
View Matching for Outer-Join Views

Per-Åke Larson Jingren Zhou
{palarson, jrzhou}@microsoft.com

August 2005

Technical Report
MSR-TR-2005-78

Prior work on computing queries from materialized views has focused on views defined by expressions
consisting of selection, projection, and inner joins, with an optional aggregation on top (SPJG views).
This paper provides the first view matching algorithm for views that may also contain outer joins
(SPOJG views). The algorithm relies on a normal form for SPOJ expressions and is not based on
bottom-up syntactic matching of expressions. It handles any combination of inner and outer joins,
deals correctly with SQL bag semantics and exploits not-null constraints, uniqueness constraints and
foreign key constraints.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com



1 Introduction

Appropriately selected materialized views can speed
up query processing greatly but only if the query opti-
mizer can determine whether a query or part of query
can be computed from existing materialized views.
This is the view matching problem. Most work on view
matching has focused on views defined by expressions
consisting of selection, projection, and inner joins, pos-
sibly with a single group-by on top (SPJG views). In
this paper we introduce the first view matching algo-
rithm for views where some of the joins may be outer
joins (SPOJG views).

The simplest approach to view matching is syntac-
tic; essentially bottom-up matching of the operator
trees of query and view expressions. However, algo-
rithms of this type are easily fooled by expressions that
are logically equivalent but syntactically different. A
more robust approach is based on logical equivalence
of expressions, which requires converting the expres-
sions into a common normal form. SPJ expressions
can be converted to a normal form consisting of a
Cartesian product of all operand tables, followed by
a selection and projection. More recently, Galindo-
Legaria [5] showed that SPOJ expressions also have
a normal form, called join-disjunctive normal form,
which is the basis for our algorithm.

Example 1. Suppose we create the view shown below
against tables in the TPC-R database.

create view oj view as

select o orderkey, o custkey, l linenumber,

l quantity, l extendedprice, p partkey,

p name, p brand, p retailprice

from part left outer join

(orders left outer join lineitem

on (l orderkey=o orderkey))

on (p partkey=l partkey)

The following query asks for total quantity sold for
each part with partkey < 100, including parts with no
sales. Can this query be computed from the view?

select p partkey, p name, sum(l quantity)

from (select * from parts where p partkey < 100) p

left outer join lineitem

on (l partkey=p partkey)

group by p partkey, p name

The two expressions look very different but the
query can in fact be computed from the view. The join
between Orders and Lineitem will retain all Lineitem
tuples because the join matches a foreign key declared
between l orderkey and o orderkey. If the Orders ta-
ble contains some orders without matching Lineitem
tuples, they would occur in the result null-extended on

all Lineitem columns. The outer join with Part will
retain all real {Lineitem,Order} tuples because this
join is also a foreign-key join but it will eliminate all
tuples that are null-extended on Lineitem columns.
Part tuples that did not join with anything will also
be retained in the result because the join is an outer
join. Hence, the view will contain one complete tu-
ple for each Lineitem tuple and also some Part tuples
null-extended on columns from Lineitem and Orders.
Hence, the view contains all required tuples and that
the query can be computed from the view as follows.

select p partkey, p name, sum(l quantity)

from oj view

where p partkey < 100

group by p partkey, p name

Now consider the following query. Can this query
be computed from the view?

select o orderkey, l linenumber, l quantity

from orders left outer join lineitem

on (l orderkey=o orderkey)

The answer is no. The constraints defined on the
TPC-R database allow Orders tuples without match-
ing Lineitem tuples. If such an orphaned Orders tuple
occurs in the database, it will be retained in the query
result because the join is an outer join. It will also
be retained in the result of the first join of the view
because it is null-extended on all Lineitem columns,
but it will be eliminated by the predicate of the second
join of the view. Hence, the orphaned Orders tuple
will not occur in the result of the view and the query
cannot be computed from the view.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the notation used in the rest of the
paper. In Section 3, we describe the join-disjunctive
form of outer-join expressions and give an algorithm
for computing the normal form. Section 4 shows how
to determine containment of SPOJ expressions. We
describe when and how the required tuples can be ex-
tracted from a SPOJ view in Section 5. Section 6 ties
it all together by showing how to determine whether a
SPOJ expression can be computed from a SPOJ view
and how to construct the substitute expression. Ag-
gregation views are discussed in Section 8. Initial ex-
perimental results are presented in Section 9. Finally,
we survey related work in Section 10 and conclude in
Section 11.

2 Definitions and Notations

The selection operator will be denoted in the normal
way as σp where p is a predicate. Projection (without

1



duplicate elimination) will be denoted by πc where c
is a list of columns. We use the notation πnull

c to de-
note projection with null substitution. This operator
outputs the columns in c unchanged but substitutes
null for all other columns of its input. Borrowing from
SQL, we also use the shorthand T.∗ where T is a sin-
gle table or a set of tables. T.∗ denotes all columns of
table(s) T that are available in the input.

The group-by (aggregation) operator is denoted by
γA

G where G is a set of grouping expressions, normally
just columns, and A is a set of aggregation expressions.
The operator outputs all expressions in G and A. We
also need an operator that removes duplicates (similar
to SQL’s select distinct), which we denote by δ.

A predicate p referencing some set S of columns is
said to be strong or null-rejecting if it evaluates to
false or unknown as soon as one of the columns in S
is null. We will also use a special predicate null(T )
that evaluates to true if a tuple is null-extended on
table T . null(T ) and ∼null(T )can be implemented in
SQL as “T.c is null” and “T.c is not null”, respectively,
where c is any non-nullable column of T . The notation
null(T ), where T = {T1, T2, . . . , Tn}, is a shorthand
for null(T1)∧. . .∧null(Tn) and null(T ) is a shorthand
for ∼null(T1) ∧ . . . ∧ ∼null(Tn).

A schema S is a set of attributes (column names).
Let T1 and T2 be tables with schemas S1 and S2,
respectively. The outer union, denoted by T1 ] T2,
first null-extends (pads with nulls) the tuples of each
operand to schema S1 ∪ S2 and then takes the union
of the results (without duplicate elimination). Outer
union has lower precedence than join.

A tuple t1 is said to subsume a tuple t2 if they are
defined on the same schema, t1 agrees with t2 on all
columns where they both are non-null, and t1 contains
fewer null values than t2. The operator removal of sub-
sumed tuples of T , denoted by T↓, returns the tuples
of T that are not subsumed by any other tuple in T .

The minimum union(⊕) of tables T1 and T2 is de-
fined as T1⊕T2 = (T1]T2)↓. Minimum union has lower
precedence than join. It can be shown that minimum
union is both commutative and associative.

Let T1 and T2 be tables with disjoint schemas S1 and
S2, respectively, and p a predicate referencing some
subset of the columns in (S1 ∪ S2). The (inner) join
of the tables is defined as T1 onp T2 = {(t1, t2)|t1 ∈
T1, t2 ∈ T2, p (t1, t2)}. The left outer join can then
be defined as T1 op T2 = (T1 onp T2) ⊕ T1. The right
outer join is T1 np T2 = T2 op T1. The full outer join
is T1 ×p T2 = (T1 onp T2)⊕ T1 ⊕ T2.

We assume that base tables contain no subsumed
tuples. This is usually the case in practice because
base tables typically contain a unique key. We also as-
sume that predicates are null-rejecting on all columns
that they reference.

3 Join-Disjunctive Normal
Form

To reason about equivalence and containment of SPOJ
expressions we convert them into the join-disjunctive
normal form introduced by Galindo-Legaria [5]. We
extend Galindo-Legaria’s definition of join-disjunctive
normal form by allowing selection operators and incor-
porating the effects of primary keys and foreign keys.
In addition, we provide an algorithm to compute the
normal form.

We introduce the idea of join-disjunctive normal
form by an example. Throughout this paper we will
use the following database, modeled on the tables
Customer, Orders, Lineitem of the TPC-R database.

C(ck, cn, cnk),

O(ok, ock, od, otp),

L(lok, ln, lpk, lq, lp)

Nulls are not allowed for any of the columns. Un-
derlined columns form the primary key of each table.
Two foreign key constraints are defined: O.ock refer-
ences C.ck and L.lok references O.ok.

Example 2. Suppose we have the following query

Q = C ock=ock (O ook=lok (σlp>50KL)).

The result will contain tuples of three types.

1. COL tuples, that is, tuples formed by concatenat-
ing a tuple from C, a tuple from O and a tuple
from L. There will be one COL tuple for every L
tuple that satisfies the predicate lp > 50K.

2. CO tuples, that is, tuples composed by concate-
nation a tuple from C, a tuple from O and nulls
for all columns of L. There will be one such tuple
for every O tuple that does not join with any L
tuple satisfying lp > 50K.

3. C tuples, that is, tuples composed of a tuple from
C with nulls for all columns of O and L. There
will be one such tuple for every C tuple that does
not join with any tuple in O.

The result contains all tuples of C onck=ock O onok=lok

(σlp>50KL), all tuples of C onck=ock O, and also all tu-
ples in C. Each of the three sub-results is represented
in the result in a minimal way. For example, if a tuple
(c1, null, null) appears in the result, then there exists
a tuple c1 in C but there is no tuple o1 in O such that
(c1, o1) appears in C onck=ock O.

We can rewrite the expression as the minimum union
of three join terms comprised solely of inner joins,
which is the join-disjunctive form of the original SPOJ
expression.

Q = (C onck=ock O onok=lok (σlp>50KL))⊕
(C onck=ock O)⊕ (C)

2



3.1 Transformation Rules

The following transformation rules are used for con-
verting SPOJ expression to join-disjunctive form.

T1 op T2 = T1 onp T2 ⊕ T1;
if T1 = T1↓ and T2 = T2↓ (1)

T1 ×p T2 = T1 onp T2 ⊕ T1 ⊕ T2;
if T1 = T1↓ and T2 = T2↓ (2)

(T1 ⊕ T2) onp T3 = T1 onp T3⊕ T2 onp T3;
if T3 = T3↓ (3)

σp(1)(T1 onp T2 ⊕ T2) = (σp(1)T1) onp T2;
if p(1) is strong and references only T1 (4)

σp(1)(T1 onp T2 ⊕ T1) = (σp(1)T1) onp T2 ⊕ (σp(1)T1);
if p(1) references only T1 (5)

The proofs of the correctness of the first three trans-
formation rules can be found in [5]. The fourth rule
follows from the observation that all tuples originat-
ing from the term T2 in (T1 onp T2 ⊕ T2) will be null-
extended on all columns of T1. All those tuples will be
discarded if p(1) is strong on T1. The last rule follows
from the obvious rule σp(1)(T1op T2) = (σp(1)T1)op T2

by expanding the two outer joins.

