Position Specific Posterior Lattices for Indexing Speech

Ciprian Chelba and Alex Acero
Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

{chelba, alexac

Abstract

The paper presents the Position Specific
Posterior Lattice, a novel representation
of automatic speech recognition lattices
that naturally lends itself to efficient in-
dexing of position information and subse-
guent relevance ranking of spoken docu-
ments using proximity.

In experiments performed on a collec-
tion of lecture recordings — MIT iCam-
pus data — the spoken document rank-
ing accuracy was improved by 20% rela-
tive over the commonly used baseline of
indexing the 1-best output from an auto-
matic speech recognizer. The Mean Aver-
age Precision (MAP) increased from 0.53
when using 1-best output to 0.62 when us-
ing the new lattice representation. The ref-
erence used for evaluation is the output of
a standard retrieval engine working on the
manual transcription of the speech collec-
tion.

Albeit lossy, the PSPL lattice is also much
more compact than the ASR 3-gram lat-
tice from which it is computed — which
translates in reduced inverted index size
as well — at virtually no degradation in
word-error-rate performance. Since new
paths are introduced in the lattice, the OR-
ACLE accuracy increases over the origi-
nal ASR lattice.

}@microsoft.com

1 Introduction

Ever increasing computing power and connectivity
bandwidth together with falling storage costs re-
sult in an overwhelming amount of data of vari-
ous types being produced, exchanged, and stored.
Consequently, search has emerged as a key applica-
tion as more and more data is being saved (Church,
2003). Text search in particular is the most active
area, with applications that range from web and in-
tranet search to searching for private information re-
siding on one’s hard-drive.

Speech search has not received much attention
due to the fact that large collections of untranscribed
spoken material have not been available, mostly
due to storage constraints. As storage is becoming
cheaper, the availability and usefulness of large col-
lections of spoken documents is limited strictly by
the lack of adequate technology to exploit them.

Manually transcribing speech is expensive and
sometimes outright impossible due to privacy con-
cerns. This leads us to exploring an automatic ap-
proach to searching and navigating spoken docu-
ment collections.

Our current work aims at extending the standard
keyword search paradigm from text documents to
spoken documents. In order to deal with limitations
of current automatic speech recognition (ASR) tech-
nology we propose an approach that uses recogni-
tion lattices — which are considerably more accu-
rate than the ASR 1-best output.

A novel contribution is the use of a representation
of ASR lattices which retains only position informa-
tion for each word. The Position Specific Posterior



Lattice (PSPL) is a lossy but compact representapproximate manual transcriptions — closed cap-
tion of a speech recognition lattice that lends itselfioning for video — used for SDR system compatr-
to the standard inverted indexing done in text seardBon with text-only retrieval performance had fairly
— which retains the position as well as other conhigh WER: 14.5% video and 7.5% radio broadcasts.
textual information for each hit. ASR systems tuned to the Broadcast News domain
Since our aim is to bridge the gap between textere evaluated on detailed manual transcriptions
and speech -grade search technology, we take as @nd were able to achieve 15-20% WER, not far from
reference the output of a text retrieval engine thdhe accuracy of the approximate manual transcrip-
runs on the manual transcription. tions. In order to evaluate the accuracy of retrieval
The rest of the paper is structured as follows: igystems, search queries —“topics” — along with bi-
the next section we review previous work in thenary relevance judgments were compiled by human
area, followed by Section 3 which presents a brieRSSESSOIS.
overview of state-of-the-art text search technology. SDR systems indexed the ASR 1-best output and
We then introduce the PSPL representation in Setheir retrieval performance — measured in terms of
tion 4 and explain its use for indexing and searchiny]AP — was found to be flat with respect to ASR
speech in the next section. Experiments evaluatif ER variations in the range of 15%-30%. Simply
ASR accuracy on iCampus, highlighting empiricahaving a common task and an evaluation-driven col-
aspects of PSPL lattices as well as search accurd@porative research effort represents a huge gain for
results are reported in Section 6. We conclude biie community. There are shortcomings however to

