
A Crash Course on Texturing

Li-Yi Wei

Microsoft Research

not textured

textured

Figure 1:The effect of texturing.

Abstract

Texturing is a fundamental technique in Computer Graphics,allow-
ing us to represent surface properties without modeling geometric
or material details. In this course, we describe the basic ideas of
texturing and how we could apply textures to objects in real ap-
plications. We concentrate on the three main components of tex-
turing: texture acquisition, texture mapping, and texturesampling.
For each component, we present the fundamental algorithms as well
recent innovations. We also describe implementation issues and ad-
ditional application of texturing on graphics hardware.

Keywords: Texture Mapping, Texture Synthesis, Texture Sam-
pling and Filtering

1 Introduction

Modeling surface details is one of the most important tasks for ren-
dering realistic images. One way to achieve this is to meticulously
represent the detailed micro-geometry and BRDF (bidirectional-
reflection-distribution-function) over a dense sampling of the sur-
face. This can certainly be done, but this approach has two major

problems. The first problem is that it can be tedious and laborin-
tensive to acquire the detailed geometric and BRDF data, either by
manual drawing or by measuring real materials. The second prob-
lem is that, such a detailed model, even if it can be acquired,may
take significant time, memory, and computation resources torender.

Fortunately, for Computer Graphics applications, we seldom
need to do this. If we are simulating a physical for a more seri-
ous purpose of say, designing an aircraft, an artificial heart, or a
nuke head, then it is crucial that we get everything right without
omitting any detail. However, for graphics, all we need is some-
thing that looks right, for both appearance and motion. As research
in psychology and psychophysics shows, the human visual system
likes to take shortcuts in processing information (and it isproba-
bly why it appears to be so fast, even for slow-witted people), and
this allows us to take shortcuts in image rendering as well. To avoid
annoying some conservative computer scientists (which canjeopar-
dize my academic career), I will use the termapproximationinstead
of shortcuthereafter.

Texturing is an approximation for detailed surface geometry and
material properties. For example, assume you want to model and
render a brick wall. One method is to model the detailed geome-
try and material properties of all the individual bricks andmortar
layers, and send this information for rendering, either viaray tracer
or graphics hardware. However, in a typical application such as
games, few people would care much about the details of the brick
wall (unless you know it contains a hidden door to a treasury room),
and would normally view the wall from a distance. In this situation,
we probably dont need to bother with all the details of the brick
wall. Instead, we can simply model the wall as a big flat polygon,
and paste onto the polygon a brick wall image so that the polygon
looks like a real brick wall. This image, acting as anapproximation
to the real brick wall, is calledtexturein graphics, and the process
of applying the texture to an object surface is calledtexturing.

Texturing resolves the two problems for modeling and render-
ing surface details, as described earlier. First, by representing the
surface as a texture image, you dont have to painfully model all
the geometric and material details. This saves users time and re-
sources, so that you can spend more time doing more useful stuff,
like reading this paper. Second, by rendering a rough polygonal
model (e.g. a single square polygon for a brick wall) and a texture
instead of a detailed model with different BRDFs, the rendering
can be done much more efficiently, either via ray tracer or polyg-
onal rasterizer. This saves computers time and resources, so you
can add other fancy rendering effects within the same timingand
resource budget.

The usual practice of texturing can be roughly divided into three
major components. First, before you can do anything, you need to
acquire the texture image. This can be done by manual drawing or
photographing, but these approaches have their limitations. Later,
we will discuss algorithmic methods that overcome these limita-
tions. Second, given the texture image and a 3D model, you need to
figure out how tomap the texture onto the model. This is actually a
very difficult problem. Think, for example, of wrapping a gift paper
around a basketball (or a baseball autographed by Barry Bonds, if
you are a San Francisco Giants fan). Essentially, the gift paper is
a texture and the ball is the 3D object, and our goal is to wrap the
paper around the ball as nicely as possible, so that we dont see too
much crumpling and folding of the paper, and we would definitely
want the ball to be entirely wrapped up. Third, after you havede-



cided how to map the texture onto the object, you will have to care-
fully sample the texture in the rendering process, otherwise, you
may see some undesirable artifacts rooted in the signal processing
theory.

In the rest of this paper, we will describe in detail how to perform
each of these three operations. We will describe the basic ideas
and algorithms first, followed by more recent innovations. We will
then describe various applications of texturing, beyond the original
intention we just described. In fact, texturing is one of themost fun
field to play with in Computer Graphics, and you can potentially
achieve unexpected effects if you are creative enough.