Example 3. This example illustrates conversion of a
SPOJ expression using the above rules. p(i, j) denotes
a predicate that references columns in tables Ti and
Tj .

(σp(1)(T1 np(1,2) T2))×p(2,3) T3

= (σp(1)(T1 onp(1,2) T2 ⊕ T2))×p(2,3) T3 by rule (1)
= ((σp(1)T1) onp(1,2) T2))×p(2,3) T3 by rule (4)
= (T1 onp(1)∧p(1,2) T2)×p(2,3) T3

by including selection predicate in join
= (T1 onp(1)∧p(1,2) T2 onp(2,3) T3)⊕

(T1 onp(1)∧p(1,2) T2)⊕ T3 by rule (2)

3.2 Join-Disjunctive Normal Form

In this section, we show that a SPOJ expression can
always be converted to join-disjunctive form and that
two SPOJ expressions are equivalent if they have the
same join-disjunctive form. The main theorem is due
to Galindo-Legaria [5] but our proofs are different and
slightly more general.

Lemma 1. Let Q1 and Q2 be SPOJ expressions in
join-disjunctive form. Then the expressions σp(Q1),
Q1 onp Q2, Q1opQ2, and Q1×pQ2 can all be rewritten
in join-disjunctive form.

Proof. We assume that expression Q1 operates on ta-
bles in the set T1. We write Q1 in the form σp11(T11)⊕

σp12(T12)⊕ . . .⊕σp1n(T1n) where T11, T12, . . . , T1n are
subsets of T1. The notation σp1i(T1i) means a selec-
tion with predicate p1i over the Cartesian product of
the tables in T1i, that is, the normal form of a SPJ
expression. Q2 is expressed in the same way but over
the base set T2 and containing m terms.

For the case σp(Q1), first reorder the SPJ terms of
Q1 into two groups. Reordering is allowed because
minimum union is commutative. The first group con-
tains all terms that are null-extended on at least one
table referenced by predicate p and the second group
contains all remaining terms. By rule (4), all terms
in the first group will be completely eliminated by the
selection. By rule (5), the selection can be applied sep-
arately to each term in the second group. Hence, the
result is in join-disjunctive form.

For the case Q1 onp Q2, repeated application of
rule (3) converts the expression into

σp11(T11) onp σp21(T21)⊕ σp12(T12) onp σp21(T21)⊕
. . .⊕ σp1n(T1n) onp σp2m(T2m)

In essence, we are multiplying the two input ex-
pressions producing an output expression containing
nm terms. This expression can be converted into
σp11∧p21∧p(T11 ∪ T21) ⊕ σp12∧p21∧p(T12 ∪ T21) ⊕ . . . ⊕
σp1n∧p2m∧p(T1n ∪ T2m), which is in join-disjunctive
form. The result may actually contain fewer than nm
terms. Suppose predicate p references tables in a sub-
set S of the tables in T1∪T2. Because p is strong on S,
each term that is null-extended on one or more tables
in S, i.e. S 6⊂ (T1i ∪ T2j), will return an empty result
when applying predicate p.

The outerjoin cases, Q1 op Q2 and Q1 ×p Q2, fol-
low immediately from the join case by first applying
rule (1) or (2), respectively.

Lemma 2. Let σp1(T1) and σp2(T2) be two terms in
the join-disjunctive form of a SPOJ expression. If
T1 ⊂ T2, then p2 ⇒ p1.

Proof. Because the two terms are part of the same
SPOJ expression, the term σp2(T2) must have been
created by joining in the additional tables T2−T1 to the
term σp1(T1) through some sequence of joins, includ-
ing possibly also some selects. Suppose the predicates
of these joins and selections are q1, q2, . . . , qn. Conse-
quently, p2 must be of the form p2 = p1 ∧ q1 ∧ . . .∧ qn.
Any tuple that satisfies p1 ∧ q1 ∧ . . . ∧ qn must also
satisfy p1.

Theorem 1 (Galindo-Legaria). The join-
disjunctive form of a SPOJ expression Q is a
normal form for Q.

3



Proof. To prove the theorem we must show that two
SPOJ expressions Q1 and Q2 produce the same re-
sult for all database instances if and only if their join-
disjunctive forms are equivalent. We denote their join-
disjunctive forms by Q′1 and Q′2, respectively.

Each term in the join-disjunctive form of an expres-
sion produces tuples with a unique null-extension pat-
tern. Suppose the complete set of operand tables for
the expression is T . A term in the join-disjunctive
form is defined over a subset S of T and hence pro-
duces tuples that are null extended on T − S. No
two terms operate on the same set of tables so the
sub-results produced by different terms have unique
null-extension patterns. It follows that to prove equiv-
alency of two join-disjunctive forms we only need to
prove pair-wise equivalency of terms that are defined
over the same set of tables.

Suppose Q′1 = Q′
2. Clearly, Q′1 and Q′2 produce

the same result for all database instances. Because
Q1 = Q′1, Q1 produces the same result as Q′1 for all
database instances and similarly for the pair Q2 and
Q′2. It follows that Q1 and Q2 produce the same result
for all database instances, that is, Q1 = Q2.

Now suppose Q′1 6= Q′
2. To prove the theorem we

must show that Q1 6= Q2. If Q′1 6= Q′2 then there
must exist a term σp1(S) in one of the expression Q′

1

or Q′2 that is not equivalent to any term in the other
expression. Suppose the other expression contains a
term σp2(S) defined over the same set of tables. If it
does not, we are done because we only need to consider
pair-wise equivalence. If the terms are not equivalent
then p1 6= p2. We construct a database instance D
consisting of one tuple ti ∈ Ti for each table in Ti in T
such that the tuple t = {t1, t2, . . . , tn} satisfies p1 but
not p2 (or vice versa). This is always possible given
that the predicates are not equivalent.

Evaluating Q1 on this database instance will pro-
duce one tuple t′. t′ will be produced either by the
term σp1(S) or a term defined on a superset of S. In
other words, t′ will be null-extended on, at most, the
tables in T − S. However, evaluating Q2 on the same
instance cannot produce the same result. It follows
from Lemma 2 that, because t does not satisfy predi-
cate p2, t cannot satisfy the predicate of any term in
Q′2 that is defined on S or a superset of S. Hence, the
result of Q2 cannot contain a tuple with the same null-
extension pattern as t′. The result will either be empty
or contain a tuple t′′ with a different null-extension
pattern. Consequently, Q1 6= Q2.

These lemmas and the theorem imply that deciding
equivalence of two SPOJ expressions can be reduced
to the well-understood problem of deciding equivalence
of SPJ terms with matching source tables in the join-
disjunctive forms of the expressions. If there are con-

straints on the database, two SPOJ expressions may
still be equivalent even if their normal forms differ,
because they may not produce different results on any
valid database instances. The same is true for the nor-
mal form of SPJ expressions.

3.3 Computing the Normal Form

Theorem 1 guarantees that every SPOJ expression has
a unique normal form but we also need an algorithm
for it. Lemma 1 and its proof provide the basis for an
algorithm. It shows how to construct an output ex-
pression in normal form from inputs in normal form.
Hence, we can compute the normal form of an expres-
sion by traversing its operator tree bottom-up.

The algorithm exploits transformation rule (4) to
discard terms that are eliminated by null-rejecting
predicates. Additional terms can be eliminated by
exploiting foreign keys. A term σp1(T1) can be elim-
inated from the normal form if there exists another
term σp2(T2) such that T1 ⊂ T2 and σp1(T1) ⊆
πT1.∗σp2(T2). This may happen if the additional tables
(T2 − T1) in σp2(T2) are joined in through foreign key
joins. This is an important simplification because, in
practice, most joins correspond to foreign keys. Since
terms are SPJ expressions, establishing whether the
subset relationship holds is precisely the containment
problem for SPJ expression. The containment testing
algorithm in [8] can be used for this purpose.

We now have all the pieces needed to design an al-
gorithm for computing the normal form of a SPOJ
expression. Algorithm 1, recursively applies rules (1)
- (3) bottom-up to expand joins and simplifies the re-
sulting expressions by applying rules (4) and (5) and
the containment rule described above. It returns a set
of terms (TermSet) corresponding to the normal form
of the input expression. Each term is represented by
a structure consisting of a set of tables (Tables) and a
predicate (Pred).

The parameter Flag determines whether or not to
discard terms that are completely subsumed. For rea-
sons that will become clear later, we normally wish to
discard subsumed terms when normalizing a query ex-
pression but not when normalizing a view expression.

