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Abstract

A long-contextual-span Hidden Trajectory Model (HTM) 
developed recently captures underlying dynamic structure of 
speech coarticulation and reduction using a highly compact 
set of context-independent parameters. However, the long-
span nature of the HTM makes it difficult to develop efficient 
search algorithms for its full evaluation. In this paper, we 
describe our initial effort in meeting this challenge. The basic 
search algorithm is time-asynchronous A*. Given the 
structural complexity of the long-span HTM, special 
considerations are needed to take into account the fact that the 
HTM score for each frame depends on the model parameters 
associated with a variable number of adjacent phones. 
Specifically, we present details on how the nodes and links in 
the lattices are expanded via look-ahead, how the A* 
heuristics are estimated, and what pruning strategies are 
applied to speed up the search. The experiments on TIMIT 
phonetic recognition show the capability of our newly 
developed lattice search algorithm in evaluating billions of 
hypotheses based on long-span HTM scores. The results 
significantly extend our earlier work from N-best rescoring to 
A* search over lattices.  

1. Introduction

Modeling long-span contextual effects in speech acoustics is 
important for spontaneous speech recognition, where phonetic 
reduction and coarticulation are often mixed in causing 
tremendous variability in the speech signal. One particular 
type of speech models recently developed [1][2] exploits 
temporally bi-directional (forward and backward) filtering of 
vocal tract resonance (VTR) targets to achieve such long-
contextual-span modeling. The filtered VTR trajectories are 
treated as the hidden vectors and a nonlinear prediction with 
statistical residuals generates the cepstral parameters from the 
VTR trajectories. The statistical characterization of this 
hidden trajectory model (HTM) permits straightforward 
computation of the model likelihood score for the cepstral 
observation data given the phone sequence and phone 
segment boundaries. The technique of parametric filtering on 
VTR as part of structured speech dynamics permits the use of 
a compact set of context-independent parameters to represent 
long-span contextual effects in the acoustic model. This 
distinguishes HTM from other types of acoustic models such 
as HMMs. 

Initial evaluation of the HTM on TIMIT database with an 
N-best paradigm was carried out using a phonetic recognizer 
built with the HTM, as reported in [2]. Recent improvement 
on the model design and new training are reported in [3], with 
substantial performance improvement in the N-best rescoring 
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. The research reported in this paper extends the 
tion from the N-best rescoring paradigm to more 
us lattice search. 
ur previous work on N-best rescoring is limited in the 
ss of the lists in providing sufficient phonetic sequence 
ation to evaluate the HTM. We used a high-quality 
 system (HTK-based) to produce N=1000 lists for each 
tterance and found that the average oracle phone error 
 as high as 18% for the TIMIT core test set. The long-
tual-span nature of the HTM presents a special 

nge of long-contextual-span modeling in our HTM --- 
ror-spreading effect. That is, when phone errors are 
t in the N-best list, they tend to spread over several 
nt phones. This is caused by the VTR filtering where 

djacent phones’ VTR trajectories would be strongly 
nced by the incorrect VTR targets associated with the 
ect phones in the N-best list. In our earlier work [2] , we 
ially removed the error-spreading effect by appending 
eference hypothesis into the N=1000 list and we 
ally observed a much higher HTM likelihood scored on 
ference (free from the error-spreading effect) than on 
lly all remaining 1000 hypotheses. This demonstrates a 
 desirable property of HTM. This property is necessary 
M to beat HMM, but is not sufficient. 
e have not found it beneficial in using HMM to 

ate much larger N-best lists for evaluating the HTM. For 
le, when N=2000 best lists are generated, we found 
e oracle error rate is only 0.8% lower than that for the 

00 best lists. Even with the large phone lattices built 
he HMM system, we still found substantial oracle errors 
t. However, lattices offer much richer hypotheses than 
t lists, facilitating more rigorous evaluation of the 
. This forms the key motivation of this work. 

2. Algorithm for Lattice Search

ice is an acyclic directed graph (N, A) with one start 
s and one end node !e, where N  is the set of nodes, and 
he set of directed arcs. Each arc a in set A has a start 

and an end node . A lattice can be considered as a 
act representation of a very large N-best list. Since our 
ontextual-span HTM is phone based, the rescoring is 
naturally conducted on the phone lattice. (This can be 
ed to the word lattice easily.) In the implementation of 
 lattice search, we adopt the HTK lattice format. In this 
t, each node of the lattice consists of two 
nts:

.s .a e

,w t , where w is the identity of a phone, and t is 

e stamp for the end time of phone w (which is the same 
 start time of the next phone).  
 partial phone-sequence hypothesis constrained by a 
 is a sequence of connected nodes (phones) starting 



from start-node !s. A phone-sequence hypothesis is complete 
if the sequence also ends at end-node !e. We call a partial 
hypothesis a prefix of another partial hypothesis  if is 

the head of , i.e., for some node sequence x.

