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Abstract— Fidelity is one of the key considerations in data
collection schemes for sensor networks. A second important
consideration is the energy expense of achieving that fidelity.
Data from multiple correlated sensors is collected over multi-
hop routes and fused to reproduce the phenomenon. However, the
same distortion may be achieved using multiple rate allocations
among the correlated sensors. These rate allocations would
typically have different energy cost in routing depending on
the network topology. We consider the interplay between these
two considerations of distortion and energy. First, we describe
the various factors that affect this trade-off. Second, we discuss
bounds on the achievable performance with respect to this trade-
off. Specifically, we relate the network lifetime Lt to the distortion
D of the delivered data. Finally, we present low-complexity
approximations for the efficient computation of the Lt(D) bound.

I. INTRODUCTION

Since their conception, sensor networks[1] are finding appli-
cations in a variety of problem domains spanning security, sci-
entific explorations, education, and entertainment. The under-
lying system in most of these applications essentially consists
of a group of sensors collecting data about a phenomenon of
interest which is fused to reproduce some desired attribute of
the phenomenon. In this work, we consider the performance of
the data collection process in terms of the achieved distortion,
as related to a key system resource: energy.

In most systems, the achievable distortion in data recon-
struction is related to the minimum rate required, in the form of
a rate-distortion function, that quantifies the minimum amount
of rate required to achieve a certain level of distortion at the
point of reconstruction. This trade-off is more critical when the
data needs to be transported over a communication network,
thus entailing the use of network resources such as bandwidth
and access costs. Sensor networks are systems where apart
from bandwidth, energy is a major resource bottleneck. It
is of interest in such systems, to characterize the distortion
performance in terms of energy as well. As an example
consider a sensor network of wireless cameras. In many cases
e.g. surveillance, it may well be that a high quality image of
the scene is not always required and we may be willing to
give up fidelity for extending the lifetime of the network. We
wish to determine precisely this trade-off between fidelity and
lifetime.

The energy consumed depends not just on the data rate but
also on the routing scheme used. As an example, consider the
network shown in Figure 1. The phenomenon to be sensed
is present near node A, and it is to be reproduced at the

Fig

base st
determ

Choi
achieva
sources
delivery
need a
high SN
D may
but sen

Choi
data-ra
on the
D →
to num
power u
routes

Proto
multipl
collecti
may be
wake-u
such no
on the

In-ne
streams
networ
some p

The
ent nod
the bat
the sen
choices
and Data Distortion
rivastava, and Gregory J Pottie

ngineering
s Angeles
}@ee.ucla.edu

B
A

C D

Base Station

Event

. 1. A sensor network monitoring a phenomenon of interest.

ation. Some of the key issues to be considered for
ining the energy distortion performance are:

ce of Sensors: The same level of distortion may be
ble through various choices of sensors acting as data
. For each choice of sources, the energy cost of data

across the network varies. For instance, sensor A may
lower data rate, since it measures the phenomenon at
R but require the use of longer routes, while sensor
need a much a larger data-rate for the same distortion

d it using a shorter route.

ce of Routes: The cost may vary even for the same
te beginning with the same source sensors depending
route used. For instance, the cost of route A → B →
C → Base will be different from A → Base due
ber of nodes involved and the dependence of transmit
pon distance. Data may even be spread across multiple

to maximally exploit the available batteries.

col Overheads: The data collected is routed over
e hops. The energy cost of initiating additional data
on at nodes already on an existing multi-hop route,

lower than at nodes not on the chosen route due to
p and initiation overheads. The fidelity advantage from
des may however be lower than that from nodes not

chosen route.

twork Aggregation: As the data is routed, multiple
from different sources may be aggregated within the

k, reducing the cost of communication, though adding
rocessing cost, and limiting some choices of routes.

above choices affect how energy is consumed at differ-
es in the network and this expense must be subject to
tery availability at different nodes. The distribution of
sed phenomenon is not necessarily uniform, and routing

may be affected by this.



A. Related Work

The problems of minimizing energy cost and maximizing
lifetime have been considered before for fixed data rate
requirements. In [2], [3], an upper bound on the network
lifetime was derived when the data source and data rate are
known. A distributed procedure to find such capacity achieving
routes was discussed in [4]. Other practical energy aware
routing schemes have been explored as well [5], [6], [7].
Further energy considerations have also been explored, such
as minimizing the transmission cost [8], [9] and the placement
of the nodes for energy efficiency [10].

Our goal is to explore the trade-off between required dis-
tortion, D, (rather than a known data rate) and the achievable
lifetime Lt for the system.

