 3] to 
the worker node using SOAP. The scheduler on each node 
performs an admission check and checks for conflicts. If 
there are no conflicts, the task is accepted. Otherwise the 
task is rejected and the instigator application is notified of 
failure. If any of the worker nodes reject its plan, the 
planner cancels the task on all the worker nodes. At this 
point the application can take corrective action and attempt 
to reschedule at another time. If instead the plan is accepted 
on all nodes, control is returned to the instigator application 
for making the initial method call that results in the first 
message being sent that in turn puts the plan into action. 

Note that the middleware can piggyback the initial 
method message with the initial reservation request. If the 
reservation fails, the method message is ignored. The 
implementation employs this piggybacking to save one 
roundtrip. The success of the method message implies the 
acceptance of the task. 

Each node keeps a list of all accepted tasks. When a 
new task is proposed or an old one is adjusted, the local 
scheduler runs an admission check to determine whether 
there are conflicts. This is essentially a binpack problem 
with many known solutions [Knuth, MP-scheduling, nurses] 
but is also NP-complete, meaning that a precise answer is 
not feasible. Thus a best effort algorithm that sometimes 
produces false positives is used. 

The conflict detector first attempts to determine 
conflicts against any repetitive actions and then attempts to 
fill in one-time tasks into the gaps. The algorithm uses a 
calculated slack that is initially set to the jitter tolerance 
given by the application. It then compares the new task 
against one other task at a time. When a potential overlap is 
detected (the period and time estimate interfere at any point 
in time) the calculated slack between the two tasks is 
adjusted by reducing some slack from each of the actions so 
that the sum of the adjustment equals the overlap. If at any 
point the calculated slack becomes negative, the new task is 
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rejected and the calculated slack of the existing nodes is 
returned to what it was before the insertion. 

In essence the admission check is a tree merge of two 
scheduling trees, if the merge fails the admission is rejected. 
The tree merge is location independent as long as there is a 
single authority. Thus in a centralized scheduling system 
the authoritative scheduler will simply deliver the current 
tree to the worker node. 

The worker node uses the scheduling action tree to drive 
the timing of actual execution. A low-level scheduler 
handles context switching, priority inheritance and similar 
short-term issues. 

One big advantage of having pre-declared long-term 
scheduling plans is that the scheduler can know when 
execution is not expected. The scheduler can use this 
information to shut off the power during those times. In 
addition the scheduler can attempt to make those idle gaps 
as large as possible by packing the schedule in such a way 
that expected execution is clustered together. Thus, when 
the system is powered up it can do as much as possible and 
then stay powered down for extended periods of time. 

In the presence of multiple instigators, the admission 
control and negotiation mechanisms are exactly the same. 
The admission checker handles one request at a time. 

2.7. Continuations and Messages 

When a program executes in a thread, method calls are 
made on the thread's stack. A method call is represented by 
a continuation, which consists of a stack frame—the 
closure of the call arguments, the object that is being called, 
the method that is being called, and where to return once 
the call completes. In the middleware, continuations are 
first class objects and can exist without the thread, 
including its full stack. A continuation thus represents 
either a client side method call that is waiting for the call to 
complete or the server side call that is to be executed. By 
separating the continuation into a separate object, a 
continuation needs an associated thread and stack only 
while the continuation actually executes. This enables 
significant memory savings on continuations that are not 
currently executing. 

The table driven serializer and deserializer operate on 
continuations. The (de)serializer uses a compact metadata 
representation to interpret continuation fields. They 
translate between the continuation and a message of a given 
format. In the case of SOAP, a message is represented in 
XML using rules specific to SOAP. There is no code 
specific to a given interface, except an automatically 
generated proxy object on the client, which provides 
transparent methods that simply call the generic interpreter 
with the method's descriptor and stack frame pointer as 
arguments. This runtime generated specific code is three to 
four words depending on the processor instruction set. 

The metadata descriptor table is a compressed binary 
representation of the schemas of known interfaces and the 
messages that are part of the given interface. The descriptor 
can be generated at runtime from XML but is normally 
compiled offline so that it can be placed in ROM. The 
metadata can be extended at runtime (sometimes called 
reflection) but the metadata loaded at runtime must be 
placed in RAM, which is a usually a scarcer resource. 

On the client side the thread that made a method call 
waits for its continuation to complete. On the server side, 
however, there does not need to be a thread a priori. Instead 
the system creates and recycles threads automatically when 
the continuation is ready to execute. The stack frame 
contained in the continuation can simply be copied into a 
thread stack and registers and it is ready to go. When the 
method call returns, the service thread returns to the 
middleware and does the necessary post-processing, 
including sending reply messages.   