outlining future work. the SDR-TREC framework.
It is well known that ASR systems are very brit-
2 Previous Work tle to mismatched training/test conditions and it is

unrealistic to expect error rates in the range 10-15%

The main research effort aiming at spoken docuyhen decoding speech mismatched with respect to
ment retrieval (SDR) was centered around the SDRhe training data. It is thus very important to con-
TREC evaluations (Garofolo et al., 2000), althougRider ASR operating points which have higher WER.
there is a large body of work in this area prior to Also, the out-of-vocabulary (OOV) rate was very
the SDR-TREC evaluations, as well as more recepw, below 1%. Since the “topics’/queries were
work outside this community. Most notable are théong and stated in plain English rather than using
contributions of (Brown et al., 1996) and (Jamesthe keyword search paradigm, the query-side OOV
1995). (Q-O0V) was very low as well, an unrealistic situ-

One problem encountered in work published prioation in practice. (Woodland et al., 2000) evaluates
or outside the SDR-TREC community is that itthe effect of Q-OOV rate on retrieval performance
doesn’'t always evaluate performance from a dody reducing the ASR vocabulary size such that the
ument retrieval point of view — using a metric Q-OOV rate comes closer to 15%, a much more re-
like Mean Average Precision (MAP) or similar, seealistic figure since search keywords are typically rare
trec_eval  (NIST, www) — but rather uses word- words. They show severe degradation in MAP per-
spotting measures, which are more technologfermance — 50% relative, from 44 to 22.
rather than user- centridVe believe that ultimately  The most common approach to dealing with OOV
itis the document retrieval performance that matterguery words is to represent both the query and the
and the word-spotting accuracy is just an indicatorspoken document using sub-word units — typically
for how a SDR system might be improved. phones or phone n-grams — and then match se-

The TREC-SDR 8/9 evaluations — (Garofolo etquences of such units. In his thesis, (Ng, 2000)
al., 2000) Section 6 — focused on using Broadcashows the feasibility of sub-word SDR and advo-
News speech from various sources: CNN, ABCcates for tighter integration between ASR and IR
PRI, Voice of America. About 550 hrs of speechtechnology. Similar conclusions are drawn by the
were segmented manually into 21,574 stories ea@xcellent work in (Siegler, 1999).
comprising about 250 words on the average. The As pointed out in (Logan et al., 2002), word level



indexing and querying is still more accurate, weraccount at all, e.g. whether the words LANGUAGE
it not for the OOV problem. The authors argue irand MODELING occur next to each other or not in
favor of a combination of word and sub-word levela document is not used for relevance scoring.
indexing. Another problem pointed out by the pa- Another issue is that query terms may be encoun-
per is the abundance of word-spotting false-positivagred in differentcontextsin a given document: ti-
in the sub-word retrieval case, somewhat masked lile, abstract, author name, font size, etc. For hy-
the MAP measure. pertext document collections even more context in-
Similar approaches are taken by (Seide and Ydprmation is available: anchor text, as well as other
2004). One interesting feature of this work is a twomark-up tags designating various parts of a given
pass system whereby an approximate match is catecument being just a few examples. The TF-IDF
ried out at the document level after which the costlyanking scheme completely discards such informa-
detailed phonetic match is carried out on only 15%on although it is clearly important in practice.
of the documents in the collection.
More recently, (Saraclar and Sproat, 2004) shows1 Early Google Approach
improvement in word-spotting accuracy by usingAside from the use of PageRank for relevance rank-
lattices instead of 1-best. An inverted index froning, (Brin and Page, 1998) also uses bptbxim-
symbols — word or phone — to links allows toity andcontextinformation heavily when assigning
evaluate adjacency of query words but more gera relevance score to a given document — see Sec
eral proximity information is harder to obtain — seetion 4.5.1 of (Brin and Page, 1998) for details.
Section 4. Although no formal comparison has been For each given query term one retrieves the list
carried out, we believe our approach should yield af hits corresponding tay; in documentD. Hits
more compact index. can be of various types depending on toatextin
Before discussing our architectural design deciwhich the hit occurred: title, anchor text, etc. Each
sions it is probably useful to give a brief presentatiotype of hit has its owrtype-weightand the type-
of a state-of-the-art text document retrieval engingeights are indexed by type.