2 Texture Generation

The first task for texturing is to acquire the texture image. Usually,
you will have at least a rough idea in mind on what kind of texture
you need, such as a marble table or a wooden chair. Our goal is to
generate a texture so that it has the desired visual appearance and
properties of the texture you have in mind.

There are a variety of methods to generate the texture image.If
you are an artist, you could simply draw a texture by hand. How-
ever, manual art is usually limited to artificial textures, as it is very
difficult to manually draw a texture with realistic appearance. Be-
sides, not everybody is an artist.

Another option is to photograph the material you would like to
texture. For example, to acquire a texture of orange skin, you can
simply photograph an orange. This approach is very easy to de-
ploy, and you can easily obtain photorealistic textures. However,
this approach has some limitations. To acquire a high quality tex-
ture, usually we would like to avoid lighting or curvature bias in
the acquired texture image, because the texture can be applied to an
object with different shape from the original object, and rendered
under a different lighting condition. The lighting problemcan be
resolved by photographing under a carefully controlled studio light-
ing to avoid bias. The curvature problem is more serious, however,
as it is usually infeasible to flatten a real object, such as anorange.

Texture synthesis is designed as a possible solution for thecur-
vature problem. First, you obtain a texture sample. The sample can
be small, and this would allow you to photograph a small region
of the original object so that the region is more or less flat. This
small sample is usually useless for your texturing application, as
you might need a larger texture to adequately cover the entire target
object. Fortunately, from the small texture sample, texture synthe-
sis would produce an arbitrarily large result automatically for you,
and this allows you to apply the result to your object with minimum
visual artifacts.

The goal of texture synthesis can be defined as follows. Given
a sample image, texture synthesis would produce an output texture
that looks like the input. This can be achieved by making assump-
tions about the statistical properties of the texture images, and dif-
ferent assumptions will yield algorithms with different quality and
computation speed. We will cover some of these algorithms later.

The major limitation of all texture synthesis algorithms isthat
they can only operate on more or less homogeneous patterns. In
fact, the termtexturein image processing and computer vision lit-
erature refers to images with regularly or stochastically repeating
patterns. In contrast, the termtexture in computer graphics usu-
ally means any image that you applied for texturing objects.The
specific meaning of the term can usually be disambiguated from
the context, but in case of possible confusions, we will refer to the
former asnarrow while the later asbroad, definition of textures.

For narrow sense of textures, they can be generated by texture
synthesis algorithms. This will be the main focus for the rest of
this section, as we will describe two major flavors of texturesyn-
thesis algorithms: procedural and example-based. Forbroadsense
of textures, since they can be arbitrary images, there is no single

Figure 2: 2D Perlin noise example. Left: the Perlin noise image. Right:
the individual noise bands, from low to high frequencies. Image courtesy of
[Elias 2003].

algorithmic way to incorporate all of them. They are usuallyeither
rendered manually by hand or automatically by render-to-texture on
a GPU, or can be assembled from photographs by any artistic tools
such as photomontage. We will not describe all the possibilities, as
this itself is a separate art project.

2.1 Procedural Synthesis

One method to synthesize textures is to write special procedures
that simulate either the physical formation process or simply the
appearance of the material. For certain patterns such as marble or
wood, they can be emulated by very simple function called Perlin
noise. For more complicated patterns, they could be simulated by
fancier procedural process. For example, some animal skin patterns
or structures can be simulated by a chemical process called reaction
diffusion. The rusting of metals and the formation of flow lines can
also be simulated by detailed physical modeling.

The advantage of these procedural texture codes is that theycan
be very compact, as the only storage requirement is the proce-
dure itself and associated parameters. Another advantage is that by
changing the parameters of these procedures, you can easilychange
the appearance of the resulting textures, providing excellent con-
trollability.

However, procedural synthesis can only be applied for a specific
class of textures that you know how to simulate procedurally. For
a texture that has no known procedural code, we will not be able
to synthesize it procedurally. Even for textures with knownproce-
dures, it can still be tricky to choose the proper parameters, as the
mapping from the parameters to the final texture appearance might
not be straightforward or intuitive.

Nevertheless, procedural texturing has enjoyed great success in
the film rendering community, as many feature animations heavily
utilize procedural textures. Many artists prefer procedural synthe-
sis over other approaches due to its controllability. Devising new
procedural code for simulating textures can also be a fun andchal-
lenging activity.