A method call on the server can be thought of as a filter 
that takes in one message and produces another. An 
asynchronous method call is simply one that does not 
produce a reply message. The middleware implementation 
recognizes this from the metadata and simply will not send 
a reply when not desired. On the client side asynchronous 
messages are similarly not waited for. 

Continuations that represent asynchronous messages 
can be executed multiple times. The middleware simply 
copies the stack frame multiple times to multiple threads 
for execution. 

2.8. Interaction between Method Messages and   
Planned Actions 

Each method message carries with it a SOAP header 
that names the object the message is directed towards and 
an action identifier that allows the message to be matched 
with a particular action. This rendezvous mechanism ties 
the actions and messages back together after they were 
temporally separated. 

The action id contains the name of the task, the name of 
the specific action, and optionally a sequence number.  The 
sequence number identifies which specific instance of a 
repetitive action the message is targeted to. Missed 
sequence numbers can be dealt with in an application 
specific way. 

 
<wsa:to>http://10.10.10.10/COB/sensor.cob</> 
<wsa:relatedTo>SensorDemo/SensorConsumer/22</> 

 
A missing sequence number is interpreted as the next one 
that was expected.  

 
<wsa:relatedTo>SensorDemo/SensorConsumer</> 

 



 

 

The sequence number can also be a wildcard. In this 
case the message is targeted to all instances of the repetitive 
action. The method is called over and over again with the 
same parameters for as many times and at the time the 
action specifies. The limitation is that wild carded method 
calls must be asynchronous as otherwise the client would 
receive multiple replies in an unexpected way. This 
limitation is enforced and a SOAP Fault message will be 
sent like in other failure cases. 

 
<wsa:relatedTo>SensorDemo/SensorProducer/*</> 

 
The repetitive single message captures the spontaneous 
method concept [4] into the same abstraction as event 
driven service methods. A repetitive action together with an 
asynchronous method message creates a spontaneous, time 
driven method. 

3. Implementation 

The middleware system presented in this paper consists 
is constructed of a number of software components written 
in C. Each component has a well defined interface that 
defines how it interacts with other components. All of the 
components can be compiled to a large number of 
microprocessors, microcontrollers, and VLIW signal 
processors. Some components, such as AES encryption, 
have also been implemented on FPGAs. 

While the system can be run on bare metal, with the 
help of RTOS components, the middleware can also be run 
on other operating systems, such as WindowsXP. The 
measurements presented in the measurement section have 
been done on an Atmel Arm7 microcontroller. The RTOS 
components have been previously presented in [1]. The 
RTOS provides precise low-level scheduling as well as 
avoidance of priority inversion and starvation gaps that are 
needed for precise real-time operations. When the middle-
ware is run on other systems, the timing can, however, be 
expected to be less precise. 

The RTOS components include a TCP/IP network stack, 
a constraint based RT-scheduler, a component manager, a 
dynamic memory manager, synchronization (threads, 
conditions, mutexes), and device drivers. 

The service middleware components include a tokenizer, 
an XML parser, SOAP serializer, discovery, addressing, 
key exchange and trust manager, an action scheduler and 
continuation manager, a stochastic planner, sampling, and 
encryption. 

Sample applications include games, sensor and actuator 
services, various services that interoperate with ASP+ 
pages, etc. 

 
Let's drill into some of the service middleware components 
in further detail: 

3.1. Tokenizer and Parser 

When a network driver receives data, it puts the data 
into a memory buffer. The buffer is handed to the network 
stack, which once it has determined the data is a valid 
packet on a supported transport; it hands off the buffer to 
the middleware. This happens through a new socket API 
that sets rules on how buffers are shared and reference 
counted. The middleware then deals with HTTP headers if 
that is the transport, or goes directly to the presentation 
level XML processor if the transport is UDP or other 
protocol that was completely handled by the network 
stack—after optionally decrypting the message. 

The XML is processed in a push model directly from 
the network buffer as data is arriving and does not create 
any intermediate parse trees so as to minimize memory 
consumption. The parser delivers SAX style parsing events 
to the deserializer. 

In the case of outgoing messages the same interfaces are 
used but the middleware object implementation produces 
messages rather than consuming them. The reuse of 
interfaces allows easily plugging in different transports, 
encodings, and encryption modules as desired. Zero-copy is 
used in all cases. 

3.2. Serializer and Deserializer 

The deserializer consumes parsing events and matches 
the incoming data with a metadata descriptor table that is a 
compact representation of all the interfaces, messages, and 
fields that the service understands. The metadata is 
generated from an XML system description. The same 
description also generates a reference manual, C and C++ 
headers, stub implementations of the service, etc. 

The incoming messages are converted into 
continuations with native stack frames and data 
representation. A temporary heap is associated with each 
continuation for storing the argument data. When the 
continuation is eventually deleted, all the data gets deleted 
at once. 