Note that two sequences with the same phone identities but 
with different phone boundaries are considered as two 
different hypotheses, and they follow two different paths in 
the lattice. In other words, a lattice represents a sparse subset 
of all possible phone sequences with all possible phone 
ending times. Fig. 1 depicts an example of a very small phone 
lattice.

1h 2h 1h

2h 2 1h h x

2.1. A* Search 

The goal of the lattice search is to find a complete hypothesis 
whose log-likelihood score is the highest among all the 
complete hypotheses constrained by the lattice [4]. In our 
implementation, the search over the lattice is conducted using 
the one-stack A* search algorithm described in Fig. 2. 

.  It has been well known [5] that A* search algorithm can 
always find the best hypothesis if the following two 
properties are satisfied: 

Property 1: the estimated total score of a complete 
hypothesis is the true score. 
Property 2: the estimated total score of a partial hypothesis is 
an upper bound of the true score of all the hypotheses whose 
prefix is the partial hypothesis. 

If the estimated total score of a partial hypothesis is much 
larger than the best possible true score of all the hypotheses 
whose prefix is the partial hypothesis, then the estimation of 
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Fig. 1: An example of a phonetic lattice 
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Estimate heuristic scores for each arc; 
Estimate the backward heuristic scores for each node; 
Maintain a stack of partial hypotheses ordered on the 

estimated total log-likelihood in descending order; 
Initialize the stack with !s - the start node of the lattice; 
While the stack is not empty 

Pop up the top partial hypothesis from the stack; 
If the hypothesis is complete 

        Return the hypothesis; 
Else 

Expand the hypothesis by one more phone; 
Calculate the HTM scores for the newly  

expanded phones; 
Calculate the estimated total score of the newly 

expanded partial hypotheses; 
Insert these new partial hypotheses to the stack at 

the appropriate positions; 
End If 

End While 
Fig. 2: The basic one-stack A* search algorithm 
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ackward heuristic score would not provide useful 
ation and the speed performance of an A* search 
 be low and be close to that of a breadth first search. On 
her hand, if the estimated total score equals the best 
le true score, the A* search will find the best complete 

hesis rapidly by expanding only the arcs along the best 
lete hypothesis.   

core Estimation 

icated in Section 2.1, the performance of the A* search 
thm depends heavily on the quality of the estimated 
 In the long-contextual-span HTM, the true score of a 
lete hypothesis is the sum of log-likelihoods over all the 
s in the hypothesis as indicated in (1):

1

N

i
i

S S  (1) 

is the log-likelihood of the i-th phone in the 

hesis, and N is the total number of phones in the 
hesis. When we only have a partial hypothesis, the total 
S can be estimated as: 

iS

ˆ
p nS S H  (2) 

pS  is the log-likelihood score of the partial hypothesis, 

is the backward heuristic score associated with the 

node n (phone) in the partial hypothesis. It’s obvious 
e quality of the score estimation using 

n

(2) depends on 
ality of the heuristic score .nH

 make sure the backward heuristic score is a good 
te of the true backward score, we developed the 
ing score computation algorithm. In the long-span 

 based on bi-directional target filtering, the true score of 
phone , associated with an arc in the lattice, is a 

on of both the past and future VTR targets. This makes 
 expensive to use the true future score as the heuristic 

 in 

aS

nH (2). It also suggests that we may estimate the true 

by using the same formula but without considering the 
nt phone context. Note that the heuristic score obtained 
s way may be lower than the true score. This is 
ially true for the correct phone hypotheses in phone 
t since the omission of the phone context information is 

 to increase the mismatch between the acoustic signal 
e hypothesis.  This situation is shown in Fig. 3, where a 

ic context is used to replace the realistic context. The 
ic context takes the form of neutral VTR targets which 
ependent of the adjacent phones. To compensate for the 
ing of the score caused by this approximation, we adjust 
uristic score by adding a fixed, small score for each 

 so that the heuristic score will highly likely satisfy 
rty 2.  

