
Indexing Uncertainty for Spoke

Ciprian Chelba, Alex

Speech Research Group, Mic
Microsoft Corp., One Microsoft Way

{chelba,alexac}@micro

Abstract

The paper presents the Position Specific Posterior Lattice, a
novel lossy representation of automatic speech recognition lat-
tices that naturally lends itself to efficient indexing and subse-
quent relevance ranking of spoken documents. Albeit lossy, the
PSPL lattice is much more compact than the ASR 3-gram lat-
tice from which it is computed, at virtually no degradation in
word-error-rate performance. Since new paths are introduced
in the lattice, the “oracle” accuracy increases over the original
ASR lattice.

In experiments performed on a collection of lecture record-
ings — MIT iCampus database — the spoken document rank-
ing accuracy was improved by 20% relative over the commonly
used baseline of indexing the 1-best output from an automatic
speech recognizer. The Mean Average Precision (MAP) in-
creased from 0.53 when using 1-best output to 0.62 when using
the new lattice representation. The reference used for evalua-
tion is the output of a standard retrieval engine working on the
manual transcription of the speech collection.

1. Introduction
Ever increasing computing power and connectivity bandwidth
together with falling storage costs result in an overwhelming
amount of data of various types being produced, exchanged,
and stored. Consequently, search emerges as a key application
as more and more data is being saved [1].

Speech search has not received much attention due to the
fact that large collections of untranscribed spoken material have
not been available, mostly due to storage constraints. As stor-
age becomes cheaper, the availability and usefulness of large
collections of spoken documents is limited strictly by the lack
of adequate technology to exploit them.

Manually transcribing speech is expensive and sometimes
outright impossible due to privacy concerns. This leads us to
exploring an automatic approach to searching and navigating
spoken document collections.

Our current work aims at extending the ubiquitous key-
word search paradigm from text documents to spoken docu-
ments. In order to deal with limitations of current automatic
speech recognition (ASR) technology we propose an approach
that uses recognition lattices — which are considerably more
accurate than the ASR 1-best output.

A novel contribution is the use of a representation of ASR
lattices which retains only position information for each word.
The Position Specific Posterior Lattice (PSPL) is a lossy but
compact representation of a speech recognition lattice that lends
itself to the standard inverted indexing done in text search —
which retains the position as well as other contextual informa-
tion for each hit.

The m
(SDR
thoug
to the
bution
system
forma
flat w
30%.
collab
muni

H
work
ing to
very
realis
mism
the ef

S
glish
side O
effect
ASR
to 15%
typica
perfo

A
but pl
a com
appro

M
curac
from
ate ad
matio
mal c
shoul

Proba
IDF v
query
tion i
GUA
docum
umen
impo
tered
n Document Search

Acero

rosoft Research
, Redmond, WA 98052
soft.com

2. Previous Work
ain research effort aiming at spoken document retrieval

) was centered around the SDR-TREC evaluations [2], al-
h there had been a large body of work in this area prior
SDR-TREC evaluations, most notable being the contri-
s of [3] and [4]. In the TREC-SDR 8/9 evaluations, SDR
s indexed the ASR 1-best output and their retrieval per-

nce — measured in terms of MAP [5] — was found to be
ith respect to ASR WER variations in the range of 15%-
Simply having a common task and an evaluation-driven
orative research effort represents a huge gain for the com-

ty.
owever there are shortcomings to the SDR-TREC frame-

. The recognizers were heavily tuned for the domain lead-
very good ASR performance. It is well known that ASR is

brittle to mismatched training/test conditions and it is un-
tic to expect error rates of 10-15% when decoding speech
atched relative to the training data. It is crucial to explore
fects of higher WER.
ince the “topics”/queries were long and stated in plain En-
rather than using the keyword search paradigm, the query-
OV (Q-OOV) was unrealistically low. [6] evaluates the
of Q-OOV rate on retrieval performance by reducing the
vocabulary size such that the Q-OOV rate comes closer

, a much more realistic figure since search keywords are
lly rare words. They show severe degradation in MAP

rmance — 50% relative.
s pointed out in [7], word level indexing is more accurate
agued by the OOV problem. The authors argue in favor of
bination of word and sub-word level indexing. A similar
ach is taken by [8].
ore recently, [9] shows improvement in word-spotting ac-

y by using lattices instead of 1-best. An inverted index
symbols — word or phone — to links allows to evalu-
jacency of query words but more general proximity infor-
n is harder to obtain — see Section 4. Although no for-
omparison has been carried out, we believe our approach
d yield a more compact index.