The parser understands a wide variety of data types, 
lists, trees of structures, in-out arguments, and language 
representations of multiple compilers. The outgoing 
messages are again processed in reverse and the same 
metadata is used, 

3.3. Action Scheduler and Continuation Manager 

When a message contains a SOAP header with an action 
plan, the middleware scheduler compares the new task with 
existing tasks. It uses the estimates, deadline, tolerance, and 
repetition with a slack reduction algorithm to make the 
determination. While the middleware implements a trust 
manager that can determine whether the requestor is trusted 
at all, the current implementation does not yet implement 



 

 

an economic model for determined how much resources 
should be dedicated to a particular instigator. Instead the 
first one to reserve an acceptable plan will get the resources. 

Once an action plan has been entered, it will hold the 
resources it needs reserved until 1) the plan is modified or 
cancelled, 2) the work is completed, or 3) the action is not 
started in time (its method message arrives late or does not 
arrive). 

When a method message arrives, it contains the action 
ID ion a SOAP header. It is a simple lookup to find the 
correct action from the schedule. A continuation is created 
and associated with the action. Once the trigger driven state 
machine makes the action runnable (it might be already), 
the middleware creates a thread to execute the continuation. 
It creates the thread in a suspended state and copies the 
stack frame from the continuation and sets the link register 
to point to an activation completion routine. It then uses the 
scheduling information in the action to set a time constraint 
for the new thread and makes it run. This way the pre-
existing constraint scheduler (presented in [2]) handles the 
low-level scheduling work. 

Once the method call completes on the activation thread, 
it returns to the middleware and uses the serializer to send a 
reply message to the appropriate place. The receiver of the 
reply message treats it like a service call so the same code 
is used. The only difference on a client is that a pre-existing 
continuation with a pre-existing thread is used. The reply 
message carries the continuation ID in its SOAP header. 

After the reply message is sent, any triggers are 
triggered and resource consumption is determined. An 
action’s trigger list is walked and the state machine of any 
named action is advanced and associated continuations 
executed—triggers are only allowed within a single task 
within a single node. Meanwhile the low-level scheduler 
keeps track of resource use and that information is 
propagated to the sampler module that will, according to 
the sampling schedule, send the resource and timing 
information to the instigator planner for quality control and 
adaptation use. 

The network stack uses its own time reservations that 
are excluded from application use. It is worth noting that 
there are no starvation gaps between the network stack and 
the final transmission of the reply message. Deadline driven 
execution is done at all points and the service thread 
atomically receives the time constraint from the action plan. 
The low-level scheduler handles priority inheritance so 
multiple threads do not starve each other. 

3.4. Sampling and Statistics 

The instigator receives quality control sampling from 
the worker nodes. The instigator planner keeps track of all 
the action plans (tasks) that it has instigated. The sampling 
messages contain the action ID and the resource and timing 
information. For each task, the planner maintains a 

stochastic distribution function. It integrates the new 
samples into the distribution but uses a negative feedback 
loop to maintain stability. The samples are maintained as a 
simple array of a fixed number of samples. A median is 
calculated and for each sample a standard deviation s 
calculated. The negative feedback is achieved by inserting a 
number of old <median, variance> pairs into the array. 

The statistical module assumes the distribution is a 
normal distribution. This simplifying assumption might be 
incorrect in some applications and more sophisticated 
match could be used. However, measurements indicate 
even the simple distribution yields good predictions. 

The confidence interval is calculated by integrating the 
distribution up to the desired application specified 
probability. Since the distribution is a normal distribution, 
the integral is independent of the samples and is pre-
calculated offline into another array. This precalculated 
integral is scaled to the observed distribution using the 
median and deviation. 

3.5. Planner 

The planner is a middleware component used at the 
instigator to drive and monitor a particular task. The 
planner maintains a list of known behavior patterns, which 
can be extended. The planner also keeps track of all tasks 
(instances of the pattern) that it has orchestrated. It creates 
the tasks upon application request by instantiating all the 
unknowns in a pattern. A discovery process is used to 
resolve node references into transport addresses. The 
statistics module is used to cache temporal information. On 
the very first run the temporal information can be provided 
by the application or come from a modeling tool. 
Alternatively the planner will use a guess, an overly large 
estimate that later is adapted and shrunk to reality. When 
the initial uncertainty is expected to cause problems, the 
application service could implement a ‘dry-run’, where all 
the work is done without actually affecting anything. 

The planner periodically scans the task list to make sure 
that sampling messages have been received correctly—
otherwise the application is alerted that the service is 
misbehaving. The planner also periodically checks whether 
any tasks’ plans need to be adjusted or reservations 
renewed. 

The planner negotiates with worker nodes to reserve the 
resources needed by a plan. If any necessary resources are 
not available, the application is notified so it can take 
evasive action. 