To give you a flavor of what procedural texturing is all about,we
will provide a high level overview of Perlin Noise [Perlin 2002],
which is arguably the most popular form of procedural synthesis.
For more information about procedural texturing, we recommend
[Ebert et al. 1998], which provides an excellent introduction as well
comprehensive literature survey.

2.1.1 Perlin Noise

Since its inception in 1985 [Perlin 1985], Perlin Noise has been
widely adopted as the standard for procedural texturing, especially
in the digital film industry.



marble wood

Figure 3:Example textures generated from Perlin noise.

The basic idea of Perlin noise is surprisingly simple and elegant.
Before introducing Perlin noise, we will first describe whata white
noise is. A white noise is a signal that has uniform energy across
all frequency bands; i.e. the Fourier transform of a white noise will
show a rough flat spectrum. You can see a white noise when you
tune your TV to a non-broadcasting channel. A white noise can
be simulated on a computer via a uniform random function. For
example, to generate a 2D white noise with amplitude in the range
[0, 1], all you need to do is to fill in the noise with pixel values
drawn from a uniform random function in the range[0, 1].

Unlike a white noise, a Perlin noise is a band-limited signal. It
can be constructed as a summation of white noises at different fre-
quency bands, as shown in the following equation:

perlin =

n−1∑

i=0

interpolate(whitei)× p
i (1)

wheren is the total number of band,p is the persistence, andi is
the band number, withi = 0 being the lowest frequency band.

It is actually technically incorrect to talk about white noise at
different frequency bands, but we are talking about how to compute
the noise procedurally, not the rigorous mathematical meaning. A
white noise at a specific band is simply a white noise with specific
image size. In the equation above, white noise at bandi has size
2i. Because the bands have different sizes, we need to properlyin-
terpolate them to the final noise size before taking the summation.
The summation is taken over all the frequency bands, with each
band weighted by the power of a quantity calledpersistence. Per-
sistence is a user-specified parameter, which simply controls the rel-
ative weight of the frequency bands. Usually, persistence is within
[0, 1], so that the weight decreases with the increasing of band fre-
quency. A visual example of 2D Perlin noise and the constituting
bands can be found in Figure 2.

Based on Perlin noise, a variety of textures can be synthesized
by proper procedures. Some examples are shown in Figure 3. Their
synthesis formulas are as follows:

marble = cosine(x+ perlin(x, y, z)) (2)

g = perlin(x, y, z) ∗ scale

wood = g − int(g) (3)

Exercise Implement the Perlin noise as described above. Try to
generate the marble and wood textures by finding out the proper pa-
rameters, such as persistence, scale, and colors. This willgive you
a feeling of how it is like to tune the procedures in order to gen-
erate the desired textures. Hint: try to use a low persistence value
for wood, and normal persistence value in[0, 0.5] for marble. If
you find it difficult to tune procedural textures, you are not alone.
In fact, working with procedural textures is such a demanding task
that there is a unique profession created in the game developer com-
munity for these people whose job is to write procedural textures,
they are often calledtexture artistsor texture designers.

In the next part, we will describe alternative methods to generate
textures that do not require artistic skills.

2.2 Example-based Synthesis

sample

result

Figure 4: Texture synthesis from example. The original sample is shown
on the left, while the synthesis result is shown on the right.

An alternative approach is to synthesize a new texture from a
given example. This is certainly more user friendly, because to use
the algorithm, all you need to do is to provide an image sample,
rather than writing a procedural shader followed by tuning parame-
ters. However, now the key issue shifts to the design of a synthesis
algorithm that can synthesize a good result for any given input sam-
ple. This is certainly not an easy task, as much research has been
devoted to texture analysis and synthesis in both the computer vi-
sion and graphics community.

Instead of describing all these previous work, which is definitely
beyond the scope of this paper, we will simply describe some re-
cent algorithms in the graphics community. Specifically, wewill
introduce methods that focus on synthesis quality rather than an-
alytical modeling, which is an interesting topic for recognition or
segmentation, but irrelevant to our goal in this paper.

To develop a successful synthesis algorithm, we need to make
some assumptions about the properties of textures. A commonas-
sumption is Markov Random Field, which states that texturesare
both local and stationary. A texture islocal in the sense that each
texture pixel only correlates with pixels in a small local neighbor-
hood. A texture isstationarybecause the statistical property is the
same for all image pixels. These local and stationary assumptions
certainly do not hold for general images. For example, for animage
containing a human face, pixels on the left eye correlate with those
on the right eye, even though they are far apart. As a result, this
image is not local. This human face is also not stationary because
the statistical property varies depending on the pixel location at the
human face, such as hair, eyes, mouth, or skin.

