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1 Abstract 
The Replicated State Machines (RSM) is a powerful, simple abstraction for providing 
fault tolerance to arbitrary computational tasks. Unfortunately, RSMs require the 
computational task to be specified as a deterministic state machine, a model that is 
theoretically convenient, but in practice, often difficult to achieve given legacy libraries 
and development environments. 

We observe that the Virtual Machine (VM) interface is an interesting level at which to 
constrain the behavior of a computation to be a deterministic state machine. Because it is 
a narrow interface, it is possible to eliminate nondeterminism in the execution of the VM; 
this paper describes the techniques necessary to achieve that goal. And because the VM is 
a very low interface, it enables the reuse of almost the entire software stack, including the 
operating system, all libraries, and existing applications, even entirely unmodified. 

2 Origin of this report 
This technical report describes an invention upon which a patent has been filed. One of 
the purposes of the patent system is to encourage the public disclosure of new inventions; 
unfortunately, patent applications are written in “Patentese,” a degenerate descendent of 
English notorious for its inscrutability. 

Filed patent applications in Patentese are often derived from reasonably scrutible original 
documents written in English, and that is the case for the present invention. The authors 
have no immediate further plans for this invention, and hence do not expect to write a 
pedagogically-improved description any time soon. Therefore, we are releasing this 
English document as a technical report in the hopes of better communicating the 
invention to the technical public. 

Therefore, this report has been produced with a minimum of effort beyond that originally 
required to begin the Patentese disclosure. In particular, it does not evaluate an 
implementation, and is decidedly incomplete about academic scholarship. Caveat lector. 

Section 3 provides background on the key technologies used in the invention. Section 4 
describes the invention itself. 

3 Background 
This section provides high-level background about replicated state machines (RSMs) and 
virtual machines (VMs). 



3.1 Replicated state machines 
Many software applications have a client-server architecture.  The client component of 
the application resides on a client machine, and the server component of the application 
typically resides on a separate server machine.  Typically, multiple clients interact with a 
server.  For example, multiple electronic-mail clients might interact with a mail server, or 
multiple database clients might interact with a database server. 

Fig. 1 illustrates a typical client-server computer system.  The dashed line indicates that 
the client application communicates with the server application.  The actual path for this 
communication involves the operating system, network interface card (NIC) driver, and 
network interface card on each computer. 

 

Figure 1. A typical client-server computer system. 

In client-server systems, it is advantageous for the service to be reliable.  In particular, 
this means that the service should be resilient to server-machine faults.  One common 
mechanism for improving service reliability is replication.  By running a service on 
several machines concurrently, the failure of some machines may be masked by other 
machines. 

A known prior-art technique for supporting service replication is the “replicated state 
machine” (RSM) strategy.  In the conventional RSM approach, the service is written as a 
deterministic state machine; this state machine is replicated on several machines, and an 
RSM substrate coordinates the behavior of the separate state machines so that their 
executions proceed consistently. 

Fig. 2 illustrates a typical RSM-based client-server computer system.  The client 
component of the application communicates with the client portion of the RSM substrate, 
and the server component of the application communicates with the server portion of the 
RSM substrate. 



 

Figure 2. A typical RSM-based client-server computer system. 

The client portion of the RSM substrate ensures that the client application’s message is 
received by the replicated server.  It does this by sending the message to all server 
replicas.  However, as an optimization, it may first send the message to only one server, 
and if the server group does not reply correctly, it may then send the message to all 
servers.  The client portion of the RSM substrate also collects replies from the replicated 
servers, and it passes a single aggregated reply to the client application. 

The RSM substrate coordinates all the various instances of the server application so they 
appear to act as a single server, even if some of the server computers fail. 

A key task of the RSM substrate is to establish a task ordering for the server’s operation.  
Fig. 3 illustrates an example timing diagram.  The downward-pointing arrows indicate 
requests for operations; each of these may be a request from a client, or it may be a 
request triggered by a server-based timer.  The RSM substrate performs a protocol to 
determine an agreed order for the requests, and then each server replica executes the 
request.  For example, when request Foo is received, this receipt triggers the RSM 
substrate to run its agreement protocol, which decides to that Foo should be the next 
request to execute.  Following the agreement, each of the server replicas executes 
operation Foo.  A similar sequence of events happens when request Bar is received. 

