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Figure 1:The effect of texturing.

Abstract

Texturing is a fundamental technique in Computer Graplailbow-
ing us to represent surface properties without modelingraggoc
or material details. In this course, we describe the basiasdf
texturing and how we could apply textures to objects in rgal a
plications. We concentrate on the three main componentexef t
turing: texture acquisition, texture mapping, and texsampling.
For each component, we present the fundamental algorithmeslh
recent innovations. We also describe implementation ssand ad-
ditional application of texturing on graphics hardware.

Keywords: Texture Mapping, Texture Synthesis, Texture Sam-
pling and Filtering

1 Introduction

Modeling surface details is one of the most important tasksen-
dering realistic images. One way to achieve this is to mitily
represent the detailed micro-geometry and BRDF (bidioeet
reflection-distribution-function) over a dense samplirighe sur-
face. This can certainly be done, but this approach has tworma

problems. The first problem is that it can be tedious and laor
tensive to acquire the detailed geometric and BRDF dataerelity
manual drawing or by measuring real materials. The secooiat pr
lem is that, such a detailed model, even if it can be acquiret;
take significant time, memory, and computation resourcesrtder.

Fortunately, for Computer Graphics applications, we seldo
need to do this. If we are simulating a physical for a more-seri
ous purpose of say, designing an aircraft, an artificial theara
nuke head, then it is crucial that we get everything righthwitt
omitting any detail. However, for graphics, all we need imge
thing that looks right, for both appearance and motion. Asaech
in psychology and psychophysics shows, the human visutérsys
likes to take shortcuts in processing information (and jprisba-
bly why it appears to be so fast, even for slow-witted peqajl
this allows us to take shortcuts in image rendering as welavbid
annoying some conservative computer scientists (whiclezpar-
dize my academic career), | will use the tempproximationnstead
of shortcuthereafter.

Texturing is an approximation for detailed surface geoynatd
material properties. For example, assume you want to matel a
render a brick wall. One method is to model the detailed geome
try and material properties of all the individual bricks amdrtar
layers, and send this information for rendering, eithersiatracer
or graphics hardware. However, in a typical applicationhsas
games, few people would care much about the details of tlo& bri
wall (unless you know it contains a hidden door to a treasooy),
and would normally view the wall from a distance. In this atian,
we probably dont need to bother with all the details of thekri
wall. Instead, we can simply model the wall as a big flat polygo
and paste onto the polygon a brick wall image so that the jpolyg
looks like a real brick wall. This image, acting asapproximation
to the real brick wall, is calletexturein graphics, and the process
of applying the texture to an object surface is catieduring

Texturing resolves the two problems for modeling and render
ing surface details, as described earlier. First, by remtasy the
surface as a texture image, you dont have to painfully molilel a
the geometric and material details. This saves users tirdgen
sources, so that you can spend more time doing more usefijl stu
like reading this paper. Second, by rendering a rough polggo
model (e.g. a single square polygon for a brick wall) and &utex
instead of a detailed model with different BRDFs, the remdger
can be done much more efficiently, either via ray tracer oygpol
onal rasterizer. This saves computers time and resourcegmus
can add other fancy rendering effects within the same tinaimg
resource budget.

The usual practice of texturing can be roughly divided ihteé
major components. First, before you can do anything, youd tee
acquirethe texture image. This can be done by manual drawing or
photographing, but these approaches have their limitsitibater,
we will discuss algorithmic methods that overcome thesétdim
tions. Second, given the texture image and a 3D model, yoditaee
figure out how tanap the texture onto the model. This is actually a
very difficult problem. Think, for example, of wrapping atgiaper
around a basketball (or a baseball autographed by Barry 8dhd
you are a San Francisco Giants fan). Essentially, the gifepés
a texture and the ball is the 3D object, and our goal is to wap t
paper around the ball as nicely as possible, so that we dertbse
much crumpling and folding of the paper, and we would defipite
want the ball to be entirely wrapped up. Third, after you hdege



cided how to map the texture onto the object, you will haveat@e
fully sample the texture in the rendering process, otherwise, you
may see some undesirable artifacts rooted in the signaépsoty
theory.

In the rest of this paper, we will describe in detail how tofpem
each of these three operations. We will describe the basisid
and algorithms first, followed by more recent innovationse Wl
then describe various applications of texturing, beyormdattiginal
intention we just described. In fact, texturing is one ofinast fun
field to play with in Computer Graphics, and you can potelytial
achieve unexpected effects if you are creative enough.

