
Extensions of the Informative Vector Machine

Neil D. Lawrence1, John C. Platt2 and Michael I. Jordan3

1 Department of Computer Science, University of Sheffield, Regent Court, 211
Portobello Street, Sheffield S1 4DP, U.K. neil@dcs.shef.ac.uk

2 Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA
98052, U.S.A. jplatt@microsoft.com

3 Computer Science and Statistics, University of California, Berkeley, CA 94720,
U.S.A. jordan@cs.berkeley.edu

Abstract The informative vector machine (IVM) is a practical method
for Gaussian process regression and classification. The IVM produces
a sparse approximation to a Gaussian process by combining assumed
density filtering with a heuristic for choosing points based on minimizing
posterior entropy. This paper extends IVM in several ways. First, we
propose a novel noise model that allows the IVM to be applied to a
mixture of labeled and unlabeled data. Second, we use IVM on a block-
diagonal covariance matrix, for “learning to learn” from related tasks.
Third, we modify the IVM to incorporate prior knowledge from known
invariances. All of these extensions are tested on artificial and real data.

1 Introduction

Kernel-based methods have become increasingly popular in the machine learn-
ing field. Their close relationships to convex optimization and numerical lin-
ear algebra—and their corresponding amenability to theoretical analysis—have
helped to fuel their fast growth relative to older non-convex regression and classi-
fication methods such as neural networks. Kernel-based methods reduce the data
to a “kernel matrix,” the entries of which are evaluations of a “kernel function”
or “covariance function.” Computationally efficient algorithms are available to
optimize various statistical functionals of interest for given values of this matrix.

As with most statistical procedures, one can take either a Bayesian or a
frequentist perspective on kernel-based methods. The Bayesian point of view in-
volves using a Gaussian process framework to place prior distributions on families
of regression or discriminant functions [28]. A Gaussian process is characterized
by a mean function and a covariance function, and it is this latter function that
yields the “kernel matrix” (when evaluated at the observed data). The frequen-
tist point of view focuses on the optimization of loss functions defined on an
inner product space; the choice of inner product defines the kernel function and
thus the kernel matrix [19].

By focusing on point estimates, the frequentist approach can yield a stripped-
down computational problem that has the appeal of tractability in the context of

large-scale problems. For example, the support vector machine reduces to a rel-
atively simple quadratic program [6]. This appeal, however, is somewhat dimin-
ished in practice by two factors: (1) many kernel-based procedures involve hyper-
parameters, and setting hyperparameters generally involves a computationally-
intensive outer loops involving cross-validation; and (2) fuller frequentist infer-
ence requires calculating error bars for point estimates. This too often requires
computationally-intensive extensions of the basic parameter-fitting algorithm
(e.g., the bootstrap).

The Bayesian approach to kernel-based methods, on the other hand, focuses
on the computation or approximation of posterior probability distributions un-
der the Gaussian process prior. This is generally a more ambitious goal than
computing a point estimate, but it also goes a significant distance towards solv-
ing the other practical problems associated with using kernel-based methods.
Indeed, (1) standard procedures involving the marginal likelihood can be used
to set hyperparameters; and (2) the posterior distribution naturally provides an
assessment of uncertainty.

Another virtue of the Bayesian approach is the relative ease with which one
can consider extensions of a basic model, and it is this virtue that is our focus
in the current paper. In particular, we consider two elaborations of the basic
classification setup: semi-supervised learning and multi-task learning. While the
frequentist paradigm both permits and requires substantial creativity in deriv-
ing methods to attack problems such as these, the Bayesian approach provides
standard tools with which to proceed. In particular, in this paper we show how
standard Bayesian modeling tools—latent variable modeling and hierarchical
modeling—can be used to address nonparametric semi-supervised and multi-
task learning within the Gaussian process framework.

Kernel matrices are N ×N matrices (where N is the number of data points),
and in both the Bayesian approach and the frequentist approach to kernel-based
methods it is important to develop procedures that take advantage of putative
low-rank structure in these matrices. One generally useful idea involves spar-

sity—one seeks functions that have expansions in which most of the coefficients
are zero. Sparsity can be imposed in the loss function and/or imposed as part
of a computational approximation. For example, in the support vector machine
the use of a hinge loss implies that only a subset of the training data have
non-zero coefficients—these are the support vectors. Support vectors embody
computational efficiencies and also permit the design of useful extensions that
are themselves computationally efficient. For example, virtual support vectors

allow invariances to be incorporated into support vector machine training [18].
In the current paper, we show how a similar notion can be developed within the
Bayesian paradigm—a notion that we refer to as virtual informative vectors.

In summary, we view sparse Gaussian process methods as providing a flex-
ible, computationally-efficient approach to nonparametric regression and clas-
sification; one that is as viable in practice as its frequentist cousins, and one
that is particularly easy to extend. In this paper we focus on a specific sparse
Gaussian process methodology — the informative vector machine (IVM). We

show how the basic IVM can be extended to accommodate our proposals for semi-
supervised learning and multi-task learning. These extensions are not restricted
to the IVM methodology: our approach to multi-task learning falls within the
broader class of hierarchical Bayesian methods and our noise model for semi-
supervised learning can be used in combination with a wide range of models.
However the approach we take to incorporating invariances exploits a particular
characteristic of the IVM. It relies on the fact that the IVM can be viewed as
a compression scheme. By this we mean that the decision boundary can be in-
ferred by considering only the ‘active set’. This is a characteristic that the IVM
shares with the support vector machine. Previously proposed sparse Gaussian
process methods seek sparse representations for mean and covariance functions
but rely on the entire data set to formulate them.

The paper is organized as follows. After an overview of the general Gaussian
process methodology in Section 2, we review the the informative vector ma-
chine in Section 3. In Section 4, we present a latent variable approach to semi-
supervised learning within the IVM framework. Section 5 develops the IVM-
based approach to multi-task learning. Finally, in Section 6 we show how the
notion of sparsity provided by the IVM may be exploited in the incorporation
of prior invariances in the model.

2 Gaussian Processes

Consider a simple latent variable model in which the output observations, y =
[y1 . . . yN]

T
, are assumed independent from input data, X = [x1 . . .xN]

T
, given

a set of latent variables, f = [f1 . . . fN]
T
. The prior distribution for these latent

variables is given by a Gaussian process 4,

p (f |X,θ) = N (f |0,K) ,

with a covariance function, or ‘kernel’, K, that is parameterised by the vector θ

and evaluated at the points given in X. This relationship is shown graphically
in Figure 1.

The joint likelihood can be written as

p (y, f |X,θ) = p (f |X,θ)

N
∏

n=1

p (yn|fn) (1)

where p (yn|fn) gives the relationship between the latent variable and our obser-
vations and is sometimes referred to as the noise model. For the regression case
the noise model can also take the form of a Gaussian.

p (yn|fn) = N
(

yn|fn, σ2
)

. (2)

4 We use N (x|µ, Σ) to denote a Gaussian distribution over x with a mean vector µ

and covariance matrix Σ. When dealing with one dimensional Gaussians the vectors
and matrices are replaced by scalars.

�� �� � �
Figure 1. The Gaussian Process model drawn graphically. We have made use of ‘plate’
notation to indicate the independence relationship between f and y.

Then the marginalised likelihood can be obtained by integrating over f in (1).
This marginalisation is straightforward—it can be seen to be a special case of
the more general result,

p (y) =

∫

N (f |0,K)

N
∏

n=1

N
(

yn|fn, β−1
n

)

df

= N
(

y|0,K + B−1
)

, (3)

where B is a diagonal matrix whose nth diagonal element is given by βn. To
recover the special case associated with the spherical Gaussian noise model from
(2) we simply substitute each βn with 1

σ2 and each mn with yn.

2.1 Optimising Kernel Parameters

A key advantage of the Gaussian process framework is that once the marginal
likelihood is computed then it can be maximised with respect to parameters of
the kernel, θ, yielding a so-called empirical Bayes method for fitting the model.
We have seen that for Gaussian noise models the computation of this marginal
likelihood is straightforward. Unfortunately for non-Gaussian noise models the
required marginalisation is intractable and we must turn to approximations. One
such approximation is known as assumed density filtering (ADF). As we shall
see, the ADF approximation proceeds by incorporating the data a single point
at a time and using Gaussian approximations to the non-Gaussian posterior
distributions that arise to maintain the tractability of the model.