3. Text Document Retrieval
bly the most widespread text retrieval model is the TF-
ector model [10]. The main criticism to TF-IDF is that the
terms are assumed to be independent. Proximity informa-

s not taken into account, e.g. whether the words LAN-
GE and MODELING occur next to each other or not in a

ent is not used for relevance scoring; returning only doc-
ts that contain the phrase “LANGUAGE MODELING” is
ssible. Another issue is that query terms may be encoun-
in various contexts in a given document: title, abstract, au-



thor name, font size, etc. TF-IDF ranking completely discards
such information, although it is clearly important in practice.

3.1. Early Google Approach

Aside from the use of PageRank for relevance ranking, [11] also
uses both proximity and context information heavily when as-
signing a relevance score to a given document (see [11], Sec-
tion 4.5.1).

For each given query term qi one retrieves the list of hits
corresponding to qi in document D. Hits can be of various types
depending on the context in which the hit occurred: title, anchor
text, etc. Each type of hit has its own type-weight.

For a single word query, the [11] ranking algorithm takes
the inner-product between the type-weight vector and a vector
consisting of count-weights (tapered counts such that the effect
of large counts is discounted) and combines the resulting score
with PageRank in a final relevance score.

For multiple word queries, terms co-occurring in a given
document are considered as forming different proximity-types
based on their proximity, from adjacent to “close” and “not even
close”. Each proximity type comes with a proximity-weight
and the relevance score includes the contribution of proximity
information by taking the inner product over all types.

3.2. Inverted Index

Of essence to fast retrieval on static document collections of
medium to large size is the use of an inverted index. The in-
verted index stores a list of hits for each word in a given vocab-
ulary. The hits are grouped by document. For each document,
the list of hits for a given query term must include position —
needed to evaluate counts of proximity types — as well as all
the context information needed to calculate the relevance score
of a given document using the scheme outlined previously.

4. Position Specific Posterior Lattices
As highlighted in the previous section, position information is
crucial for being able to evaluate proximity information when
assigning a relevance score to a given document.

In the spoken document case however, we are faced with a
dilemma. On one hand, using 1-best ASR output as the tran-
scription to be indexed is suboptimal due to the high WER,
which is likely to lead to low recall — query terms that were
in fact spoken are wrongly recognized and thus not retrieved.
On the other hand, ASR lattices do have much better WER —
in our case the 1-best WER was 55% whereas the lattice WER
was 30% — but the position information is not readily available:
it is easy to evaluate whether two words are adjacent but ques-
tions about the distance in number of links between the occur-
rences of two query words in the lattice are very hard to answer.
The representation introduced in the next section addresses this
issue.

4.1. Position Specific Posterior Lattices

The occurrence of a given word in a lattice obtained from a
given spoken document is uncertain and so is the position at
which the word occurs in the document. The ASR lattices do
contain the information needed to evaluate proximity informa-
tion, since on a given path through the lattice we can easily
assign a position index to each link/word in the normal way.
Each path occurs with a given posterior probability, easily com-
putable from the lattice, so in principle one could index soft-hits
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word in the lattice.
ince it is likely that more than one path contains the same
in the same position, one would need to sum over all pos-
paths that contain a given word at a given position. A sim-
namic programming algorithm which is a variation on the

ard forward-backward algorithm can be employed for per-
ng this computation. During the forward pass one needs
it the forward probability arriving at a given node n, αn,
ding to the length of the partial paths that start at the start
of the lattice and end at node n. For details the reader is
ed to [12].
he “log-probability” log P (·) of a link u is “flattened” us-
FLATw ≥ 1.0 weight:

log P (u) = FLATw · [1/LMw · log PAM (u)+

log PLM (word(u)) − 1/LMw · logPIP ] (1)

osterior probability that a given node n occurs at position
us calculated using:

P (n, l|LAT ) =
αn[l] · βn

norm(LAT )

-gram lattices, N ≥ 2, all links ending at a given node n
contain the same word word(n), so the posterior proba-
of word w occurring at position l can be easily calculated
:

(w, l|LAT ) =∑
n s.t. P (n,l)>0 P (n, l|LAT ) · δ(w, word(n))

osition Specific Posterior Lattice (PSPL) is a representa-
f the P (w, l|LAT ) distribution: for each position bin l,
the words w along with their posterior probability.