2.2.1 Pixel-based synthesis

Based on these assumptions, several algorithms exist for synthe-
sis. One possibility is to synthesize a new texture pixel by pixel,
where the value of each new pixel is determined by the local neigh-
borhood. Starting from a seed point, [Efros and Leung 1999] gen-
erates new pixels outward in a spiral fashion. To avoid sampling
not yet synthesized pixels, the authors adopt a variable neighbor-
hood, incorporating only the already synthesized pixels. The value
of each output pixel is determined by choosing the input pixel with
a similar neighborhood. This approach produces surprisingly good
results, and is conceptually simple and elegant. However, due to its
use of exhaustive search of input neighborhoods, the technique is
quite slow.

[Wei and Levoy 2000] proposed a similar algorithm, but usinga
fixed neighborhood. This would incorporate garbage pixels during
the initial phase of synthesis, but the effect quickly fade out as more



outputinput

search

Figure 5: Pixel-based texture synthesis. The gray region in the output
indicates already synthesized portion.

pixels are synthesized. One good thing about using fixed neighbor-
hood is that it allows acceleration via various techniques such as
tree-structured vector quantization. The authors furtherimproved
quality and speed via a multi-resolution approach.

These pixel-based algorithms work well for more stochasticpat-
terns, but fail for textures containing regular or large scale patterns,
which cannot be preserved by synthesizing individual pixels.

2.2.2 Patch-based synthesis

outputinput

search

Figure 6: Patch-based texture synthesis. The gray region in the output
indicates already synthesized portion.

The quality problem of pixel-based approaches can be improved
by synthesizing patches rather than pixels. Many algorithms have
been proposed based on this principle, but for the sake of discus-
sion, we will use [Kwatra et al. 2003], which offered the bestquality
so far. Even though the algorithm synthesizes an output in patches,
the basic principle is still very similar to pixel-based synthesis. In
some sense, you can think that a patch is simply a big pixel. Specif-
ically, the output is produced by assembling patches from the input
sample. The patch is chosen by matching neighborhoods, which is
defined as the ring of pixels surrounding the boundary of the patch.
So in some sense, when the patch becomes single pixel, the algo-
rithm would reduce to pixel-based synthesis. However, one major
difference between patch-based and pixel-based approaches is that,
in a patch-based method, we will need to figure out how to compos-
ite a new patch with the already synthesized portion of the output.
If this is not done carefully, visible seam artifacts will appear in
the output image. [Kwatra et al. 2003] achieves this by finding the
minimum error path via graphi-cut. The technique improves the
synthesis quality further by allowing pasting patches overalready-
synthesized regions if this would reduce synthesis error.

2.2.3 Optimization-based synthesis

[Kwatra et al. 2005] provides an interesting twist to the trend of
example-based synthesis. Instead of using patches, the algorithm
actually considers individual pixels. But unlike previousmethods
which synthesize pixels one by one in a greedy fashion, this tech-
nique considers them all together, and determine their values by
optimizing a quadratic error energy function. The error function is
determined by mismatches of input/output neighborhoods, so min-
imizing this function leads to better output quality.

Due to the use of iterative optimization, this technique is slower
than previous work, but it would allow novel synthesis effects such
as textured flow patterns.

Exercise Implement your favorite example-based synthesis al-
gorithm. Try to run it through a variety of textures. Observewhich
ones work and which ones fail. Could you explain, by the proper-
ties of the textures and the natural of the algorithm, why would they
work or fail?

3 Texture Mapping

After acquiring a texture image, the next step is to decide how to
map it onto the target object surface. There are several issues to
consider here. First, you need to decide roughly how and where
you would like to apply the texture. This is more or less an artistic
or application choice. Then, you need to figure out exactly how the
texture is mapped. Specifically, we would like to minimize distor-
tion or discontinuity.

There is a huge literature in texture mapping, as it involvesa lot
of math. Many of these papers have title or keywords containing
parameterization, so they are pretty easy to identify. Basically, pa-
rameterization means how to represent the object surface bya 2D
function f(u, v), so that each surface point can be reached by a
particular pair of(u, v) values. These values are called parameters,
and the process of findingf(u, v) is called parameterization. A
good parameterization should have low distortion and discontinu-
ity. The major application of parameterization is texture mapping,
as well signal mesh processing.