2.2 The ADF Approximation

Assumed density filtering has its origins in on-line learning: it proceeds by ab-
sorbing one data point at a time, computing the modified posterior and replac-
ing it with an approximation that maintains the tractability of the algorithm. A

thorough treatment of this approach is given by [16,7]. Here we review the main
points of relevance for the IVM algorithm.

Given a noise model, p (yn|fn), we note that the joint distribution over the
data and the latent variables factorises as follows

p (y, f) = N (f |0,K)

N
∏

n=1

p (yn|fn)

which may be written

p (y, f) =
N
∏

n=0

tn (f)

where we have defined tn (f) = p (yn|fn) and in a slight abuse of notation we
have taken t0 (f) = N (f |0,K). ADF takes advantage of this factorised form
to build up an approximation, q (f), to the true process posterior, p (f |y). The
factorisation of the joint posterior is exploited by building up this approximation
in a sequential way so that after i points are included we have an approximation
qi (f). The starting point is to match the approximation to the prior process, i.e.

q0 (f) = t0 (f) = N (f |0,K). The approximation is then constrained to always
have this functional form. As the data point inclusion process is sequential two
index sets can be maintained. The first, I, is referred to as the active set and
represents those data points that have been included in our approximation. The
second, J , is referred to as the inactive set and represents those data points that
have not yet been incorporated in our approximation. Initially I is empty and
J = {1 . . . N}. The approximation to the true posterior is built up by selecting a
point, n1, from J . This point is included in the active set leading to an updated
posterior distribution of the form,

p̂1 (f) ∝ q0 (f) tn1
(f) ,

our new approximation, q1 (f), is then found by minimising the Kullback Leibler
(KL) divergence between the two distributions.

KL (p̂1||q1) = −
∫

p̂1 (f) log
q1 (f)

p̂1 (f)
df .

More generally, for the inclusion of the ith data point, we can write

p̂i (f) =
qi−1 (f) tni

(f)

Zi

(4)

where the normalization constant is

Zi =

∫

tni
(f) qi−1 (f) df . (5)

ADF minimises KL (p̂i||qi) to obtain the new approximation. This KL divergence
can be minimised by ‘moment matching’ equations of the form

qi (f) = N (f |µi,Σi) .

where

µi = 〈f〉p̂i(f)
(6)

Σi =
〈

ffT
〉

p̂i(f)
− 〈f〉p̂i(f)

〈f〉p̂i(f)
T (7)

and where 〈·〉p(·) denotes an expectation under the distribution p (·). It turns

out that our ability to compute (6) and (7) depends on the tractability of the
normalisation constant in (4). An update equation for the posterior mean (see
Appendix A) is given by

µi = µi−1 + Σi−1gi,

where the dependence on Zi is through

gi =
∂ log Zi

∂µi

.

The corresponding update for Σi is given by

Σi = Σi−1 − Σi−1

(

gig
T
i − 2Γi

)

Σi−1

where

Γi =
∂ log Zi

∂Σi−1
.

The ADF approximation can therefore be easily be applied for any noise model
for which the expectation of the noise model in (5) is tractable. In the next
sections we shall review two of the most commonly used noise models within the
context of the ADF algorithm. The Gaussian noise model is commonly used in
regression applications and the probit noise model is applicable for classification
problems. Later, in Section 4, we describe a noise model that is suitable for
semi-supervised learning.

2.3 Gaussian Noise Model

One of the most widely used approaches for interpolation between data points
is model fitting through least squares. From the probabilistic point of view this
is equivalent to a Gaussian noise model. If each data point, yn, has a different
associated variance, β−1

n , then the noise model is given by

p (yn|fn) =

√

βn

2π
exp

(

−βn (yn − fn)
2

2

)

.

As we described in the previous section, the updates for the mean and covariance
functions depend on Zi, the expectation of the noise model under the current
estimate of the posterior process, qi−1 (f). Since the noise model only depends
on fn, the nth element of f , we may rewrite this expectation in the form

Zi =

∫

p (yn|fn) q (fn) dfn, (8)

where we have exploited the fact that the marginal, q (fn), of the full multivariate
Gaussian, q (f), is given by

q (fn) = N (fn|µi−1,n, ςi−1,n)

where µi−1,n is the nth element of µi−1 and ςi−1,n is the nth element from the
diagonal of Σi−1. As a result the expectation in (8) is easily computed as

Zi = N
(

yn|µi−1,n,
(

ςi−1,n + β−1
n

))

The log partition function,

log Zi = −1

2
log 2π − 1

2
log
(

ςi−1,n + β−1
n

)

− (yn − µi−1,n)
2

2
(

β−1
n + ςi−1,n

) ,

can then be differentiated with respect to µi−1 to give

gin =
yn − µi−1,n

β−1
n + ςi−1,n

, (9)

where gin is the nth element of gi and all other elements are zero. Similarly we
can differentiate the log partition with respect to Σi−1 to find the nth diagonal
element of Γi

γin = − 1

2
(

ςi−1 + β−1
n

) +
1

2
g2

in

all other elements of Γi are zero.
For the update of the covariance we need to consider the matrix gig

T
i − 2Γi.

However, for the Gaussian noise model this matrix can be written in diagonal
form, diag (νi), where the nth element of νi is

νin = −2γin + g2
in

=
1

(

ςi−1 + β−1
n

) (10)

and all other elements are zero. This leads to a set of simplified update equations
of the form

µi = µi−1 + ginsi−1,n, (11)

Σi = Σi−1 − νinsi−1,nsT
i−1,n, (12)

where si−1,n is the nth column from Σi−1.
Implicit in these update equations is the minimisation of a KL divergence

between the true posterior and the approximating Gaussian process posterior,
q (f). Of course, for the Gaussian noise model, the true posterior process is
Gaussian so the approximation is exact. In other words, for the special case of
the Gaussian noise, these updates are simply a scheme for on-line learning of
Gaussian processes without any approximations involved.

In the next section, we consider the probit classification noise model. This
noise model is an example from the more general case where the true posterior
distribution is non-Gaussian and every update of the mean and posterior implic-
itly involves an approximation to this true posterior through moment matching.

2.4 Probit Noise Model

We consider binary classification where yn ∈ {−1, 1}. A convenient representa-
tion for the probability of class membership given the latent variable fn is given
by the probit noise model for classification

p (yn|fn) = φ (ynλ (fn + b))

where φ (·) is the cumulative Gaussian given by

φ (z) =
1√
2π

∫ z

−∞

exp

(

− t2

2

)

dt,

the slope of which is controlled by λ. The use of the probit, rather than the more
commonly encounter logit, is convenient as it leads to a tractable integral for
the partition function:

Zi =
1

(2π)
N
2 ς

1

2

i−1,n

∫

φ (ynλ (fn + b)) exp

(

−
(

fn − µi−1

)2

2ςi−1,n

)

dfn

which may be integrated to obtain

Zi = φ (ui−1,n) .

where
ui−1,n = ci−1,n (µi−1,n + b)

ci−1,n =
yn

√

λ−2 + ςi−1,n

. (13)

Once again, the partition function is only dependent on one element of µi−1 and
one element of Σi−1. Performing the necessary derivatives to obtain gin and νin

we have5

gin = ci−1,nN (ui−1,n) [φ (ui−1,n)]
−1

, (14)

where

N (ui−1,n) =
1√
2π

exp

(

−
u2

i−1,n

2

)

and

γin = −1

2
ginui−1ci−1,n

which implies
νin = gin (gin + ui−1ci−1,n) . (15)

5 In implementation, care must be taken in computing gin: when ui−1,n has large
magnitude both φ (ui−1,n)and N (ui−1,n) become very small and numerical precision
issues arise. This can be avoided by performing the computations should be done in
the log domain.

Updates for µi−1 → µi and Σi−1 → Σi , the parameters of q (f), are then
identical to those given in (11) and (12). Note from (13) that we can consider
the slope, λ, of the noise model to be infinite and develop an equivalent rep-
resentation by adding a matrix λ−2I to the kernel matrix thereby causing ςi,n
to increase by λ−2. In our experiments, this approach is preferred because the
noise model slope can then be optimised in tandem with the kernel parameters.