 

Figure 3. An example timing diagram. 



Requests Zot and Baz are received while the agreement protocol is still deciding on 
request Bar.  Once the agreement for request Bar is complete, the RSM substrate then 
decides whether Zot or Baz should be processed next.  In the example, the substrate 
chooses Baz, and in the subsequent agreement step, the substrate chooses Zot. 

Note that replicas 0 and 1 execute operations slower than the agreement protocol makes 
decisions.  This seems to suggest that the agreement can get arbitrarily far ahead of the 
execution; however, the RSM substrate prevents agreements from concluding if they get 
more than a given operation count ahead of the execution. 

As Fig. 3 shows, the server replicas may execute operations at differing rates.  This may 
be because different server computers have different processor speeds, or it may be 
because they have varying workloads other than the workload of running the replicated 
service.  For example, replica 2 executes operations Foo and Bar relatively quickly, but 
then it executes operations Baz and Zot slowly, perhaps because another process began 
competing for resources. 

Fig. 4 illustrates a typical interface presented by an RSM substrate.  The substrate uses an 
execute call to tell the application to update its state.  This call includes the client 
message that triggered the update.  The application uses the reply call to indicate a 
message to send to the client. 
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Figure 4. A typical interface presented by an RSM substrate. 

The RSM substrate needs to track the state of the replicated application.  Before the 
application modifies any part of its state, it uses the modify call to warn the substrate 
about the part of its state it is about to change.  The substrate uses the get call to retrieve 
the value of any part of the application’s state, and it uses the put call to change the value 
of a part of the application’s state. 



The RSM substrate uses the checkpoint call to tell the application to save a checkpoint of 
its state.  This means that if the application were to crash and restart, then the state that it 
should restart with should be the state of its most recent checkpoint.  Checkpoints must 
be saved atomically, and they must be coordinated with the RSM substrate’s saving of its 
own internal state. 

A major disadvantage of this prior-art technique is that it requires the application to 
interact with the RSM substrate in a rigidly defined manner, such as that described above.  
The server application must be architected as a state machine that updates its state only in 
response to messages received via the substrate from clients (or from a server-based 
timer).  In addition, messages to clients must be sent via the RSM substrate, rather than 
directly.  Furthermore, the server application must be able to export its state to the 
substrate; it must be able to import its state from the substrate; and it must ensure that all 
of its actions are deterministic.  Further still, the server application must be able to 
checkpoint its state in a manner that is both atomic and coordinated with the saving of the 
RSM substrate’s state. 

These requirements may be very difficult to satisfy for an existing application that was 
not originally written as a state machine.  They may be extremely difficult to satisfy if the 
application was written with multiple threads of control.  Even writing a new program as 
a deterministic state machine is not simple, because this style of programming is 
unfamiliar to many programmers and because it precludes the use of nondeterministic 
abstractions, such as threads. 

These difficulties have been a major factor in limiting the widespread adoption of RSM 
technology, despite this technology’s promise of a general mechanism for replication-
based fault tolerance. 

3.2 Virtual machine monitors 
Virtual machine monitors (VMMs) are well known in the prior art.  Fig. 5 illustrates a 
computer running a typical VMM.  The VMM runs as an application in the computer’s 
host operating system.  The VMM uses software to emulate computer hardware, thereby 
presenting a virtual machine (VM) environment.  A guest operating system runs inside 
this VM, and the guest OS is unaware that it is not running directly on actual hardware. 
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Figure 5. A computer running a typical VMM. 

The VMM presents virtualized resources to the VM.  In particular, it presents virtualized 
disk, virtualized physical memory, virtualized network interface, and so forth.  Note:  
Virtualized physical memory should not be confused with virtual memory.  Virtualized 
physical memory appears to the guest OS as physical memory, and the guest OS 
implements virtual memory on top of this virtualized physical memory.  The VMM uses 
the host OS’s virtual memory to implement its virtualized physical memory. 

