Self-Tuning Planned Actions
Time to Make Real-Time SOAP Real

Johannes Helander
Microsoft Research

Abstract

This paper proposes a new method for programming
and controlling distributed tasks. Applications declare
behavior patterns that are used to automatically predict
and reserve resources needed by applications in a
heterogeneous distributed — environment. The paper
introduces a stochastic quality sampling driven scheduler
and a rendezvous mechanism for matching pre-planned
activities with actual payload data.

The system is built around the first real-time SOAP
implementation, also presented in this paper. It extends the
XML Web Services interoperability benefits that have
proven themselves in e-business into two new areas:
embedded and real-time. The paper presents an efficient
implementation that runs on common microcontrollers and
other computers.

1. Introduction

Embedded real-time computing systems for entertain-
ment and other consumer—as well as industrial-uses are
increasingly built out of distributed components that are
manufactured by multiple vendors. This means that
interoperation becomes the number one issue in any
communications paradigm. Meeting real-time predictability
standards becomes ever harder as the devices get more
diverse and the number of temporal uncertainties in their
interaction increases.

This paper proposes a self-tuning planning mechanism
for such environments. It uses an on-line, sampling driven
statistical model to predict resource requirements needed to
meet application's quality of service needs. Open standards
based XML Web Services are used both for application and
for system communication in order to maximize
interoperability.

The system attempts to keep applications simple by
separating temporal behavior from actual work. The
separation allows an automated advance planning phase
and facilitates power savings and real-time guarantees
through admission control.

Temporal behavior is represented by behavior patterns.
The patterns describe the resources needed at each node
involved in a task and when they are needed. The
description is expressed in a declarative high-level

Stefan Sigurdsson
University of Washington

language in XML syntax. Patterns are instantiated into
planned actions that are negotiated with the schedulers at
each node.

While the scheduler is tuned to work with incomplete
information, it carefully preserves the knowledge that is
available by extending a precise constraint based scheme
(time constraints are defined in [5]). These extended
constraints, coined planned actions, can exist before the
precise execution parameters have been determined. This
allows a time delay between separate planning and
execution phases. Through inference from the predicted
execution it is possible to determine when resources are not
needed and can be shut off as well as for clustering usage.
The longer a device can be turned off the more power is
saved.

The scheduling is divided into distinct phases, both
temporally into long and short term plans and spatially into
distributed task and local node processing. Execution and
control flows are separated and a continuation based
rendezvous mechanism combines them back together. A
wild card rendezvous captures both time driven
spontaneous execution and message driven execution [4]
into a common abstraction. An implementation that is
available to the public and runs on multiple platforms is
introduced and measurements show that it is functional and
highly efficient.

1.1. Sample Applications

Examples of usage areas include: 1) A home
entertainment and automation system built by multiple
manufacturers. Different media types have different jitter
tolerances, some activities are repeating and others are not.

Instigator

Scheduling

Producer

‘\
/Sensor readings

Scheduling

Sampling Consumer

Various inhabitants instigate multiple activities. Energy
efficiency reduces noise and unwanted heat. 2) Industrial
robot control. An assembly line stops for 10 seconds every
minute. Welding a door handle takes 4 seconds. If the robot
welds a door handle outside the correct time window, it
destroys the car. A proportional schedule would not work. 3)
Sensor and actuator data streaming. The figure above
examines #3 in further detail and the performance section
shows measurements.

A sensor node reads a sensor at regular intervals and
sends the data to an actuator node that reflects the sensor
state. The actuator node knows when to expect data from
the sensor so it can turn off its receiver while not expecting
data. Energy efficiency lengthens battery life. An instigator
node initiates the data flow and adjusts the timing
according to measurements (quality control sampling).
There can be multiple instigators as well as multiple sensor
nodes.

1.2. Key Contributions

The system described in this paper:

Extends stochastic quality control paradigm to
distributed embedded computer scheduling and allows
adaptive real-time scheduling in the presence of many
unknowns such as is the case in heterogeneous systems.

Splits distributed jobs into behavior pattern, temporal
instantiation, spatial instantiation, service objects, and data
driven actual work. This allows an advance planning phase
facilitating a simple but informed and power-efficient low-
level scheduling during the execution phase. The resulting
system automates programming tasks allowing more
abstract development.

Applies XML Web Services to a completely new area
and lets real-time applications interoperate with legacy
systems in a meaningful way.