nce we have the heuristic scores of all the phones (arcs) 
n the lattice, we can calculate the backward heuristic 

ith true context With generic context 

Fig. 3: VTR Trajectory with and without Context 



scores of each node . To satisfy Property 2, should be 

the best score along all possible paths starting from node n to 
the end. Fig. 4 describes the algorithm to calculating the 
backward heuristic scores . The calculation of and

incurs very small computational cost. 

nH nH

nH aH

nH

2.3. Hypothesis Expansion 

One of the most important steps in A* search is expansion of 
the hypotheses. If the score of each phone (arc) were 
independent of the context, the expansion would be trivial, 
and we only need to follow all the outgoing arcs of the final 
node in the current partial hypothesis to obtain the list of 
expanded partial hypotheses. However, in the long-span 
HTM, the score of each phone (arc) depends on the 
hypothesized VTR targets of at least past and future D
frames. This may include several phones in either temporal 
direction and the number of phones in the context is variable. 
In other words, we can not simply use the nodes in the 
original lattice for the hypothesis expansion. Instead, we need 
to convert each node into a set of variable-spanning context-
dependent nodes (VSCD-node). Each VSCD-node is a 
triplet:{ , , }p c fn n n , where pn is a list of past nodes in the 

original lattice, is the center node under consideration, and cn

fn is a list of future nodes in the original lattice. The number 

of nodes in pn and fn depends on the parameter D. As an 

illustrating example, if D=5, node ,3p in Fig. 1 would be 

expanded into two VSCD-nodes: 
{ ! ,0 , ,3 , ,8 }s p ae  and

{ ! ,0 , ,3 , ,7 ,17 }s p ae iy .

In this expanded lattice, VSCD-node 1, 1, 1,{ , , }p c fn n n  has 

an arc to VSCD-node 2, 2, 2,{ , , }p c fn n n  if and only if there is an 

arc from to in the original lattice, and 1,cn 2,cn 1, fn is a prefix 

of (which infers that is the first node in2, 2,cn n f 2,cn 1, fn ). A 

partial hypothesis in our HTM thus can also be represented as 

a 2-tuplet: , fhyp n , where is the partial hypothesis 

without context and

hyp

fn is a list of future nodes, all represented 

as nodes in the original lattice. Given this observation, we can 
expand a partial hypothesis by directly traversing the original 
lattice according to the algorithm described in Fig. 5. It 
should be obvious that the partial score of a new hypothesis 

hyp

,hyp

For

 I

En

Fig

tupl

Sort the nodes in the descending order of time 
For each node n

If n is the end node !e
0nH

Else

nH

For each arc a following node n

.max ,n n a a eH H H H ndN

 End For 
End If 

End For 

Fig. 4: Computing backward heuristic scores of nodes nH
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, ,p new p hyp aS S S  (3) 

 each out-going arc a of the hyp’s last node Ln

f  is the first node in .a e fn

 Put fn -  into the stack .a e

While the stack is not empty 
Pop up the list from the stack hn

Set h = the last node of hn

If h is not D frames ahead of Ln

Append each out-going arcs of h to nh

Put all new  into the stack '
hn

Else
. , hhyp a e n is a new hypothesis 

End If 
End While 

End If 
d For

. 5: Hypothesis expansion. A partial hypothesis is a 2-

et: , fhyp n , where is the partial hypothesis without 

text and

hyp

fn is a list of future nodes, all represented as nodes 

e original lattice. denotes concatenation. 

3. Pruning Strategies 

ttice rescoring can be very slow and it consumes much 
ry given a large number of possible expansions in the 

. To speed up the rescoring process, we implemented 
l pruning strategies. 

core Caching 

 times, the partial hypotheses are different but the 
-nodes contained in these hypotheses may have the 

phone list and boundaries. Since the log-likelihood of a 
 in our model solely depends on the phone list and 
ponding boundaries in the VSCD-node{ , , }p c fn n n , we 

ache the phone scores in a hash table to avoid re-
ation. The hash value used in our system is derived 
the VSCD-node’s fingerprint, which is consisted of the 
tenated pairs of phoneID:frameNumber for each node in 
SCD-node with an additional number indicating the 

on of in the VSCD-node. Score caching can 

ate about 4/5 of the calculation. 
cn

refix Pruning 

e A* search process, we only keep these partial 
heses: 1) with the highest partial score, and 2) with the 
st estimated total score in the stack, among all having 
ame phone sequence and ending frame number but 
ent boundaries. This pruning strategy is called prefix 
g since the hypotheses pruned out have the same prefix 
 list.