B. Key Contributions

We ask a new question: what is the lifetime of a sensor
network attempting to reproduce a given phenomenon at a
required distortion, under given sensor noise behavior, energy
availability, communication energy model and routing options.
The problem of determining lifetime is different from mini-
mizing the transmission cost, as the use of multiple higher
cost routes may be required to maximally exploit the energy
resources. Further, our problem is different from determining
the lifetime for a given data rate requirement, since we target
the distortion performance. We show how to formulate this
new problem in terms of known rate-distortion relationships,
and also discuss a computationally tractable heuristic to solve
it. To the best of our knowledge it is the first attempt to capture
the lifetime-distortion relationship in a joint framework.

We model the problem and describe the relevant parameters
involved in the next section. Section III shows how the energy-
distortion trade-off may be determined for this system model.
We then show a more computationally tractable method to de-
termine the trade-off in section IV, and provide an illustrative
example. Extensions to the problem and on-going work are
discussed in section V which also concludes the paper.

II. SYSTEM OVERVIEW AND PROBLEM DESCRIPTION

We consider the following system to model data collection
in a sensor network. A network of N nodes is deployed to
monitor a region of interest (Figure 2).
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Fig. 2. System model: a subset of the sensor nodes communicate their
observations to a fusion center using multi-hop routes across the network.
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network has N sensors. The reading at sensor i at time
oted Yi(t) for i ∈ {1, ..., N} and is related to X as:

Yi(t) = X(t) + Vi(t) (1)

Vi(t) is a memoryless zero mean Gaussian random
with variance σ2

i , that models sensor noise. Also,
Vj(t)} are independent for all i �= j.
SNR at a sensor depends on its distance from the
enon, and we model the σ2

i as proportional to the
of this distance. The locations of all the nodes are
and stay fixed.
user of the network is interested in an estimate X̂(t)
), derived from the observations {Yi(t)}

N
i=1, with a

ation on maximum distortion D. The usual mean
error distortion measure is used:

D(k) =
1

k

k∑
t=1

E
(
(X(t) − X̂(t))2

)
(2)

ed over a block length k in time.
assume that the optimal fusion algorithm to achieve
nimum possible distortion in estimation is used for
ruction, i.e., the correlation among observations is
ed in estimation.
ur model, a subset of the observations {Yi(t)}

N
i=1,

municated to a common fusion center where these
tions are processed to generate the estimate of the
enon X̂(t). While it is conceivable that smaller subsets
bservations may be partially aggregated as they traverse
work, and then these aggregates may be processed in

generate the final estimate, we consider the above
for analytical tractability.

rgy Model

observations are communicated over multiple hops to
ion center. Each transmission and reception consumes
proportional to the number of bits transferred and

tance between the transmitter and the receiver. This
eled as in [11]. The energy consumption per bit at the
tter, Ptx(i, j) i when communicating with a node j, is
s:

Ptx(i, j) = α1 + α2d(i, j)2 (3)

d(i, j) is the distance between the transmitter and the
r, and α1, α2 are radio dependent constants. The first
odels a constant consumption in the radio electronics
second term models the distance dependent transmis-

st. Suppose the reception energy is Prx per bit, and the

ternative formulation where the phenomenon is a field spread across
of the region covered by the sensor network is also of interest.

, we do not consider that model here.



energy cost of sampling the transducers is Psense per bit. The
energy availability at each node is denoted {Ei}

N
i=1.

We further assume that the distortion required is well within
the data capacity of the network and only energy is the key
consideration; hence we do not explicitly model the bandwidth
constraints in this work.

III. CHARACTERIZING THE ENERGY DISTORTION

RELATIONSHIP

The performance criterion of interest is the network lifetime,
Lt. It is defined as the time duration for which the network can
sustain the data flows required to reproduce the phenomenon
at or below a specified distortion D.

Using the above energy cost and observation models, the
optimization problem for finding the maximum lifetime Lt for
given distortion D, can be stated as in Figure 3; the constraints
are explained below. Here we assume that the initial battery
available at each node is known, and the desired distortion is
fixed at D. The solution to the optimization problem yields
not only the achievable lifetime bound, but also the routing
schedule and sensor selections.

A. Distortion Constraints

The sensors which generate data can be any subset of
{Yi(t)}

N
i=1. The constraint on the subset is that the rate of

transmission after encoding of the data collected should be
sufficient to estimate X(t) at required distortion. We show
how to write this constraint in terms of a known rate distortion
relationship.