2. Architecture

Distributed tasks communicate through messages and
execute service methods on individual nodes. The
middleware described in this paper exploits similarity in
communication patterns and resource needs between
similar tasks that exhibit behavioral patterns. The system
separates the temporal and spatial behavior and controls
execution and scheduling based on the patterns and
predicted behavior and needs. The planning is done at an
earlier time than actual messaging and communication thus
facilitating resource planning at an earlier point of time
than when the execution actually occurs. The actual data
later drives the actual work but the plan pre-reserves the
necessary resources assuring that the actual work can be
completed successfully. Due to variations to the actual

work and random delays, the planner needs to over-reserve
resources to account for the variations. A statistical model
is used to predict just exactly how much needs to be
reserved to assure the level of quality a specific task needs.
The more critical the application, the higher the required
quality is and the more resources it needs.

An instigator is the application that drives a task. The
instigator declares a behavior pattern and the criticality of a
task as well as medium dependent tolerance to jitter and the
desired deadline when the specific instance of the task
should be completed. The middleware planner instantiates
the behavioral pattern into a spatial and temporal plan. The
middleware derives a specific action and resource plan for
each node that is needed to execute the task (that is an
instance of the pattern). It then negotiates the resources
with each node. The application then gets the task going by
calling a method on an initial object that makes the
middleware send an initial message to an initial service.

While the task executes, the middleware monitors its
progress and measures its timing and resource consumption.
The middleware on the worker nodes send samples of the
collected information back to the planner on the instigator
according to a predetermined sampling schedule. The
instigator planner adjusts its model that produces updated
predictions on the resource needs. If the quality of the
measured performance does not match that specified by the
application, the planner will attempt to renegotiate the plan
with the worker nodes. Commonly the adjustment will be
downwards as the quality of the stochastic distribution itself
increases with more samples and thus less over-reservation
is needed.

The rest of this section examines in further detail
behavior patterns, their instantiation through planning, how
sampling is used to derive improved plans and adapt to
changes, the scheduling and mechanisms needed at each
node, and how the actual execution is matched with the
given plans.

2.1. Behavior Patterns

A behavior pattern identifies what sequence of actions
is needed, what messages are expected, and what types of
resources are required to execute a task. The behavior does
not express where, when, and how much, neither does it
express the content of the messages or the method for
processing the messages. It does name the object that
provides the methods, however.

It is envisioned that behavior plans can eventually be
automatically created, either based on a model or by
observation of instrumented execution. The patterns used
for this paper have been hand authored. However, their
temporal instantiation is automated by the planner as will
be shown.

<behavior name="SensorDemo">

<action name="Demolnstigator" endpoint="node:instigator/COB/sensormain.cob">

<message destination="SensorProducer/*"/>
</action>

<action name="SensorProducer" endpoint="node:sensor/COB/sensor.cob"/>

<repeat count="100" Period="P1.5S"/>
<message destination="SensorConsumer"/>
</action>

<action name="SensorConsumer" endpoint="node:consumer/COB/sensor.cob"/>

<repeat count="100" period="P1.5S”/>
</action>

<sampling destination="node:instigator" interval="20" number="2"/>

</behavior>

FIGURE 2: Example behavior pattern for three node demo scenario.

The pattern in figure 2 expresses a pattern for the sensor
demo [figure 1] that runs on three nodes. The instigator
sends an asynchronous message to sensor that is directed to
all 100 of the SensorProducer action instances. The sensor
producer then runs the method expressed in the eventual
message for one hundred times, each run offset by a second
and a half. The producer also sends a message each time to
the consumer, which expects one message per action
instance. The pattern also states that sampling should be
done at a double sampling schedule every 20 invocations.

The pattern is instantiated to spatial plan by a discovery
service. It resolves the roles into precise URLs and network
addresses. The discovery, trust, and security issues are
discussed in a companion paper [3].

The pattern is instantiated temporally by the planner.
The planner uses a stochastic process and sampling to
predict how many resources are needed for a given
application specified quality standard. It estimates how
much time will be needed at each node and how far before
a deadline an action needs to start. The planner also offsets
the various actions relative to each other so that the overall
deadline can be met.

<task name="SensorDemo-123456">

The specific start time is finally calculated from an
application supplied overall deadline. The fully instantiated
pattern is now an action plan, a list of actions with their
corresponding locations, resources, and times. After this the
middleware negotiates the resources with the worker nodes.
It is now up to the application to provide the data for the
initial message that sets the plan in motion.

2.2. Planned Actions

Planned actions express temporal behavior of a program.
Action scheduling is an extension of earliest deadline first
and constraint based scheduling. Planned actions are also
instantiations of behavior patterns, bound to a specific time
and place. The actions list what resources are needed for a
task, at what time those resources are needed, and where
those resources are located plus how much time variance
can be tolerated. At any one time and place the action is a
multi-dimensional resource vector that enumerates all the
various resources needed (CPU cycles, memory, 1/O
bandwidth, etc.). The planned actions also describe the
relationship between related actions through triggers. One
action can trigger another action or itself.