that is using the keyword search paradigm. For a single word query, their ranking algorithm
. takes the inner-product between the type-weight
3 Text Document Retrieval vector and a vector consisting of count-weights (ta-

Probably the most widespread text retrieval model igered counts such that the effect of large counts is
the TF-IDF vector model (Baeza-Yates and Ribeirodiscounted) and combines the resulting score with
Neto, 1999). For a given que = q1...¢; . .. 4o PageRank in a final relevance score.

and document; one calculates a similarity mea- For multiple word queries, terms co-occurring in a

sure by accumulating the TF-IDF scarg; for each given document are considered as forming different

query termy;, possibly weighted by a document speProximity-typesased on their proximity, from adja-
cific weight: cent to “not even close”. Each proximity type comes

with a proximity-weight and the relevance score in-

S(D.. Q) = e N cludes the contribution of proximity information by
(i, Q) = ; Wi taking the inner product over all types, including the
Wi fij - idf; proximity ones.

wheref; ; is the normalized frequency of worgin ~ 3-2 Inverted Index

documentD; and the inverse document frequencyOf essence to fast retrieval on static document col-
for query termg; is idf; = log nﬂ where N is the lections of medium to large size is the use ofian
total number of documents in the collection and verted index The inverted index stores a list of hits
is the number of documents containigpg for each word in a given vocabulary. The hits are
The main criticism to the TF-IDF relevance scoregrouped by document. For each document, the list
is the fact that the query terms are assumed to laé hits for a given query term must include position

independentProximity informatioris not taken into — needed to evaluate counts of proximity types —



as well as all the context information needed to cal-
culate the relevance score of a given document us-
ing the scheme outlined previously. For details, the
reader is referred to (Brin and Page, 1998), Sec-
tion 4.

4 Position Specific Posterior Lattices

As highlighted in the previous section, position in- Figure 1: State Transitions

formation is crucial for being able to evaluate prox-

imity information when assigning a relevance scor'0re than one path contains the same word in the
to a given document. same position, one would need to sum over all pos-

In the spoken document case however, we adble paths in a lattice that contain a given word at a
faced with a dilemma. On one hand, using 1-be&Ven position.
ASR output as the transcription to be indexed is sub- A Simple dynamic programming algorithm which
optimal due to the high WER, which is likely to leadiS @ variation on the standard forward-backward al-
to low recall — query terms that were in fact Spogorithm can be employed for performing this com-
ken are wrongly recognized and thus not retrievedutation. The computation for the backward pass
On the other hand, ASR lattices do have much be#fays unchanged, whereas during the forward pass
ter WER — in our case the 1-best WER was 5599Nn€e needs to split the forward probability arriving
whereas the lattice WER was 30% — but the posft & given nodes, «,, according to the length—
tion information is not readily available: it is easy tomeasured in number of links along the partial path
evaluate whether two words are adjacent but quellat contain a word; null€j links are not counted
tions about the distance in number of links betweeWhen calculating path length — of the partial paths
the occurrences of two query words in the lattice arat start at the start node of the lattice and end at

very hard to answer. noden:
The position information needed for recording a )
given word hit is not readily available in ASR lat- apll] = Z P(m)

tices — for details on the format of typical ASR miend(m)=n,length(m)=l

lattices and the information stored in such Iattice§he backward probabilitys
the reader is referred to (Young et al., 2002). T?ﬂtion (Rabiner, 1989) "
simplify the discussion let's consider that a tradi- ’ '