In general, it is impossible to obtain a parameterization that has
no distortion or discontinuity, except for simple cases such as a
plane, a cylinder, or a cone.

3.1 Volume Texture

One way to circumvent the difficulty of surface parameterization
is to synthesize a volumetric, instead of planar texture, and apply
texture mapping by embedding the object into the texture volume.
This approach would completely avoid discontinuity or distortion in
parameterization. In fact, many procedural textures can besynthe-
sized over a 3D domain, and are perfectly suited for this approach.

However, for example-based synthesis, it is usually not possible
to synthesize a 3D volume from 2D example, unless the textureis
highly random or isotropic, as demonstrated in [Heeger and Bergen
1995]. Even if the volumetric texture can be synthesized or simply
drawn manually, they can be expensive to store or render due to the
large data size. This data size problem can be reduced by storing
only values at voxels near the surface [(grue) DeBry et al. 2002;
Benson and Davis 2002], but this would make it tricky to render
efficiently on graphics hardware.

Due to these difficulties, volumetric texture mapping is usually
employed in conjunction with procedural synthesis.



3.2 Direct Surface Synthesis

Another method to circumvent the difficulty of parameterization is
by synthesizing textures directly over the object surface.This can
be done by extending 2D texture synthesis via either pixel-based
[Turk 2001; Wei and Levoy 2001] or patch-based [Soler et al. 2002]
techniques. By allowing only textures with repeating patterns, these
techniques bypass the need for a global parameterization. However,
they cannot deal with general texture images. In addition, the com-
puted mapping only applies to one texture and cannot be reused for
another different texture.

3.3 Texture Atlas

Texture atlas [Maillot et al. 1993] is the conventional, andperhaps
the most popular method for texture mapping in commercial appli-
cations.1 The basic idea is to partition the object surface into several
domains, so that each domain can be easily parameterized as apla-
nar chart. The parameter distortion can be reduced by increasing
the number of charts. However, care must be taken to avoid dis-
continuity across chart boundaries. Once created, a texture atlas
can be easily rendered as a traditional 2D texture map on graphics
hardware.

3.4 Base-domain Parameterization

A planar domain is not the most natural choice for parameterize a
complex object. Often, the parameterization can be improved by
using a base domain that is more similar to the object shape. One
possible choice of the base domain is a simplified mesh [Lee etal.
1998], utilizing triangles on the base mesh as the domain of param-
eterization. These triangular domains avoid the irregularboundary
problem in general texture atlases. Another possibility isto use
poly-cube maps as the base domain [Tarini et al. 2004]. This idea is
an extension of environment cubemaps, suitable for graphics hard-
ware implementation.

poly−cube mapcube map

Figure 7:Cube map and Poly-cube map.

Exercise Try to run the UVAtlas program [UVAtlas 2005] to
produce an atlas for your favorite polygonal mesh. Are you sat-
isfied with the quality? If not, try to improve the quality either
manually, by an alternative algorithm.

4 Texture Sampling

Now we know how to generate a texture image and how to map
it onto an object surface, we are ready to apply texturing to our
rendering tasks. However, if you just do this directly, you might
encounter annoying artifacts in the rendered images. An example
is shown in Figure 8. These artifacts are caused by signalaliasing.

1Automatic texture atlas creation is supported in DirectX via UVAtlas.

aliasing

isotropic filtering

anisotropic filtering

Figure 8:Aliasing and anti-aliasing for texture mapping.

In the rest of this section, we describe what aliasing is, andhow to
prevent them in texturing.

4.1 Signal Aliasing and Anti-aliasing

In a nutshell, aliasing is caused when a signal is sampled at too
low a rate. An example of 1D signal aliasing is shown in Figure9.
On the top image, we see a signal that is sampled at a lower rate.
Obviously, this sampling rate is too low and many high frequency
features of the original signal are missed. As a result, whenthe
sampled points are reconstructed, we obtain a totally different sig-
nal, shown in red.

One method to resolve this problem is to sample at a higher rate.
Unfortunately, this is not always feasible, and in many applications
the sampling rate is pre-determined. For example, in graphics appli-
cations, your screen resolution often limits how dense a displayed
image is sampled.

Given a limited sampling rate, the other alternative that wecould
avoid the aliasing problem is to pre-filter the signal into a lower
frequency one. This would eliminate the aliasing problem, since
now the reconstructed signal will be identical to the original, as
shown in the bottom case of Figure 9.

