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Abstract

Many diagrams contain compound objects composed of
parts. We propose a recognition framework that learns parts
in an unsupervised way, and requires training labels only
for compound objects. Thus, human labeling effort is re-
duced and parts are not predetermined, instead appropri-
ate parts are discovered based on the data. We model con-
textual relations between parts, such that the label of a part
can depend simultaneously on the labels of its neighbors,
as well as spatial and temporal information. The model is
a Hidden Random Field (HRF), an extension of a Condi-
tional Random Field. We apply it to find parts of boxes, ar-
rows and flowchart shapes in hand-drawn diagrams, and
also demonstrate improved recognition accuracy over the
conditional random field model without parts.

1. Introduction

Hand-drawn diagrams consist of objects such as con-
tainers and connectors, which are individually composed of
parts. For example, a part could be the side of a rectangle
or the head of an arrow. A part may be produced as a frag-
ment of a pen stroke, be a full pen stroke, or possibly com-
prise multiple strokes. Parts combine in versatile ways to
form compound objects such as tables, which have varying
configurations of rows, columns and cells. In other words,
a small set of parts can give rise to rich classes of objects.
This compositional aspect of drawings suggests that recog-
nition of objects may be facilitated by identification of parts.

Recognition of hand-drawn objects and parts is challeng-
ing because the meaning of individual pen strokes depends
on their context. A pen stroke can be simple and indistinc-
tive by itself, and may acquire meaning only by participat-
ing in a larger unit. For example, we can recognize arrows
by decomposing them into arrow heads and arrow stems,
and noting that they occur next to another and to sides of
containers (Figure 1). Thus, to exploit context, we need to
model parts and relations between parts. We note that the

Figure 1. Hand-drawn diagram consisting of
boxes and arrows.

observations about compositionality and context also apply
to printed document analysis, and our proposed framework
is applicable to that domain.

The complexity and large variability of hand-drawn data
and different recognition tasks suggest that machine learn-
ing techniques are appropriate. Machine learning systems
can be trained to adapt to the user and to novel input. Un-
fortunately, such training typically requires many examples
that must be labeled at the finest-grained level of the sys-
tem, i.e., the level of individual parts.

We propose a learning framework for complex recog-
nition tasks that consist of multiple interrelated parts,
such as hand-drawn diagrams. Our framework auto-
matically discovers these parts, and therefore requires
only coarse-grained training labels for compound ob-
jects. This has several advantages. First, human label-
ing effort can be reduced, as only larger objects need to
be manually labeled. Second, even if we are not inter-
ested in recognizing the parts themselves, the compound
object recognizers can become more accurate by model-
ing parts automatically chosen for the recognition task.
Third, the system can also model rich classes that re-
ally are unions of distinct subcategories (not strictly
parts), and which could not be captured by simpler mod-



els. We can still represent each subcategory as a part, as
we do not require all parts to be present in order to recog-
nize a compound object.

Related work has explored recognizers based on man-
ually specified parts in drawings [1]. We are not aware
of other techniques that learn parts and relationships be-
tween parts in two dimensions, however there is a wealth of
hidden Markov models that learn parts in one-dimensional
sequences, such as symbol recognizers [6]. Bayesian net-
works have been used to recognize and generate (but not
learn) parts in two dimensions [2]. Contextual parts-based
models are also common in the computer vision commu-
nity [7].

Our model is a conditional hidden random field
(HRF) [4], an extension of a conditional random field
(CRF) [5] and a hidden Markov random field [10]. Con-
ditional random fields are powerful models of dependen-
cies between items, which use flexible features, and are
trained in a discriminative way. They have been success-
fully applied to recognize hand-drawn diagrams [8] and
outlines [9]. Unfortunately, conditional random fields must
be trained with fully labeled training data, and cannot dis-
cover parts.