2.5 Kernel Parameter Updates

So far we have discussed how the posterior’s mean and covariance functions can
be updated in an on-line way given a fixed kernel. We suggested in the introduc-
tion that one of the main reasons we may wish to keep track of a representation
of the posterior covariance is so that we may learn the kernel parameters via an
empirical Bayes approach.

With reference to the graphical representation of our model in Figure 1 our
objective is to marginalise the latent variable f and optimise the parameters
of the kernel by maximising the resulting likelihood. This marginalisation can
only be achieved exactly if the noise model is Gaussian. When dealing with
non-Gaussian noise models we must again consider approximations.

One perspective on the ADF approximation is that we are taking non-
Gaussian noise models and approximating them with Gaussian noise models.
While in practise we are approximating a non-Gaussian posterior distribution
with a Gaussian distribution, q (f), this approximation can also be viewed as
replacing the true noise model with a ‘apparent Gaussian noise model’ that
also induces the posterior distribution q (f). Note that this point of view is only
reasonable if the noise model is log concave, otherwise the implied Gaussian
distribution can have a negative variance.

If we accept this point of view then we consider

p (y) ≈ N
(

m|0,K + B−1
)

, (16)

where m and β are the means and precisions associated with the implied Gaus-
sians, to be a valid approximation to the marginal likelihood. The individual
site mean, mn, and precision, βn, associated with each ‘apparent Gaussian noise
model’ can be computed given that noise model’s values for gin and νin. By
rearranging (9) and (10) and replacing yn with mn we have

gi =
mn − µi−1,n

β−1
n + ςi−1,n

gi =
mn − µi−1,n

νin

mn =
gin

νin

+ µi−1,n (17)

and

νin =
1

ςi−1,n + β−1
n

β−1
n =

1

νin

− ςi−1,n

βn =
νin

1 − νinςi−1,n

. (18)

which give the site parameters for a given noise model. Note that if νinςi−1,n > 1
the site precision, βn, becomes negative. This can only occur if the noise model
is not log concave—we shall encounter such a noise model in Section 4.

3 The Informative Vector Machine

One advantage of the Gaussian process perspective referred to in the introduction
is automatic selection of the kernel parameters through likelihood optimisation.
In practise though gradients with respect to the parameters must be computed.
Computation of these gradients involves an inverse of the kernel matrix, K,
at each step. This matrix inverse gives each gradient step O

(

N3
)

complexity.
Even if the kernel parameters are given including N data points through ADF
still leads to an O

(

N3
)

complexity. The IVM algorithm seeks to resolve these
problems by seeking a sparse representation for the data set. The inspiration for
this approach is the support vector machine, a kernel algorithm for which the
solution is typically naturally sparse. This natural sparsity can arise because the
SVM algorithm ignores the process variances, however these process variances
must be accounted for if optimisation of kernel parameters via empirical Bayes is
undertaken. Csató and Opper suggest obtaining a sparse representation through
minimisation of KL divergences between the approximate posterior and a sparse
representation [8,7]. The IVM takes a simpler approach of using a selection
heuristic to incorporate only the most informative points and stopping after d

inclusions [14,21]. By making only d inclusions the resulting model is forced
to be sparse. As a result we can reduce the computational requirements of the
algorithm from O

(

N3
)

to O
(

d2N
)

and the storage requirements form O
(

N2
)

to O (dN). In the IVM this ‘sparsification’ of the original Gaussian process is
imposed by only selecting a subset of the data. The ADF algorithm allows us to
select this subset in an on-line way, given a data point selection criterion. The
IVM uses an information theoretic selection heuristic to select which data point
to include. Specifically, the point that gives the largest reduction in posterior
process entropy is included. In this way the entropy of the posterior process is
greedily minimised.

3.1 Data Point Selection

The simple greedy selection criterion on which the IVM is based is inspired
by information theory. The change in entropy of the posterior process after

including a point can be seen as a measure of reduction in the level of uncertainty.
This entropy reduction can only be evaluated because we are propagating the
posterior covariance function. Loosely speaking, the entropy of the posterior
process is analogous to the version space in the SVM. Greedily minimising the
entropy can be seen as slicing the largest possible section away from version space
and tracking the posterior covariance can be seen as maintaining a representation
of the size and shape of version space while the model is being constructed.

The entropy change associated with including the nth point at the ith inclu-
sion is given by

∆Hin = −1

2
log |Σi,n| +

1

2
log |Σi−1|

= −1

2
log |I − Σi−1diag (νi)|

= −1

2
log (1 − νinςi−1,n) . (19)

This entropy change can be evaluated for every point in the inactive set, J , and
the point associated with the largest entropy decrease can then be included.
This process is repeated until d inclusions have been made. Other criteria (such
as information gain) are also straightforward to compute. Such greedy selection
criteria are inspired by information theory and have also been applied in the
context of active learning [15,22], however in active learning the label of the
data point, yn, is assumed to be unknown before selection: here the label is
known and can strongly influence whether a particular point is selected.

We note from (19) that in order to score each point we need to keep track of
the diagonal terms from Σi−1 and the values νin. If these terms can be stored
and updated efficiently then the computational complexity of the algorithm can
be controlled.

Maintaining the whole of Σi−1 in memory would require O
(

N2
)

storage,
which is undesirable, so our first task is to seek an efficient representation of the
posterior covariance.

From (12) it is clear the posterior covariance Σi has a particular structure
that arises from the addition of successive outer products to the original prior
covariance matrix Σ0 = K. This can be re-written as

Σi = K − MT
i Mi (20)

where the kth row of Mi ∈ <i×N is given by
√

νk,nk
sk−1,nk

and nk represents
kth included data point. Recalling that si−1,ni

is the nith column of Σi−1 we
note that, if we are not storing Σi−1, we are not able to represent (for instance)
si−1,ni

directly. However, this column can be recomputed from Mi−1 and K by

si−1,ni
= kni

− aT
i−1,ni

Mi−1 (21)

where kni
= s0,ni

is the nith column of K = Σ0 and ai−1,ni
is the nith column

of Mi−1. This recomputation requires O ((i − 1) N) operations.

3.2 The Matrix Mi

Let us consider more closely what the matrix Mi represents. It is straightforward
to show that a Gaussian process which has included an active set I with i

elements has a posterior covariance of the form

Σi = K − K:,I

(

B−1
I + KI

)−1
KI,: (22)

where K:,I is a matrix containing the columns of K that are in the active set,
KI is an i × i symmetric matrix containing the rows and columns from K that
are in I and BI is a diagonal matrix of the ‘site precisions’ for the active set.

Equating with (20) we note that MT
i Mi = K:,I

(

B−1
I + KI

)−1
KI,: or

LT
i Mi = KI,:

where LiL
T
i =

(

B−1
I + KI

)−1
.

From the way that the updates in (12) accumulate it can be shown that a
valid factorisation of the matrix LiL

T
i is given by the lower triangular matrix

Li =

[

Li−1 0

aT
i−1,ni

ν
−

1

2

i,ni

]

, (23)

where L1 = ν
−

1

2

i,n1
. This lower triangular matrix is recognised as a Cholesky factor

of
(

B−1
I + KI

)−1
. We may gain some reassurance from the implicit presence of

a Cholesky decomposition within the algorithm as they are typically considered
to be a numerically stable. Note however that in [21,14] a slightly different rep-
resentation is suggested. Instead of keeping track of the Cholesky decomposition

of
(

B−1
I + KI

)

, the decomposition of
(

I + B
−

1

2

I KIB
−

1

2

I

)

is used to give greater

numerical stability when KI is not full rank and when some values of B−1
I are

close to zero. Here we prefer our representation as it arises naturally and keeps
the update equations clear.

Note that the matrix Li is only a valid lower Cholesky factor if νi,ni
is non-

negative. This can be shown to hold true if the noise model is log-concave.
Complications arise if the noise model is not log-concave; a simple strategy for
avoiding this problem is suggested in Section 4.

We have already stated that storing the entire posterior covariance matrix is
impractical because of memory requirements. However, maintaining an estimate
of the process variance associated with each data point is of interest. These
variances are the diagonal elements from the posterior covariance matrix, ςi =
diag (Σi). A vector storing these variances can be updated easily using (11), (12)
and (21) to give,

ςi = ςi−1 − νi,ni
diag

(

si−1,ni
sT
i−1,ni

)

(24)

which is computed in O (N) operations. The posterior mean output vector should
also be stored and updated using

µi = µi−1 + gini
si−1,nj

(25)

Algorithm 1 The IVM point selection algorithm.

