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Abstract

Many diagrams contain compound objects composed of D ‘>D
parts. We propose a recognition framework that learns parts
in an unsupervised way, and requires training labels only x
for compound objects. Thus, human labeling effort is re- — P
duced and parts are not predetermined, instead appropri- \
ate parts are discovered based on the data. We model con-
textual relations between parts, such that the label of a part
can depend simultaneously on the labels of its neighbors, /
as well as spatial and temporal information. The model is S 1
a Hidden Random Field (HRF), an extension of a Condi-

tional Random Field. We apply it to find parts of boxes, ar-
rows and flowchart shapes in hand-drawn diagrams, and ~ Figure 1. Hand-drawn diagram consisting of
also demonstrate improved recognition accuracy over the —boxes and arrows.

conditional random field model without parts.

observations about compositionality and context also apply
to printed document analysis, and our proposed framework
1. Introduction is applicable to that domain.
The complexity and large variability of hand-drawn data
Hand-drawn diagrams consist of objects such as con-and different recognition tasks suggest that machine learn-
tainers and connectors, which are individually composed ofing techniques are appropriate. Machine learning systems
parts. For example, a part could be the side of a rectanglecan be trained to adapt to the user and to novel input. Un-
or the head of an arrow. A part may be produced as a frag-fortunately, such training typically requires many examples
ment of a pen stroke, be a full pen stroke, or possibly com-that must be labeled at the finest-grained level of the sys-
prise multiple strokes. Parts combine in versatile ways to tem, i.e., the level of individual parts.
form compound objects such as tables, which have varying We propose a learning framework for complex recog-
configurations of rows, columns and cells. In other words, nition tasks that consist of multiple interrelated parts,
a small set of parts can give rise to rich classes of objects.such as hand-drawn diagrams. Our framework auto-
This compositional aspect of drawings suggests that recog-matically discovers these parts, and therefore requires
nition of objects may be facilitated by identification of parts. only coarse-grained training labels for compound ob-
Recognition of hand-drawn objects and parts is challeng-jects. This has several advantages. First, human label-
ing because the meaning of individual pen strokes dependsng effort can be reduced, as only larger objects need to
on their context. A pen stroke can be simple and indistinc- be manually labeled. Second, even if we are not inter-
tive by itself, and may acquire meaning only by participat- ested in recognizing the parts themselves, the compound
ing in a larger unit. For example, we can recognize arrows object recognizers can become more accurate by model-
by decomposing them into arrow heads and arrow stems,ing parts automatically chosen for the recognition task.
and noting that they occur next to another and to sides of Third, the system can also model rich classes that re-
containers (Figure 1). Thus, to exploit context, we need to ally are unions of distinct subcategories (not strictly
model parts and relations between parts. We note that theparts), and which could not be captured by simpler mod-



els. We can still represent each subcategory as a part, as
we do not require all parts to be present in order to recog-
nize a compound object.

Related work has explored recognizers based on man- Y; Yy
ually specified parts in drawings [1]. We are not aware
of other techniques that learn parts and relationships be- .
tween parts in two dimensions, however there is a wealth of CRF ‘ x
hidden Markov models that learn parts in one-dimensional
sequences, such as symbol recognizers [6]. Bayesian net-
works have been used to recognize and generate (but not
learn) parts in two dimensions [2]. Contextual parts-based HRF .x
models are also common in the computer vision commu-
nity [7]. ] » ] ] Figure 2. A graphical model for a CRF and

Our model is a conditional hidden random field an HRF modeling irregular spatial dependen-
(HRF) [4], an extension of a conditional random field cies in two dimensions. At training time, in-
(CRF) [5] and a hidden Markov random field [10]. Con- put x and object labels y are observed (indi-
ditional random fields are powerful models of dependen-  5ieq by filled circles), but parts  h are unob-
cies between items, which use flexible features, and are ggpyeq (empty circles). All inputs ~ x are con-
trained in a discriminative way. They have been success- nacted to the layer above it (indicated by dot-
fully applied to recognize hand-drawn diagrams [8] and g lines).
outlines [9]. Unfortunately, conditional random fields must
be trained with fully labeled training data, and cannot dis-
cover parts.

Unlike a CRF, our HRF also captures relations between o . )
unobserved“hidden”) variables, which serve to identify influences thg deC|3|_ons of |t§ neighbors. Edges of a graph
parts. These hidden variables also depend on features ofl€note what interactions are included.
the data (such as lengths and angles of pen strokes), and on Formally, letx = {x;} be an input random vector for
observed labels. A Simple HRF, mOdeling restricted Spatial the observed data7 a[}d: {yz} be an output random vec-
structures forming trees, has previously been used to recogtor over labels of the corresponding data. The inpatight
nize objects in images [7]. range over the pen strokes and the ougpuange over dis-

We first review CRFs and then propose a full two- crete labels of shapes to be recognized. Interactions are de-
dimensional HRF model, including cyclical spatial depen- scribed by an undirected graph= (V, E') where the nodes
dencies. Next, we apply the model to recognize and dis-V are parts or objects to be classified and the edgas-
cover parts in hand-drawn diagrams of boxes, arrows anddicate possible dependencies. An example graphical model
flowcharts. for a CRF is depicted in Figure 2.