Unlike a CRF, our HRF also captures relations between
unobserved(“hidden”) variables, which serve to identify
parts. These hidden variables also depend on features of
the data (such as lengths and angles of pen strokes), and on
observed labels. A simple HRF, modeling restricted spatial
structures forming trees, has previously been used to recog-
nize objects in images [7].

We first review CRFs and then propose a full two-
dimensional HRF model, including cyclical spatial depen-
dencies. Next, we apply the model to recognize and dis-
cover parts in hand-drawn diagrams of boxes, arrows and
flowcharts.

2. Conditional Random Fields

Many traditional discriminative classification ap-
proaches such as neural networks and support vector
machines classify labeled objects examples only indepen-
dently of one another. In particular, each object or part in
a diagram would be classified without considering the la-
bels of the others. In contrast, conditional random fields
(CRFs) [5] model dependencies not only between in-
put data and its labels, but also dependencies between
labels and neighboring labels, thus allowing us to ex-
ploit contextual clues. CRF model this joint distribution
over labels, but unlike MRFs, they do not model the distri-
bution over the input but merely condition on it.

A conditional random field can be seen as a network of
interacting classifiers: the decision made by one classifier
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Figure 2. A graphical model for a CRF and
an HRF modeling irregular spatial dependen-
cies in two dimensions. At training time, in-
put x and object labels y are observed (indi-
cated by filled circles), but parts h are unob-
served (empty circles). All inputs x are con-
nected to the layer above it (indicated by dot-
ted lines).

influences the decisions of its neighbors. Edges of a graph
denote what interactions are included.

Formally, letx = {xi} be an input random vector for
the observed data, andy = {yi} be an output random vec-
tor over labels of the corresponding data. The inputx might
range over the pen strokes and the outputy range over dis-
crete labels of shapes to be recognized. Interactions are de-
scribed by an undirected graphG = (V,E) where the nodes
V are parts or objects to be classified and the edgesE in-
dicate possible dependencies. An example graphical model
for a CRF is depicted in Figure 2.

A CRF describes the conditional probability distribution
P (y|x) between the input data and the labels. It has the
form of a normalized product of potential functionsΨ(1)

andΨ(2) on nodes and edges of the graph, measuring com-
patibility between features and labels:

P (y|x,θ) =
1

Z(θ)

∏
i∈V

Ψ(1)
i (yi,x;θ)

∏
(i,j)∈E

Ψ(2)
i,j (yi, yj ,x;θ)

(1)

andZ(θ) =
∑
y

(∏
i∈V

Ψ(1)
i (yi,x;θ)

∏
(i,j)∈E

Ψ(2)
i,j (yi, yj ,x;θ)

)

Z(θ) is a normalizing constant known as the partition func-
tion (for brevity we suppress its dependence onx).

Both types of potentials use a linearly weighted combi-
nation of featuresgi(x) or fij(x), passed through an expo-



nential nonlinearity:

Site Ψ(1)
i (yi,x;θ) = exp(θ(1)(yi)Tgi(x)) (2)

Interaction Ψ(2)
i,j (yi, yj ,x;θ) = exp(θ(2)(yi, yj)Tfij(x)).

(3)

Each class has separate site weightsθ(1)(yi) and pairs of
classes have interaction weightsθ(2)(yi, yj). One can view
the interaction potential (3) as a classifier of pairs of neigh-
boring labels that depends on the data through the features
fij(x). Note that there are no independence assumptions on
featuresgi(x) andgj(x), nor onfij(x) for different sitesi
andj. For example, features can overlap, be strongly corre-
lated, and extend over long distances or even depend on all
input.

3. Hidden Random Fields

A hidden random field [4] extends the conditional ran-
dom field by introducing hidden variablesh that are not ob-
served during training. These hidden variables provide ex-
tra modeling power, allowing the model to uncover an addi-
tional layer of structure not explicit in the observed labels.
For example, they could provide the model with extra mem-
ory to propagate long-range interactions.