Require: Require d = number of active points. Start with m = 0 and β = 0 for clas-
sification. For regression substitute appropriate target values. Take ς0 = diag (K),
µ = 0, J = {1, . . . , N}, I = {·}, S0 is an empty matrix.
for k = 1 to d do

for all n ∈ J do

compute gkn according to (14) (not required for Gaussian).
compute νkn according to (15) or (10).
compute ∆Hkn according to (19).

end for

nk = argmaxn∈J∆Hkn.
Update mnk

and βnk
using (17) and (18).

Compute ςk and µk using (21), (24) and (25).
Append

√
νknk

sT
k−1,nk

to Mk−1 using (21) to form Mk.
Update Lk from Lk−1 using (23).
Add nk to I and remove nk from J .

end for

which also requires O (N) operations.
An example of how these updates may be combined efficiently in practise is

given in Algorithm 1.

3.3 IVM Kernel Parameter Updates

The ADF-based IVM algorithm described in Algorithm 1 leads to sparse vectors
m and β each with d non-zero elements. In Section 2.5, we described how kernel
parameters could be updated given non-sparse vectors of these site parameters.
To maximise kernel parameters for the IVM we need to express the likelihood in
terms of sparse versions of these vectors. In [21] this is achieved by expressing
the likelihood in terms of both the active and inactive sets. Here we take a much
simpler approach of maximising the likelihood of the active points only,

p (yI |θ) ≈ N
(

mI |0,KI + B−1
I

)

, (26)

where yI is a vector containing only those elements of y that are in the active
set. The dependence of the likelihood on the parameters, θ, is through the active
portion of the kernel matrix KI .

Given the active set, I, and the site parameters, m and β, we can optimise
our approximation with respect to the kernel parameters by using a non-linear
optimiser such as scaled conjugate gradients.

Note that in practise, the quality of the active set depends on the kernel pa-
rameter selection as does the optimal site parameters. We can certainly imagine
more complex schema for optimising the kernel parameters that take account of
these dependencies in a better way, some examples of which are given in [21], but
for our experiments we simply iterated between active set selection and kernel
parameter optimisation.

3.4 Noise Parameter Updates

As well as updating the parameters of the kernel, it may be helpful to update the
parameters of the noise function. However, the likelihood approximation (26) is
only indirectly dependent on those parameter values so cannot be used as an
objective function. One way forward would be to optimise a variational lower
bound,

N
∑

n=1

∫

qd (fn) log p (yn|fn,θ) p (fn) dfn −
N
∑

n=1

∫

qd (fn) log q (fn) dfn,

on the likelihood, where θ are the parameters of the noise model that we wish
to optimise. The relevant term in this bound is

N
∑

n=1

∫

qd (fn) log p (yn|fn,θ) . (27)

This lower bound can be upper bounded by

L (θ) =

N
∑

n=1

log

∫

qd (fn) p (yn|fn,θ)

=

N
∑

n=1

log Zn. (28)

For many models it is straightforward to compute (27), however for all noise
models it is possible to compute (28). We found that, for an ordered categor-
ical noise model (where there are an atypically large number of noise model
parameters), optimisation of (28) was sufficient.

3.5 Point Removal and Expectation Propagation

The sequential nature of the ADF algorithm leads to a weakness in the approx-
imation for which a fairly straightforward fix has been suggested [16]. When
the Gaussian approximation to the likelihood after i inclusions is computed, its
associated site parameters, βni

and mni
are based on only the i− 1 points that

are already in the active set. However as more points are included and the pos-
terior approximation evolves it is likely that the quality of this approximation
becomes worse. The approach suggested by [16] is to revisit the approximation
and improve it. This refinement of the ADF algorithm is known as expectation

propagation (EP). Conceptually one can view these later updates as removing
a point from the active set (by resetting the associated site parameters to zero)
and then computing a new Gaussian approximation in the light of the current
(and usually more accurate) representation of the posterior covariance. The key
issue for the algorithm is, therefore, to be able remove a point in an efficient
manner.

Algorithm 2 The IVM algorithm for parameter optimisation.

Require: Require d active points. T iterations.
for i = 1 to T do

Select points using Algorithm 1.
Maximise the approximation to the likelihood (26) using a scaled conjugate gra-
dient optimiser [17].
if noise parameter updates are required. then

Select points using Algorithm 1.
Maximise the sum of the log partition functions (28) using a scaled conjugate
gradient optimiser.

end if

end for

Even if the expectation propagation algorithm is not being used, it may be
desirable to remove points within the IVM algorithm as it is likely to be the
case that points that were included in the early stages of the algorithm, when
the estimate of the posterior’s covariance and mean functions were poor, are
less useful than they originally appeared. Inclusion of such points is a natural
consequence of greedily selecting points to reduce entropy. Some approaches to
the implementation of point removal and expectation propagation with the IVM
are further discussed in [21].

3.6 IVM Implementation

In the experimental sections that follow we make use of the IVM algorithm for
learning. For all these experiments we used the kernel parameter initialisations
and the types of kernels detailed in Appendix B. The algorithm we used for
point selection is specified in Algorithm 1 and when optimisation was required
we typically made use of 8 iterations of Algorithm 2.

4 Semi-supervised Learning

In a traditional classification problem, data are presented in the form of a set
of input vectors X = [x1 . . .xN]

T
and associated labels y = [y1 . . . yN]

T
, yn ∈

{−1, 1}. When performing classification the IVM algorithm seeks a process map-
ping between the inputs and the labels that yields high predictive accuracy. This
is known as supervised learning, as each input data point, xn, has an associated
label, yn. In practice, labelling a data set can be a time consuming process;
very often it is straightforward to obtain input data points, xn, but expensive to
obtain an associated label yn. It is natural then to consider whether unlabelled
data points can be used to improve predictive performance. Fitting models using
such partially labelled data sets is known as ‘semi-supervised learning’.

Most probabilistic classification algorithms can be categorised as either dis-
criminative or generative methods. Discriminative methods, such as the IVM, es-
timate the probability of class membership, p (yn|xn) directly. Generative meth-
ods typically model the class-conditional densities, p (xn|yn) and use them in

combination with an estimate of the class priors to infer p (yn|xn) through Bayes’
theorem. In the former case, if we fail to make any assumptions about the under-
lying distribution of input data, the unlabelled data does not affect our predic-
tions. Thus, most attempts to make use of unlabelled data within a probabilistic
framework focus on incorporating a model of p (xn); for example, by treating
it as a mixture,

∑

yn
p (xn|yn) p (yn), and inferring p (yn|xn) (e.g., [13]), or by

building kernels based on p (xn) (e.g., [20]). These approaches can be unwieldy,
however, in that the complexities of the input distribution are typically of little
interest when performing classification, so that much of the effort spent mod-
elling p (xn) may be wasted.

An alternative is to make weaker assumptions regarding p (xn) that are of
particular relevance to classification. In particular, the cluster assumption asserts
that the data density should be reduced in the vicinity of a decision boundary
(e.g., [5]). Such a qualitative assumption is readily implemented within the con-
text of non-probabilistic kernel-based classifiers. Here we discuss how the same
assumption can be incorporated within the IVM algorithm [11].

Our approach involves a notion of a ‘null category region’, a region that acts
to exclude unlabelled data points. Such a region is analogous to the traditional
notion of a ‘margin’ and indeed our approach is similar in spirit to the trans-
ductive SVM [26], which seeks to maximise the margin by allocating labels to
the unlabelled data. A major difference, however, is that through our use of the
IVM algorithm our approach maintains and updates the process variance. As
we will see, this variance turns out to interact in a significant way with the null
category concept.