This is probably all you need to know to avoid aliasing problems



aliasing case

antialiasing case

Figure 9: Signal aliasing and antialiasing. Top: The black curve is the
original one, and the red curve is the aliased signal caused by the low sam-
pling rate. The dashed lines indicate sampling locations. Bottom: The
filtered signal without aliasing after sampling.

in texturing. A rigorous explanation of aliasing/anti-aliasing will
involve Fourier transform, which we would like to try to avoid here.
Instead, we will discuss this issue purely in the spatial domain via
concrete examples, as in the next subsection.

4.2 Texture Filtering and Mipmapping

(d)

(a) (b) (c)

(f)(e)

Figure 10: Anti-aliasing for texture sampling. The original texture is
shown in (a), which has8 × 8 pixels. When this texture is mapped onto
a polygon with4 × 4 pixels, the polygon will appear to be either as (b) or
(c), depending on how it is sampled. This is an aliasing problem. By filter-
ing the texture into lower frequency (d), we achieve correcttexture sampling
as shown in (e, f).

Discussing aliasing and anti-aliasing issues using 1D signal is
probably not much fun, so now lets switch to 2D texture images.

Assuming we have a very simple texture image, as shown in Fig-
ure 10. The texture has size8 × 8, and we apply it to a polygon,
rendered frontal-parallel with4 × 4 screen pixels. Because the
screen resolution of the polygon is smaller than the texturesize,
we cannot display all the texels simultaneously. So how the poly-
gon will appear? Depending on the numerical precision of your

renderer (either in hardware or software) and on where the poly-
gon is located, you can obtain two different results, shown in (b,
c). Obviously, both are incorrect. Worse, when the polygon moves
across the screen, it might flicker back and forth between thetwo
possibilities. This can be very visually disturbing. This is exactly
an aliasing problem, since the sampling rate4 × 4 is not sufficient
for the texture, which has size8× 8.

To eliminate aliasing, we have to filter the texture so that itdoes
not contain any high frequency content that cannot be sampled in
4 × 4 resolution. The filtered and down-sampled image is shown
in Figure 10 case (d). In this particular case, the texture becomes a
constant, so the polygon will have consistent appearance nomatter
how it is sampled. This is an anti-aliasing technique, commonly
referred as mipmapping [Williams 1983]. In this particularcase,
we build a mipmap with two levels.

(i)

(a) (b) (c)

(f)(e)(d)

(g) (h)

Figure 11:Anti-aliasing for texture sampling. Continue from the previous
case shown in Figure 10, but now we have a more complicated pattern. In
Figure 10, two mipmap levels are enough, but here we need three mipmap
levels.

For more complicated textures, two mipmap levels might not be
enough, as demonstrated in Figure 11. In general, for a texture with
size2N × 2N , we need to build a mipmap withN + 1 levels to
avoid aliasing for all possible sampling rates. The middle image
shown in Figure 8 demonstrates the result after mipmapping.Note
that the aliasing artifacts are all gone.

4.2.1 Anisotropic Filtering

However, one problem with mipmapping is that it can sometimes
over-blur, as shown in Figure 8. When we build a mipmap, we
always filter a higher resolution level isotropically before down-
sampling for a lower resolution level. This can cause over-blurring
when the desired filter footprint is anisotropic, which can happen
when a polygon is viewed perspectively, as shown in Figure 8.
When the footprint is anisotropic, we will have to enclose itwith a
big isotropic footprint in order to avoid aliasing (Figure 12). How-
ever, this would also cause over blurring in the short axis ofthe
anisotropic footprint.

One possible solution to reduce over-blurring is to use multi-
ple isotropic footprints to approximate one anisotropic footprint, as
shown in Figure 12. This was initially proposed by [McCormack



Figure 12: Anisotropic filtering via isotropic footprints. Left: mipmap
filtering, causing blurring. Right: anisotropic filtering by multiple isotropic
footprints.

et al. 1999], and is currently the prevailing solution for anisotropic
filtering on graphics hardware. The disadvantage of this approach
is that the filtering would become slower due to the use of multiple
footprints.

ripmapmipmap

Figure 13:Mipmap versus Ripmap.