A CRF describes the conditional probability distribution
2. Conditional Random Fields P(y|x) between the input data and the labels. It has the
form of a normalized product of potential functiods®)
and¥(® on nodes and edges of the graph, measuring com-

Many traditional discriminative classification ap-
y P |patlbllltybetweenfeaturesand labels:

proaches such as neural networks and support vecto
machines classify labeled objects examples only indepen-
dently of one another. In particular, each object or part in 1 1 2
a diagram would be classified without considering the la- P(ylx,8) = Z(0) H Ui (yi, % 0) H ‘I’z(',j) (Yi,yj,%: )
bels of the others. In contrast, conditional random fields v (0.5)er @)
(CRFs) [5] model dependencies not only between in- andZ(6) = (]| v (g, x;0) 11 U (g, 97, %: 0))
put data and its labels, but also dependencies between y i€V (4,§)€E
labels and neighboring labels, thus allowing us to ex-
ploit contextual clues. CRF model this joint distribution
over labels, but unlike MRFs, they do not model the distri-
bution over the input but merely condition on it.

A conditional random field can be seen as a network of  Both types of potentials use a linearly weighted combi-
interacting classifiers: the decision made by one classifiernation of featureg; (x) or f;;(x), passed through an expo-

Z(0) is a normalizing constant known as the partition func-
tion (for brevity we suppress its dependencexdn



nential nonlinearity: labelsy; exchanged for parts;):

1 (1) (3)

. P(y,h|x,0) =—— U (h;,x;0)¥; i hi; @)
Site U (y;,x;0) = exp(0M (y;) g (x)) ) (v, hlx, 6) Z(0) ll;[/ o (hi, %5 0)W;7 (yis i3 6)
Interaction ‘115,2]) (y“ Yj, X 0) = exp(0(2) (yl, yj)Tfij (X)) H \I[E?j)(h“ hj; x; 0) (5)

(3) (i)EE

. . . where the extra potentials\> are fixed at
Each class has separate site weights (y;) and pairs of P ’

classes have interaction weigitts (;, y;). One can view \IJES)(yi, hi;0) = 6(y(hi) = i) (6)
the interaction potential (3) as a classifier of pairs of neigh- N A . o .
boring labels that depends on the data through the feature%nedéEo)k;z;ﬂtmgg?éﬂégncnon' Substituting our potentials,
f;;(x). Note that there are no independence assumptions on P y
featuresg;(x) andg;(x), nor onf;;(x) for different sites; Ply|x,8) = Z(le) Z [exp (Z 0™ (hi)"gi(x))-

andj. For example, features can overlap, be strongly corre- v

lated, and extend over long distances or even depend on all
input. g P exp (2 09 (hishy) "5 () T] (k) = v2)].
(,5)eE i€V
(7)
3. Hidden Random Fields We determine the paramete® during training (sec-
tion 3.2), but first describe inference given such trained

A hidden random field [4] extends the conditional ran- parameters.

dom field by introducing hidden variablésthat are not ob-
served during training. These hidden variables provide ex-
tra modeling power, allowing the model to uncover an addi-
tional layer of structure not explicit in the observed labels.
For example, they could provide the model with extra mem-
ory to propagate long-range interactions.

3.1. Inference in HRFs

We are typically interested in predicting labels for new
datax. We predict by averaging out the hidden variables
and all label variables but one, to calculate the maximum

marginals
In our case, we shall employ the hidden variables to indi- MM
cate parts of compound objects. During training, we observe ~ Yi = argmax, P(y[x, 8), (8)
an object labe}; at each site, but we assume that the ob- =argmax > > P(y,hx,0), VieV. (9)
ject consists of unknown parts. For example, a pen stroke y\y; h

!abeledhas d:e\rrO\;v TTlayHSRE)EC'f'Cj”Iy %e an (j‘”OV.V stg nt] or Alternatively, we can calculate the most likely joint config-
arrow head: part. the MOodels dependencies beWeen, . tion of labels by taking the argmax simultaneously over

these p{atrts, e,.g. an ?rro‘,N htiad trr]nay b etrrr:or? I|kelyhto %C all y. Although such configurations are globally consistent,
curnexttoan arrow stem rathér than another arrowneaad.. y, per fragment error tends to be slightly worse. To see

Elgure 2 shows the graphical model for the HRF at t_rammg what parts the algorithm has learned, we can look at the
time: the unobserveH; nodes are drawn as empty circles. : .