In our case, we shall employ the hidden variables to indi-
cate parts of compound objects. During training, we observe
an object labelyi at each sitei, but we assume that the ob-
ject consists of unknown partshi. For example, a pen stroke
labeled as ’arrow’ may specifically be an ’arrow stem’ or
’arrow head’ part. The HRF models dependencies between
these parts, e.g. an ’arrow head’ may be more likely to oc-
cur next to an ’arrow stem’ rather than another ’arrow head’.
Figure 2 shows the graphical model for the HRF at training
time: the unobservedhi nodes are drawn as empty circles.
Edges indicate direct dependencies included in the model.

For simplicity, we fix the relationship between object la-
bels and parts a priori. In particular, we specify the number
of parts for each compound class, and do not share parts be-
tween classes. In other words, we restrict a part variableh
corresponding to a labely to assume only a subset of val-
ues, so thath uniquely determinesy. We denote this deter-
ministic mapping from parts to objects byy(hi).

The HRF model averages over the unobserved hidden
variables. Mathematically,

P (y|x,θ) =
∑
h

P (y,h|x,θ) (4)

The joint model over(y,h) is similar to the CRF (with the

labelsyi exchanged for partshi):

P (y,h|x,θ) =
1

Z(θ)

∏
i∈V

Ψ(1)
i (hi,x;θ)Ψ(3)

i (yi, hi;θ)·∏
(i,j)∈E

Ψ(2)
i,j (hi, hj ,x;θ) (5)

where the extra potentialsΨ(3)
i are fixed at

Ψ(3)
i (yi, hi;θ) = δ(y(hi) = yi) (6)

andδ(·) is an indicator function. Substituting our potentials,
the probability becomes

P (y|x,θ) =
1

Z(θ)

∑
h

[
exp

( ∑
i∈V

θ(1)(hi)Tgi(x)
)
·

exp
( ∑
(i,j)∈E

θ(2)(hi, hj)Tfij(x)
) ∏

i∈V

δ(y(hi) = yi)
]
.

(7)

We determine the parametersθ during training (sec-
tion 3.2), but first describe inference given such trained
parameters.

3.1. Inference in HRFs

We are typically interested in predicting labels for new
datax. We predict by averaging out the hidden variables
and all label variables but one, to calculate the maximum
marginals

yMM
i = argmaxyi

P (yi|x,θ), (8)

= argmaxyi

∑
y\yi

∑
h

P (y,h|x,θ), ∀i ∈ V. (9)

Alternatively, we can calculate the most likely joint config-
uration of labels by taking the argmax simultaneously over
all y. Although such configurations are globally consistent,
the per fragment error tends to be slightly worse. To see
what parts the algorithm has learned, we can look at the
most likely parts:

hMM
i = argmaxhi

P (hi|x,θ), (10)

= argmaxhi

∑
y

∑
h\hi

P (y,h|x,θ), ∀i ∈ V. (11)

Both of these tasks require summing over a joint space of
(y,h) of exponential size in the number of variables. For-
tunately, because of the factorized structure ofP (y,h|x,θ)
and the assumed sparsity of interactions in the graphG,
there is an efficient dynamic programming algorithm to do
so [3]. We remove cycles in the original graphG by triangu-
lating the graph and construct a junction tree of cliques, and
then apply the junction tree algorithm to calculate all the re-
quired marginals. The cost is exponential in the size of the
largest clique in the junction tree, which was manageable of
size 9 in our experiments.