The VMM implements virtualized storage resources using the real storage resources it 
accesses through the host operating system, and it implements virtualized communication 
resources using the real communication resources it accesses through the host operating 
system.  For example, the VMM presents a virtual disk to the VM, and it uses the 
physical disk as a backing store for this virtual disk.  Similarly, the VMM presents a 
virtual network card to the VM, and it uses the physical network card to send and receive 
packets on behalf of the virtual network card. 

The trickiest resource for a VMM to virtualize is the processor.  For performance reasons, 
it is best to allow the guest operating system and guest applications to execute their 
instructions directly on the real processor.  However, the VMM must trap certain 
instructions in order to simulate the behavior of privileged instructions and to redirect I/O 
operations to the virtualized resources.  If a particular processor architecture has 
instructions that cannot be trapped but whose behavior must be augmented for 



virtualization, dynamic binary rewriting is used to replace instances of these instructions 
with explicit trap instructions. 

Virtual machines have several customary uses.  By running a newer version of a guest 
operating system on top of an older version of a host operating system, virtual machines 
can allow testing of new software without endangering the host system.  By running an 
older version of a guest operating system on top of a newer version of a host operating 
system, virtual machines can support legacy applications that cannot run on a newer 
operating system.  By running different operating systems as host and guest (for example, 
running a guest Unix operating system on a host Windows operating system), virtual 
machines can support operating-system heterogeneity. 

4 The invention 
The invention is a mechanism that enables any client-server application to be run as a 
replicated state machine, without requiring the application to be modified in any way.  
The invention uses an RSM substrate to coordinate the execution of multiple VMMs, 
each of which runs an identical copy of an operating system and server application. 

Fig. 6 illustrates the preferred embodiment of the invention.  Network messages to and 
from the unmodified client application are intercepted by an RSM client driver, which 
performs sent-message replication and received-message aggregation as described above.  
The RSM server substrate expects the VMM to act as a deterministic state machine 
following an interface such as that described above.  The present invention includes 
mechanisms that enable the VMM to act as a state machine and to support such an 
interface. 
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Figure 6. The preferred embodiment of the invention. 

Fig. 7 illustrates an alternative embodiment of the invention.  This embodiment 
introduces a redirector computer that acts as a liaison between the client and servers.  The 
client sends network messages to the redirector, which replicates the messages and sends 
them to the server computers.  The redirector also collects multiple messages from the 
servers, which it aggregates into single messages and sends to the client.  This redirector 
may be replicated so it does not constitute a single point of failure. 
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Figure 7. An alternative embodiment of the invention. 

The RSM client driver of Fig. 6 and the RSM envoy of Fig. 7 are straightforward 
adaptations of the prior-art RSM client.  The main challenge for the present invention is 
on the server. 

4.1 Turning a VM into a state machine 
Since server applications (and the guest OS) are not generally written as state machines, 
it would be difficult to employ the agreement/execution pattern shown in Fig. 3.  Instead, 
the invention approximates the hardware behavior of a computer:  The server app and 
guest OS execute with apparent continuity, and messages (and other events) arrive in an 
apparently asynchronous fashion. 

To achieve this effect, the agreement protocol of the RSM substrate is used in a slightly 
different manner from the prior-art usage.  Fig. 8 shows an example timing diagram.  The 



downward-pointing arrows indicate requests from clients.  The invention partitions time 
into a sequence of discrete intervals, and within each interval, the agreement protocol 
determines whether any messages are to be processed and, if there are any, the order in 
which to process them. 

 

Figure 8. A slightly different timing diagram. 