For a given set of sensors, {Yi}
N
i=1, the required total rate

RΣ required to achieve a desired distortion is known from
the RΣ(D) bound for the Gaussian CEO problem [12].The
feasible rate allocation vectors RN = {R1, ..., RN} which
can help operate at that sum rate are described in [13],
[14], [15], [16]. We first use these results to capture the
relationship between the sensor rates and distortion. Following
[14], and modifying the notation for our system model we
can characterize this set to consist of all vectors {R1, ..., RN}
that satisfy equations (7) and (8) in Figure 3. Here {ri}

N
i=1

are auxiliary variables, and are among the unknowns for the
optimization.

Note that this only defines the region in which the rate
vectors may be selected in order to satisfy the distortion
constraints. As mentioned before the cost to the system is not
the rate itself but the energy required to support this rate over
the multi-hop network. Thus, the constraints on the rate vectors
cannot be used by themselves to select appropriate sensors,
and the energy cost of each such vector must be considered.

B. Energy Constraints

Assume that the fusion center is node N + 1, and is
not energy constrained. The cost of each route from the
selected sensors, and the load distribution of the data among
the available routes will determine the routing energy cost.
However, since the number of routes can be exponential in
the number of nodes, it has been found to be more tractable
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an equivalent view of the routes in terms of data flows
each link in the network [2], [3], [4]. The combination
e routes can be mapped to data flows across each link

ng a sum of the data delivered for each route that uses
k. Suppose the total data flow from a node i to a node
oted fij . Then the total cost of these flows determines
l routing cost.
cost can be expressed at each node in terms of the
ssion cost of the entire flow exiting the node, reception
the flow entering a node, and the sensing cost for

ount of flow generated. The total energy cost over the
ifetime of the network, can be obtained by multiplying
and this total cost should be lower than the battery
, Ei, for each node. This is precisely stated in equation
ditionally, conservation of flows immediately leads to
int (5).
key difference from [2], [3], [4] is that in constraints
(6), rather than considering known data rates generated
ed set of sensor nodes, we optimize over the specific
rates required to satisfy the distortion specification. This
ation also implies that the technique used to linearize
gram in [2], [3] is no longer applicable, and we shall
ternatives in the next section.
remaining constraints, equation (4), simply state that
s, lifetime, and sensor rates cannot be negative. The

y variables used in the distortion constraints are also
to be non-negative [14].

. COMPUTATIONALLY TRACTABLE SOLUTION

optimization problem as stated above is useful for
ng a multitude of energy and distortion issues in a
amework. However, the problem is non-linear, due to
ure of the distortion constraints. It is well known that
ation tools can handle linear programming much more
tly than non-linear programs. We propose a heuristic
ce the complexity of optimization: we linearize the
ear constraints and also reduce the number of these
ints.
ider first the rate allocation constraints (7) and (8).
e that in (7), the quantity (1−2−2rk) is positive. If we
this quantity with zero, the magnitude of the right hand
ll increase, since this quantity occurs behind a negative
d the log function is monotonic. Thus, the inequality in
trengthened with this replacement, and any rate vector
satisfies the new inequality, is a feasible rate vector for
ng the required distortion. With this replacement, (7)
s linear:∑
k∈A

Rk ≥
∑
k∈A

rk +
1

2
log2

1

D
−

1

2
log2

(
1

σ2
X

)
(9)

inequality (8) is also non linear. We consider a variable
tion to consider a strengthened and linearized version
inequality. Consider an auxiliary variable r′ which is
as the smallest among all rk:

rk ≥ r′ ∀k ∈ {1, ..., N} (10)



We now rewrite (8) with this replacement for all k:

1

σ2
X

+ (1 − 2(−2r′))
N∑

k=1

1

σ2
k

≥
1

D
(11)

Re-arranging, one obtains:

r′ ≥
1

2
log2

(
1

T

)
where T =


1 −

1
D

− 1
σ2

X∑N

i=1
1

σ2

i


 (12)

which is linear. Since (6) is still non-linear, a further variable
replacement is necessary to linearize the program, which can
be realized by considering:

f ′
ij = fijLt, R′

i = RiLt, r′i = riLt, r′′ = r′Lt (13)

in all the constraints. With the above variable replacements and
the modified constraints (9), (10) and (12), the optimization
problem can be expressed as a linear program. The new linear
program is clearly sub-optimal as we have reduced the search
space in the process of linearization.