4.1 Null Category Noise Model

Before considering the null category noise model (NCNM) we first briefly review
ordered categorical models that underpin the NCNM. In the specific context of
binary classification, we consider an ordered categorical model containing three
categories6.

p (yn|fn) =

φ
(

−
(

fn + w
2

))

for yn = −1
φ
(

fn + w
2

)

− φ
(

fn − w
2

)

for yn = 0
φ
(

fn − w
2

)

for yn = 1
,

where φ (x) =
∫ x

−∞
N (z|0, 1) dz is the cumulative Gaussian distribution function

and w is a parameter giving the width of category yn = 0 (see Figure 2).
We can also express this model in an equivalent and simpler form by replacing

the cumulative Gaussian distribution by a Heaviside step function H(·) and
adding independent Gaussian noise to the process model:

p (yn|fn) =

H
(

−
(

fn + 1
2

))

for yn = −1
H
(

fn + 1
2

)

− H
(

fn − 1
2

)

for yn = 0
H
(

fn − 1
2

)

for yn = 1
,

6 See also [23] that makes use of a similar noise model in a discussion of Bayesian
interpretations of the SVM.

Figure 2. The ordered categorical noise model. The plot shows p (yn|fn) for different
values of yn. Here we have assumed three categories.

where we have standardised the width parameter to 1, by assuming that the
overall scale is also handled by the process model.

To use this model in an unlabelled setting, we introduce a further variable,
zn, that is one if a data point is unlabelled and zero otherwise. We first impose

p (zn = 1|yn = 0) = 0; (29)

in other words, a data point can not be from the category yn = 0 and be
unlabelled. We assign probabilities of missing labels to the other classes

p (zn = 1|yn = 1) = γ+ and

p (zn = 1|yn = −1) = γ−.

We see from the graphical representation in Figure 3 that zn is d-separated
from xn. Thus when yn is observed, the posterior process is updated by using
p (yn|fn). On the other hand, when the data point is unlabelled the posterior
process must be updated by p (zn|fn) which is easily computed as:

p (zn = 1|fn) =
∑

yn

p (yn|fn) p (zn = 1|yn) .

The “effective likelihood function” for a single data point, L (fn), therefore takes
one of three forms:

L (fn) =

H
(

−
(

fn + 1
2

))

for yn = −1, zn = 0
γ−H

(

−
(

fn + 1
2

))

+ γ+H
(

fn − 1
2

)

for zn = 1
H
(

fn − 1
2

)

for yn = 1 zn = 0
.

The constraint imposed by (29) implies that an unlabelled data point never
comes from the class yn = 0. Since yn = 0 lies between the labelled classes this
is equivalent to a hard assumption that no data comes from the region around

Figure 3. Graphical representation of the null category model. The fully-shaded nodes
are always observed, whereas the lightly-shaded node is observed when zn = 0.

the decision boundary. We can also soften this hard assumption if so desired by
injection of noise into the process model. If we also assume that our labelled data
only comes from the classes yn = 1 and yn = −1 we never obtain any evidence
for data with yn = 0; for this reason we refer to this category as the null category

and the overall model as a null category noise model (NCNM).

4.2 Process Model and Effect of the Null Category

To work within the Gaussian process framework we take

p (fn|xn) = N (fn|µ (xn) , ς (xn)) ,

where the mean µ (xn) and the variance ς (xn) are functions of the input vector.
A natural consideration in this setting is the effect of our likelihood function
on the distribution over fn from incorporating a new data point. First we note
that if yn ∈ {−1, 1} the effect of the likelihood is similar to that incurred in
binary classification, in that the posterior is a convolution of the step function
and a Gaussian distribution. This is comforting as when a data point is labelled
the model acts in a similar manner to a standard binary classification model.
Consider now the case when the data point is unlabelled. The effect of the data
point depends on the mean and variance of p (fn|xn). If this Gaussian has little
mass in the null category region, the posterior is similar to the prior. However, if
the Gaussian has significant mass in the null category region, the outcome may
be loosely described in two ways:

1. If p (fn|xn) ‘spans the likelihood’, Figure 4 (Left), then the mass of the
posterior can be apportioned to either side of the null category region, leading
to a bimodal posterior. The variance of the posterior is greater than the
variance of the prior, a consequence of the fact that the effective likelihood
function is not log-concave (as can be easily verified).

2. If p (fn|xn) is ‘rectified by the likelihood’, Figure 4 (Right), then the mass of
the posterior is pushed in to one side of the null category and the variance
of the posterior is smaller than the variance of the prior.

Note that for all situations when a portion of the mass of the prior distribution
falls within the null category region it is pushed out to one side or both sides.
The intuition behind the two situations is that in case 1, it is not clear what label
the data point has, however it is clear that it shouldn’t be where it currently is

(in the null category). The result is that the process variance increases. In case 2,
the data point is being assigned a label and the decision boundary is pushed to
one side of the point so that it is classified according to the assigned label.

Figure 4. Two situations of interest. Diagrams show the prior distribution over fn

(long dashes) the effective likelihood function from the noise model when zn = 1
(short dashes) and a schematic of the resulting posterior over fn (solid line). Left : The
posterior is bimodal and has a larger variance than the prior. Right : The posterior has
one dominant mode and a lower variance than the prior. In both cases the process is
pushed away from the null category.

4.3 Posterior Inference and Prediction

Recall from Section 4.2 that the noise model is not log-concave. When the vari-
ance of the process increases the best Gaussian approximation to our noise model
can have negative variance. This has an important implication: the site precision
can be computed as a negative value (see Section 2.5). This situation is discussed
in [16], where various suggestions are given to cope with the issue. For the IVM
we followed the simplest suggestion: we set a negative variance to zero. As we
have discussed, one important advantage of the Gaussian process framework is
that hyperparameters in the covariance function (i.e., the kernel function), can
be fit by optimising the marginal likelihood. In practise, however, if the process
variance is maximised in an unconstrained manner the effective width of the null
category can be driven to zero, yielding a model that is equivalent to a standard
binary classification noise model7. To prevent this from happening we regularise
with an L1 penalty on the process variances (this is equivalent to placing an
exponential prior on those parameters).

4.4 Semi-supervised Learning: Toy Problem

In all our experiments we used an RBF kernel with a white noise term (see
Appendix B).

7 Recall, as discussed in Section 2, that we fix the width of the null category to unity:
changes in the scale of the process model are equivalent to changing this width.

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

Figure 5. Results from the toy problem. There are 400 points that are labelled with
probability 0.1. Labelled data points are shown as circles and crosses. data points in
the active set are shown as large dots. All other data points are shown as small dots.
Left : Learning on the labelled data only with the IVM algorithm. All labelled points
are used in the active set. Right : Learning on the labelled and unlabelled data with
the NCNM. There are 100 points in the active set. In both plots, decision boundaries
are shown as a solid line; dotted lines represent contours within 0.5 of the decision
boundary (for the NCNM this is the edge of the null category).

We made use of Algorithm 2 without the optional noise parameter update. To
ensure that the width of the null category region wasn’t collapsing with repeated
iteration of the algorithm we used 15 iterations (typically the algorithm found a
good solution after only 4). The parameters of the noise model, {γ+, γ−} could
also be optimised, but note that if we constrain γ+ = γ− = γ then the likelihood
is maximised by setting γ to the proportion of the training set that is unlabelled.

We first considered an illustrative toy problem to demonstrate the capabilities
of our model. We generated two-dimensional data in which two class-conditional
densities interlock. There were 400 points in the original data set. Each point was
labelled with probability 0.1, leading to 37 labelled points. First a standard IVM
classifier was trained on the labelled data only (Figure 5, Left). We then used the
null category approach to train a classifier that incorporates the unlabelled data.
As shown in Figure 5 (Right), the resulting decision boundary finds a region of
low data density and more accurately reflects the underlying data distribution.