Example 4. We compute the normal form of the view
(with Flag = false)

V = C oock=ck (O ×ok=lok (σlp<20L)))

The algorithm recursively descends the operator
tree. When applied to the innermost join, it produces

V = C oock=ck (σlp<20∧ok=lok(O, L)⊕ σlp<20L⊕O)

4



Algorithm 1: Normalize(E, Flag)
Input: Expression E, Boolean F lag
Output: TermSet
/* A term represents a SPJ expression and consists */
/* of a set of tables and a predicate. */
Node = top node of E;
switch type of Node.Operator do
case base table R:
TermSet BT = {{R}, true};
return BT ;

/* Select has an input expression IE and a predicate SP */
case select operator (IE, SP ):
TermSet IT = Normalize(IE);
foreach Term t in IT do
if SP rejects nulls on a table not in t.Tables then
IT = IT − {t}; /*apply rule (4) */

else
t.Pred = t.Pred ∧ SP ; /*apply rule (5) */

end
return IT ;

/* Join has two input expressions (LE, RE), */
/* a predicate (JP ) and a join type */
case join operator (LE, RE, JP, JoinType):
TermSet LT = Normalize(LE);
TermSet RT = Normalize(RE);
TermSet JT = ∅; /*terms after join */
TermSet EL = ∅; /*terms eliminated by subsumption */
/* Multiply the two input sets (rule (3)) */
foreach Term l ∈ LT do
foreach Term r ∈ RT do
Term t = {(l.Tables ∪ r.Tables), l.P red ∧ r.Pred ∧ JP};
/* Apply rule (3) to eliminate terms */
if !(JP rejects nulls on a table not in t.Tables) then
JT = JT ∪ {t};
/* Check whether all tuples in input term are sub- */
/* sumed by the result term by testing containment */
/* of SPJ expressions, see algorithm in [8]. */
if Flag ∧ σl.Pred(l.Tables) ⊆ σt.Pred(t.Tables) then
EL = EL ∪ {l};

end
if Flag ∧ σr.Pred(r.Tables) ⊆ σt.Pred(t.Tables) then
EL = EL ∪ {r};

end
end

end
end
/* Add inputs from preserved side(s) (rules (1) and (2)) */
switch JoinType do
case full outer:
JT = JT ∪ LT ∪RT ; break;

case left outer:
JT = JT ∪ LT ; break;

case right outer:
JT = JT ∪RT ; break;

end
/* Discard terms eliminated by subsumption */
JT = JT − EL;
return JT

end

Next, the algorithm is applied to the left outer join
and produces the normal form.

V = σlp<20∧ok=lok∧ock=ck(C,O, L)⊕ σck=ock(C,O)⊕ C

The term σlp<20∧ock=ck(C, L) was eliminated because
the predicate ock = ck is null-rejecting on O and O is

not a member of (C,L).

3.4 The Subsumption Graph

The minimum union operators in the normal form are
required because a term may produce redundant tu-
ples, that is, tuples that are subsumed by tuples pro-
duced by other terms. However, the subsumption pat-
terns are not arbitrary as shown in this section.

Each term in the join-disjunctive form of a SPOJ ex-
pression produces tuples with a unique null-extension
pattern. Suppose the complete set of operand tables
for the expression is U . A term in the join-disjunctive
form is defined over a subset T of U and hence pro-
duces tuples that are null extended on U − T .

A tuple produced by a term with source table set
T can only be subsumed by tuples produced by terms
whose source table set is a superset of T . The sub-
sumption relationships among terms can be modeled
by a DAG (directed acyclic graph), which we call the
subsumption graph of the SPOJ expression. It follows
immediately from the definition that the graph has a
single root (maximal node) with source set U .

Definition 3.1. Let E = E1 ⊕ · · · ⊕ En be the join-
disjunctive form of an SPOJ expression. The sub-
sumption graph of E contains a node ni for each term
Ei in the normal form and the node is labeled with the
source table set Ti of Ei. There is an edge from node
ni to node nj, if Ti is a minimal superset of Tj. Ti is
a minimal superset of Tj if there does not exist a node
nk in the graph such that Tj ⊂ Tk ⊂ Ti.

{C, O, L}

{C, O}

{C}

Figure 1: Subsumption graph for view V

Figure 1 shows an example of a subsumption graph.
The graph for view V is extremely simple but that is
not always the case.

Because of the one-to-one correspondence between
terms and nodes in the subsumption graph, we take
the liberty of referring to parents, ancestors and chil-
dren of a term instead of the more precise but cumber-
some phrase “the terms corresponding to the parent
nodes of the node corresponding to the current term”.

The following lemma shows that if a tuple of term is
subsumed by any tuple, it is also subsumed by a tuple
in one of its parent terms.

5



Lemma 3. Let t be a tuple produced by a term Ei in
the join-disjunctive form of an SPOJ expression. If t
is subsumed, then t is subsumed by some tuple produced
by a parent term of Ei.

Proof. Denote the source table set of Ei by Si, its
selection predicate by qi, and its set of output columns
by ci. We need only consider ancestors of Ei because
those are exactly the terms with source table sets that
are supersets of Si.

Suppose t is subsumed by a tuple ta. ta must be
from some ancestor Ea of Ei, that is, Si ⊂ Sa. If Ea is
a parent of Ei, we are done. If Ea is not a parent of Ei,
it is reachable through one or more of the parents of Ei,
Ep1 , Ep2 , · · ·, Epk

. Without loss of generality, assume
that Ea is reachable through Ep1 . The source tables
set of Ep1 satisfies the relationship Si ⊂ Sp1 ⊂ Sa. By
Lemma 2, the predicates of the terms then satisfy the
relationship qa ⇒ qp1 ⇒ qi. ta is produced by term
Ea so it satisfies predicate qa. But ta also satisfies
predicate qp1 because qa ⇒ qp1 . It follows that the
tuple tp1 = πcp1

(ta) is produced by term Ep1 . tp1 also
subsumes t because ci ⊆ cp1 and πcitp1 = t. Tuple tp1

subsumes t and is produced by a parent node, which
proves the lemma.

4 Containment of SPOJ Expres-
sions

When computing a query from a view, the issue arises
as to what operations one is willing to apply to the
view. In the context of SPJ views, the operations are
normally restricted to selection, projection and dupli-
cate elimination so that each result tuple is computed
from a single view tuple. When restricted to this set
of operations, a query cannot be computed from the
view unless the query is contained in the view.

We retain the same restriction in the context of
SPOJ views, namely, we consider only transformations
where a result tuple is computed from a single view
tuple, but with a slight generalization. We also al-
low null substitution, that is, changing a column value
to null. Given this generalization, we need a way to
decide whether a view contains “enough” tuples.

Definition 4.1. Let T1 and T2 be two tables with the
same schema. T1 is subsumption-contained in T2, de-
noted by T1 ⊂s T2, if for every tuple t1 ∈ T1 there ex-
ists a tuple t2 ∈ T2 such that t1 = t2 or t1 is subsumed
by t2. An expression Q1 is subsumption-contained in
an expression Q2 if the result of Q1 is subsumption-
contained in the result of Q2 for every valid database
instance.

Lemma 4. Let Q1 and Q2 be two SPOJ expressions.

If Q1 6⊂s Q2 then Q1 cannot be computed from the re-
sult of Q2 using a combination of selection, projection,
null substitution, and removal of subsumed tuples for
every database instance.

Proof. The proof is straightforward. If Q1 6⊂s Q2 then,
for some database instance, there exists a tuple t1 in
the result of Q1 that is not subsumed by any tuple in
the result of Q2. It is obvious that no combination
of selection, projection, null substitution, and removal
of subsumed tuples applied to the result of Q2 can
generate t1.

The following theorem reduces the problem of test-
ing containment of SPOJ expressions to the known
problem of testing containment of SPJ expressions.
This can be done using, for example, the containment
testing algorithm in [8].

Theorem 2. Let Q1 and Q2 be two SPOJ expressions
on a database with no constraints and Q′1 and Q′

2 their
join-disjunctive forms, resfpectively. Then Q1 ⊂s Q2

if and only if the following condition holds: for ev-
ery term σp1(S) in Q′

1, there exists a matching term
σp2(S) in Q′2 such that σp1(S) ⊂ σp2(S).

Proof. To prove sufficiency, assume that the condition
holds. If σp1(S) ⊂ σp2(S) holds for a pair of terms,
then trivially σp1(S) ⊂s σp2(S) also holds. Because
this holds for every term of Q1, it immediately follows
that Q1 ⊂s Q2.

To prove necessity, assume that the condition does
not hold, that is, there exists a term σp1(S) in Q′1 with
the property that no term in Q′

2 satisfies the required
conditions. There are two cases to consider: a) Q′

2

does not contain a term with base S and b) Q′2 does
contain a matching term σp2(S) but σp1(S) 6⊂ σp2(S)

To prove case a) we construct a database instance
containing one tuple for each table in S such that their
concatenation t satisfies predicate p1. All other tables
are empty. As there are no constraints on the database
this is a valid database instance.

The result of Q1 then contains the single tuple t.
However, the result of Q2 is either empty or contains
tuples that are subsumed by but not subsuming t. Any
term in Q′

2 defined over a set containing a table T not
in S must produce an empty result because T is empty.
If a term Q′

2 contains only tables in S, it is defined over
some subset S ′ of S. Hence, it outputs either no tuples
or tuple t null-extended on S − S ′. The output tuple
contains more nulls than t so it cannot subsume t. As
none of the possible output tuples of Q2 subsume t,
Q1 6⊂s Q2 for this database instance.

Case b) can be proven in a similar way. We con-
struct a database instance in the same way but add
the requirement that t not satisfy predicate p2 so that

6



t is not output by term σp2(S). Such a tuple must ex-
ist because σp1(S) 6⊂ σp2(S). The rest of the argument
is the same as for case a).

The theorem assumes that there are no constraints
on the database. If there are constraints, the condi-
tions are still sufficient but they may not be neces-
sary. In particular, foreign-key constraints may make
it possible for a term σp1(S) to be contained by a term
σp2(T ) even when S ⊂ T .

A view term with extra tables must satisfy certain
criteria to be worth considering. The additional tables,
T −S, in the view must all be joined in through equi-
join predicates matching foreign-key constraints and
not have any further restrictions. We can compute
the term as σp2(T ) = σp′2(S) onp′′2 σ(T − S) where
p2 = p′2 ∧ p′′2 . That is, we first join the tables S
matching the query term and then join in the addi-
tional tables of the view term. Because p′′2 contains
only foreign-key joins, every tuple in σp′2(S) is guar-
anteed to join with at least one tuple in σ(T − S).
How to verify that the criteria are satisfied and to test
containment for this case is described in [8].)

The normal form of the view may contain several
terms such that S ⊂ T . If follows from Lemma 2
that we only need to consider a term σp2(T ) if T is
a minimal superset of S, that is, there are no other
terms σp3(T ′) in the view such that S ⊂ T ′ ⊂ T .
Normally, there is at most one such minimal term in
the view but if there are more than one, each minimal
term should be checked for containment. Candidate
minimal terms can easily be found from the view’s
subsumption graph.