On the other hand, we could get a lower bound on the
lifetime-distortion relationship by relaxing the inequalities
instead of strengthening them. Inequality (7) can be weakened
if we approximate 2−2rk = 0, obtaining:

∑
k∈A

Rk ≥
∑
k∈A

rk +
1

2
log2

1

D
−

1

2
log2

[
1

σ2
X

+
∑

k∈Ac

1

σ2
k

]
(14)

Similarly, in (8), if we replace all rk by the greatest among
them, the inequality is weakened, yielding a new inequality
as ri ≤ r′ ∀k ∈ {1, ..., N}. Solving this relaxed but linear
version of the optimization problem will lead to possibly
infeasible solution. However, we are guaranteed that the exact
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distortion bound lies between the solution to this
linear program and the strengthened linear program.
er computational complexity arises from the fact that
ber of constraints in (7) depends on the number of

e subsets of {1, ..., N}, which is 2N − 1. For large
may be intractable. One approximation here is to

r only sensors with SNR above a particular threshold,
thin a certain distance from the phenomenon as the
sensors. The remaining sensor nodes act as relays. With
proximation, the number of constraints is polynomial
he optimization problem then yields a rate allocation
these selected sensors only.
the upper and lower bounds are plotted for a randomly

ed network topology in Figure 4, with ten sensors
number of source sensors constrained to be the three

ones to the phenomenon. The energy parameters used
a hardware described in [11]: α1 = 45×10−9, α2 =

−12, β = 135×10−9 and α3 = 50×10−9. The battery
en to be Ei = 180nJ,∀i, as in [2]; larger battery will
rger lifetime. Suppose the phenomenon is present close
or 1, σ2

X = 10, and noise variances are proportional to
ance:

2
1 = 0.01, σ2

i = σ2
1d2(1, i), i ∈ {2, ..., N}

tortion is converted to dB: D(dB) = 10 log10(D/σ2
X).

und is also explored for multiple random topologies,
ed in a 100m × 100m area with 10 sensors each. We
e the relaxed linear program for all these networks,
he first 3 sensors are chosen to be the sources. The
using the strengthened version are qualitatively similar.
etime-distortion relationship averaged over ten random
es of such a network is shown in Figure 5, along with
dard deviation across the random topologies.
max Lt

Subject to: fij ≥ 0, Ri ≥ 0, ri ≥ 0,∀i, j ∈ {1, ..., N} (4)

Flow Conservation:∑
d∈{1,N+1},d �=i

fid −
∑

s∈{1,N+1},s �=i

fsi = Ri, i ∈ {1, ..., N} (5)

Energy Constraints:

Lt


 ∑

d∈{1,N+1},d �=i

Ptx(i, d)fid +
∑

s∈{1,N+1},s �=i

Prx(s, i)fsi + PsenseRi


 ≤ Ei, i ∈ {1, ..., N} (6)

Distortion Constraints:∑
k∈A

Rk ≥
∑
k∈A

rk +
1

2
log2

1

D
−

1

2
log2

[
1

σ2
X

+
∑

k∈Ac

1 − 2−2rk

σ2
k

]
∀ non-empty A ⊆ {1, ..., N} (7)

1

σ2
X

+

N∑
k=1

1 − 2−2rk

σ2
k

≥
1

D
(8)

Fig. 3. Optimization problem for determining the energy distortion trade-off for a given network.
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The above heuristic is only a starting point, and can be
used to get order of magnitude estimates on the achievable
lifetime for required distortion, with very low computational
complexity. However, determining a solution close to the
optimal is also of interest. As part of ongoing work, we are
exploring methods to use the two solutions obtained from
the above linearized versions of the problem, to initiate a
gradient descent or other search strategy which leads to a
closer estimate of the Lt(D) relationship.

V. CONCLUSIONS AND FUTURE WORK

We presented an optimization framework to derive a rela-
tionship between the lifetime of a network and achieved dis-
tortion performance, rather than assuming a known data traffic
schedule. We stated this new problem in terms of known rate
distortion bounds and discussed a computationally tractable
heuristic to evaluate this bound. This is a first step toward
developing a framework for energy and distortion performance
for multi-hop sensor networks. We are considering other com-
putationally tractable methods to obtain closer estimates of the
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relationship than the initial heuristic. In addition, we are
ng better methods to use the non-linear constraints by
ng data generation to a small subset of nodes. Further,
tem model presented in section II does not account
the issues mentioned in section I. In particular, we
d that data is not aggregated in-network as it propagates
the fusion center. Also, protocol overheads of selecting
e sensors were not explicitly accounted for. Future work
nvolve incorporating these factors. A distributed sensor
n and routing scheme to achieve the lifetime bound is
sirable.
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