2 Texture Generation

The first task for texturing is to acquire the texture imagsudally,
you will have at least a rough idea in mind on what kind of testu
you need, such as a marble table or a wooden chair. Our gaal is t
generate a texture so that it has the desired visual apmeaeand
properties of the texture you have in mind.

There are a variety of methods to generate the texture imége.
you are an artist, you could simply draw a texture by hand. How
ever, manual art is usually limited to artificial textures, s very
difficult to manually draw a texture with realistic appearenBe-
sides, not everybody is an artist.

Another option is to photograph the material you would lige t
texture. For example, to acquire a texture of orange skin,gan
simply photograph an orange. This approach is very easy-to de
ploy, and you can easily obtain photorealistic texturesweicr,
this approach has some limitations. To acquire a high quegit-
ture, usually we would like to avoid lighting or curvatureabiin
the acquired texture image, because the texture can bedpplan
object with different shape from the original object, anddered
under a different lighting condition. The lighting probleran be
resolved by photographing under a carefully controlledistlight-
ing to avoid bias. The curvature problem is more serious gvew
as itis usually infeasible to flatten a real object, such asrange.

Texture synthesis is designed as a possible solution focuhe
vature problem. First, you obtain a texture sample. The &mogn
be small, and this would allow you to photograph a small negio
of the original object so that the region is more or less flatisT
small sample is usually useless for your texturing appboatas
you might need a larger texture to adequately cover theeetatiget
object. Fortunately, from the small texture sample, texsymthe-
sis would produce an arbitrarily large result automaticé&t you,
and this allows you to apply the result to your object with iminm
visual artifacts.

The goal of texture synthesis can be defined as follows. Given
a sample image, texture synthesis would produce an outgtuir¢e
that looks like the input. This can be achieved by making mgsu
tions about the statistical properties of the texture irsaged dif-
ferent assumptions will yield algorithms with differentadity and
computation speed. We will cover some of these algorithnes.la

The major limitation of all texture synthesis algorithmstligit
they can only operate on more or less homogeneous pattemns. |
fact, the termtexturein image processing and computer vision lit-
erature refers to images with regularly or stochasticadlyeating
patterns. In contrast, the tertexturein computer graphics usu-
ally means any image that you applied for texturing objedtise
specific meaning of the term can usually be disambiguatea fro
the context, but in case of possible confusions, we willredehe
former asnarrow while the later aproad, definition of textures.

Figure 2: 2D Perlin noise example. Left: the Perlin noise image. Right
the individual noise bands, from low to high frequenciesagencourtesy of
[Elias 2003].

algorithmic way to incorporate all of them. They are usuaitper
rendered manually by hand or automatically by render-ttute on

a GPU, or can be assembled from photographs by any artisti to
such as photomontage. We will not describe all the postéslias
this itself is a separate art project.

2.1 Procedural Synthesis

One method to synthesize textures is to write special proesd
that simulate either the physical formation process or birtipe
appearance of the material. For certain patterns such dsevar
wood, they can be emulated by very simple function calledifPer
noise. For more complicated patterns, they could be sirdlay
fancier procedural process. For example, some animal skienps
or structures can be simulated by a chemical process cel&ton
diffusion. The rusting of metals and the formation of flonelincan
also be simulated by detailed physical modeling.

The advantage of these procedural texture codes is that#mey
be very compact, as the only storage requirement is the proce
dure itself and associated parameters. Another advargdbatiby
changing the parameters of these procedures, you can elaailge
the appearance of the resulting textures, providing escelton-
trollability.

However, procedural synthesis can only be applied for aiipec
class of textures that you know how to simulate procedurddtyr
a texture that has no known procedural code, we will not be abl
to synthesize it procedurally. Even for textures with knguwace-
dures, it can still be tricky to choose the proper paramgtershe
mapping from the parameters to the final texture appearaigig m
not be straightforward or intuitive.

Nevertheless, procedural texturing has enjoyed greaessda
the film rendering community, as many feature animationsihea
utilize procedural textures. Many artists prefer procatisynthe-
sis over other approaches due to its controllability. Degisiew
procedural code for simulating textures can also be a furchat
lenging activity.

To give you a flavor of what procedural texturing is all abous,
will provide a high level overview of Perlin Noise [Perlin @2),
which is arguably the most popular form of procedural sysithe
For more information about procedural texturing, we recanch
[Ebert et al. 1998], which provides an excellent introdoictas well
comprehensive literature survey.