5 Recovering All Tuples of a
Term

The result tuples of a term in the normal form of an
SPOJ view are implicitly contained in the result of the
view. A tuple t of a term σp1(S1) may occur explicitly
in the result of the view or it may be subsumed by
another tuple t′ generated by a wider term σp2(S2), i.e.
a term with the property S1 ⊂ S2. In fact, there may
be many tuples in the result that subsume t. Suppose
we have a query term σp3(S1) and we have shown that
all tuples needed by the query term are contained in
the view term σp1(S1). To compute the query from
the view, we first recover the result of σp1(S1) from
the view result. The following example illustrates the
steps necessary.

Example 5. Consider the following view.

V = (σcn<5C)oock=ck (O ook=lok (σlp<20L))
= σcn<5∧lp<20∧ok=lok∧ock=ck(C,O, L)⊕

σcn<5∧ck=ock(C,O)⊕ σcn<5C

Its normal form shows that the view consists of three
types of tuples: COL tuples without null extension,
CO tuples null extended on L, and C tuples null ex-
tended on O and L. Suppose we want to recover the
tuples generated by the term σcn<5∧ck=ock(C, O). All
the desired tuples are composed of a real C tuple and a
real O tuple, i.e. they are not null-extended on C and
O. We first apply the selection σ∼null(C)∧∼null(O)V
to eliminate all tuples that do not satisfy this require-
ment. The selection can be simplified to σ∼null(O)V
because no tuples of V are null-extended on C.

The predicate ∼null(C) can be implemented in
SQL as “C.col is not null” where col is any C
column guaranteed to be non-null in the result of
σcn<5∧ck=ock(C, O). A column is guaranteed to be
non-null if it is either declared with not null or occurs
in a null-rejecting predicate. In our case, we can use
cn or ck because of the predicate (cn < 5∧ ck = ock).

We also have to make sure that we get tuples with
the correct duplication factor. A CO tuple (tc, to) that
satisfies the predicate (cn < 5 ∧ ck = ock) may have
joined with one or more L tuples. Hence, if we sim-
ply project V onto the columns of C and O without
duplicate elimination, the result may contain multiple
duplicates of tuple (tc, to) and the result is not correct
according to SQL bag semantics. Duplicate elimina-
tion will eliminate all such duplicates, but it may also
remove legitimate duplicates. It will work correctly
only if the result of σcn<5∧ck=ock(C, O) has a unique
key. In our case, ok is a unique key for the term so we
can safely apply duplicate elimination. Consequently,
we can recover the result of the term from the view as
follows

σcn<5∧ck=ock(C, O) = δ(πC.∗,O.∗(σck 6=nullV ))

The following two theorems show how to recover
the tuples of a SPJ term from a SPOJ view. Theorem
3 deals with the case when duplicate elimination is
needed and Theorem 4 states under what conditions
duplicate elimination is not necessary

Theorem 3. Let σP (R) be an SPJ term of a view
V . If σP (R) outputs a unique key, then σP (R) =
δ(πR.∗σnull(R)V ).

Proof. The expression πR.∗σnull(R)V selects all tuples
of the right form, that is, tuples not null-extended on
any tables in R, and projects them on the correct set
of tables. Consider a tuple t in σP (R). Because σP (R)

7



outputs a unique key, the result of σP (R) does not con-
tain any duplicates of t. We know that one or more
copies of t must exist in πR.∗σnull(R)V . After dupli-
cate elimination, a single copy of t remains. It follows
that the two expressions are equal.

Next we consider how to recover the tuples of a SPJ
term when a key is not available. In this case, we
cannot apply duplicate elimination.

Example 6. Consider the following view.

V = (σlp<20O)oock=ck (σcn<5C)
= σcn<5∧ock=ck∧lp<20(C, O)⊕ σlp<20O

Suppose that a unique key of O is not available in
the view output. If so, can we still recover the term
σlp<20O from the view? The answer is yes. We can-
not apply duplicate elimination but it is not needed.
Consider a tuple to in the result of σlp<20O. The tuple
may not join with any tuple in σcn<5C, in which case
it will occur once in the view result (null extended on
C). If the tuple joins with a tuple tc, the combined
tuple (to, tc) will occur in the view result. However,
because the join condition ock = ck corresponds to
a foreign key constraint, we know that it cannot join
with more than one C tuple. In other words, every
tuple in σlp<20O will occur exactly once in the view re-
sult. Hence, no duplicate elimination is needed and the
tuples can be recovered by σlp<20O = πO.∗σ∼null(O)V .

The example illustrates a case with a single exten-
sion join. An extension join is an equijoin matching a
foreign key constraint where the foreign key columns
are declared non-null and reference a unique key. An
extension join merely extends each input tuple with a
additional columns. Reference [8] introduced the no-
tion of the hub of a SPJ expression and gave a proce-
dure for computing the hub. The hub of a term σP (R)
is the smallest subset S of R such that every table in
R−S is joined in through a sequence of extension joins.
The following theorem shows how to exploit this idea
to recover additional terms. 1

Theorem 4. Let σP (R) be an SPJ term of a view V .
Then σP (R) = πR.∗σnull(R)V if every term σq(T ) in
the normal form of V such that R ⊂ T , has a hub
equal to the hub of σP (R).

Note that the condition is trivially satisfied for the
maximal term of V (the term with the maximal set of

1The conditions in the theorem are stricter than absolutely
necessary. It suffices that the additional tables, T − S, of the
view term σpi (T ) are joined in through equijoins against unique
keys. In equijoin of tables R and S using a unique key of S, each
tuple of R can join with at most one tuple of S so no additional
duplicates are needed. This is true even if a selection has been
applied to S.

tables) because there are no terms with a larger set of
tables.

Proof. Consider a tuple t in σP (R). The tuple may
be represented in V either explicitly (null extended on
tables not in R) or it may have been subsumed by an-
other tuple originating from a term σq(T ) such that
R ⊂ T . Because the hub of σq(T ) is equal to the hub
of σP (R), the joins bringing in the extra tables T −R
are extension joins and create at most one tuple sub-
suming t. All terms that could generate tuples sub-
suming t have the same hub as σP (R). Consequently,
there is a unique tuple t′ in V that subsumes t or t is
represented explicitly in V . Hence, t will occur exactly
once in the result of πR.∗σnull(R)V and no duplicate
elimination is needed.

So far we have assumed that the view outputs at
least one non-null column for every table in R. We
now relax this assumption and consider what can be
done if the view outputs a non-null column for only
a subset of the tables. The following theorem states
under what conditions we can still correctly extract
the desired tuples.

Theorem 5. Let σP (R) be an SPJ term of a view
V and S a subset of R such that the view outputs at
least one non-null column for each table in S. Then
σnull(R)V = σnull(S)V if, for every term σq(T ) in the
normal form of V such that T ⊂ R, the set (R−T )∩S
is non-empty.

Proof. The purpose of the predicate null(R) is to re-
ject all tuples that are null-extended on any table ofR,
that is, tuples originating from any term σq(T ) where
T ⊂ R. Tuples originating from a term σq(T ) with
T ⊂ R will be null-extended on tables in (R− T ). If
S overlaps with (R − T ) then the reduced predicate
null(S) will reject all tuples originating from σq(T ).
Consequently, if the condition holds for every term
with T ⊂ R, the reduced predicate will reject exactly
the same tuples as the original predicate.

6 Computing a Query from a
View

We now have the main tools needed to decide whether
a SPOJ query can be computed from a SPOJ view.
This section pulls them together into a decision pro-
cedure and describes how to construct the substitute
expression. Here are the high-level steps of the view
matching algorithm; the steps are described in more
detail in separate sections.

Algorithm SPOJ-View-Matching:

8



1. Convert both the query Q and the view V to join-
disjunctive normal form.

2. Check whether Q is subsumption-contained in V .
3. Check whether all terms in Q can be recovered

from V .
4. Determine residual predicates, that is, query

predicates that must be applied to the view.
5. Check whether all columns required by residual

predicates and output expressions are available in
the view output.

6. If the view passes all tests above, construct the
substitute expression.

We will illustrate the algorithm using the following
view and query.

V1 =πlok,ln,lq,lp,ok,od,otp,ck,cn,cnk(σcnk<10(C)
nock=ck (σotp>50(O)×ok=lok σlq<100(L)))

Q1 =πlok,lq,lp,od,otp(σotp>150(O)nok=lok σlq<100(L))

6.1 Converting to Normal Form

Conversion to join-disjunctive normal form is simply a
matter of applying algorithm Normalize described in
Section 3.3. Applying the algorithm to our example
view (with Flag = false) and query (with Flag =
true) produces the following expressions.

V1 = πlok,ln,lq,lp,ok,od,otp,ck,cn,cnk

(σcnk<10∧ck=ock∧otp>50∧ok=lok∧lq<100(C, O, L)⊕
σcnk<10∧ck=ock∧otp>50(C, O)⊕ σotp>50(O)⊕
σotp>50∧ok=lok∧lq<100(O, L)⊕ σlq<100(L))

Q1 = πlok,lq,lp,od,otp(σotp>150∧ok=lok∧lq<100(O,L)⊕
σlq<100(L))

6.2 Checking Containment

To check that the view contains all tuples required by
the query we check containment of each term of the
query (Theorem 2). That is, for every term σp1(S) in
the query, we try to find a term σp2(T ) in the view
such that S ⊆ T and p1 ⇒ p2.

The query term with base (O, L) has the same base
as the fourth term in the view. To ensure containment
the following condition must hold

(otp > 150 ∧ ok = lok ∧ lq < 100) ⇒
(otp > 50 ∧ ok = lok ∧ lq < 100).

The condition can be simplified to (otp > 150) ⇒
(otp > 50), which trivially holds. Hence, the view
contains all tuples required by the first term.

The second term of the query matches the last term
of the view. In this case, the condition equals (lq <
100) ⇒ (lq < 100), which of course holds. Hence, all

tuples required by this term of the query are contained
in the view. We conclude that the view contains all
tuples required by the query.

6.3 Checking Recovery

Checking whether the tuples of a term can be recov-
ered from the view consists of the following steps:

1. Check whether duplicate elimination is required
by comparing hubs (Theorem 4).

2. If duplicate elimination is required, find a unique
key of the term (Theorem 3) and check whether
the view outputs the required columns.