tional text-d ¢ hit for gi q ists of To formalize the calculation of the position-
vona’ text-doctment it Tor given word consists Ospecific forward-backward pass, the initialization,
just (document id, position)

and one elementary forward step in the forward pass

The occurrence of a given word in a lattice 0bz, o ¢ rjeq out using Eq. (1), respectively — see Fig-

tained f_rom a givgr_l spoken _document is uncertglure 1 for notation:

and so is the position at which the word occurs in

the document. q
The ASR lattices do contain the information ~ @nll+1] = > as[l+0d(li,€)]- P(L)

needed to evaluate proximity information, since on a =1

given path through the lattice we can easily assigna  ay,,4[l] { 10,t=0

position index to each link/word in the normal way. 0.0,0#0

Each path occurs with a given posterior probability,

. : , . The “probability” P(i;) of a given linkl; is stored
easily computable from the lattice, so in prlnC|pIeaS alos-probability and commonly evaluated in
one could indexsoft-hitswhich specify &P y y

ASR using:

has the standard defi-

(1)

(document id, position,
posterior probability) log P(l;) = FLATw - [1/LMw - log Pans(;)+
for each word in the lattice. Since it is likely that log Prar(word(l;)) — 1/LMw - logPrp]  (2)



where log Paas(l;) is the acoustic model score,our index will store the PSPL position and posterior
log Pryr(word(l;)) is the language model score,probability.

LMw > 0is the language model weightg P;p >
0 is the “insertion penalty” and’LATw is a flat-
tening weight. InN-gram lattices whereév > 2,
all links ending at a given node must contain the Consider a given querY = ¢;...¢;...qg and
same wordwvord(n), so the posterior probability of @ spoken documen® represented as a PSPL. Our
a given wordw occurring at a given positiohcan ranking scheme follows the description in Sec-

5.2 Speech Content Relevance Ranking Using
PSPL Representation

be easily calculated using: tion 3.1.
The words in the documerid clearly belong to
P(w,l|LAT) = the ASR vocabularyy whereas the words in the
2o s.t. anll]-Bn>0 O‘g[f% -6 (w, word(n)) qguery may be out-of-vocabulary (OQV). As argued

in Section 2, the query-OOQV rate is an important
The Position Specific Posterior Lattice (PSPL) is @actor in evaluating the impact of having a finite
representation of th&(w,!|LAT) distribution: for ASR vocabulary on the retrieval accuracy. We as-
each position birstore the words along with their - sume that the words in the query are all contained
posterior probability” (w, [|LAT). in V; OOV words are mapped tdNKand cannot be
. matched in any documeih?.
5 Spoken Document Indexing and Search For all query terms, a-gram score is calculated

Using PSPL by summing the PSPL posterior probability across

Spoken documents rarely contain only speech. Ofll segmentss and positions:. This is equivalent
ten they have a title, author and creation date. Thef@ calculating the expected count of a given query
might also be a text abstract associated with th€rm ¢; according to the PSPL probability distribu-
speech, video or even slides in some standard fdion P(w(s)|D) for each segment of document
mat. The idea of savingontext informatiorwhen L. The results are aggregated in a common value
indexing HTML documents and web pages can thu§1—gram (D, Q):
be readily used for indexing spoken documents, al-
though the context information is of a different na-S(D,¢;) = log |1+ ZZp(wk(s) = ¢|D)
ture. s %

As for the actuabpeech contertdf a spoken doc-
ument, the previous section showed how ASR tech- S1—gram(D, Q) =>_ S(D, q) 3)

nology and PSPL lattices can be used to automati- =1

cally convert it to a format that allows the indexingSimilar to (Brin and Page, 1998), the logarithmic ta-
of soft hits— a soft indexstores posterior proba- pering off is used for discounting the effect of large
bility along with the position information for term counts in a given document.
occurrences in a given document. Our current ranking scheme takes into account
5.1 Speech Content Indexing Using PSPL !oroximity in the f.or.m of matchingV-grams present

in the query. Similar to the 1-gram case, we cal-
Speech content can be very long. In our case thgjlate an expected tapered-count for each N-gram
speech content of a typical spoken documentwas ap- gi+N—1 in the query and then aggregate the re-

proximately 1 hr long; it is customary to segment &y|ts in a common valugy_ gram (D, Q) for each
given speech file in shorter segments. orderN:

A spoken document thus consists of an ordered
list of segments. For each segment we generateS4D,¢i - - - GitN-1) = 4)
corresponding PSPL lattice. Each document and oo [1 FYL Hz]iﬁl Plwgi(s) = qu\D)}
each segment in a given collection are mapped to an
integer value using eollection descriptor filavhich
lists all documents and segments. Eacifit hitin

Q-N+1
SN-gram(D,Q) = Y S(D,qi...qirn-1)
i=1



The different proximity types, one for eadki- one-sentence long segments determined this way —
gram order allowed by the query length, are comsee Section 5.1. The final collection consists of 169
bined by taking the inner product with a vector ofdocuments, 66,102 segments and an average docu-
weights. ment length of 391 segments.

We have then used a standard large vocabulary

Q . .
ASR system for generating 3-gram ASR lattices and
D = - SN—gram/(D, 5 )
5D, Q) sz:l wN - SN —gram(D; Q) (5) PSPL lattices. The 3-gram language model used for

decoding is trained on a large amount of text data,
Only documents containing all the terms in theyrimarily newswire text. The vocabulary of the ASR
query are returned. In the current implementatiogystem consisted of 110kwds, selected based on fre-
the weights increase linearly with the N-gram ordefguency in the training data. The acoustic model
Clearly, better weight assignments must exist, and trained on a variety of wide-band speech and it
as the hit types are enriched beyond using Nist s a standard clustered tri-phone, 3-states-per-phone
grams, the weights will have to be determined usinghodel. Neither model has been tuned in any way to
machine learning techniques. the iCampus scenario.

It is worth noting that the transcription for any  On the first lectureL01 of the Introduction to
given segment can also be represented as a PSEbmputer Programming Lectures the WER of the
with exactly one word per position bin. It is easy tooSR system was 44.7%; the OOV rate was 3.3%.
see that in this case the relevance scores calculaiegy the entire set of lectures in the Introduction
according to Eq. (3-4) are the ones specified by 3.k Computer Programming Lectures, the WER was
54.8%, with a maximum value of 74% and a mini-
mum value of 44%.

We have carried all our experiments on the iCampu :

corpus prepared by MIT (F;SAIL. The main advaril-g'2 PSPL lattices

tages of the corpus are: realistic speech recordi®ye have then proceeded to generate 3-gram lattices
conditions — all lectures are recorded using a lap@nd PSPL lattices using the above ASR system. Ta-
microphone — and the availability of accurate manble 1 compares the accuracy/size of the 3-gram lat-
ual transcriptions — which enables the evaluation dfces and the resulting PSPL lattices for the first lec-

6 Experiments

a SDR system against its text counterpart. ture LO1. As it can be seen the PSPL represen-
6.1 iCampus Corpus Lattice Type 3-gram| PSPL
The iCampus corpus (Glass et al., 2004) consists Size on disk 11.3MB | 3.2MB
of about 169 hours of lecture materials: 20 Intro- Link density 16.3| 14.6
duction to Computer Programming Lectures (21.7 Node density 7.4 1.1
hours), 35 Linear Algebra Lectures (27.7 hours), 35 1-best WER 44-72/0 452/0
Electro-magnetic Physics Lectures (29.1 hours), 79 ORACLE WER| 26.4%] 21.7%