4.5 Semi-supervised Learning: USPS Digits

We next considered the null category noise model for learning of USPS handwrit-
ten digit data set. This data set is fully labelled, but we can ignore a proportion
of the labels and treat the data set as a semi-supervised task. In the experiments
that followed we used an RBF kernel with a linear component. We ran each ex-
periment ten times, randomly selecting the data points that were labelled. The
fraction of labelled points, r, was varied between 0.01 and 0.25. Each digit was
treated as a separate ‘one against the others’ binary classification class. We also

summarised these binary classification tasks in the standard way with an overall
error rate. In the first of our experiments, we attempted to learn the parameters
of the kernel using 8 iterations of Algorithm 2 to learn these parameters. The
results are summarised in Table 1.

r 0 1 2 3 4

0.010 17.9 ± 0.00 7.99 ± 6.48 9.87 ± 0.00 8.27 ± 0.00 9.97 ± 0.00
0.025 11.4 ± 8.81 0.977 ± 0.10 9.87 ± 0.00 6.51 ± 2.43 9.97 ± 0.00
0.050 1.72 ± 0.21 1.01 ± 0.10 3.66 ± 0.40 5.35 ± 2.67 7.41 ± 3.50
0.10 1.73 ± 0.14 0.947 ± 0.14 3.17 ± 0.23 3.24 ± 0.30 3.33 ± 0.30
0.25 1.63 ± 0.16 0.967 ± 0.09 2.50 ± 0.18 2.90 ± 0.20 2.77 ± 0.08

r 5 6 7 8 9 Overall

0.010 7.97 ± 0.00 8.47 ± 0.00 7.32 ± 0.00 8.27 ± 0.00 8.82 ± 0.00 83.3 ± 7.30

0.025 7.97 ± 0.00 8.47 ± 0.00 7.32 ± 0.00 8.27 ± 0.00 8.82 ± 0.00 64.2 ± 5.08

0.05 7.11 ± 1.94 1.69 ± 0.15 7.32 ± 0.00 7.42 ± 1.89 7.60 ± 2.72 33.3 ± 7.15

0.1 3.02 ± 0.27 1.48 ± 0.05 1.32 ± 0.08 3.40 ± 0.15 1.95 ± 0.25 7.67 ± 0.19

0.25 2.38 ± 0.19 1.25 ± 0.17 1.19 ± 0.06 2.61 ± 0.25 1.59 ± 0.15 6.44 ± 0.22

Table 1. Table of results for semi-supervised learning on the USPS digit data. For
these results the model learned the kernel parameters. We give the results for the
individual binary classification tasks and the overall error computed from the combined
classifiers. Each result is summarised by the mean and standard deviation of the percent
classification error across ten runs with different random seeds.

It is immediately apparent that for values of r below 0.1 a sensible decision
boundary is not found for many of the binary classification tasks. At first sight,
this reflects badly on the approach: many semi-supervised learning algorithms
give excellent performance even when the proportion of unlabelled data is so low.
However here it must be bourne in mind that the algorithm has the additional
burden of learning the kernel parameters. Most other approaches do not have
this capability and therefore results are typically reported for a given set of
kernel parameters. For this reason we also undertook experiments using kernel
parameters that were precomputed by an IVM trained on the fully labelled data
set. These results are summarised in Table 2. As expected these results are much
better in the range where r < 0.1. With the exception of the digit 2 at r = 0.01
a sensible decision boundary was learned for at least one of the runs even when
r = 0.01.

We would certainly expect the results to be better in this second experiment
as we are providing more information (in terms of precomputed kernel parame-
ters) to the model. However it is very encouraging that for r > 0.1 the results of
both experiments are similar.

r 0 1 2 3 4

0.010 3.17 ± 5.17 13.3 ± 14.18 9.87 ± 0.00 3.09 ± 0.22 8.32 ± 2.63
0.025 1.50 ± 0.18 1.52 ± 0.87 5.18 ± 1.95 2.90 ± 0.19 4.36 ± 2.08
0.050 1.50 ± 0.15 1.24 ± 0.22 3.37 ± 0.35 2.85 ± 0.14 3.27 ± 0.19
0.10 1.46 ± 0.09 1.24 ± 0.13 2.82 ± 0.16 2.75 ± 0.19 3.07 ± 0.22
0.25 1.40 ± 0.15 1.31 ± 0.16 2.44 ± 0.21 2.61 ± 0.19 2.80 ± 0.16

r 5 6 7 8 9 Overall

0.010 7.50 ± 0.99 7.70 ± 8.48 12.3 ± 16.91 7.48 ± 1.23 35.2 ± 22.90 42.3 ± 10.05

0.025 5.03 ± 1.30 1.60 ± 0.15 1.93 ± 1.90 4.32 ± 0.45 9.93 ± 8.51 140 ± 6.06

0.050 3.63 ± 0.56 1.49 ± 0.11 1.28 ± 0.09 4.07 ± 0.43 2.59 ± 1.33 8.43 ± 0.66

0.10 2.75 ± 0.22 1.30 ± 0.10 1.30 ± 0.14 3.48 ± 0.26 1.97 ± 0.24 7.24 ± 0.51

0.25 2.32 ± 0.19 1.15 ± 0.10 1.15 ± 0.05 2.74 ± 0.19 1.62 ± 0.16 6.10 ± 0.41

Table 2. Table of results for semi-supervised learning on the USPS digit data. For
these results the model was given the kernel parameters learnt by the IVM on the
standard fully labelled data. We give the results for the individual binary classification
tasks and the overall error computed from the combined classifiers.

5 Multi-task Learning

In this section, we show how the IVM approach can be extended to handle the
situation where we have multiple independent tasks (see also [12]).

The idea behind multi-task learning is that the tasks are related and that
an algorithm that makes use of these relationships may allow us to adapt to an
additional task with very little training data [1,24,4].

From a Bayesian perspective the multi-task learning problem can be ap-
proached as an instance of the general hierarchical Bayesian approach to shar-
ing strength among related statistical models [9,10]. The component models
(“tasks”) are assumed to be independent given an underlying latent variable;
marginalising across this variable couples these components. Inferentially, learn-
ing about one task updates the posterior distribution for the latent variable,
which provides a sharpened prior distribution for learning a subsequent task.

In our setting, one natural hierarchical model to consider is a model in which
there are M Gaussian process models, p (ym|Xm,θ), for m = 1, . . . ,M , and in
which the kernel hyperparameter θ is shared among the component models. Con-
ditional on θ the component models are assumed independent. While in a full
Bayesian approach we would place a prior distribution on θ and integrate over
its posterior, in the current section we again make the empirical Bayesian ap-
proximation and find a single best-fitting value of θ by maximising the marginal
likelihood.

This setup is depicted as a graphical model in Figure 6. We model the output
data for each task, ym, as a GP so that the probability distribution for the matrix
Y, whose columns are ym, is

p (Y|X,θ) =

M
∏

m=1

p (ym|Xm,θ)

where each p (ym|Xm,θ) is a Gaussian process.� �� � � �� � � � � � �
Figure 6. A graphical model that represents a multi-task GP, compare with the single
task GP in Figure 1.

The overall likelihood can be considered to be a Gaussian process over a vec-

tor y that is formed by stacking columns of Y, y =
[

yT
1 . . .yT

M

]T
. The covariance

matrix is then

K =

K1 0 0 0

0 K2 0 0

0 0
. . . 0

0 0 0 KM

and we write

p (y|X,θ) = N (0,K) . (30)

This establishes the equivalence of the multi-task GP to a standard GP. Once
again we obtain an estimate, θ̂, of the parameters by optimising the log-likelihood
with respect to the kernel parameters. These gradients require the inverse of K

and, while we can take advantage of its block diagonal structure to compute this
inverse, we are still faced with inverting Nm × Nm matrices, where Nm is the
number of data points associated with task m: however we can look to the IVM
algorithm to sparsify the GP specified by (30).

It is straightforward to show that the new posterior covariance structure after
k inclusions, qk (f), also is a Gaussian with a block-diagonal covariance matrix,

qk (f) =

M
∏

m=1

N
(

fm|µ(m)
i , Σ

(m)
i

)

. (31)

Note that k inclusions in total does not mean k inclusions for each task. Each
block of the posterior covariance is

Σ
(m)
i = Km − M

(m)
i

T
M

(m)
i ,

where the rows of M
(m)
i are given by

√

ν
(m)
ini

s
(m)
i−1,ni

. The means associated with

each task are given by

µ
(m)
i = µ

(m)
i−1 + g

(m)
ini

s
(m)
i−1,ni

(32)

and updates of ς
(m)
i can still be achieved through

ς
(m)
i = ς

(m)
i−1 − ν

(m)
i,ni

diag

(

s
(m)
i−1,ni

s
(m)
i−1,ni

T
)

. (33)

From (32) and (33) it is obvious that the updates of q
(m)
i (fm) are performed

independently for each of the M models. Point selection, however, should be
performed across models, allowing the algorithm to select the most informative
point both within and across the different tasks.

∆H
(m)
in = −1

2
log
(

1 − ν
(m)
in ς

(m)
i−1,n

)

.

We also need to maintain an active, I(m), and an inactive, J (m), set for each
task. The details of the algorithm are given in Algorithm 3.