3. Check whether the view outputs sufficient non-
null columns (Theorem 5).

Our example view references tables C, O, and L and
outputs at least one non-null column from each table.
We can use C.ck, O.otp, and L.ok as non-null columns.
C.ck is a primary key and as such must be non-null,
O.otp and L.lq are referenced by null-rejecting predi-
cates.

The first term of the query matches the fourth term
of the view. The hub of the fourth term of the view is
{L} because the join between L and O matches a for-
eign key constraint and the foreign key column L.lok
is declared non-null. The COL term (the first term)
of the view is the only term whose base is a superset of
{O, L}. The hub of the COL term is also {L} because
the join between O and C is also a foreign key join.
Hence, the conditions of Theorem 4 are satisfied and
no duplicate elimination is needed.

The fourth term of the view references tables O and
L, so we have R = {O, L} and S = {O,L}. The
third and the fifth terms of the view have bases that
are subsets of R. The third term has base T = {O}.
Consequently, the set (R−T )∩S = ({O,L}−{O})∩
{O, L} = {L} is non-empty. The fifth term has base
T = {L} and, again, the set (R−T )∩ S = ({O, L} −
{L}) ∩ {O,L} = {O} is non-empty. If follows that we
can extract the tuples of the fourth term of the view
using the predicate O.otp 6= null and L.lq 6= null.

The second term of the query matches the last term
of the view. The hub of the last term is obviously
{L}. We already determined that the hub of the first
and the fourth terms of the view is also {L}. Those
are the only terms whose base is a superset of {L}.
Consequently, no duplicate elimination is required for
this term either.

The last term of the view has base {L}. The view
does not contain any terms whose base is a subset of
{L} so the conditions of Theorem 5 are automatically
satisfied. If follows that we can extract the tuples of
this term using the predicate L.lq 6= null.

9



We have thus determined that the required tuples
can be extracted from the view as follows:

σotp>50∧ok=lok∧lq<100(O, L) = σotp6=null∧lq 6=nullV

σlq<100(L) = σlq 6=nullV

6.4 Residual Predicates

Query predicates may be more restrictive than the
view predicates. We must eliminate all tuples that
do not satisfy the query predicate but the view may
not output all the necessary columns. Fortunately, we
may not need to apply the complete query predicate;
parts of the predicate that are already enforced by the
view predicate can be eliminated. In addition, we can
exploit equivalences among columns in the view result.

Suppose we have a query term with predicate Pq =
p1∧p2∧. . .∧pn (in conjunctive normal form) and a cor-
responding view term with predicate Pv. A conjunct
pi of the query predicate can be eliminated if Pv ⇒ pi,
that is, if pi already holds for all tuples generated by
the appropriate term in the view. The implication can
be tested using, for example, the subsumption algo-
rithm described in [8].

Applying this to the first term of our example query,
we get the following three implications:

(otp > 50 ∧ ok = lok ∧ lq < 100) ⇒ (otp > 150)
(otp > 50 ∧ ok = lok ∧ lq < 100) ⇒ (ok = lok)
(otp > 50 ∧ ok = lok ∧ lq < 100) ⇒ (lq < 100)

It is easy to see that second and third implication hold
but the first one does not. Hence, the residual predi-
cate for the first term is (otp > 150).

For the second term we get the implication (lq <
100) ⇒ (lq < 100) which trivially holds. Hence, no
further predicate needs to be applied for the second
term.

6.5 Availability of Output Columns

Before proceeding further we need to discuss how to
exploit column equivalences. A column equivalence
class is a set of columns that are known to have the
same value in all tuples produced by an expression.
Equivalence classes are generated by column equality
predicates, typically equijoin conditions. A straight-
forward algorithm for computing equivalence classes
is provided in [8].

A SPOJ expression consists of multiple SPJ terms,
each one with its own equivalence classes. Once we
have recovered the tuples generated by a term of a
view, we can safely exploit its equivalence classes in
residual predicates applied to that term. Applying

the residual predicates may create new column equiv-
alences that should be added to the term’s equivalence
classes. These updated equivalence classes can then be
exploited in output expressions and also when creating
grouping columns (covered in Section 8.2).

For our example view, only three terms have non-
trivial equivalence classes: {{ck, ock}, {ok, lok}} for
the first term, {{ck, ock}} for the second term, and
{{ok, lok}} for the fourth term. For the query, only the
first term has a non-trivial equivalence class, namely,
{{ok, lok}}.

We are now ready to check whether all required
columns are available. The columns available in the
view output are lok, ln, lq, lp, ok, od, otp, ck, cn,
and cnk. The first query term has one residual pred-
icate: (otp > 150). otp is a view output column so
the predicate can be applied. The second query term
required has no residual predicates. The query output
columns are lok, lq, lp, od, otp, which are all available
as view output columns. Hence, all required columns
are available.

6.6 Constructing the Substitute Ex-
pression

Once we reach this stage, we know that the query can
be computed from the view. All that remains is to
construct the substitute expression, i.e. an expression
that computes the query from the view. This consists
of applying the following steps to each SPJ term of the
query and combining the resulting expressions with
minimum union operators (⊕).

1. Recover the SPJ term from the view using a selec-
tion with the appropriate ∼null predicates con-
structed earlier. Apply duplicate elimination if
needed.

2. Restrict the result using a selection with the ap-
propriate residual predicates, if any. Exploit view
equivalence classes as needed.

3. Apply projection (without duplicate elimination)
to reduce the result to the required output
columns. Exploit query equivalence classes as
needed. Return null for any output column origi-
nating from a table not in the base of the term.

For our example query and view, this process pro-
duces the following result.

Q1 = πlok,lq,lp,od,otp[σotp>150(σotp6=null∧lq 6=nullV1) ⊕
πnull

lok,ln,lq,lp(σlq 6=nullV1)]

= πlok,lq,lp,od,otp[σotp>150∧otp 6=null∧lq 6=nullV1 ⊕
πnull

lok,ln,lq,lp(σlq 6=nullV1)]

10



The innermost selection of each term performs the
recovery. As determined earlier, no duplicate elim-
ination is required. The selection σotp>150 applies
the residual predicate needed for the first term. The
second term has no residual predicate but needs a
null-substituting projection, πnull

lok,ln,lq,lp, that retains
all available columns of L and substitutes all other
columns with null. The final projection reduces the
tuples to the desired output columns. The first term
can be simplified by combining the two selections.

7 Efficient Substitute Expres-
sions

Unfortunately, the substitute expressions described in
the previous section cannot be evaluated directly be-
cause no commercial database system supports mini-
mum union. In this section we show how to eliminate
minimum unions from substitute expressions and re-
place them by regular unions. After this conversion,
the number of scans of the view can often be reduced
by combining terms. In many cases, but not always,
only a single scan is necessary.

Example 7. Let’s analyze what tuples remain in the
result of Q1 after the minimum union has been applied.

Any tuple t1 of V1 that satisfies the predicate of the
first SPJ term is retained in the result because this
term is not subsumed by any other terms. However,
any tuple t2 that satisfies the predicate of the second
SPJ term should be retained only if it does not qualify
for the first term.

Suppose t2 satisfies the predicates of both
terms. Then the first term outputs the tuple s =
(t2.lok, t2.ln, t2.lq, t2.lp, t2.od, t2.otp, t2.ck, t2.cn, t2.cnk)
and the second term outputs s′ =
(t2.lok, t2.ln, t2.lq, t2.lp, null, null, null, null, null).
The minimum union then eliminates s′ because it is
subsumed by s.

If t2 satisfies the predicate of the second term but
not the predicate of the first term, the subsuming tuple
s is not generated and s′ is not eliminated by the min-
imum union. Furthermore, no other tuple generated
by the first term can subsume s′. Columns (lok, ln) is
a unique key of V1 so no other tuple with the key value
(t2.lok, t2.ln) exists in V1.

We rewrite the substitute expression as

Q1 = πlok,lq,lp,od,otp[σotp>150∧otp6=null∧lq 6=nullV1 ∪
πnull

lok,ln,lq,lp(σlq 6=null∧∼(otp>150∧otp6=null∧lq 6=null)V1)].

Each term of this expression outputs only tuples that
will be retained in the result so the minimum union
no longer has any effect and has been converted to a
regular union.

This substitute expression requires two scans of the
view but, in fact, only a single scan is needed. The
predicates of the two terms are mutually exclusive so
a tuple in the view cannot satisfy both predicates.
Hence, a view tuple will contribute at most one tuple
to the result and we can select all the required tuples
by the expression

σ(otp>150∧otp 6=null∧lq 6=null)∨(lq 6=null∧(otp≤150∨otp=null))V1

All tuples of the second term, that is, tuples that sat-
isfy the predicate (lq 6= null∧(otp ≤ 150∨otp = null)),
should output nulls for all columns except lok, ln, lq,
and lp. This can be done using the case statement of
SQL. It has the following syntax

case when P1 then E1

when P2 then E2

· · ·
when Pn then En

else En+1

end

where P1, · · ·, Pn are predicates and E1, · · ·, En+1 are
scalar expressions. The predicates are evaluated in the
order specified. If Pi is the first predicate to evaluate
to true, the result of expression Ei is returned. If none
of the predicates evaluates to true, the else branch is
executed. To simplify the presentation, we generalize
the case statement slightly and allow multiple expres-
sions after “then” and “else”.

Using the case statement, we can then write the sub-
stitute expression as follows

Q1 = πlok,lq,lp,cst

σ(otp>150∧otp 6=null∧lq 6=null)∨(lq 6=null∧(otp≤150∨otp=null))V1

where

cst =
case when lq 6= null ∧ (otp ≤ 150 ∨ otp = null)

then null, null
else od, otp

end

After simplification of the complex-looking predicate
we obtain

Q1 = πlok,lq,lp,cst σlq 6=nullV1,

which can be evaluated using normal SQL operators
and, furthermore, requires only a single scan of the
view.

7.1 Minimum Union to Union

This section shows how to replace minimum unions in
the substitute expression by regular unions.