Assorted MIT World seminars covering a wide vari-r_ - 1 Comparison between 3-gram and PSPL lat-

ety of topics (89.9 hours). Each lecture comes Wit'ﬂces for lecture LO1 (iCampus corpus): node and

a word-level manual transcription that segments thﬁenk density, 1-best and ORACLE WER, size on disk
text into semantic units that could be thought of as ’ ’

sentences; word-level time-alignments between thation is much more compact than the original 3-
transcription and the speech are also provided. Thggam lattices at a very small loss in accuracy: the
speech style is in between planned and spontaneotshest path through the PSPL lattice is only 0.3%
The speech is recorded at a sampling rate of 16kH#bsolute worse than the one through the original 3-
(wide-band) using a lapel microphone. gram lattice. As expected, the main reduction comes
The speech was segmented at the sentence lefreim the drastically smaller node density — 7 times
based on the time alignments; each lecture is consigmaller, measured in nodes per word in the refer-
ered to be a spoken document consisting of a set efice transcription. Since the PSPL representation



introduces new paths compared to the original 3.3.2 Retrieval Experiments

gram lattice, the ORACLE WER path — least error- e have carried out retrieval experiments in the

ful path in the lattice — is also about 20% relativeahove setup. Indexes have been built from:
better than in the original 3-gram lattice — 5% ab-

solute. Also to be noted is the much better WER in
both PSPL/3-gram lattices versus 1-best.

e trans : manual transcription filtered through
ASR vocabulary
e 1-best : ASR 1-best output

6.3 Spoken Document Retrieval o lat : PSPL lattices.

. No tuning of retrieval weights, see Eq. (5), or link
Our aim is to narrow the gap between speech and__ . g gnts, a. (5),
. scoring weights, see Eq. (2) has been perfornied

text document retrieval. We have thus taken as our )
. - Dle 2 presents the results. As a sanity check, the re-

reference the output of a standard retrieval engine

) : fieval results on transcription trans — match
working according to one of the TF-IDF flavors, see .
.almost perfectly the reference. The small difference

Section 3. The engine indexes the manual transc”@bmes from stemming rules that the baseline engine

tion using an unlimited vocabulary. All retrieval re-. . . .
is using for query enhancement which are not repli-

sults presented in this section have used the stan-, . .

cated in our retrieval engine. The results on lat-
dardtrec_eval package used by the TREC eval-,. . LS
uations tices (at ) improve significantly onX-best ) —

) ) 20% relative improvement in mean average preci-
The PSPL lattices for each segment in the spg,n, (MAP).

ken document collection were indexed as explained
in 5.1. In addition, we generated the PSPL repre- [trans [ 1-best | lat |
sentation of the manual transcript and of the 1-best 4 jocs retrieved 1411 3206 4971
ASR output and indexed those as well. This allows | 4 rglevant docs| 1416 1416 | 1416
us to compare our retrieval results against the results 4 (o] retrieved 1411 1088 | 1301
obtained using the reference engine when working

th text d t collecti MAP 0.99 0.53] 0.62
on the same text document collection. RoprecEIon Sog 253) 282
6.3.1 Query Collection and Retrieval Setup Table 2: Retrieval performance on indexes built

The missing ingredient for performing retrievalfrom transcript, ASR 1-best and PSPL lattices, re-

experiments are the queries. We have asked a faeCtively
colleagues to issue queries against a demo shell Lg-g 3 Why Would This Work?

ing the index built from the manual transcription. " _ _ L
The only informatioh provided to them was the A legitimate qugstlon at this point isvhy would
same as the summary description in Section 6.1. 21YOn€ expect this to work when the 1-best ASR ac-

o curacy is so poor?
u\évre h:&’ﬁ;?\')gg;ii |:!’-:1 1r6 ?;g'?s '_T)tgl\i)mviggeé' 2T°?e In favor of our approach, the ASR lattice WER is
query y Q ““"much lower than the 1-best WER, and PSPL have
and the average query length was 1.97 words. Since .
. . éven lower WER than the ASR lattices. As re-
our approach so far does not index sub-word units,