- ) o . most likely parts:
Edges indicate direct dependencies included in the model.

MM
For simplicity, we fix the relationship between object la- /i = argmax, P(hi[x, 6), (10)
bels and parts a priori. In particular, we specify the number = argmay, Z Z P(y,h|x,0), VieV. (11)
of parts for each compound class, and do not share parts be- Yy h\h;

tween clasges. In other words, we restrict a part variable Both of these tasks require summing over a joint space of
corresponding toa labef to assume only a subs_et of val- (y, h) of exponential size in the number of variables. For-
ues, 59 thak u.nlquely determmeg: We denote this deter- tunately, because of the factorized structur@¢§, h|x, 6)
ministic mapping from parts to objects pyh.). and the assumed sparsity of interactions in the gr@ph
The HRF model averages over the unobserved hiddenthere is an efficient dynamic programming algorithm to do

variables. Mathematically, so [3]. We remove cycles in the original graptby triangu-
lating the graph and construct a junction tree of cliques, and
P(y|x,0) = Z P(y,h|x,0) (4) then apply the junction tree algorithm to calculate all the re-
h quired marginals. The cost is exponential in the size of the

largest clique in the junction tree, which was manageable of
The joint model ovel(y, h) is similar to the CRF (with the  size 9 in our experiments.



3.2. Training HRFs

We train the HRF by maximizing the conditional log
likelihood £ = log P(y|x, 0) of the observed labejgs, plus
a Gaussian prior on the parametét&®) = N(0;0,0°I).

objects with sides, stems and heads, thus we are interested
to see what parts the HRF will learn, and whether classifi-
cation performance is improved over a CRF model without
parts.

We break the task into three steps:

Since we do not know the assignment of the hidden parts

h we have to infer their values. The EM algorithm could
be applied here, but we believe that it is faster to maxi-
mize the observed likelihood directly. Training via gradi-

1. Subdivision of pen strokes into fragments,
2. Construction of an HRF on the fragments,
3. Training and inference on the random field.

ent ascent using the BFGS quasi-Newton takes 30 minutes

for our dataset. The gradients with respect to the parame-

ters@M (n') and@® (n’, ") have simple forms
dL
dg(l)(h/)

> (P =11 y,0) = P(hi = 1| 8))gi(x)

i€V

-5

(1,7)EE

(12)

d
£ (P(h,» =W, h;=h"|y,0)—

d0(2)(h’, )

P = W s = 0" | 6) )£ ().
(13)

The necessary marginalB(h; = b’ | y,0) and P(h; =
h’ | ) are calculated as during inference via the junction
tree algorithm, as are the pairwise marginalsfigih ;.

Unlike the log likelihood function for a CRF, the log like-
lihood of an HRF is not convex, and may have local max-
ima. To find a good maximum we could constrain the likeli-
hood by training with a few labeled parts which we plan
to do in future work. The parameter priof is important
for reducing overfitting and is chosen by cross-validation.

3.3. Parameter structure

Our current interaction features are symmetric so that
fi; = f;;. In this case the interaction parameters will also
be symmetric so tha®® (n/, h"") = 6@ (h”, 1'). To fur-
ther reduce the number of parameters, we share paramete

such that?® (k' ") = OshareaWheny(h') # y(h"). All

gradient contributions to shared parameters are summed.
Furthermore, we remove a redundancy in the site and

interaction parameters. The parametefé)(hi) give an

equivalent model to the parameted§’ (h;) — 6V (1),

hence we simply fix the paramet@f') (1) = 0. Similarly,

we fix0@(1,1) = 0.

4. Application to Hand-drawn diagram clas-
sification

We apply HRFs to classification of online ink, in particu-

The input is electronic ink recorded as sampled loca-
tions of the pen, and collected into strokes. In the first step,
strokes are divided into fragments small enough to belong to
a single box or arrow. In contrast, strokes can occasionally
span more than one shape, for example when a user draws
a box and an arrow without lifting the pen. We choose frag-
ments to be groups of ink dots within a stroke that form
straight line segments within some tolerance.

In the second step, we construct a hidden random field on
the fragments. Each ink fragment is represented by a hid-
den node in the graph. In successive experiments, we as-
sume that boxes and arrows consist of two, three or four
parts each. Once a label node is observed or hypothesized,
the hidden variable is constrained to assume only parts cor-
responding to that label. We also do an experiment assume
the objects have only one part each, in which case the model
reduces to a CRF.

The HRF potential functiong (1) and¥(®) quantify how
compatible parts are with the underlying ink and with neigh-
boring parts and labels. Each site potential refers to the part
h; of a particular fragment and its ink context. The con-
text may be any subset of the diagranbut typically only
neighboring fragments are included. Interaction potentials
model whether two parts are compatible given pairwise con-
textual features.