<action name="SensorProducer" deadline="2004-12-11T02:51:48.7001508Z2"

tolerance="P0.005S” duration="P0.02S”>

<trigger maxCount="100" offset="P1.5S">SensorProducer</trigger>

</action>

<sampling destination="http://10.10.10.10/COB/statistics.cob" interval="20" number="2"/>

</task>

FIGURE 3: Action plan for producer node that corresponds to the pattern in figure 2.

The planned action model proposed in this paper is an
extension of the constraint based scheduler (CBS), itself
and extension of earliest deadline first (EDF). Rather than
having a thread declare its constraint, the resource plan is
separated from execution. The action plan is a constraint
with a state machine, where execution is possible only in
the right state. Once an action is entered into the local
schedule, it reserves the time just like a constraint.
However, unlike a constraint, a planned action needs more

than just the correct time to run. First it needs to be
triggered (see below) and secondly it needs to have
something (a continuation) to run associated with it. In
other words, what is executed is separated from when
something is executed and in which sequence. The action's
triggers control the sequencing, the action's deadline control
when. The what is controlled by the implementation of the
services and the methods that are called and the specific

patterns — in other words the content of the payload
messages.

A planned action item is a tuple <Deadline, Estimate,
Tolerance, Triggers; SeqNo, State; = Consumed>. The
deadline is the same as in EDF and CBS, the Estimate is the
same as in CBS, The Tolerance corresponds to the Start
time in CBS (Tolerance = Deadline - Estimate - Start) but is
a somewhat more meaningful number to applications. The
Triggers is a list of actions to trigger once the current action
is completed. The sequence number distinguishes one
instance of a repetitive action from another. Once a worker
node has accepted an action, the middleware executes a
state machine on the action. The state is one of initial, wait-
trigger, wait-message, wait-start-time, run, terminated. The
service application gets to execute once the state machine
reaches the Run state.

S (msg)>WTrig (trig)> WTime (now>Start)>Run>T
(trig)> WMsg (msg) 7

A repetitive action is one that triggers itself with a time
offset. A sequence of actions is one where actions trigger
each other in a chained fashion. A one-time action is one

where there is only one action that does not trigger anything.

An action that is not triggered by any action other than
itself is considered automatically triggered initially. A
trigger is the tuple <WhatAction, TimeOffset,
RepeatCount>

While actions form trees in the middleware that creates
and interprets them, they are represented as simple XML
blocks while in transit. The messaging middleware
automatically serializes them. An example of a serialized
planned action is shown in figure 3.

2.3. Action Scheduling Roles

Scheduling of planned actions is split into three distinct
phases: 1) instantiating a behavior pattern into a concrete
action plan by the instigator (planning); 2) negotiation of
the plan with the worker nodes (admission control); and 3)
executing the action plan and state machines on the worker
nodes.

The planning (#1) is done by an instigator, who drives a
specific task. There may be multiple instigators driving
multiple instances of multiple tasks. Each task can be
planned in isolation and its resource needs can be estimated
in isolation. Similarly each node knows how to best execute
the work that is delivered to it (#3). It will, within the given
constraints, try to execute the schedule in an optimal order,
presumably to save energy.

The admission control (#2) can either be done at the
worker node or it could be done at a central machine that
knows the schedules for all the machines. The advantage of

the decentralized model is that it works in an ad-hoc peer-
to-peer type environment. The advantage of the centralized
model is that the central node could be more powerful and
have more complete information. A central node could also
schedule shared resources such as radio bandwidth and pick
the best node to execute a given action when there is a
choice. The implementation described in this paper
provides a simple decentralized admission checker.

It is interesting to note the temporal shift in the
scheduling in addition to the location differences. The
planning and admission control are done at the time of
instigation, when work is initially started (e.g. the TV
remote was pressed to start a movie). The execution of the
plan, the local scheduling, is done much later, while the
movie is playing, with full knowledge of everything that
needs to be done. This allows the local scheduler flexibility
as it knows all it needs to do. It can for example attempt to
cluster all execution so as to turn off itself for the time in
between. Note that an action plan for listening for button
presses on the remote is needed for the most aggressive
power savings not to shut out task creation. Similarly plans
can be provided for other spontaneous activities with the
expected patterns that follow.

An action plan does not mandate that any execution
actually results. It is merely a reservation that guarantees
that the resources will be available when needed. The cost
of a task thus consists of a reservation cost in addition to
the work itself. The reservation cost depends on what other
plans were not admitted as a result and depends on the
amount of resource in addition to the degree of inflexibility.
In other words a plan that requires high confidence and
little jitter is more expensive as there is more potential
conflict with other plans.