The effect of selecting across tasks, rather than selecting independently within
tasks is shown by a simple experiment in Figure 7. Here there are three tasks,
each contains 30 data points sampled from sine waves with frequency π

5 and
differing offsets. The tasks used different distributions for the input data: in the
first it was sampled from a strongly bimodal distribution; in the second it was
sampled from a zero mean Gaussian with standard deviation of 2 and in the
third task data was sampled uniformly from the range [−15, 15]. An MT-IVM
with d = 15 and an RBF kernel of width 1 was trained on the data. The data
points that the MT-IVM used are circled. Note that all but six of the points
came from the third task. The first and second task contain less information
because the input data is less widely distributed, thus the MT-IVM algorithm
relies most heavily on the third task. This toy example illustrates the importance
of selecting the data points from across the different tasks.

To determine the kernel parameters, we again maximise the approximation
to the likelihood,

p (Y) ≈
M
∏

m=1

p
(

zm|0,Km + B−1
m

)

.

5.1 Multi-task Learning of Speech

We considered a speech data set from the UCI repository [3]. The data consist
of 15 different speakers saying 11 different phonemes 6 times each (giving 66

Algorithm 3 The multi-task IVM algorithm.

Require: d the number of active points.
for m = 1 to M do

For classification z(m) = 0 and β(m) = 0. For regression substitute appropriate
target values. Take ς

(m)
0 = diag (Km), µ(m) = 0, J(m) = {1, . . . , Nm}, M

(m)
0 is an

empty matrix.
end for

for k = 1 to d do

for m = 1 to M do

for all n ∈ J(m) do

compute g
(m)
kn according to (14) (not required for Gaussian).

compute ν
(m)
kn according to (15) or (10).

compute ∆H
(m)
kn according to (19).

end for

{Comment: Select largest reduction in entropy for each task.}
∆H

(m)
k = maxn∆H

(m)
kn

n
(m)
k = argmaxn∈J∆Hkn.

end for

{Comment: Select the task with the largest entropy reduction.}
mk = argmaxm∈J∆H

(m)
k , ni = n

(mk)
k

Update mni
and β

(mk)
ni

using (17) and (18).

Compute ς
(mk)
i and µ

(mk)
i using (21), (24) and (25).

Append
q

ν
(mk)
ini

s
(mk)
i−1,ni

T
to M

(mk)
i−1 using (21) to form Mi.

Add ni to I(mk) and remove ni from J(m).
end for

−15 −5 5 15

−1

1

−15 −5 5 15

−1

1

Task 1 Task 2

−15 −5 5 15

−1

1

Task 3

Figure 7. Three different learning tasks sampled from sine waves. The input distribu-
tion for each task is different. Points used by the MT-IVM are circled. Note that more
points are taken from tasks that give more information about the function.

training points for each speaker). By considering the each speaker as a separate
task we sought kernel parameters that are appropriate for classifying the different
phonemes, i.e. we considered that each speaker is independent given the kernel
parameters associated with the phoneme. We used 14 of the speakers to learn
the kernel parameters for each phoneme giving 14 tasks. Model evaluation was
then done by taking one example of each phoneme from the remaining speaker
(11 points) and using this data to construct a new Gaussian process model based
on those kernel parameters. Then we evaluated this model’s performance on the
remaining 55 points for that speaker. This mechanism was used for both an MT-
IVM model and an ADF trained GP where points were randomly sub-sampled.

To demonstrate the utility of the multi-task framework we also built a IVM
based Gaussian process model on the 14 speakers ignoring which speaker was
associated with each data point (924 training points). The kernel parameters
were optimised for this model and then the model was evaluated as above.

For enough information to be stored by the kernel about the phonemes it
needs to be ‘parameter rich’. We therefore used used an ARD RBF kernel in
combination with an ARD linear kernel, a white noise and constant component.
This leads to a total of 15 parameters for the kernel.

The results on the speech data are shown in Figure 8. The convergence of MT-
IVM to ≈ 10% error is roughly 10 times faster than the IVM. The MT-IVM takes
advantage of the assumed independence to train much faster than the regular
IVM. While this data set is relatively small, the structure of this experiment

10
2

10
3

10
4

10

20

30

40

time/s

%
 e

rr
or

Figure 8. Average average time vs error rate for a MT-IVM (solid line with circles)
and sub-sampled ADF-GP (dashed line with crosses) whose kernel parameters are
optimised by considering each speaker to be an independent task and an IVM optimised
by considering all points to belong to the same task (dotted line with pluses).

is important. One reason for the popularity of the HMM/mixture of Gaussians
in speech recognition is the ease with which these generative models can be
modified to take account of an individual speakers—this is known as speaker-
dependent recognition. Up until now it has not been clear how to achieve this
with discriminative models. The approach we are suggesting may be applicable
to large vocabulary word recognisers and used in speaker-dependent recognition.

6 Incorporating Invariances

A learning algorithm can often have its performance improved if invariances
present within a data set can be handled. Invariances occur very commonly, for
example, in image based data sets. Images can often be rotated or translated
without affecting the class of object they contain. The brute force approach to
handling such invariances is simply to augment the original data set with data
points that have undergone the transformation to which the data is considered
invariance. Naturally, applying this technique leads to a rapid expansion in the
size of the data set. A solution to this problem that has been suggested in the
context of the SVM is to augment only the support vectors (those data points
that are included in the expansion of the final solution) [18]. If these augmented
points are then included in the final solution they are known as ‘virtual sup-
port vectors’. The resulting algorithm yields state-of-the-art performance on the
USPS data set. Since the IVM also maintains a sparse representation of the data
set it seems natural to use the same idea in the IVM context.

6.1 USPS with Virtual Informative Vectors

In [18], it was found that the biggest improvement in performance was obtained
when using translation invariances. We therefore only considered translation
invariances in our experiments. We first applied the standard IVM classification
algorithm to the data set using an RBF kernel combined with a linear term. We
used 8 iterations of Algorithm 2 for learning the kernel parameters. We then
took the resulting active set from these experiments and used it to construct
an augmented data set. Each augmented data set had the original active set
examples plus four translations of these examples each by one pixel in the up,
down, left and right directions as prescribed in [18]. This results in an augmented
active set of 2500 points. We then reselected an active set of size d = 1000 from
this augmented active set using the standard IVM algorithm without further
learning of the kernel parameters. The results are shown in Table 3. The resulting
performance of the IVM with ‘virtual informative vectors’ is very similar to that
found through the use of ‘virtual support vectors’. However with the IVM all
the model selection was performed completely automatically.

0 1 2 3 4

0.648 ± 0.00 0.389 ± 0.03 0.967 ± 0.06 0.683 ± 0.05 1.06 ± 0.02

5 6 7 8 9 Overall

0.747 ± 0.06 0.523 ± 0.03 0.399 ± 0.00 0.638 ± 0.04 0.523 ± 0.04 3.30 ± 0.03

Table 3. Table of results for when using virtual informative vectors on the USPS digit
data. The figures show the results for the individual binary classification tasks and the
overall error computed from the combined classifiers. The experiments are summarised
by the mean and variance of the % classification error across ten runs with different
random seeds.

7 Discussion

In this paper, we have reviewed and extended the IVM algorithm from a standard
classification and regression technique to an approach that can perform semi-
supervised learning; multi-task learning; and incorporate invariances into the
model. The IVM algorithm is as computationally efficient as the popular SVM
and typically as performant [14]. However the IVM algorithm is an approxima-
tion to a Gaussian process and as such it sits within the wider framework of
Bayesian models. This firstly allowed us to use the hierarchical Bayesian ma-
chinery to extend the IVM to so that it may perform multi-task learning and
secondly it allowed us to easily incorporate a simple noise model designed to
accommodate the cluster hypothesis for semi-supervised learning.

Acknowledgements

NL acknowledges the support of the EPSRC grant ‘Learning Classifiers from
Sloppily Labelled Data’. MJ acknowledges the support of NSF grant 0412995.

References

1. J. Baxter. Learning internal representations. In Proc. COLT, volume 8, pages
311–320. Morgan Kaufmann Publishers, 1995.

2. S. Becker, S. Thrun, and K. Obermayer, editors. Advances in Neural Information

Processing Systems, volume 15, Cambridge, MA, 2003. MIT Press.
3. C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.
4. R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
5. O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised

learning. In Becker et al. [2].
6. C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:273–

297, 1995.
7. L. Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis,

Aston University, 2002.
8. L. Csató and M. Opper. Sparse representation for Gaussian process models. In

T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information

Processing Systems, volume 13, pages 444–450, Cambridge, MA, 2001. MIT Press.
9. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.