. orted in Table 1, the PSPL WER f&01 was
we cannot deal with OOV query words. We hav .
: : . 2% whereas the 1-best WER was 45%. Consider
thus removed the queries which contained OO

words — resulting in a set of 96 queries — whic matching a 2-gram in the PSPL —the average query

. ) ength is indeed 2 wds so this is a representative sit-
clearly biases the evaluation. On the other hand, the g . . P . X
uation. A simple calculation reveals that it is twice

results on both the 1-best and the lattice indexes are (1—0.22)2/(1 — 0.45)2 = 2 — more likely to
equally favored by this. find a query match in the PSPL than in the 1-best —
if the query 2-gram was indeed spoken at that posi-

!Arguably, more motivated users that are also more famil.. A ding to this h isti t Id
iar with the document collection would provide a better quer}'on' ccording to this heuristic argument one cou

collection framework expect a dramatic increase in Recall. Another aspect



is that people entdypical N-gramsas queries. The  ACM Multimedia 96 pages 307-316, Boston, Novem-
contents of adjacent PSPL bins are fairly random in ber.

nature so if a typical 2-gram is found in the PSPLKenneth Ward Church. 2003. Speech and language pro-
chances are it was actually spoken. This translatescessing: Where have we been and where are we going?

|n ||tt|e degrada'“on |n Prec|s|0n In Proceedings of Eurospeecﬁeneva, Switzerland.
. J. Garofolo, G. Auzanne, and E. Voorhees. 2000. The
7 Conclusions and Future work TREC spoken document retrieval track: A success

. story. InProceedings of the Recherche d’Informations
We have developed a new representation for ASR sqiste par Ordinateur: ContentBased Multimedia In-

lattices — the Position Specific Posterior Lattice formation Access Confereno&pril.

(PSPL) — that Iends- ltself n.aturally fo indexing &ames Glass, T. J. Hazen, Lee Hetherington, and Chao

spee(?h content and Integrating §tate-of-the-art IR Wang. 2004. Analysis and processing of lecture audio

techniques that make use pfoximity and context  data: Preliminary investigations. HLT-NAACL 2004

information. In addition, the PSPL representation is Workshop: Interdisciplinary Approaches to Speech

also much more compact at no loss in WER — both ndexing and Retrievalpages 9-12, Boston, Mas-

sachusetts, May.

1-best and ORACLE. . o .

The retrieval results obtained by indexing thédavid Anthony James. 1993 he Application of Classi-

: . cal Information Retrieval Techniques to Spoken Docu-
PSPL and performing adequate relevance ranking ments Ph.D. thesis Universityc?fCambrigge Down-

are 20% better than when using the ASR 1-best out- jng College.

put, although still far from the performance achieved

on text data B. Logan, P. Moreno, and O. Deshmukh. 2002. Word
; . . and sub-word indexing approaches for reducing the ef-

The experiments presented in this paper are truly fects of OOV queries on spoken audio.Rroc. HLT.

a first step. We plan to gather a much larger num-
ber of queries. The binary relevance jud ments—létenney Ng. 2000Subword-Based Approaches for Spo-

) g T y - judg i ken Document RetrievaPh.D. thesis, Massachusetts
given document is deemed either relevant or irrele- |nstitute of Technology.

vant to a given query in the reference “ranking” —

NIST. www. The TREC evaluation package. Www-
assumed by the standarec_eval  tool are also nlpir.nist.gov/projects/trecvid/trecvid.tools/trawval

a serious shortcoming; a distance measure between

rankingsof documents needs to be used. Finally, ug= R- Rabiner. 1989. A tutorial on hidden markov mod-
els and selected applications in speech recognition. In

ing a baseline engine that in fact makes use of prox- proceedings IEEEvolume 77(2), pages 257—285.
imity and context information is a priority if such

information is to be used in our algorithms. Murat Saraclar and Richard Sproat. 2004. Lattice-based

search for spoken utterance retrieval. HhnT-NAACL

2004 pages 129-136, Boston, Massachusetts, May.
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