2.4. Estimating Resource Consumption of Actions

The behavior pattern given to the scheduler lists some
of the resources that are needed for executing instances of
the pattern. Others, in particular CPU and memory, are
needed by almost all actions so those can be inferred
automatically. Yet more can be detected in the sampling
phase. The planner also needs to estimate overall time. The
simplest planner only needs to consider overall time. This is
the case with the planner presented in the implementation
section of this paper. A multi-resource scheduler that also
deals with real-time C# has been demoed by the author at
the Microsoft Faculty Summit and will be presented in a
separate paper.

The heart of the planner is a stochastic filter. It stores
previous samples in a table. It calculates the distribution of
the samples. It integrates the distribution up to the
application supplied confidence interval (see figure 4). The
integral gives the amount of resource (time) required to
assure the work will be complete within the interval with
the given probability (the confidence). The size if the

integral depends on 1) the median 2) the deviation
(volatility) of the measurement, and 3) the quality of the
measurement itself. In order to stabilize the estimate, a
negative feedback loop is added. This works by mixing the
old median and deviation into the new estimate when new
samples replace the old.

confideng
interval

®

samples [n]

time neegea S

FIGURE 4: The confidence is the probability that a task
completes in the time reserved. The reservation needed
is the inverse integral of the distribution up to the
required confidence.

The planner uses the samples to calculate a distribution
function. It reserves enough resources to achieve the
required quality (confidence). The higher the required
quality the more resources are needed. Similarly, the more
jitter there is in the measurements the more resources will
be reserved. Uncertainty about the distribution itself also
adds to the resource requirements. Initially, when there are
no measurements, the planner uses application supplied
guesses. A dry-run can also be used to prime the
distribution function.

The implementation uses pre-calculated values of the
integral of the normal distribution and fixed point integer
arithmetic to avoid expensive calculations. The integral is
roughly log10 of the confidence, e.g. when going from 99%
probability to 99.99% probability the amount of time
needed increases by twice the median.

If the planning is done in a centralized way, or as a
service in its own right on a powerful machine, the
calculations could be done by e.g. Matlab or some
modeling tool but a microcontroller needs to keep the
calculation to a minimum, while pre-calculated values can
be a significant saving.

One of the benefits of the stochastic approach is that it
works even when information is incomplete. When the
quality of information increases the planner is able to make
more tight plans but even in the presence of significant
uncertainty (like non-real-time nodes) it can still make a
plan with confidence.

2.5. Quality Control Sampling

The sampler measures the time and resources consumed
at each invocation on the worker nodes with the help of the
operating system. The middleware sends samples back to

the planner according to a predetermined sampling
schedule. By adhering to the schedule, the sampler avoids
overwhelming the network and the nodes themselves with
excessive sampling messages and keeps the overhead at an
acceptable level while still facilitating a sufficient quality
control and accurate predictions.

The planner integrates the new samples into the
distribution function. When it detects a significant enough
change, it renegotiates the action plans with the worker
nodes and either releases resources for other use or requests
more as appropriate.

2.6. Scheduling of Action Plans

Once the planner has instantiated the location and
timing of the behavior pattern, it negotiates with each
required worker node for acquiring a reservation for
executing the plan. It sends a task description [Figure 3] to
the worker node using SOAP. The scheduler on each node
performs an admission check and checks for conflicts. If
there are no conflicts, the task is accepted. Otherwise the
task is rejected and the instigator application is notified of
failure. If any of the worker nodes reject its plan, the
planner cancels the task on all the worker nodes. At this
point the application can take corrective action and attempt
to reschedule at another time. If instead the plan is accepted
on all nodes, control is returned to the instigator application
for making the initial method call that results in the first
message being sent that in turn puts the plan into action.

Note that the middleware can piggyback the initial
method message with the initial reservation request. If the
reservation fails, the method message is ignored. The
implementation employs this piggybacking to save one
roundtrip. The success of the method message implies the
acceptance of the task.

Each node keeps a list of all accepted tasks. When a
new task is proposed or an old one is adjusted, the local
scheduler runs an admission check to determine whether
there are conflicts. This is essentially a binpack problem
with many known solutions [Knuth, MP-scheduling, nurses]
but is also NP-complete, meaning that a precise answer is
not feasible. Thus a best effort algorithm that sometimes
produces false positives is used.

The conflict detector first attempts to determine
conflicts against any repetitive actions and then attempts to
fill in one-time tasks into the gaps. The algorithm uses a
calculated slack that is initially set to the jitter tolerance
given by the application. It then compares the new task
against one other task at a time. When a potential overlap is
detected (the period and time estimate interfere at any point
in time) the calculated slack between the two tasks is
adjusted by reducing some slack from each of the actions so
that the sum of the adjustment equals the overlap. If at any
point the calculated slack becomes negative, the new task is

rejected and the calculated slack of the existing nodes is
returned to what it was before the insertion.
In essence the admission check is a tree merge of two

scheduling trees, if the merge fails the admission is rejected.