3.2. Training HRFs

We train the HRF by maximizing the conditional log
likelihoodL = log P (y|x,θ) of the observed labelsy, plus
a Gaussian prior on the parametersP (θ) = N(θ; 0, σ2I).
Since we do not know the assignment of the hidden parts
h we have to infer their values. The EM algorithm could
be applied here, but we believe that it is faster to maxi-
mize the observed likelihood directly. Training via gradi-
ent ascent using the BFGS quasi-Newton takes 30 minutes
for our dataset. The gradients with respect to the parame-
tersθ(1)(h′) andθ(2)(h′, h′′) have simple forms

dL
dθ(1)(h′)

=
∑
i∈V

(
P (hi = h′ | y,θ)− P (hi = h′ | θ)

)
gi(x)

(12)
dL

dθ(2)(h′, h′′)
=

∑
(i,j)∈E

(
P (hi = h′, hj = h′′ | y,θ)−

P (hi = h′, hj = h′′ | θ)
)
fij(x).

(13)

The necessary marginalsP (hi = h′ | y,θ) andP (hi =
h′ | θ) are calculated as during inference via the junction
tree algorithm, as are the pairwise marginals forhi, hj .

Unlike the log likelihood function for a CRF, the log like-
lihood of an HRF is not convex, and may have local max-
ima. To find a good maximum we could constrain the likeli-
hood by training with a few labeled partsh, which we plan
to do in future work. The parameter priorσ2 is important
for reducing overfitting and is chosen by cross-validation.

3.3. Parameter structure

Our current interaction features are symmetric so that
fij = fji. In this case the interaction parameters will also
be symmetric so thatθ(2)(h′, h′′) = θ(2)(h′′, h′). To fur-
ther reduce the number of parameters, we share parameters
between hidden variables corresponding to different labels,
such thatθ(2)(h′, h′′) = θsharedwheny(h′) 6= y(h′′). All
gradient contributions to shared parameters are summed.

Furthermore, we remove a redundancy in the site and
interaction parameters. The parametersθ(1)(hi) give an
equivalent model to the parametersθ(1)(hi) − θ(1)(1),
hence we simply fix the parameterθ(1)(1) = 0. Similarly,
we fix θ(2)(1, 1) = 0.

4. Application to Hand-drawn diagram clas-
sification

We apply HRFs to classification of online ink, in particu-
lar to a classification problem of boxes and arrows, and also
to flowcharts. Boxes and arrows can be seen as compound

objects with sides, stems and heads, thus we are interested
to see what parts the HRF will learn, and whether classifi-
cation performance is improved over a CRF model without
parts.

We break the task into three steps:

1. Subdivision of pen strokes into fragments,

2. Construction of an HRF on the fragments,

3. Training and inference on the random field.

The input is electronic ink recorded as sampled loca-
tions of the pen, and collected into strokes. In the first step,
strokes are divided into fragments small enough to belong to
a single box or arrow. In contrast, strokes can occasionally
span more than one shape, for example when a user draws
a box and an arrow without lifting the pen. We choose frag-
ments to be groups of ink dots within a stroke that form
straight line segments within some tolerance.

In the second step, we construct a hidden random field on
the fragments. Each ink fragment is represented by a hid-
den node in the graph. In successive experiments, we as-
sume that boxes and arrows consist of two, three or four
parts each. Once a label node is observed or hypothesized,
the hidden variable is constrained to assume only parts cor-
responding to that label. We also do an experiment assume
the objects have only one part each, in which case the model
reduces to a CRF.

The HRF potential functionsΨ(1) andΨ(2) quantify how
compatible parts are with the underlying ink and with neigh-
boring parts and labels. Each site potential refers to the part
hi of a particular fragment and its ink context. The con-
text may be any subset of the diagramx, but typically only
neighboring fragments are included. Interaction potentials
model whether two parts are compatible given pairwise con-
textual features.

We compute many redundant low-level ink features, and
incorporate them into potentials in the random field. The
HRF algorithm then learns feature weights discriminative
for the task.

Our two simplest features are the length and orientation
angle of an ink fragment. These are encoded in site po-
tentials. Next, for interaction potentials, we compute fea-
tures depending on pairs of fragmentsi andj. These include
the distance and angle between the fragments, and tempo-
ral features such as whether the pen was lifted in between
them.