Spoken Document Indexing and Search
h content can be very long. In our case the speech con-
f a typical spoken document was approximately 1 hour
It is customary to segment a given speech file in shorter

ents. Each soft hit in our index will store position
ment and posterior probability. The soft hits
given word are stored as a vector of entries sorted by
ument id, segment id). The soft index simply
ll hits for every word in the ASR vocabulary.

Relevance Ranking Using PSPL

ider a given query Q = q1 . . . qi . . . qQ and a spoken doc-
t D represented as a PSPL. Our ranking scheme follows
scription in Section 3.1.
or all query terms, a 1-gram score is calculated by sum-
the PSPL posterior probability across all segments s and
ons k. The results are aggregated in a common value
ram(D,Q); similar to [11], logarithmic tapering off is
for discounting the effect of large counts in a document:

(D, qi) = log

[
1 +

∑
s

∑
k

P (wk(s) = qi|D)

]

S1−gram(D,Q) =

Q∑
i=1

S(D, qi) (2)



Our current ranking scheme takes into account proximity in
the form of matching N -grams present in the query. We calcu-
late an expected tapered-count for each N-gram qi . . . qi+N−1

in the query and then aggregate the results in a common value:

S(D, qi . . . qi+N−1) =

log
[
1 +

∑
s

∑
k

∏N−1
l=0 P (wk+l(s) = qi+l|D)

]

SN−gram(D,Q) =

Q−N+1∑
i=1

S(D, qi . . . qi+N−1) (3)

The different proximity types, one for each N -gram order
allowed by the query length, are combined by taking the inner
product with a vector of weights; in the current implementation
the weights increase linearly with N .

S(D,Q) =

Q∑
N=1

wN · SN−gram(D,Q)

6. Experiments
We have carried all our experiments on the iCampus corpus
[13] prepared by MIT CSAIL. It consists of about 169 hours
of lecture material recorded in the classroom:

• 20 Introduction to Computer Programming Lectures
(21.7 hours)

• 35 Linear Algebra Lectures (27.7 hours)

• 35 Electro-magnetic Physics Lectures (29.1 hours)

• 79 Assorted MIT World seminars (89.9 hours)

Each lecture comes with a word-level manual transcription that
segments the text into semantic units that could be thought of as
sentences; word-level time-alignments between the transcrip-
tion and the speech are also provided. The speech style is in
between planned and spontaneous. The speech is recorded at a
sampling rate of 16kHz (wide-band) using a lapel microphone.

The 3-gram language model used for decoding is trained on
a large amount of text data, primarily newswire text. The vo-
cabulary of the ASR system consisted of 110k words, selected
based on frequency in the training data. The acoustic model is
trained on a variety of wide-band speech and it is a standard
clustered tri-phone, 3-states-per-phone model. Neither model
has been tuned in any way to the iCampus scenario. On the
first lecture L01 of the Introduction to Computer Programming
Lectures the WER of the ASR system was 44.7%; the OOV rate
was 3.3%.

6.1. PSPL lattices

We generated 3-gram lattices and PSPL lattices using the above
ASR system. Table 1 compares the accuracy/size of the 3-gram
lattices and the resulting PSPL lattices for the first lecture L01.
The PSPL representation is much more compact than the orig-
inal 3-gram lattices at a very small loss in accuracy: the 1-best
path through the PSPL lattice is only 0.3% absolute worse than
the one through the original 3-gram lattice.

6.2. Spoken Document Retrieval

Our aim is to narrow the gap between speech and text docu-
ment retrieval. We have thus taken as reference the output of a
standard retrieval engine working according to one of the TF-
IDF flavors, see Section 3. The engine indexes the manual tran-
scription using an unlimited vocabulary. All retrieval results
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Lattice Type 3-gram PSPL
Size on disk 11.3MB 3.2MB
Link density 16.3 14.6
Node density 7.4 1.1
1-best WER 44.7% 45%
“oracle” WER 26.4% 21.7%

1: Comparison between 3-gram and PSPL lattices for lec-
01 of the iCampus corpus: node and link density, 1-best

oracle” WER, size on disk

nted in this section have used the standard trec_eval
ge used by the TREC evaluations.
ne problem with this evaluation framework is that the ref-
e TF-IDF ranking results are not using any proximity in-
tion and thus we cannot fully evaluate our ranking frame-

. A better baseline ranking engine is clearly desirable.