The tree merge is location independent as long as there is a
single authority. Thus in a centralized scheduling system
the authoritative scheduler will simply deliver the current
tree to the worker node.

The worker node uses the scheduling action tree to drive
the timing of actual execution. A low-level scheduler
handles context switching, priority inheritance and similar
short-term issues.

One big advantage of having pre-declared long-term
scheduling plans is that the scheduler can know when
execution is not expected. The scheduler can use this
information to shut off the power during those times. In
addition the scheduler can attempt to make those idle gaps
as large as possible by packing the schedule in such a way
that expected execution is clustered together. Thus, when
the system is powered up it can do as much as possible and
then stay powered down for extended periods of time.

In the presence of multiple instigators, the admission
control and negotiation mechanisms are exactly the same.
The admission checker handles one request at a time.

2.7. Continuations and Messages

When a program executes in a thread, method calls are
made on the thread's stack. A method call is represented by
a continuation, which consists of a stack frame—the
closure of the call arguments, the object that is being called,
the method that is being called, and where to return once
the call completes. In the middleware, continuations are
first class objects and can exist without the thread,
including its full stack. A continuation thus represents
either a client side method call that is waiting for the call to
complete or the server side call that is to be executed. By
separating the continuation into a separate object, a
continuation needs an associated thread and stack only
while the continuation actually executes. This enables
significant memory savings on continuations that are not
currently executing.

The table driven serializer and deserializer operate on
continuations. The (de)serializer uses a compact metadata
representation to interpret continuation fields. They
translate between the continuation and a message of a given
format. In the case of SOAP, a message is represented in
XML using rules specific to SOAP. There is no code
specific to a given interface, except an automatically
generated proxy object on the client, which provides
transparent methods that simply call the generic interpreter
with the method's descriptor and stack frame pointer as
arguments. This runtime generated specific code is three to
four words depending on the processor instruction set.

The metadata descriptor table is a compressed binary
representation of the schemas of known interfaces and the
messages that are part of the given interface. The descriptor
can be generated at runtime from XML but is normally
compiled offline so that it can be placed in ROM. The
metadata can be extended at runtime (sometimes called
reflection) but the metadata loaded at runtime must be
placed in RAM, which is a usually a scarcer resource.

On the client side the thread that made a method call
waits for its continuation to complete. On the server side,
however, there does not need to be a thread a priori. Instead
the system creates and recycles threads automatically when
the continuation is ready to execute. The stack frame
contained in the continuation can simply be copied into a
thread stack and registers and it is ready to go. When the
method call returns, the service thread returns to the
middleware and does the necessary post-processing,
including sending reply messages.

A method call on the server can be thought of as a filter
that takes in one message and produces another. An
asynchronous method call is simply one that does not
produce a reply message. The middleware implementation
recognizes this from the metadata and simply will not send
a reply when not desired. On the client side asynchronous
messages are similarly not waited for.

Continuations that represent asynchronous messages
can be executed multiple times. The middleware simply
copies the stack frame multiple times to multiple threads
for execution.

2.8. Interaction between Method Messages and
Planned Actions

Each method message carries with it a SOAP header
that names the object the message is directed towards and
an action identifier that allows the message to be matched
with a particular action. This rendezvous mechanism ties
the actions and messages back together after they were
temporally separated.

The action id contains the name of the task, the name of
the specific action, and optionally a sequence number. The
sequence number identifies which specific instance of a
repetitive action the message is targeted to. Missed
sequence numbers can be dealt with in an application
specific way.

<wsa:to>http://10.10.10.10/COB/sensor.cob</>
<wsa:relatedTo>SensorDemo/SensorConsumer/22</>

A missing sequence number is interpreted as the next one
that was expected.

<wsa:relatedTo>SensorDemo/SensorConsumer</>

The sequence number can also be a wildcard. In this
case the message is targeted to all instances of the repetitive
action. The method is called over and over again with the
same parameters for as many times and at the time the
action specifies. The limitation is that wild carded method
calls must be asynchronous as otherwise the client would
receive multiple replies in an unexpected way. This
limitation is enforced and a SOAP Fault message will be
sent like in other failure cases.

<wsa:relatedTo>SensorDemo/SensorProducer/*</>

The repetitive single message captures the spontaneous
method concept [4] into the same abstraction as event
driven service methods. A repetitive action together with an
asynchronous method message creates a spontaneous, time
driven method.