For example, during the agreement interval that begins after message Foo arrives, the 
substrate decides that the next execution will include message Foo.  Since no message 
arrives during the next interval, the substrate decides that the following execution will 
include no messages.  During that interval, message Bar arrives, and so during the 
following interval, the substrate decides that the next execution will include message Bar.  
During that interval, messages Zot and Baz arrive, and so during the following interval, 
the substrate decides that the next execution will include messages Zot and Baz, and it 
decides that the order of these messages will be Baz followed by Zot. 

Once the agreement protocol completes its decision, the virtual machine is allowed to 
execute for a determinate length of execution.  Typically, this will be measured as a count 
of processor instructions, but it can be any measure that produces a deterministic result.  
(In contrast, we cannot use real time for this purpose, because virtual machines on 
different servers might execute to different points in their code, since the timing of clock 
cycles and instructions is approximate.) 

The specific mechanism by which the VM is allowed to run for a determinate length of 
execution is determined in part by the processor architecture.  If a processor has an 
interrupt that can be triggered after a certain count of retired instructions, this may be 
used.  If a processor has no direct mechanism for running for a determinate length of 
execution, then this can be achieved by the following two-phase process:  First, allow the 
VM to run for a length of time that is guaranteed to perform no more execution than the 
target amount.  Second, single-step the VM to the target execution point by setting the 
processor’s trap flag.  The first phase is not required for correctness; it is a performance 
optimization.  As a further optimization, the first phase may be repeated, with 
progressively smaller lengths of time, before switching to the second phase. 

If an execution interval includes no incoming messages, then the VMM begins the 
execution interval by resuming the VM at the execution point from which it was 



interrupted.  On the other hand, if an execution interval includes one or more incoming 
messages (as determined by the agreement protocol), the VMM first delivers the 
messages to the VM.  It does this by vectoring to the VM’s handling routing for 
interrupts from the virtual NIC.  After the VM completes handling the interrupts for all 
messages in the current execution interval, the normal interrupt return causes the VM to 
resume at the execution point from which it was interrupted. 

The previous paragraph described how the present invention delivers network interrupts 
to the VM.  However, there are other types of interrupts that also must be dealt with.  In 
particular, there are interrupts from local virtual devices, such as a disk, and also 
interrupts from the virtual real-time clock.  These are described below. 

4.2 A deterministic virtual disk 
Interrupts from devices are handled as follows (wherein we use a disk as a concrete 
example).  Fig. 9 illustrates a more detailed view of the virtual and physical disk 
subsystems of the server computer in Fig. 6.  When the disk driver in the VM wants to 
read data from the virtual disk, it programs the virtual DMA with the read request, and it 
expects to be interrupted after the DMA has transferred the indicated data from the virtual 
disk into the driver’s memory.  The VMM implements this behavior by performing a 
corresponding read operation to the physical disk, using the physical disk DMA and the 
physical disk driver, accessed through the host OS. 
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Figure 9. A slightly different timing diagram. 

In a conventional VMM, when the physical read operation completes, the VMM 
interrupts the VM to indicate the completion of the virtual disk read.  However, the 
physical disk will take an indeterminate amount of time to perform the read operation, 
but the replicated process must exhibit deterministic behavior to satisfy the requirements 
of an RSM. 

Therefore, the present invention handles the DMA interrupt as follows.  When the virtual 
DMA is programmed to perform the operation, the VMM deterministically estimates the 
length of VM execution that will elapse while the DMA operation is performed.  This 
estimate may be as crude as a constant (e.g., every operation is estimated to take 500,000 



processor instructions) or it may be computed based on the size of the data; however, the 
estimate must be deterministic.  Then, using a technique as described in the previous 
subsection, the VMM interrupts the VM after the indicated length of execution. 

If, when the VM is interrupted, the physical read operation has already completed 
(because the estimate was high), then the VMM delivers the virtual DMA interrupt to the 
VM at this point.  On the other hand, if, when the VM is interrupted, the physical read 
operation has not yet completed (because the estimate was low), then the VMM pauses 
the VM and does not resume it until the physical read operation completes, at which point 
it delivers the virtual DMA interrupt to the VM. 