An alternative solution is to build a ripmap instead of mipmap
by pre-computing the anisotropic filtering. This is illustrated in
Figure 13. Compared to [McCormack et al. 1999], this approach
is faster because only one footprint is required. However, ripmap
takes more texture memory. In addition, it only supports anisotropy
in a limited set of directions. In Figure 13, only vertical and hor-
izontal directions are supported. In contrast, [McCormacket al.
1999] can support anisotropic footprint in any direction while con-
suming memory of a standard mipmap. This is probably why
graphics hardware vendors prefer [McCormack et al. 1999] over
ripmap.

Exercise Render a perceptively viewed checker-board pattern
(as in Figure 8) on your graphics chip. Try to tune the anisotropic
texture filtering option to see the impact on visual quality and com-
putation speed. Can you design a good quality test for anisotropic
texture filtering on graphics hardware?

5 Texturing on Graphics Hardware

We have now introduced the basic ideas about texturing, including
texture generation, texture mapping, and texture sampling. We now
move on to look at some applications and implementation issues
for real-time texturing on graphics hardware. For offline applica-
tions such as ray tracing, these are relatively non-issues because
we dont care too much about computation speed. In fact, in some
applications the entire scene is represented as micro-polygons and

no texture is used. However, for real-time applications running on
graphics hardware, we have to carefully consider these issues in
order to achieve good performance.

5.1 Modeling Geometry as Texture

The performance of a real-time application often depends onthe
geometry complexity of the scene. One method to simplify the
geometry is to represent detailed surface bumps by texture maps.
Depending on the desired visual effect, surface geometry can be
approximated as bump maps [Blinn 1978], which uses texturesto
modulate surface normals but ignoring self-occlusion and silhou-
ettes, or displacement maps [Cook 1984], which handles occlusion,
shadowing and silhouettes at the expense of more geometry pro-
cessing.

Recently, several techniques have been proposed to render dis-
placement maps on programmable graphics hardware via texture
maps without increasing geometry complexity. [Wang et al. 2003]
pre-computes displacement of a small surface patch from a dense
set of viewing angles. This 4D information is stored and com-
pressed as a set of texture maps, and are looked-up during runtime
for rendering. [Policarpo et al. 2005] reduces the data sizeto 2D
by performing binary search to find the correct displacement. This
binary search is heuristic and does not guarantee a completely ac-
curate result. [Donnelly 2005] improves the search robustness via
sphere tracing, with 3D texture storage.

Texturing can be utilized to accelerate many other aspects of
rendering, such as reflections, refractions, shading, global illumi-
nation, animation, and motion blur. A good reference for these
techniques is [Akenine-Moller and Haines 2002], as well papers on
Symposium of Interactive 3D Graphics and Games.

Exercise Implement one of the displacement texture map tech-
niques as described above. Since they are all approximations of real
displacements, they must all break under certain situations. Try to
figure out when they will break, by varying the parameters of the
algorithm, like texture resolution, displacement field frequency, or
number of search iterations.

5.2 Texture Compression

The computation power of recent graphics hardware has been ad-
vancing in an amazing speed. Unfortunately, this is not the case for
memory latency and bandwidth. As a result, a texture read instruc-
tion is becoming more and more expensive compared to arithmetic
instructions. For good performance, we have to either reduce the
amount of texture read, and/or improve the texture cache coherence.

We can achieve these goals by texture compression. Texture
compression has several advantages. First, it reduces texture mem-
ory usage. So that given the same amount of memory, an applica-
tion can use more textures if compressed. Second, a compressed
texture often improves cache coherence, since a single texture da-
tum covers more texels than an uncompressed texture.

There are a variety of methods to compress textures. In theory,
a texture can be compressed by ordinary image compression algo-
rithms, but for hardware implementation, the algorithm must allow
random access and real-time decompression. The current standard
for texture compression is DXT [DXT 1998], which compresses
4 × 4 pixel blocks independently. DXT is simple, fast, and works
surprisingly well for a variety of natural images, but the compres-
sion ratio is limited (8:1). For textures containing repeating pat-
terns, much high compression ratio can be achieved via techniques
such as texture tiling via shader programming [Wei 2004].

In general, improving texturing performance on graphics hard-
ware is a hot on-going research, both in terms of GPU architecting
or shader programming tricks.



Exercise Experiment with DXT compression on a graphics
chip. Try to observe the compression artifacts, and come up with a
criteria on which textures can be compressed well and which can-
not, in terms of visual quality.

6 Conclusion

We have introduced the three basic components of texturing:tex-
ture generation, texture map, and texture sampling, as wellde-
scribed the issues on graphics hardware. Texturing is stillpretty
much research in progress; pay attention to latest advancesin con-
ferences!