3. Implementation

The middleware system presented in this paper consists
is constructed of a number of software components written
in C. Each component has a well defined interface that
defines how it interacts with other components. All of the
components can be compiled to a large number of
microprocessors, microcontrollers, and VLIW signal
processors. Some components, such as AES encryption,
have also been implemented on FPGAs.

While the system can be run on bare metal, with the
help of RTOS components, the middleware can also be run
on other operating systems, such as WindowsXP. The
measurements presented in the measurement section have
been done on an Atmel Arm7 microcontroller. The RTOS
components have been previously presented in [1]. The
RTOS provides precise low-level scheduling as well as
avoidance of priority inversion and starvation gaps that are
needed for precise real-time operations. When the middle-
ware is run on other systems, the timing can, however, be
expected to be less precise.

The RTOS components include a TCP/IP network stack,
a constraint based RT-scheduler, a component manager, a
dynamic memory manager, synchronization (threads,
conditions, mutexes), and device drivers.

The service middleware components include a tokenizer,
an XML parser, SOAP serializer, discovery, addressing,
key exchange and trust manager, an action scheduler and
continuation manager, a stochastic planner, sampling, and
encryption.

Sample applications include games, sensor and actuator
services, various services that interoperate with ASP+
pages, etc.

Let's drill into some of the service middleware components
in further detail:

3.1. Tokenizer and Parser

When a network driver receives data, it puts the data
into a memory buffer. The buffer is handed to the network
stack, which once it has determined the data is a valid
packet on a supported transport; it hands off the buffer to
the middleware. This happens through a new socket API
that sets rules on how buffers are shared and reference
counted. The middleware then deals with HTTP headers if
that is the transport, or goes directly to the presentation
level XML processor if the transport is UDP or other
protocol that was completely handled by the network
stack—after optionally decrypting the message.

The XML is processed in a push model directly from
the network buffer as data is arriving and does not create
any intermediate parse trees so as to minimize memory
consumption. The parser delivers SAX style parsing events
to the deserializer.

In the case of outgoing messages the same interfaces are
used but the middleware object implementation produces
messages rather than consuming them. The reuse of
interfaces allows easily plugging in different transports,
encodings, and encryption modules as desired. Zero-copy is
used in all cases.

3.2. Serializer and Deserializer

The deserializer consumes parsing events and matches
the incoming data with a metadata descriptor table that is a
compact representation of all the interfaces, messages, and
fields that the service understands. The metadata is
generated from an XML system description. The same
description also generates a reference manual, C and C++
headers, stub implementations of the service, etc.

The incoming messages are converted into
continuations with native stack frames and data
representation. A temporary heap is associated with each
continuation for storing the argument data. When the
continuation is eventually deleted, all the data gets deleted
at once.

The parser understands a wide variety of data types,
lists, trees of structures, in-out arguments, and language
representations of multiple compilers. The outgoing
messages are again processed in reverse and the same
metadata is used,

3.3. Action Scheduler and Continuation Manager

When a message contains a SOAP header with an action
plan, the middleware scheduler compares the new task with
existing tasks. It uses the estimates, deadline, tolerance, and
repetition with a slack reduction algorithm to make the
determination. While the middleware implements a trust
manager that can determine whether the requestor is trusted
at all, the current implementation does not yet implement

an economic model for determined how much resources
should be dedicated to a particular instigator. Instead the
first one to reserve an acceptable plan will get the resources.

Once an action plan has been entered, it will hold the
resources it needs reserved until 1) the plan is modified or
cancelled, 2) the work is completed, or 3) the action is not
started in time (its method message arrives late or does not
arrive).

When a method message arrives, it contains the action
ID ion a SOAP header. It is a simple lookup to find the
correct action from the schedule. A continuation is created
and associated with the action. Once the trigger driven state
machine makes the action runnable (it might be already),
the middleware creates a thread to execute the continuation.
It creates the thread in a suspended state and copies the
stack frame from the continuation and sets the link register
to point to an activation completion routine. It then uses the
scheduling information in the action to set a time constraint
for the new thread and makes it run. This way the pre-
existing constraint scheduler (presented in [2]) handles the
low-level scheduling work.

Once the method call completes on the activation thread,
it returns to the middleware and uses the serializer to send a
reply message to the appropriate place. The receiver of the
reply message treats it like a service call so the same code
is used. The only difference on a client is that a pre-existing
continuation with a pre-existing thread is used. The reply
message carries the continuation ID in its SOAP header.

After the reply message is sent, any triggers are
triggered and resource consumption is determined. An
action’s trigger list is walked and the state machine of any
named action is advanced and associated continuations
executed—triggers are only allowed within a single task
within a single node. Meanwhile the low-level scheduler
keeps track of resource use and that information is
propagated to the sampler module that will, according to
the sampling schedule, send the resource and timing
information to the instigator planner for quality control and
adaptation use.