The above technique will work correctly even if the estimate is very high or very low, but 
the system operates more efficiently with increasing accuracy of the estimate.  A high 
estimate will reduce the disk’s data-transfer rate to the VM.  A low estimate will reduce 
the VM’s computation rate. 

4.3 A deterministic virtual clock 
Physical computers typically provide a real-time clock (RTC) register that may be read 
by the operating system.  Physical computers also typically provide a periodic clock 
interrupt, which is used, among other things, to timeshare the processor among several 
processes.  Within the context of an RSM, all replicas must read identical clock values, 
and all replicas must be interrupted at the same execution point. 

The present invention provides a periodic virtual clock interrupt that is deterministic with 
respect to the VM’s execution.  The interrupt is simply triggered after a fixed length of 
VM execution, using a technique such as that described above.  For example, if the VM 
expects to be interrupted once per millisecond, and if the processor executes roughly 100 
million instructions per second, then a clock interrupt is delivered to the VM every 100 
thousand instructions.  This approach guarantees determinate execution, and it provides 
interrupts at the required frequency for effective timesharing.  However, the interrupts 
may occur at intervals that are irregular with respect to real time; we discuss this issue 
further below. 

The present invention provides a virtual real-time clock that is deterministic with respect 
to the VM’s execution.  The virtual RTC value is simply the value of the VM’s execution 
counter, which may a retired-instruction counter or whatever execution counter is 
available on the particular processor architecture.  Thus, in the case of a retired-
instruction counter, if the one-billionth instruction that the VM executes is a read of the 
RTC, then the value returned will be one billion.  If the processor architecture has an 
execution counter with a small number of bits, such that it risks wrapping, this counter 
may be extended in software using a well-known technique:  The VMM maintains a 
count of the number of times the VM has been delivered a clock interrupt, and it also 
records the value of the execution counter at the most recent interrupt.  The value of the 
virtual RTC is then equal to: 

IntCount * IntInterval + (ExecCtr – LastExecCtr + ExecCtrLimit) mod ExecCtrLimit 



where IntCount is the count of the times the VM has been delivered a clock interrupt, 
IntInterval is the length of execution between interrupts, ExecCtr is the VM execution 
counter, LastExecCtr is the value of the execution counter at the most recent interrupt, 
and ExecCtrLimit is the limit on the size of the execution counter. 

This clock will not track real time very well.  If the application requires a better real-time 
clock, the guest OS in the VM can participate in any standard clock-synchronization 
protocol, such as NTP, with a computer that has a more accurate real-time clock.  The 
computer that provides the time-synchronization information can either contain an RSM 
client driver or interact with redirector computer. 

4.4 Sending replies to the client 
So far, we have discussed only how the present invention implements the execute call of 
the RSM substrate.  In the present and following subsections, we discuss the remaining 
calls. 

In a conventional RSM, communication between the client and server has a remote-
procedure-call (RPC) structure:  The client makes a request; this request is ordered 
consistently along with requests from other clients; the server executes the request; and 
the server replies to the client.  Thus, the reply call is typically invoked once per state 
update, to send the requesting client a reply to the request that initiated the state update. 

The present invention supports arbitrary applications, which may not have been written 
with an RPC communication structure.  The server application might send messages to 
clients in a manner that bears no obvious relationship to the requests it has received from 
clients.  The present invention handles messages from the server in a straightforward 
manner:  They are sent to the client or redirector immediately.  Whenever the RSM client 
driver or the RSM envoy receives a sufficient count of each message from the servers, it 
passes the message on to the client application.  This technique requires only that 
message ordering is preserved by the network layer, which it is when using a reliable 
transport layer, such as TCP. 

4.5 Tracking and transmitting state 
The RSM substrate needs to track the state of the replicated application.  In the context of 
the present invention, this state includes the state of both the VMM and the VM.  Since 
the VMM is part of the invention’s substrate, its state can be handled in the same manner 
as any RSM’s state is handled:  The code for this portion of the system must use the 
modify call before it changes any of its state; and it must appropriately implement the get 
and put call interfaces.  Lastly, the VMM must persistently and atomically record its state 
in response to a checkpoint call.  There are well-known prior-art techniques for all of 
these operations, and they are standard in the world of RSMs. 