Query Collection and Retrieval Setup

ave asked a few colleagues to issue queries against a demo
using the index built from the manual transcription. The
information provided to them was the same as the sum-
description in Section 6.
e have collected 116 queries in this manner. The query

f-vocabulary rate (Q-OOV) was 5.2% and the average
length was 1.97 words. Since our approach so far does not
sub-word units, we cannot deal with OOV query words.
ve thus removed the queries which contained OOV words

sulting in a set of 96 queries. The results on both the 1-
nd the lattice indexes are equally favored by this, so the
e performance of one over the other is likely to be same

dealing properly with the OOV query words — see Sec-
.2.3.

Retrieval Experiments

ave carried out retrieval experiments in the above setup.
es have been built from: trans, manual transcription fil-
through ASR vocabulary; 1-best, ASR 1-best output;
PSPL lattices; the flattening weight FLATw in Eq. (1)
et to 1.0 resulting in a smoother PSPL distribution. Ta-
presents the results. As a sanity check, the retrieval results

trans 1-best lat

# docs retrieved 1411 3206 4971
# relevant docs 1416 1416 1416
# rel retrieved 1411 1088 1301

MAP 0.99 0.53 0.62
R-precision 0.99 0.53 0.58

2: Retrieval performance on indexes built from transcript,
1-best and PSPL lattices, respectively

nscription — trans — match almost perfectly the ref-
e1. The results on lattices (lat) improve significantly on
est) — 20% relative improvement in mean average pre-

(MAP).
order to gauge the sensitivity of the system to the accu-

of the PSPL distribution we have experimented with the

he small difference comes from stemming rules that the baseline
is using for query enhancement which are not replicated in our

al engine



following variations:

• lat: FLATw = 1.0 smooth PSPL

• raw: FLATw = LMw = 13 skewed PSPL

• noP: the words in a given PSPL bin receive posterior
“probability” 1.0 — resulting in a “hard-index”

• unif: the words in a given PSPL bin receive uniform
posterior probability 1.0/#entries.

lat raw noP unif

# docs retrieved 4971 4971 4971 4971
# relevant docs 1416 1416 1416 1416
# rel retrieved 1301 1301 1301 1301

MAP 0.62 0.60 0.47 0.57
R-precision 0.58 0.56 0.42 0.52

Table 3: Retrieval performance on indexes built from PSPL lat-
tices under various PSPL probability assignments

Table 3 presents the results. The retrieval results are very sen-
sitive to large variations in the PSPL distribution. In particu-
lar, ignoring the PSPL probability distribution altogether (noP)
leads to worse results than using the 1-best. Also, flattening the
ASR lattice scores (see Eq. 1) by using FLATw = 1.0 has a
small positive impact on the retrieval accuracy.

6.2.3. Out-of-Vocabulary Query Words

In order to gauge the effect of using a truncated vocabulary we
used our soft-indexing method to index the manual transcrip-
tion using two vocabularies2:

• CLOSED-INDEX: closed vocabulary derived from the
manual transcriptions and the full query set (before re-
moving the queries containing OOV words, see Sec-
tion 6.2.1)

• OPEN-INDEX: ASR vocabulary, OOV words are
mapped to <unk>

The query set used for testing did not discard the queries con-
taining OOV words. The effect of using the finite ASR vocab-
ulary is to lump all OOV words into one type, and thus reduce
the retrieval accuracy.

When scoring the output on OPEN-INDEX against the out-
put on the CLOSED-INDEX reference, MAP is 0.92 and R-
precision is 0.91. A substantial hit in performance is to be ex-
pected when using a vocabulary of finite size, unless we have a
good way of spotting and scoring OOV words.

7. Conclusions and Future work
We have developed a new representation for ASR lattices —
the Position Specific Posterior Lattice (PSPL) — that lends it-
self naturally to indexing speech content. The retrieval results
obtained by indexing the PSPL and performing adequate rele-
vance ranking are 20% better than when using the ASR 1-best
output, although still far from the performance achieved on text
data.

The techniques developed here can be applied to indexing
documents in the presence of uncertainty over their contents:

2It can be easily checked that the PSPL representation for a lattice
containing exactly one path is identical to the original lattice, where
posterior probabilities for each word are 1.0; the “soft-index” is thus
identical to the regular index used for text documents.
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