4. Performance 

We measured the performance of a demo implementing 
the scenario in figure 1 on Atmel eb63 boards [12]. They 
have a 25MHz ARM7 [13] microcontroller. The demo is 
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fully functional and an early version was shown at the 
Microsoft Faculty Summit in July 2004. 

We observe that the entire system can run on a 
microcontroller with 256KB of ROM and 32KB of RAM. 
The specific numbers are listed in figure 5. The working of 
the stochastic planner was estimated through sampling. A 
simple test method does 20000 multiplications. Starting 
with no information the planner uses the application guess.  

 
BASE 25356 

DRIVERS 13108 

NET 77624 

XML 8980 

SOAP 38336 

RTSOAP 14284 

APP 43688 

CRT 13484 

TOTAL 234860 

Figure 5, Code size of the components used – in bytes. 

Once the planner gets real samples it uses them with 
smoothing between each step. The calculation times include 
formatting and sending the reply message. Figure 6 has the 
numbers. The estimate is produced by the live planner, 
while the mean and deviation have been calculated offline 
for reference from the raw measurements. 
 

Step Estimate 
95% conf 

Measured 
mean 

Standard 
deviation 

Confidence
95%  99% 

1 339 337 1.7% 1.0 1.4 

2 341 337 1.6% 1.0 1.4 

3 346 337 1.8% 1.0 1.4 

Figure 6, Time measurement and prediction of a CPU 
intensive task – times in milliseconds, 32 samples per 
iteration on embedded microcontroller board. The 
confidence number indicates the extra time allocated 
for jitter. Fixed point integer arithmetic rounds the 
number up slightly. 

Since the low-level scheduler did not produce much 
jitter, the test was also executed on a PC running 
WindowsXP with the middleware stack on top. Running 
without an underlying real-time scheduler introduces more 
uncertainty but the planner still deals with it correctly and 
produces a larger confidence allocation to cope with the 
increased jitter. As the CPU is faster a million 
multiplications is done each time. From a steady state the 
number of calculations is dropped to half. Figure 7 shows 
how the planner adapts to the drop. 

5. Related Work 

Industrial quality control has been necessary since the 
beginning of the industrial revolution and the statistical 
methods are a well-established field of mathematics [7]. 
This paper extends that tradition into the relatively young 
area of real-time scheduling. 

XML [11] Web services and SOAP [9][10] were 
originally developed to solve the e-business interoperability 
problem. Embedded Web Services were presented in [2]. 
This paper extends them to real-time. 

Time-triggered spontaneous messages and conventional 
service methods are separated into two separate method 
types in [4]. While this distinction is a step forward in well-
defined abstractions, the trigger mechanism and wildcard 
rendezvous capture both and merge them into a single 
higher-level abstraction. 

 

Step Estimate
99% conf

Measured 
mean 

Standard 
deviation 

Confidence 
95%  99% 

1 126 123 6.4% 1.9 2.5 

2 124 120 14% 4.2 5.5 

3 69 55 2.1% 2.8 3.7 

4 58 55 2.9% 3.9 5.2 

Figure 7, Time measurement on PC in milliseconds.  
After the steady state at step 2, the workload is cut in 
half and the estimate adapts to the new load. 

The planned actions in this paper are an extension of 
constraint based schedulers [4]. The constraints themselves 
are an extension of Earliest Deadline First (EDF). CBS 
allows some prediction on what jobs might be executable 
since tasks can declare an estimate on how long their work 
will take. The main limitations in CBS are that tasks can 
only be declared once the actual work is done and there are 
no provisions for repetitive work. Instead planned actions 
can be linked and repeated through triggers and do not have 
to be ready to execute. 

There have been many attempts on dealing with 
concurrent repetitive tasks. The common type of solution is 
to reserve "x% of CPU in y second interval". This is fine 
for simple behavior but cannot effectively deal with 1) mix 
of repetitive and one-time jobs and 2) cases where the work 
needs to be done within a constrained sub-interval. The 
robot scenario in the introduction is one example. For this 
reason the planned actions do not attempt to over-compress 
the scheduling information but instead lets the behavior to 
be described in terms that are as precise as is natural to the 
application. The scheduler packs the actions in a reasonable 
manner (given that a perfect packing is NP-complete). 
Optimizing schedules has been explored in e.g. [6]. 



 

 

6. Conclusion 

This paper introduced real-time SOAP and a statistical 
planned action paradigm as well as several new 
mechanisms that made the implementation possible and 
applications easier to write. 

The authors conclude based on the implementation that 
it made sense to extend industrial quality control paradigms 
to real-time scheduling. Sampling driven statistical 
scheduling correctly predicts future resource needs in the 
sample applications. Using XML Web Services (SOAP) in 
microcontroller systems is viable and makes interoperation 
issues more manageable. 
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