References

AKENINE-MOLLER, T., AND HAINES, E. 2002.Real-Time Ren-
dering. A.K. Peters Ltd.

BENSON, D., AND DAVIS , J. 2002. Octree textures. InSIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, 785–790.

BLINN , J. F. 1978. Simulation of wrinkled surfaces. InSIG-
GRAPH ’78: Proceedings of the 5th annual conference on Com-
puter graphics and interactive techniques, 286–292.

COOK, R. L. 1984. Shade trees. InSIGGRAPH ’84: Proceed-
ings of the 11th annual conference on Computer graphics and
interactive techniques, 223–231.

DONNELLY, W. 2005. Per-pixel displacement mapping with dis-
tance functions. InGPU Gems II, 123.

DXT, 1998. DXT Texture Compression Standard.
http://msdn.microsoft.com/archive/default.
asp?url=/archive/en-us/dx8_vb/directx_vb/
graphics_using_1ir7.asp.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 1998.Texturing & Modeling, A Procedural
Approach. AP Professional.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. InIEEE International Conference on
Computer Vision, 1033–1038.

ELIAS , H., 2003. Perlin noise.http://freespace.virgin.
net/hugo.elias/models/m_perlin.htm.

(GRUE) DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N.
2002. Painting and rendering textures on unparameterized mod-
els. In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, 763–
768.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based tex-
ture analysis/synthesis. InSIGGRAPH ’95: Proceedings of the
22nd annual conference on Computer graphics and interactive
techniques, 229–238.

KWATRA , V., SCHODL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts.ACM Trans. Graph. 22, 3, 277–286.

KWATRA , V., ESSA, I., BOBICK, A., AND KWATRA , N. 2005.
Texture optimization for example-based synthesis.ACM Trans.
Graph. 24, 3, 795–802.

LEE, A. W. F., SWELDENS, W., SCHR&#246;DER, P., COWSAR,
L., AND DOBKIN , D. 1998. Maps: multiresolution adaptive pa-
rameterization of surfaces. InSIGGRAPH ’98: Proceedings of
the 25th annual conference on Computer graphics and interac-
tive techniques, 95–104.

MAILLOT , J., YAHIA , H., AND VERROUST, A. 1993. Interactive
texture mapping. InProceedings of SIGGRAPH 93, Computer
Graphics Proceedings, Annual Conference Series, 27–34.

MCCORMACK, J., PERRY, R., FARKAS, K. I., AND JOUPPI, N. P.
1999. Feline: fast elliptical lines for anisotropic texture mapping.
In SIGGRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, 243–250.

PERLIN, K. 1985. An image synthesizer. InSIGGRAPH ’85: Pro-
ceedings of the 12th annual conference on Computer graphics
and interactive techniques, 287–296.

PERLIN, K. 2002. Improving noise.ACM Transactions on Graph-
ics 21, 3 (July), 681–682.

POLICARPO, F., OLIVEIRA , M. M., AND COMBA , J. L. D. 2005.
Real-time relief mapping on arbitrary polygonal surfaces.In
SI3D ’05: Proceedings of the 2005 symposium on Interactive
3D graphics and games, 155–162.

SOLER, C., CANI , M.-P., AND ANGELIDIS, A. 2002. Hierar-
chical pattern mapping.ACM Transactions on Graphics 21, 3
(July), 673–680.

TARINI , M., HORMANN, K., CIGNONI, P., AND MONTANI , C.
2004. Polycube-maps.ACM Transactions on Graphics 23, 3
(Aug.), 853–860.

TURK, G. 2001. Texture synthesis on surfaces. InSIGGRAPH
’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, 347–354.

UVATLAS, 2005. Uvatlas. http://msdn.
microsoft.com/library/default.asp?url=
/library/en-us/directx9_c/directx/
graphics/ProgrammingGuide/AdvancedTopics/
UsingUVAtlas.asp.

WANG, L., WANG, X., TONG, X., L IN , S., HU, S., GUO, B.,
AND SHUM , H.-Y. 2003. View-dependent displacement map-
ping. ACM Trans. Graph. 22, 3, 334–339.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. InProceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, 479–488.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. InSIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques, 355–360.

WEI, L.-Y. 2004. Tile-based texture mapping on graphics hard-
ware. InGraphics Hardware 2004, 55–64.

WILLIAMS , L. 1983. Pyramidal parametrics. InProceedings of
SIGGRAPH 1983, 1–11.