11



7.1.1 Terms without duplicate elimination

In this section, we consider substitute terms without
duplicate elimination, that is, terms of the form

Es = πnull
c σpV

where V is the target materialized view, p is the term’s
selection predicate, and and c its projection list. All
columns of V not in c are substituted by nulls. The
selection predicate has the form p = q∧null(Ti) where
Ti is the term’s source table set, null(Ti) the recovery
predicate, and q an optional residual predicate. Terms
that require duplicate elimination are considered in the
next section.

The selection part of Es, σpV , determines which
tuples of the view qualify for this query term. If a
tuple t qualifies, its null-extended projection onto c,
πnull

c t, will occur in the result of Es.
We denote by Ês the net contribution of Es, that is,

the set of tuples in Es that are not subsumed by any
other tuples and hence will occur in the final result of
the query (projected onto appropriate columns). The
following theorem shows that we can compute Ês by
selecting from V only those tuples that satisfy p but
not the predicates of the parent terms.

Theorem 6. Let Es
i = πnull

ci
σpiV be a substitute ex-

pression for a term Ei of an SPOJ query E. The net
contribution of Es

i can be computed as

Ês
i = πnull

ci
σpi∧∼pi1∧∼pi2∧···∧∼pik

V

where pi1 , pi2 , · · ·, pik
are the selection predicates of

the parent terms of Ei in the subsumption graph of E,
provided that ci contains a unique key of Es

i .

Proof. We first prove that no tuples retained by the
selection σpi∧∼pi1∧∼pi2∧···∧∼pik

V will be subsumed.
Consider a tuple t ∈ V that t satisfies the selection
predicate above. t is output by Es

i because it satis-
fies pi. However, t is not output by any of the parent
expressions Es

ij
of Es

i because t does not satisfy the
predicate, pij , of any parent. According to Lemma 2,
t does not satisfy the predicate of any ancestor of Es

i

either. Hence, the tuple πnull
ci

t is not subsumed by a
projection of t generated by some ancestor of Es

i .
The only other possibility is that tuple πnull

ci
t is sub-

sumed by (the projection of) another tuple t′ ∈ Es
i .

However, this is not possible because ci contains a
unique key of Es

i so no other tuple in Es
i can match

πnull
ci

t.
We must also prove that all tuples eliminated by

the selection σpi∧∼pi1∧∼pi2∧···∧∼pik
V would have been

subsumed. Consider a tuple t ∈ V that does not sat-
isfy the predicate so it is eliminated from Ês

i . If t is

eliminated because it does not satisfy pi, t is not out-
put by Es

i either so clearly it should not be output by
Ês

i . The other possibility is that t violates one of the
parent predicates. Without loss of generality, assume
that it violates ∼ pi1 . In other words, t satisfies pred-
icate pi1 , in which case, t is output by Es

i1
. ci ⊆ ci1 so

πnull
ci1

t will subsume πnull
ci

t. This proves that all tuples
that are eliminated would have been subsumed.

7.1.2 Terms with duplicate elimination

Example 8. Consider the following query

Q2 = πok,od,otp,ln,lq(σotp>50(O)ook=lok σlq<10(L))
= πok,od,otp,ln,lq(σotp>50(O)⊕

σotp>50∧ok=lok∧lq<10(O, L))

Following the procedure in previous sections we find
that the query can be computed from view V1. Dupli-
cate elimination is needed to recover the O term but
not for the OL term. The substitute expression is

Q2 = πok,od,otp,ln,lq(E1 ⊕ σlq<10E2)
where

E1 = δ πnull
ok,od,otp(σ∼null(O)V1)

E2 = σ∼null(L)∧∼null(O)V1

The residual predicates lq < 10 can be pushed down
and combined with the recovery predicates, which pro-
duces the following expression.

Q2 = πok,od,otp,ln,lq(E1 ⊕ E′
2) where

E′
2 = σlq<10∧∼null(L)∧∼null(O)V1

The minimum union is necessary because some tuples
of E1 may be subsumed by tuples produced by its par-
ent term E′

2. The subsumed tuples have been elimi-
nated in E′

1 below. After this, the minimum union
can be converted to a regular union, producing the
following substitute expression.

Q2 = πok,od,otp,ln,lq(E′
1 ] E′

2)

E′
1 = πnull

ok,od,otp(σcs2=0 γ
cs2=sum(s2)
ok,od,otp

πok,od,otp,s2 (σ∼null(O)V1))
where
s2 = case

when lq < 10∧ ∼ null(L)∧ ∼ null(O) then 1
else 0

end

The reason why expression E′
1 contains no dupli-

cate tuples is most easily understood by analyzing the
expression step by step.

12



• The selection σ∼null(O)V1 extracts from V all tu-
ples that qualify for E′

1.

• The projection πok,od,otp,s2 projects them onto the
O columns of the view and adds a new column
s2 that indicates whether or not the tuple also
qualifies for the parent term E′

2.

• The aggregation γ
cs2=sum(s2)
ok,od,otp groups the tuples to

eliminate duplicates. For each group, we count, in
cs2, how many of the group’s input tuples quali-
fied for E′

2.

• If cs2 > 0, the group’s output tuple is subsumed
by at least one tuple in E′

2 and should be elimi-
nated. This is done by the selection σcs2=0.

• The final projection just adds null values corre-
sponding to columns ln and lq.

The following theorem shows how to compute the
net contribution of a term for the case when duplicate
elimination is required.

Theorem 7. Let Es
i = δ πnull

ci
σpiV be a substitute

expression for a term Ei of an SPOJ query E where
Ei has table source set Ti. The net contribution of Ei

can then be computed as

Ês
i = πnull

ci
σcsp=0 γcsp=sum(x)

ci
(σpiV )

where x = (case when pi1 ∨ pi2 ∨ · · · ∨
pik

then 1 else 0 end) and pi1 , pi2 , ···, pik
are the selec-

tion predicates of the parents of Ei in the subsumption
graph of E.

Proof. Consider a tuple t in V that satisfies pi and
hence t′ = πnull

ci
t ∈ Es.

Suppose that t′ is subsumed by a tuple s′ produced
by some ancestor term Es

a of Es
i . s′ is the projection

of a tuple s ∈ V , that is, s′ = πnull
ca

s. Because s′

subsumes t′, they must agree on columns ci, that is,
πcit = πcis. We must show that t will not be output
by the expression above.

Tuple s satisfies the selection predicate pa of the
term Es

a and because Es
a is an ancestor of Es

i , s must
also satisfy predicate pi (follows from Lemma 2). Be-
cause Es

a is an ancestor of Es
i , it must be reachable

through one of the parent terms of Es
i . Without loss

of generality, assume that it is reachable through the
first parent, Es

i1
. In that case, tuple s also satisfies

predicate pi1 so when evaluated on s, the case state-
ment returns 1. Because πcit = πcis, tuples s and t are
included in the same group g by the group-by operator.
Because s is included in group g, the aggregate column
csp is non-zero and the result tuple for group g is elim-
inated by the selection predicate csp = 0. Hence, no
trace of tuple t is left in Ês

i .

Now suppose t′ is not subsumed by any tuple. In
this case, we must show that t′ will be contained in
Ês

i .
Because t′ is not subsumed, every tuple s ∈ V, s 6= t

that satisfies pi must either differ from t′ when pro-
jected onto ci, that is, πcis 6= t′, or satisfy none of the
parent predicates pij

, j = 1, · · ·, k. The tuples with the
first property, that is, those that satisfy πci

s 6= t′, do
not belong to the same group g as tuple t and hence do
not affect the sum of group g. For tuples that satisfy
none of the parent predicates, the case statement re-
turns zero so they do not increase the sum of group g.
We have shown that the sum of group g is zero, which
means that it satisfies the selection predicate csp = 0.
Hence, tuple t′ is retained in Ês

i .

7.2 Combining Terms to Reduce Scans

The theorems in the previous section show how to con-
vert minimum unions to regular union. If the terms
of the union are computed independently, each term
requires a separate scan over the view. This is not
necessary — terms can be combined in the same scan
if their predicates are mutually exclusive.

Theorem 8. Consider two terms Es
i and Es

j , i 6= j

of a substitute expression E with Ês
i = πnull

ci
σqiV and

Ês
j = πnull

cj
σqj V . If qi ∧ qj = false then

Ês
i ∪ Ês

j = πnull
c σqi∨qj V

where c = (case when qi then ci else cj end).

Proof. If qi ∧ qj = false, then no tuple in the view
can satisfy both predicates at the same time so the
two predicates extract non-overlapping subsets from
the view. The predicate qi ∨ qj correctly extracts the
combined subsets in a single scan and the case state-
ment outputs the correct set of columns depending on
which predicate is satisfied.

Corollary 1. If one of the view terms corresponding
to Es

i and Es
j , i 6= j, is an ancestor of the other view

term, then qi ∧ qj = false.

Proof. Obvious, because the predicate of the descen-
dant substitution term explicitly checks (and rejects)
any tuple that also satisfies the predicate of a parent
term.

This corollary gives additional insight into which
terms can be combined, namely, any terms that are
connected through a sequence of parent-child relation-
ship. Nodes on a common path in the subsumption
graph have this property and can thus be combined
into the same scan. Any set of non-overlapping paths
that together cover all nodes of the graph provides a

13



valid set of scans. There may be several such sets of
paths, which raises the issue of finding the “optimal”
set. One could generate several alternative substitute
expressions, one for each set of paths, and rely on the
query optimizer to select the optimal expression. This
may be costly, however, so some form of heuristic so-
lution may be preferred.

In the special case that the subsumption graph con-
tains a single path, the query can be reduced to a single
scan of the view.

Terms that require duplicate elimination can be han-
dled by first constructing the substitute expressions for
those terms, marking the corresponding nodes from
the subsumption graph as already covered, and then
covering the remaining nodes as outlined above.

8 Aggregation Views

We now turn to outer-join views with aggregation, that
is, views defined by a SPOJ expression and a single
group-by operation on top. Aggregation functions are
limited to sum and count to keep the views incremen-
tally maintainable. For aggregation views, we consider
substitute expression composed of selection, projec-
tion, and aggregation, but disallow minimum union.

Aggregation views require three modifications of the
view matching algorithm described in Section 6.

1. In steps one and two, the conversion to normal
form and checking of containment is applied to the
view and query expressions without aggregation
(the SPOJ part).