Finally, we include template features that detect simple
perceptual relations. We employ domain-knowledge to cap-
ture parts of hand-drawn diagrams. We employ a basic cor-
ner and a T-junction feature, a box-side feature that checks
whether corners are present on both ends of a fragment.
Some of these features yield real number values, but most
are binary. Finally, we include a bias site feature and a bias
interaction feature that are both always one. In total, we



Model Mean error
CRF no interaction 13.3± 0.7%
CRF joint 2.7± 0.7%
HRF 2+2 parts 2.3± 0.9%

Table 1. Number of misclassified fragments
for a CRF without interaction potentials, a
CRF with interactions but no parts, and an
HRF with 2 parts per class.

have 61 site features and 37 interaction features. For other
recognition tasks, appropriate features can be added easily.

5. Experiments and Discussion

We used a TabletPC pen computer to collect two small
datasets consisting of A) 10 diagrams with boxes and ar-
rows, and B) 40 flowcharts with rectangles, diamonds, el-
lipses, arrows and straight line connectors. Preprocessing
the dataset yielded 800 and 3000 stroke fragments respec-
tively, half of which were used for training, and half for
testing. We labeled each training fragment as ’part of con-
tainer’ (i.e. a rectangle, diamond or ellipse), or ’part of con-
nector’ (i.e. a line or arrow), and this was the binary classifi-
cation task. We built an HRF with interaction potentials be-
tween all pairs of fragments that were within 5mm of each
other (larger values would use more context but more com-
putation)

We compared the recognition performance of two CRF
models and an HRF model with 2 parts each per container
and connector, all using the same features. The performance
for the models was good given the simple features and the
small training set. Classification took about 1 second per di-
agram in our research prototype. The mean test error across
10 splits of the data is summarized in Table 1. The HRF
model performed better than both CRFs. The (standard)
joint CRF significantly outperformed a CRF without inter-
action potentials, which classifies items independently of
neighboring labels, and is equivalent to a logistic regres-
sion classifier applied to the site features.

More interestingly, we examined what parts the HRF al-
gorithm had learned. It determined the most likely parts
(shown numbered) and the most likely labels for the box-
arrow data in Figure 3 using two parts per class. One ar-
row head was assigned part 1 (as well as some arrow heads
in other diagrams), but most arrow heads and arrow stems
were assigned to 2. The algorithm placed horizontal box
sides into part 3 and vertical sides in 4. Next, we tried
the flowchart data allowing two connector parts (1,2) and
four container parts (3–6) in order to capture the differences
among container types (Figure 4). Here, parts 5 and 6 turned
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Figure 3. Discovered parts (numbered 1, 2, 3,
4) and labels (connectors and containers are
thin and thick lines) in the box-arrow diagram
from Figure 1.

out to be horizontal and vertical parts of rectangles and el-
lipses (ellipses had been fragmented into straight line seg-
ments). The algorithm put diagonal sides of diamonds into
part 4, and other parts of ellipses in 3. The connector parts
were less interpretable, consisting mostly of alternating 1s
and 2s.

In general, the types of parts the algorithm discovers de-
pends on the features we provide, and parts may not neces-
sarily correspond to simple semantic parts. Our interaction
features were symmetric, but would need to be directed in
order to learn asymmetric relations such as ’to-the-right-of’
or ’above’.

6. Conclusion

We have proposed a general method that learns parts of
compound objects in an unsupervised way. This model is
powerful and has many potential applications in handwrit-
ing recognition, document analysis, and object recognition,
and opens several opportunities for further research. For ex-
ample, it would be desirable to develop a criterion to au-
tomatically determine the number of parts per object class.
Moreover, the number of parameters grows quickly as more
parts are introduced, necessitating more parameter sharing
and regularization to avoid overfitting. Parts may also be
learned more easily with partial supervision (labeling some
of the parts in addition to labeling the compound objects).
Finally, we need more experiments to determine the com-
plexity of parts that can be learned.
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