The network stack uses its own time reservations that
are excluded from application use. It is worth noting that
there are no starvation gaps between the network stack and
the final transmission of the reply message. Deadline driven
execution is done at all points and the service thread
atomically receives the time constraint from the action plan.
The low-level scheduler handles priority inheritance so
multiple threads do not starve each other.

3.4. Sampling and Statistics

The instigator receives quality control sampling from
the worker nodes. The instigator planner keeps track of all
the action plans (tasks) that it has instigated. The sampling
messages contain the action ID and the resource and timing
information. For each task, the planner maintains a

stochastic distribution function. It integrates the new
samples into the distribution but uses a negative feedback
loop to maintain stability. The samples are maintained as a
simple array of a fixed number of samples. A median is
calculated and for each sample a standard deviation s
calculated. The negative feedback is achieved by inserting a
number of old <median, variance> pairs into the array.

The statistical module assumes the distribution is a
normal distribution. This simplifying assumption might be
incorrect in some applications and more sophisticated
match could be used. However, measurements indicate
even the simple distribution yields good predictions.

The confidence interval is calculated by integrating the
distribution up to the desired application specified
probability. Since the distribution is a normal distribution,
the integral is independent of the samples and is pre-
calculated offline into another array. This precalculated
integral is scaled to the observed distribution using the
median and deviation.

3.5. Planner

The planner is a middleware component used at the
instigator to drive and monitor a particular task. The
planner maintains a list of known behavior patterns, which
can be extended. The planner also keeps track of all tasks
(instances of the pattern) that it has orchestrated. It creates
the tasks upon application request by instantiating all the
unknowns in a pattern. A discovery process is used to
resolve node references into transport addresses. The
statistics module is used to cache temporal information. On
the very first run the temporal information can be provided
by the application or come from a modeling tool.
Alternatively the planner will use a guess, an overly large
estimate that later is adapted and shrunk to reality. When
the initial uncertainty is expected to cause problems, the
application service could implement a ‘dry-run’, where all
the work is done without actually affecting anything.

The planner periodically scans the task list to make sure
that sampling messages have been received correctly—
otherwise the application is alerted that the service is
misbehaving. The planner also periodically checks whether
any tasks’ plans need to be adjusted or reservations
renewed.

The planner negotiates with worker nodes to reserve the
resources needed by a plan. If any necessary resources are
not available, the application is notified so it can take
evasive action.

4. Performance
We measured the performance of a demo implementing

the scenario in figure 1 on Atmel eb63 boards [12]. They
have a 25SMHz ARM?7 [13] microcontroller. The demo is

fully functional and an early version was shown at the
Microsoft Faculty Summit in July 2004.

We observe that the entire system can run on a
microcontroller with 256KB of ROM and 32KB of RAM.
The specific numbers are listed in figure 5. The working of
the stochastic planner was estimated through sampling. A
simple test method does 20000 multiplications. Starting
with no information the planner uses the application guess.

BASE 25356 CRT BASE
DRIVERS | 13108

NET 77624

XML 8980

SOAP 38336

RTSOAP | 14284

APP 43688

CRT 13484 XML

TOTAL | 234860

Figure 5, Code size of the components used — in bytes.

Once the planner gets real samples it uses them with
smoothing between each step. The calculation times include
formatting and sending the reply message. Figure 6 has the
numbers. The estimate is produced by the live planner,
while the mean and deviation have been calculated offline
for reference from the raw measurements.

Step Estimate| Measured Stapdgrd Confidence
95% conf| mean |deviation| 95% 99%
1 339 337 1.7% 1.0 1.4
2 341 337 1.6% 1.0 | 1.4
3 346 337 1.8% 1.0 | 1.4

Figure 6, Time measurement and prediction of a CPU
intensive task — times in milliseconds, 32 samples per
iteration on embedded microcontroller board. The
confidence number indicates the extra time allocated
for jitter. Fixed point integer arithmetic rounds the
number up slightly.

Since the low-level scheduler did not produce much
jitter, the test was also executed on a PC running
WindowsXP with the middleware stack on top. Running
without an underlying real-time scheduler introduces more
uncertainty but the planner still deals with it correctly and
produces a larger confidence allocation to cope with the
increased jitter. As the CPU 1is faster a million
multiplications is done each time. From a steady state the
number of calculations is dropped to half. Figure 7 shows
how the planner adapts to the drop.

5. Related Work

Industrial quality control has been necessary since the
beginning of the industrial revolution and the statistical
methods are a well-established field of mathematics [7].
This paper extends that tradition into the relatively young
area of real-time scheduling.