2. Step three, checking recovery, changes signifi-
cantly as described in details in Section 8.1 below.

3. An new step must also be added (after step four)
to check whether further aggregation is needed
and possible.

8.1 Tuple Recovery

For aggregation views, the procedure for recovering the
required tuples consists of the following steps.

1. Check whether all terms required by the query
have the correct duplication factor.

2. Check whether terms not required by the query
can be eliminated.

3. Construct recovery predicates if required columns
are available in the view output.

8.1.1 Correct duplication factor

Step one is necessary to ensure that sum and count
aggregated columns will be correct. A query term may

be mapped to a view term that includes additional
source tables. These additional joins may change the
duplication factor, that is, if the view term is projected
onto the same tables as the query term, the result may
not contain the correct number of duplicates of each
row. If so, a sum or a count taken from the view would
be incorrect. Two terms are guaranteed to produce
rows with the same number of duplicates if they have
the same hub [8], so this step boils down to computing
the hub of each query term and its target view term
and verifying that the two are equal. The notion of
hubs and how to compute the hub of an SPJ expression
are explained in [8].

8.1.2 Recovering required tuples

In a non-aggregation view, we recover the terms one
by one but this is not always possible for aggregation
views. Rows originating from different terms may be-
long to the same group. If so, they will be merged
into the aggregates of the group’s result row. Once
the details have been lost through aggregation, it is no
longer possible to tease apart the contributions from
different terms. The following example illustrates the
issue.

Example 9. Consider a view with an aggregate over
a left outer join of C and O.

V4 = γ
count(∗),sum(otp)
C.cn (C op O)

= γ
count(∗),sum(otp)
C.cn (C on O ⊕ C)

View V4 is grouped on C.cn. Because C.cn is not a
key of C, a row originating from the CO term may
well have the same cn value as a row originating from
the C term. The sum will then include rows from both
terms and the contributions from each term cannot be
separated.

V5 = γ
count(∗),sum(otp)
C.cn,O.od (C op O)

= γ
count(∗),sum(otp)
C.cn,O.od (C on O ⊕ C)

However, as soon as the grouping columns include a
non-null column of O, as in V5, the two terms can be
separated. All rows originating from the C term are
null on O.od while all rows from the first term are non-
null on O.od. Hence, two rows from different terms
are guaranteed to end up in separate groups. Those
from the CO term can be extracted by the predicate
O.od 6= null and those from the C term by the predi-
cate O.od = null.

For this step, we first divide the terms of the view
into two sets: terms required by the query and ex-
cess terms, that is, terms not required. The goal is to

14



eliminate the effect of the excess terms from the view
result, retaining only the required terms. Suppose we
have an aggregation view V that in normalized form
equals

V = γA
C (σp1(T1)⊕ · · · ⊕ σpn(Tn))

where C is a set of grouping columns and A is a se-
quence of aggregation functions. Suppose the query
under consideration requires the first k, k ≤ n terms
of the view. (We can always reorder terms so this is
true.) We rewrite the view as

V = γA
C (V spj

R ⊕ V spj
E )

where V spj
R = σp1(T1) ⊕ · · · ⊕ σpn(Tk) and V spj

E =
σp1(Tk+1) ⊕ · · · ⊕ σpn(Tn). We would like to rewrite
the expression in the following form and then discard
the part of the view that originates from excess terms
(the second part of the expression).

V = γA
C (V spj

R ) ∪ γA
C (V spj

E )

Under what circumstances is this a valid rewrite? The
following Lemma and Theorem derive sufficient condi-
tions for the rewrite to be applicable.

Note that we have only the grouping columns of
the view available to separate between tuples from re-
quired terms and tuples from excess terms.

Lemma 5. Consider an aggregation view V over ta-
bles U and assume that the view outputs a non-null,
non-aggregated column for every table in S, S ⊆ U .
Let σP (R) be an SPJ term of V that is required
by a query Q. Then σnull(S∩R)V ⊇ σP (R) and
σnull(S∩R)V contains no tuples from excess terms of V

if, for every excess term σq(T ), the set (U−T )∩S∩R
is non-empty.

Proof. We first show that σP (R) ⊆ σnull(S∩R)V . The
tuples in σP (R) are not null-extended on any ta-
ble in R and, hence, every tuple in σP (R) satis-
fies the predicate null(R). Because R ⊇ S ∩ R,
null(R) ⇒ null(S ∩ R), that is, every tuple that sat-
isfies the stronger condition null(R) must also satisfy
null(S ∩R). Consequently, σP (R) ⊆ σnull(S∩R)V .

To prove the second part of the lemma, consider an
excess term σq(T ). The predicate null(S ∩ R) will
reject all tuples of the term if they are null-extended
on at least one table in S ∩ R. All tuples of the term
on null-extended on the tables in (U − T ). It follows
that they will be eliminated if (U −T ) and S ∩R have
at least one table in common, which is the condition
in the theorem. Hence, if the condition holds for all
excess terms, the result of σnull(S∩R) cannot contain
tuples from any excess term.

Theorem 9. Let V spj
R = ⊕n

i=1σpi
(Ri), i = 1, 2, · · ·, n

be the set of terms of view V = γA
C (V spj) required by a

query Q. If every term in V spj
R satisfies the conditions

in Lemma 5, then

γA
C (V spj

R )) = γA
CσP V

where P =
∨n

i=1 null(Ri ∩ S)

Each component of predicate P represents the re-
covery predicate of a required term but restricted to
the set of tables that expose at least one non-null col-
umn in V .

Proof. Consider a tuple t such that t ∈ V spj
R . Then t

originates from one of the required terms, say σpj
(Rj).

t is the projection of some tuple t′ onto a subset of
columns of tables in Rj . Tuple t′ clearly satisfies
the recovery predicate null(Rj) of term j. If so, t′

must also satisfy the weaker predicate null(Rj ∩ S)
and so must its projection t because null(Rj ∩S) only
references columns available in t. This proves that
t ∈ γA

CσP V .
Now consider a tuple t ∈ V but t 6∈ V spj

R . In other
words, t ∈ V spj

E so t originates from one to the excess
terms, say, σpk

(Rk) where k > n. It follows that t
satisfies the predicate null(Rk ∩ S). What we need
to prove is that t does not satisfy predicate P , which
we do by contradiction. Suppose t satisfies P . With-
out loss of generality, assume that it satisfies the first
component null(R1 ∩ S) of P , which represents the
required term σp1(R1). However, this term satisfies
the requirements of Lemma 5 which guarantees that
the selection σnull(R1∩S)V eliminates all tuples from
excess terms. Tuple t violates this guarantee and,
hence, t cannot satisfy predicate P . This proves that
t 6∈ γA

CσP V .

8.1.3 Constructing recovery predicates

For aggregation views, recovery predicates are con-
structed based on the condition in Theorem 9. Let
σpi(Ri), i = 1, 2, ···, n be the terms of the view required
by the query and S the tables for which the view out-
puts at least one non-null, non-aggregated column. If
all required terms satisfy the condition in Lemma 5,
the predicate

∨n
i=1 null(S ∩Ri) will recover all tuples

of the required terms and the result will not contain
tuples from excess terms.

8.2 Further Selection and Aggregation

A substitute expression for an aggregation view may
also include further selection and aggregation. For
non-aggregated views, each term was recovered sepa-
rately so different residual selection predicates could be

15



applied do different terms. In general, this is not possi-
ble for aggregation views because individual terms are
not recovered separately. However, it is possible if the
same residual predicate is to be applied to all required
terms. The common residual predicate can be factored
out and, provided the necessary columns are available,
combined (ANDed) with the recovery predicate. 2

The groups formed by the query can be computed
from the groups of the view if the group-by list of the
query is a subset of or equal to the group-by list of the
view. That is, if the view is grouped on expressions
A, B, C then the query can be grouped on any subset
of A, B, C, including the empty set. As shown in [15],
this is stricter than absolutely necessary; it is sufficient
that the grouping expressions of the view functionally
determine the grouping expressions of the query. If
the grouping list of the query functionally determines
the grouping list of the view and vice-versa, no fur-
ther aggregation is necessary. If further aggregation is
needed, we apply the grouping list of the query.

Example 10. Suppose we have the following outer-
join aggregation view.

create view revenue by custsupp as

select o custkey, s suppkey, s name,

sum(l quantity*l extendedprice) as rev,

count(l quantity) as cntq, count(*) as cnt

from supplier full outer join

(orders left outer join lineitem

on (l orderkey=o orderkey))

on (s suppkey=l suppkey)

group by o custkey, s suppkey, s name

The normal form of the SPOJ part of the view con-
tains three terms with source sets {S, O, L}, {O}, and
{S}. The hubs of the terms are L, O, and S, respec-
tively, because both orders and supplier are joined to
lineitem by extension joins. (Two terms are eliminated
from by the full outer join when computing the nor-
mal form: the term {S, O} by the null-rejecting join
predicate and the term {O,L} by containment in the
term {S,O, L}.)

Can the following query be computed from the view
and, if so, how?

select c nationkey, sum(l quantity*l extendedprice)

from (orders left outer join lineitem

on (o orderkey = l orderkey)) q1, customer

where c custkey = o custkey

group by c nationkey

2This is more restrictive than necessary. If the view out-
puts enough non-aggregated columns, it is sometimes possible
to separate the contributions from individual terms (or groups
of terms) and apply residual predicates to individual terms (or
groups of terms). We have not determined the exact conditions
when this is possible.

Clearly the view cannot match the complete query.
However, if we pre-aggregate the result of the left-
outer-join expression by customer key, we obtain a
matchable subquery.

select c nationkey, sum(sm1)

from (select o custkey,

sum(l quantity*l extendedprice) sm1

from orders left outer join lineitem

on (o orderkey = l orderkey)

group by o custkey ) as q1, customer

where c custkey = o custkey

group by c nationkey

The normal form of the inner subquery contains two
terms with source set {O,L} and {O}; they map to
the view terms {S, O,L} and {O}, respectively. The
{O, L} term of the query is contained in the {S,O, L}
term of the view and with the correct duplication fac-
tor (step one) because they have the same hub {O}.