3.3. Pruning on Unseen Phone Bi-gram 

The basic idea behind the unseen phone bi-gram pruning is 
that the correct hypothesis should not contain a large 
percentage of unseen phone bi-grams. This type of pruning 
eliminates the score calculation for the hypotheses after the 
percentage of unseen bi-grams associated with them has 
exceeded a specific threshold (e.g., 10%). The bi-gram list is 
obtained from the training set. The larger the threshold, the 
less effect the pruning has, and the higher chance that the best 
hypothesis will not be pruned out. This threshold is tuned 
based on a held-out set

3.4. Pruning on Heuristic Score 

We have observed that the heuristic score of the true 
hypothesis is generally not very far away from the best 
possible heuristic scores in the lattice. This is because the 
heuristic scores used in the decoder are still based on the 
HTM scores, except without specific context information. For 
this reason, our search algorithm prunes out those hypotheses 
whose heuristics are much lower than the best hypothesis in 
the lattice, eliminating the expansion and evaluation of these 
hypotheses. 

3.5. Joint Node Pruning 

If several partial hypotheses join at the same VSCD-node, 
then we only need to keep the hypothesis with the highest 
partial score. This pruning is based on the fact that complete 
hypotheses expanded from other partial hypotheses will not 
have a higher score than the complete hypothesis expanded 
from the partial hypothesis with the highest partial score. 

4. Experimental Results 

We have conducted phonetic recognition experiments on the 
TIMIT standard core test set, aimed to evaluate the phonetic 
recognizer built on the basis of the long-contextual-span 
HTM. We compare and analyze the results obtained with N-
best and lattice-search-based rescoring. The phone lattice 
used in our experiments is generated by a conventional, high-
quality tri-phone HMM with phone bigram as the “language 
model” (LM). The same LM is used for the HTM.  

Results of the lattice search algorithm described in 
Sections 2 and 3 on phonetic recognition are presented in 
Table 1, where the sensitivity to phone bi-gram language 
model weights (LM) and phone insertion penalties (IP) is 
shown. The initial lattice for each test utterance is generated 
from an HTK-HMM system, with the averaged total number 
of nodes in the order of 1000, the total number of links in the 
order of 8000, and the total number of expanded hypotheses 
in the order of . Despite its large size, this initial lattice is 
found to still contain a large percentage of oracle errors. To 
artificially remove the “error spreading effect”, we inserted 
the references into the very large initial lattices. 

3010

 After the various stages of pruning, the averaged total 
number of hypotheses evaluated is estimated to be in the 
order of , and the averaged number of nodes expanded 
during the A* search is found to be between 20,000 (for short 
sentences) and 1,500,000 (for long sentences). The runtime 
CPU on a P-IV machine (decoder written in C#) for each test 
sentence is between 4 min (for short sentences) to 2 hrs (for 
long sentences).
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e results shown in Table 1 demonstrate consistent trends 
r earlier work [2][3] that HTM outperforms HMM 
acy 73%) under the same experimental condition of 
tic information and language models and with the error 
ing effect removed.

ble 1: TIMIT phonetic recognition results using the HTM to 
score large lattices. No HMM scores are used. 

LM=8;IP=-0.5 LM=6;IP=-0.5 LM=8;IP=0 

91.12% (6682) 90.59% (6643) 90.82% (6660) 
 6.67% (489) 7.38% (541) 6.98% (512) 
 2.21% (162) 2.03% (149) 2.20% (161) 

 4.66% (342) 5.26% (386) 4.91% (360) 
 86.46% 85.33% 85.91% 

5. Summary and Conclusions 

ork is motivated by the desire to objectively evaluate a 
pan HTM. Due to the high computational cost in 
menting a full decoder, we used an N-best rescoring 
e as the first step in evaluating the model in the past. In 
aper, we describe our recent work on extending our 
tion of the HTM from N-best to lattice rescoring
e companion paper [3] describes the HTM design, 
g, and score computation. In particular, the HTM score 

ach frame is determined by the model parameters 
ated with a variable number of adjacent phones, which 
ory could reach the beginning and end of the utterance. 
challenge due to such unique long-contextual-span 
ling is addressed in this work via A* search, using 
lly designed and implemented pruning strategies.  
ur experimental results demonstrated that the HTM 
ally scores higher on the correct hypothesis than billions 

peting incorrect hypotheses.  Our future work will aim 
nslating this success to a realistic recognizer where 
t hypotheses (and their minor variants) can be directly 
 by the HTM.   
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