Chapman and Hall, 1995.
10. R. E. Kass and D. Steffey. Approximate Bayesian inference in conditionally inde-

pendent hierarchical models (parametric empirical Bayes models). Journal of the

American Statistical Association, 84:717–726, 1989.
11. N. D. Lawrence and M. I. Jordan. Semi-supervised learning via Gaussian processes.

In Advances in Neural Information Processing Systems, volume 17, Cambridge,
MA, 2005. MIT Press. To appear.

12. N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector ma-
chine. In R. Greiner and D. Schuurmans, editors, Proceedings of the International

Conference in Machine Learning, volume 21, pages 512–519, San Francisco, CA,
2004. Morgan Kauffman.

13. N. D. Lawrence and B. Schölkopf. Estimating a kernel Fisher discriminant in the
presence of label noise. In C. Brodley and A. P. Danyluk, editors, Proceedings of

the International Conference in Machine Learning, volume 18, San Francisco, CA,
2001. Morgan Kauffman.

14. N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process meth-
ods: The informative vector machine. In Becker et al. [2], pages 625–632.

15. D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California
Institute of Technology, 1991.

16. T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology, 2001.

17. I. T. Nabney. Netlab: Algorithms for Pattern Recognition. Advances
in Pattern Recognition. Springer, Berlin, 2001. Code available from
http://www.ncrg.aston.ac.uk/netlab/.

18. B. Schölkopf, C. J. C. Burges, and V. N. Vapnik. Incorporating invariances in
support vector learning machines. In Artificial Neural Networks — ICANN’96,
volume 1112, pages 47–52, 1996.

19. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
20. M. Seeger. Covariance kernels from Bayesian generative models. In T. G. Diet-

terich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information

Processing Systems, volume 14, pages 905–912, Cambridge, MA, 2002. MIT Press.
21. M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Er-

ror Bounds and Sparse Approximations. PhD thesis, The University of Edinburgh,
2004.

22. H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Conference

on Computational Learning Theory 10, pages 287–294. Morgan Kauffman, 1992.
23. P. Sollich. Probabilistic interpretation and Bayesian methods for support vector

machines. In Proceedings 1999 International Conference on Artificial Neural Net-

works, ICANN’99, pages 91–96, London, U.K., 1999. The Institution of Electrical
Engineers.

24. S. Thrun. Is learning the n-th thing any easier than learning the first? In Touretzky
et al. [25], pages 640–646.

25. D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. Advances in Neural

Information Processing Systems, volume 8, Cambridge, MA, 1996. MIT Press.
26. V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.
27. C. K. I. Williams. Computing with infinite networks. In M. C. Mozer, M. I. Jor-

dan, and T. Petsche, editors, Advances in Neural Information Processing Systems,
volume 9, Cambridge, MA, 1997. MIT Press.

28. C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In
Touretzky et al. [25], pages 514–520.

A ADF Mean and Covariance Updates

In Section 2.2, we stated that the updates to the mean function and the covari-
ance function for the ADF algorithm could be expressed in terms of the gradients
of

Zi =

∫

tni
(f) qi−1 (f) df .

In this appendix, we derive these results, see also [16,7,21]. First we consider
that the mean under qi (f) is given by

〈f〉 = Z−1
i

∫

f tni
(f) qi−1 (f) df .

At this point we could substitute in the relevant noise model for tni
(f) and com-

pute the expectation, however it turns out that we can express this expectation,
and the second moment, in terms of gradients of the log partition function. This
is convenient, as it means we can rapidly compute the update formula for novel
noise models. To see how this is done we first note that

∇µi−1
qi−1 (f) = Σ−1

i−1

(

f − µi−1

)

qi−1 (f)

which can be re-expressed in terms of fqi−1 (f),

fqi−1 (f) = Σi−1∇µi−1
qi−1 (f) + µi−1qi−1 (f) ,

now multiplying both sides by Z−1
i tni

(f) and integrating over f gives

〈f〉i = µi−1 + Z−1
i Σi−1∇µi−1

∫

tni
(f) qi−1 (f) df

= µi−1 + Z−1
i Σi−1∇µi−1

Zi

〈f〉i = µi−1 + Σi−1gi (34)

where we have defined gi = ∇µi−1
log Zi. The second moment matrix is given

by
〈

ffT
〉

i
= Z−1

i

∫

ffTtni
(f) qi−1 (f) df

Once again we take gradients of qi−1, but this time with respect to the covariance
matrix Σi−1.

∇Σi−1
qi−1 (f) =

(

−1

2
Σ−1

i−1 +
1

2
Σ−1

i−1

(

f − µi−1

) (

f − µi−1

)T
Σ−1

i−1

)

qi−1 (f)

which can be re-arranged, as we did for 〈f〉i to obtain

〈

ffT
〉

i
= Σi−1 + 2Σi−1Γ

(i)Σi−1 + 〈f〉i µT
i−1

+µi−1 〈f〉Ti − µi−1µ
T
i−1

where
Γ (i) = ∇Σi−1

log Zi.

The update (7) for the covariance requires

〈

ffT
〉

i
− 〈f〉i

〈

fT
〉

i
= Σi−1 − Σi−1

(

gig
T
i − 2Γ (i)

)

Σi−1. (35)

Substituting (34) and (35) into (6) and (7) we obtain the required updates for
the mean and covariance in a form that applies regardless of our noise model.

µi = µi−1 + Σi−1gi (36)

Σi = Σi−1 − Σi−1

(

gig
T
i − 2Γ (i)

)

Σi−1 (37)

B Kernels Used in Experiments

Throughout the experiments discussed in the main text we construct and learn
the parameters of a range of different covariance functions. In this appendix, we
give an overview of all the kernels used.

A covariance function can be developed from any positive definite kernel.
A new kernel function can also be formed by adding kernels together. In the

experiments we present we principally made use of the following three kernel
matrices.

The inner product kernel constrains the process prior to be over linear func-
tions,

klin (xi,xj) = θlinx
T
i xj ,

where θ is the process variance and controls the scale of the output functions.
Non linear functions may be obtained through the RBF kernel,

krbf (xi,xj) = θrbf exp
(

−γ

2
(xi − xj)

T
(xi − xj)

)

,

where γ is the inverse width parameter, which leads to infinitely differentiable
functions. Finally we considered the MLP kernel [27] which is derived by con-
sidering a multi-layer perceptron in the limit of an infinite number of hidden
units,

kmlp (xi,xj) = θmlp sin−1

wxT
i xj + b

√

(

wxT
i xi + b + 1

) (

wxT
j xj + b + 1

)

where we call w the weight variance and b the bias variance (they have interpre-
tations as the variances of prior distributions in the neural network model).

In combination with these kernels we often make use of a white noise process

kwhite (xi,xj) = θwhiteδij

where δij is the Kronecker delta 8. It is possible to represent uncertainty in the
bias by adding a constant term to the kernel matrix,

kbias (xi,xj) = θbias

where we have denoted the variance, θbias.
All the parameters we have introduced in these kernels need to be con-

strained to be positive. In our experiments, this constraint was implemented
by re-parameterising,

θ = log (1 + exp (θ′)) .

Note that as our transformed parameter θ′ → −∞ the parameter θ → 0 and as
θ′ → ∞ we see that θ → θ′.

Finally we can also consider automatic relevance determination (ARD) ver-
sions of each of these covariance functions. These process priors are formed by
replacing any inner product, xT

i xj , with a matrix inner product, xT
i Axj . If A is

positive (semi-)definite then each kernel is still valid. The ARD kernels are the
specific case where A is a diagonal matrix, A = diag (α) and the ith diagonal
element, αi, provides a scaling on the ith input variable, these input scales are
constrained to be between 0 and 1 by re-parameterising with a sigmoid function,

αi =
1

1 + exp (−α′)
.

8 The Kronecker delta δij is zero unless i = j when it takes the value 1.

Unless otherwise stated the kernel parameters were initialised with θlin = 1,
θrbf = 1, γ = 1, θmlp = 1, w = 10, b = 10 and α = [0.999, . . . , 0.999]

T
.