We then apply the condition in theorem 9 to test
whether the excess term {S} of the view can be elim-
inated. For the {O, L} term the condition is

({S,O, L} − {S}) ∩ {S, O} ∩ {S,O, L} = {O}
and for the {O} term it is

({S, O,L} − {S}) ∩ {S, O} ∩ {O} = {O}.
Both set expressions return {O} so the excess {S} term
can be eliminated by the predicate o custkey is not
null. This is correct because both required terms have
non-null o custkey values while the excess {S} term is
null extended on o custkey.

The grouping columns of the (inner) query
(o custkey) is a subset of the grouping columns of the
view (o custkey, s suppkey, s name) so further aggre-
gation is needed. Combining everything together pro-
duces the following rewrite of the query.

select c nationkey, sum(sr)

from (select o custkey, sum(rev) as sr

from revenue by custsupp

where o custkey is not null

group by o custkey ) as q1, customer

where o custkey = c custkey

group by c nationkey

9 Experimental Results

We ran a series of experiments on Microsoft SQL
Server 2005 Beta2 to evaluate the performance ben-
efit of using an outer join view. We followed our al-
gorithms to detect if an outer join view is useable and
manually rewrote queries to use the view.

The experiments were performed on a workstation
with two 3.20 GHz Xeon processors, 2GB of memory

16



and three SCSI disks. All queries were against a 1GB
version (SF=1) of TPC-H database.

In the first experiment, we created an outer join view
of the tables Customer, Orders, Lineitem and ran a
set of queries requesting different tuple patterns. We
also list abbreviated normal forms, leaving out detailed
predicates and output columns.

V1 : π(σ(C)⊕ σ(C, O)⊕ σ(C, O, L))
create view V1 as

select c custkey, c name, c nationkey, o orderkey,

o custkey, o orderdate, o totalprice, l orderkey,

l linenumber, l partkey, l quantity, l extendedprice

from (customer left outer join orders

on (c custkey = o custkey))

left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 50K)

Q1 : π(σ(C, O, L))
select V1.∗
from customer, orders, lineitem

where c custkey = o custkey

and o orderkey = l orderkey

and l extendedprice > 50K

and c custkey > 100K

Q2 : π(σ(C, O)⊕ σ(C, O, L))
select V1.∗
from (customer join orders on (c custkey = o custkey

and c custkey > 100K))

left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 50K)

Q3 : π(σ(C, O)⊕ σ(C, O, L))
select V1.∗
from (customer join orders on (c custkey = o custkey)

left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 75K)

Q4 : π(σ(C, O))
select c custkey, c name, c nationkey, o orderkey,

o custkey, o orderdate, o totalprice

from customer, orders

where c custkey = o orderkey

Term COL CO C

Cardinality 1897761 431165 50004

Table 1: View V1 Configuration

Table 1 shows cardinalities of different terms in the
view V1. Q1, Q2, and Q4 can be answered by a single
scan of V1 with different predicates. Q3 requires com-
puting minimum union and Q4 also requires duplicate
elimination. Their rewrites in SQL are shown below.

Q′1:
select * from V1

where l linenumber is not null

and c custkey > 100K

Q′2:
select * from V1

where c custkey > 100K

and o custkey is not null

Q′3:
select * from V1

where l extendedprice > 75K

union all

select c custkey, c name, c nationkey, o orderkey,

o custkey, o orderdate, o totalprice

null, null, null, null, null

from V1

where o orderkey is not null

group by c custkey, c name, c nationkey,

o orderkey, o custkey, o orderdate, o totalprice

having sum(case when l extendedprice > 75K

then 1 else 0 end) = 0

Q′4:
select Q4.∗ from V1

where o custkey is not null

group by Q4.∗

0

5

10

15

20

25

30

35

40

45

Query 1 Query 2 Query 3 Query 4

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

s
)

No View Outer Join View Full View

Figure 2: Using Outer Join Views

Figure 2 compares the performance of the original
queries and their corresponding rewrites using V1. Q1

can also be answered by a normal view over the three
tables (with the same join predicates of V1). Compared
with using the normal view, there is little overhead of
using the outer join view V1. Using V1 improves query
performance for the first three queries but Q′4 requires
expensive aggregation and the overhead outweighs the
benefit. This is an example where an outer join view
should not be used even though the query can be com-
puted from the view. As for other types of materialized
views, the decision should be made by the optimizer
in a cost-based fashion.

In the second experiment, we created an aggrega-
tion view to compute total lineitem quantity for every
nation, order status and shipment. The aggregation
query Q5 on the next page can be computed from the

17



view.

create view V2 as

select c nationkey, o orderstatus, l shipmode,

sum(l quantity) sq, count(*) cn

from (customer left outer join orders

on (c custkey = o custkey))

left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 50K)

group by c nationkey, o orderstatus, l shipmode

Q5:

select c nationkey, o orderstatus,

sum(l quantity), count(*)

from (customer join orders

on (c custkey = o custkey))

left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 50K)

group by c nationkey, o orderstatus

Q′5:
select c nationkey, o orderstatus, sum(sq), sum(cn)

from V2

where o orderstatus is not null

group by c nationkey, o orderstatus

View V2 contains 625 rows. Q5 can be answered
from V2 using a selection and further aggregation, as
shown in Q′

5. This reduced the execution time by four
orders of magnitude, from 28.3 sec to 0.001 sec.

10 Related Work

To the best of our knowledge, this paper is the first
to study view matching for outer join views. We build
directly on two earlier papers: Galindo-Legaria’s paper
on join-disjunctive form for SPOJ expressions [5] and
Goldstein and Larson’s paper on view matching [8].
Other related work falls into two categories: work on
outer joins and work on view matching.

Rewrite rules for outer join expressions are impor-
tant for query optimization. This is the topic of a series
of papers by Galindo-Legaria and Rosenthal culminat-
ing in [6], which provides a comprehensive set of sim-
plification and reordering rules for SPOJ expressions.
This work was extended by Bhargava, Goel, and Iyer
in [2, 7] and by Rao et al in [12, 13].

Larson and Yang [9, 16] were the first to describe
a view-matching algorithm for SPJ queries and views.
Chaudhuri et al. [4] published the first paper on incor-
porating the use of materialized views into query op-
timization, in their case, a System-R style optimizer.
Levy, Mendelzon and Sagiv [10] studied the complex-
ity of rewriting SPJ queries using views and proved
that many related problems are NP-complete. Srivas-
tava et al. [14] present a view-matching algorithm for

aggregation queries and views. Chang and Lee [3] rec-
ognized that a view can sometimes be used even if it
contains extra tables. Pottinger and Levy [11] consid-
ered the view-matching problem for conjunctive SPJ
queries and views in the context of data integration
where the requirements are somewhat different.

Oracle was the first commercial database system to
support materialized views [1]. The query rewrite al-
gorithm is briefly described in the Oracle manuals. Za-
harioudakis et al. [17] describe a view-matching algo-
rithm implemented in DB2 UDB. The algorithm per-
forms a bottom-up matching of query graphs but does
not require an exact match.

11 Concluding Remarks

This paper provides the first view matching algorithm
for views and queries containing outer joins (SPOJG
views). By converting expressions into join-disjunctive
normal form, the view matching algorithm is able to
reason about semantic equivalence and subsumption
instead of being based on bottom-up syntactic match-
ing of expressions. The algorithm deals correctly with
SQL bag semantics and exploits not-null constraints,
uniqueness constraints and foreign key constraints.
Experimental results on a few queries show substan-
tial improvements in query performance, especially for
aggregation queries.

Efficient incremental update of SPOJG views is an
important issue. The join-disjunctive normal form is
very helpful here because it makes it possible to de-
tect SPJ terms that are unaffected by an update. Our
results on incremental update will be reported in a
separate paper.

References

[1] R. G. Bello, K. Dias, A. Downing, J. J. Feenan, Jr., J. L.
Finnerty, W. D. Norcott, H. Sun, A. Witkowski, and M. Zi-
auddin. Materialized views in Oracle. In Proc. of VLDB
Conference, 1998.

[2] G. Bhargava, P. Goel, and B. R. Iyer. Hypergraph based
reorderings of outer join queries with complex predicates.
In Proc. of SIGMOD Conference, 1995.

[3] J.-Y. Chang and S.-G. Lee. Query reformulation using ma-
terialized views in data warehouse environment. In Proc.
of DOLAP, 1998.

[4] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
Proc. of ICDE Conference, 1995.

[5] C. Galindo-Legaria. Outerjoins as disjunctions. In Proc. of
SIGMOD Conference, 1994.

[6] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplifi-
cation and reordering for query optimization. ACM Trans-
actions on Database Systems, 22(1), 1997.

18



[7] P. Goel and B. R. Iyer. Sql query optimization: Reorder-
ing for a general class of queries. In Proc. of SIGMOD
Conference, 1996.

[8] J. Goldstein and P.-Å. Larson. Optimizing queries using
materialized views: A practical, scalable solution. In Proc.
of SIGMOD Conference, 2001.

[9] P.-Å. Larson and H. Z. Yang. Computing queries from
derived relations. In Proc. of VLDB Conference, 1985.

[10] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Rewriting aggregate queries using views. In Proc. of PODS
Conference, 1995.

[11] R. Pottinger and A. Y. Levy. A scalable algorithm for an-
swering queries using views. In Proc. of VLDB Conference,
2000.

[12] J. Rao, B. G. Lindsay, G. M. Lohman, H. Pirahesh, and
D. E. Simmen. Using eels, a practical approach to outerjoin
and antijoin reordering. In Proc. of ICDE, 2001.

[13] J. Rao, H. Pirahesh, and C. Zuzarte. Canonical abstraction
for outerjoin optimization. In Prof. of SIGMOD Confer-
ence, 2004.

[14] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering queries with aggregation using views. In Proc.
of VLDB Conference, 1996.

[15] W. P. Yan and P.-Å. Larson. Eager aggregation and lazy
aggregation. In Proc. of VLDB Conference, 1995.

[16] H. Z. Yang and P.-Å. Larson. Query transformation for
PSJ-queries. In Proc. of VLDB Conference, 1987.

[17] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex sql queries using automatic
summary tables. In Proc. of SIGMOD Conference, 2000.

19