To track changes to the VM’s memory, the VMM sets the protection bits on all of the 
VM’s memory to non-writable.  Thus, when the VM executes a write instruction, this 
execution causes a trap to the VMM.  The VMM then uses the modify call to inform the 
RSM substrate that the indicated memory page is being modified.  The VMM implements 
the get and put call interfaces to the VM’s memory by simply reading or writing the 



indicated page.  Lastly, the VMM checkpoints the VM’s memory by recording the values 
of all VM pages that have been modified. 

5 Related Work 
The closest related idea, Hypervisor-Based Fault Tolerance [1], differs in that it uses a 
primary-backup fault-tolerance scheme, and it resolves nondeterminism by determining a 
specific outcome on the primary machine, and constraining the backup to conform to the 
same outcome. In the present invention, we arrange the execution of the virtual machine 
to be deterministic a priori, enabling the use of a symmetrical RSM configuration. Our 
scheme has two benefits: low latency and resistance to Byzantine faults. 

Resolving nondeterminism a priori permits a lower-latency implementation. In [1], the 
VM execution must occur first in order to produce the nondeterminism-resolving record, 
and then the primary and backup must agree on that record, before a result can be safely 
returned to the client. With the a priori nondeterminism resolution of the present 
invention, the agreement may be overlapped with speculative execution of the VM, and 
the answer returned once both operations complete. 

Using an RSM substrate lets us exploit a number of RSM-based schemes. The obvious 
fault-tolerance scheme is Paxos [2], but Paxos has many useful relatives which would 
work equally well in this context. Castro’s Byzantine RSM [3] provides resistance to 
Byzantine (adversarial) faults; it has been optimized for minimum latency [4]. Fast Paxos 
[5] is a minimum-latency Paxos implementation, and Generalized Paxos [6] can exploit 
implicit workload concurrency to improve latency and throughput. 

The ReVirt project [7], like the Hypervisor project, measures and records the 
nondeterministic behaviors of a virtual machine execution, and uses the information to 
cause a deterministic reproduction of the same behavior in a later re-execution of the 
same environment. The ReVirt application is distinct: rather than fault tolerance, wherein 
the replay happens immediately, ReVirt replays the behavior much later, at the request of 
an intrusion investigator. 

6 Conclusion 
We describe virtual machine monitor techniques that make a virtual machine behave as a 
deterministic process, and therefore make it amenable to replication for fault tolerance 
using replicated state machine techniques. The use of a virtual machine removes the 
burden of determinism from the programmer, making all existing applications, libraries, 
and operating system software available for use in the context of replicated state 
machines. The use of replicated state machines as the fault-tolerance substrate provides 
the lowest latency, and enables the use of Byzantine-fault-tolerant RSMs and other RSMs 
with specialized performance characteristics. 

7 References 
1. Thomas C. Bressoud and Fred B. Schneider. "Hypervisor-Based Fault Tolerance." 
In Proceedings of the 15th Symposium on Operating Systems Principles, p. 1--11. 
December 1995. 



2. L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing 
Column) 32(4):51-58, 2001. 

3. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings of 
the 3rd OSDI}, pp. 173-186, 1999. 

4. J-P. Martin and L. Alvisi. Fast Byzantine Paxos (extended technical report) The 
University of Texas at Austin, Department of Computer Sciences. Technical Report TR-
04-07. February 2004. 

5. Leslie Lamport. Fast Paxos. Microsoft Research Technical Report MSR-TR-
2005-112, July 2005. 

6. Leslie Lamport. Generalized Consensus and Paxos. Microsoft Research Technical 
Report MSR-TR-2005-33, March 2005. 

7. George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M. 
Chen. "ReVirt: Enabling intrusion analysis through virtual-machine logging and replay." 
In Proceedings of the 2002 Symposium on Operating Systems Design and 
Implementation, p. 211--224. December 2002. 

 