XML [11] Web services and SOAP [9][10] were
originally developed to solve the e-business interoperability
problem. Embedded Web Services were presented in [2].
This paper extends them to real-time.

DRIVERS Time-triggered spontaneous messages and conventional

service methods are separated into two separate method
types in [4]. While this distinction is a step forward in well-
defined abstractions, the trigger mechanism and wildcard
rendezvous capture both and merge them into a single
higher-level abstraction.

Step Estimate |Measured Stapdr_:lrd Confidence
99% conf| mean [deviation| 95% 99%
1 126 123 6.4% 1.9 | 2.5
2 124 120 14% 4.2 | 5.5
3 69 55 2.1% 2.8 | 3.7
4 58 55 2.9% 3.9 | 5.2

Figure 7, Time measurement on PC in milliseconds.
After the steady state at step 2, the workload is cut in
half and the estimate adapts to the new load.

The planned actions in this paper are an extension of
constraint based schedulers [4]. The constraints themselves
are an extension of Earliest Deadline First (EDF). CBS
allows some prediction on what jobs might be executable
since tasks can declare an estimate on how long their work
will take. The main limitations in CBS are that tasks can
only be declared once the actual work is done and there are
no provisions for repetitive work. Instead planned actions
can be linked and repeated through triggers and do not have
to be ready to execute.

There have been many attempts on dealing with
concurrent repetitive tasks. The common type of solution is
to reserve "x% of CPU in y second interval". This is fine
for simple behavior but cannot effectively deal with 1) mix
of repetitive and one-time jobs and 2) cases where the work
needs to be done within a constrained sub-interval. The
robot scenario in the introduction is one example. For this
reason the planned actions do not attempt to over-compress
the scheduling information but instead lets the behavior to
be described in terms that are as precise as is natural to the
application. The scheduler packs the actions in a reasonable
manner (given that a perfect packing is NP-complete).
Optimizing schedules has been explored in e.g. [6].

6. Conclusion

This paper introduced real-time SOAP and a statistical
planned action paradigm as well as several new
mechanisms that made the implementation possible and
applications easier to write.

The authors conclude based on the implementation that
it made sense to extend industrial quality control paradigms
to real-time scheduling. Sampling driven statistical
scheduling correctly predicts future resource needs in the
sample applications. Using XML Web Services (SOAP) in
microcontroller systems is viable and makes interoperation
issues more manageable.

References

[1] Johannes Helander, Alessandro Forin, “MMLite: A Highly
Componentized System Architecture,” in the 8" ACM
SIGOPS European Workshop, September 1998.

[2] Alessandro Forin, Johannes Helander, Paul Pham,
Jagadeeswaran Rajendiran, “Component Based Invisible
Computing,” in the 3" IEEE/IEE Real-Time Embedded
Systems Workshop, London, December 2001.

[3] Johannes Helander, Yong Xiong, “Secure Web Services for
Low-Cost Devices”, in 8th IEEE International Symposium on
Object-oriented Real-time distributed Computing
May 18-20, 2005, Seattle, Washington.

[4] K. H. (Kane) Kim, “Basic Programming Structures for
Avoiding Priority Inversions”, in Proceedings of ISORCO3,
Vienna, Austria 2003

[5]1 Michael B. Jones, Daniela Rogu, Marcel-Catalin Rocu, “CPU
Reservations and Time Constraints: Efficient Predictable
Scheduling of Independent Activities”, in Symposium of
Operating System Principles, St-Malo, France, 1997.

[6] K. L. Krause, V. Y. Chen, H.D. Schwetman, “A task-
scheduling algorithm for a multiprogramming computer
system”, in ACM symposium of Operating system principles,
New York, USA, 1973.

[7] Erwin Kreyzig, “Advanced Engineering Mathematics”, 1988,
VI edition, pp.1273-1278.

[8] “Web Services Architecture—W3C® Working Draft 8
August 2003,” http://www.w3.org/TR/ws-arch/

[9] “Simple Object Access Protocol (SOAP) 1.1—W3C® Note
08 May 2000,” http://www.w3.0org/TR/SOAP/

“SOAP Version 1.2 Part 1: Messaging Framework—W3C®
Recommendation 24 June 2003,”

(10]

http://www.w3.org/TR/soap12-partl/

[11] “Extensible Markup Language (XML),”
http://www.w3.org/ XML/

[12] “AT91EB63 Evaluation Board User Guide,”
http://www.atmel.com/dyn/resources/prod_documents/DOCI1
359.PDF

[13] “AT91M63200 Summary, AT91 ARM Thumb MCU,”

http://www.atmel.com/dyn/resources/prod_documents/1028S
.PDF

The source code for most of the software described in this
paper is available at http://research.microsoft.com/invisible