We compute many redundant low-level ink features, and
incorporate them into potentials in the random field. The
HRF algorithm then learns feature weights discriminative

I
between hidden variables corresponding to different Iabels,]%r the task.

Our two simplest features are the length and orientation
angle of an ink fragment. These are encoded in site po-
tentials. Next, for interaction potentials, we compute fea-
tures depending on pairs of fragmei#nd;. These include
the distance and angle between the fragments, and tempo
ral features such as whether the pen was lifted in between
them.

Finally, we include template features that detect simple
perceptual relations. We employ domain-knowledge to cap-
ture parts of hand-drawn diagrams. We employ a basic cor-
ner and a T-junction feature, a box-side feature that checks
whether corners are present on both ends of a fragment.
Some of these features yield real number values, but most

lar to a classification problem of boxes and arrows, and alsoare binary. Finally, we include a bias site feature and a bias
to flowcharts. Boxes and arrows can be seen as compoundhteraction feature that are both always one. In total, we



Model Mean error
CRF no interaction 13.3+ 0.7%
CRF joint 2.7+ 0.7%
HRF 2+2 parts 2.3+ 0.9%

Table 1. Number of misclassified fragments
for a CRF without interaction potentials, a
CRF with interactions but no parts, and an
HRF with 2 parts per class.

have 61 site features and 37 interaction features. For other ¢~—% T
recognition tasks, appropriate features can be added easily.

—
Figure 3. Discovered parts (numbered 1, 2, 3,

We used a TabletPC pen computer to collect two small ~ 4) and labels (connectors and containers are
datasets consisting of A) 10 diagrams with boxes and ar-  thin and thick lines) in the box-arrow diagram
rows, and B) 40 flowcharts with rectangles, diamonds, el-  from Figure 1.
lipses, arrows and straight line connectors. Preprocessing
the dataset yielded 800 and 3000 stroke fragments respec-

tively, half of which were used for training, ar,1d half for 4t to be horizontal and vertical parts of rectangles and el-
te_stmg._We labeled each training fragment as,part of con-jinses (ellipses had been fragmented into straight line seg-
tainer’ (i.e. arectangle, diamond or ellipse), or part of con- ents). The algorithm put diagonal sides of diamonds into

nector’ (i.e. aline or arrow), and this was the binary classifi- hart 4, and other parts of ellipses in 3. The connector parts
cation task. We built an HRF with interaction potentials be- \yere |ess interpretable, consisting mostly of alternating 1s
tween all pairs of fragments that were within 5mm of each g4 2s.

other (larger values would use more context but more com-

putation) . pends on the features we provide, and parts may not neces-
We compared the recognition performance of two CRF g1y correspond to simple semantic parts. Our interaction

models and an HRF model with 2 parts each per containerfe a1 res were symmetric, but would need to be directed in

and connector, all using the.same fea_tures. The performanc%rd’ar to learn asymmetric relations such as 'to-the-right-of’
for the models was good given the simple features and the

e oo .-or 'above’.

small training set. Classification took about 1 second per di-
agram in our research prototype. The mean test error across
10 splits of the data is summarized in Table 1. The HRF 6. Conclusion
model performed better than both CRFs. The (standard)
joint CRF significantly outperformed a CRF without inter- We have proposed a general method that learns parts of
action potentials, which classifies items independently of compound objects in an unsupervised way. This model is
neighboring labels, and is equivalent to a logistic regres- powerful and has many potential applications in handwrit-
sion classifier applied to the site features. ing recognition, document analysis, and object recognition,

More interestingly, we examined what parts the HRF al- gnd opens several opportunities for further research. For ex-
gorithm had learned. It determined the most likely parts gmple, it would be desirable to develop a criterion to au-
(shown numbered) and the most likely labels for the box- tomatically determine the number of parts per object class.
arrow data in Figure 3 using two parts per class. One ar-\goreover, the number of parameters grows quickly as more
row head was assigned part 1 (as well as some arrow headgarts are introduced, necessitating more parameter sharing
in other diagrams), but most arrow heads and arrow stemsanq regularization to avoid overfitting. Parts may also be
were assigned to 2. The algorithm placed horizontal box |earned more easily with partial supervision (labeling some
sides into part 3 and vertical sides in 4. Next, we tried of the parts in addition to labeling the compound objects).

the flowchart data allowing two connector parts (1,2) and Finally, we need more experiments to determine the com-
four container parts (3—6) in order to capture the differencescfﬂexiw of parts that can be learned.

among container types (Figure 4). Here, parts 5 and 6 turne

5. Experiments and Discussion

In general, the types of parts the algorithm discovers de-



Figure 4. Discovered parts (numbered 1-
6) and labels (thin and thick lines) in a
flowchart. Small circles indicate fragment
ends.
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