For narrow sense of textures, they can be generated by texture 2 1 1 perlin Noise

synthesis algorithms. This will be the main focus for thet k&s
this section, as we will describe two major flavors of textsye-
thesis algorithms: procedural and example-based bfead sense
of textures, since they can be arbitrary images, there isngles

Since its inception in 1985 [Perlin 1985], Perlin Noise hagrb
widely adopted as the standard for procedural texturinge@ally
in the digital film industry.
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Figure 3:Example textures generated from Perlin noise.

The basic idea of Perlin noise is surprisingly simple andaaté.
Before introducing Perlin noise, we will first describe whathite
noise is. A white noise is a signal that has uniform energpsr
all frequency bands; i.e. the Fourier transform of a whitseavill
show a rough flat spectrum. You can see a white noise when you
tune your TV to a non-broadcasting channel. A white noise can
be simulated on a computer via a uniform random function. For
example, to generate a 2D white noise with amplitude in thgea
[0, 1], all you need to do is to fill in the noise with pixel values
drawn from a uniform random function in the ranige1].

Unlike a white noise, a Perlin noise is a band-limited sigrigal
can be constructed as a summation of white noises at difféeen
guency bands, as shown in the following equation:

n—1
perlin = Z interpolate(white;) x p'
i=0

)

wheren is the total number of bang, is the persistence, ands
the band number, with= 0 being the lowest frequency band.

It is actually technically incorrect to talk about white seiat
different frequency bands, but we are talking about how tofmate
the noise procedurally, not the rigorous mathematical ingarA
white noise at a specific band is simply a white noise with gjgec
image size. In the equation above, white noise at banas size
2'. Because the bands have different sizes, we need to praperly
terpolate them to the final noise size before taking the sutoma
The summation is taken over all the frequency bands, witth eac
band weighted by the power of a quantity calfggtsistence Per-
sistence is a user-specified parameter, which simply deritre rel-
ative weight of the frequency bands. Usually, persisteaaesithin
[0, 1], so that the weight decreases with the increasing of band fre
quency. A visual example of 2D Perlin noise and the congtigut
bands can be found in Figure 2.

Based on Perlin noise, a variety of textures can be syntmsiz
by proper procedures. Some examples are shown in Figuree®. Th
synthesis formulas are as follows:

marble = cosine(z + perlin(z,y, z)) 2
g = perlin(z,y,z) = scale
wood = g—int(g) 3)

Exercise Implement the Perlin noise as described above. Try to
generate the marble and wood textures by finding out the ppzpe
rameters, such as persistence, scale, and colors. Thigivéllou
a feeling of how it is like to tune the procedures in order to-ge
erate the desired textures. Hint: try to use a low persistentue
for wood, and normal persistence value[in0.5] for marble. If
you find it difficult to tune procedural textures, you are nine.
In fact, working with procedural textures is such a demagdéask
that there is a unique profession created in the game dexrstom-
munity for these people whose job is to write proceduraluesg,
they are often calletexture artistsor texture designers

In the next part, we will describe alternative methods toggate
textures that do not require artistic skills.

2.2 Example-based Synthesis

sample

result

Figure 4: Texture synthesis from example. The original sample is show
on the left, while the synthesis result is shown on the right.

An alternative approach is to synthesize a new texture from a
given example. This is certainly more user friendly, beedosuse
the algorithm, all you need to do is to provide an image sample
rather than writing a procedural shader followed by tuniaggme-
ters. However, now the key issue shifts to the design of ehegit
algorithm that can synthesize a good result for any giveatispm-
ple. This is certainly not an easy task, as much researchdes b
devoted to texture analysis and synthesis in both the campist
sion and graphics community.

Instead of describing all these previous work, which is difiy
beyond the scope of this paper, we will simply describe sogne r
cent algorithms in the graphics community. Specifically, wi
introduce methods that focus on synthesis quality ratham #n-
alytical modeling, which is an interesting topic for recdgm or
segmentation, but irrelevant to our goal in this paper.

To develop a successful synthesis algorithm, we need to make
some assumptions about the properties of textures. A conason
sumption is Markov Random Field, which states that textares
both local and stationary. A textureliscal in the sense that each
texture pixel only correlates with pixels in a small localgiéor-
hood. A texture istationarybecause the statistical property is the
same for all image pixels. These local and stationary assang
certainly do not hold for general images. For example, fdnage
containing a human face, pixels on the left eye correlath thibse
on the right eye, even though they are far apart. As a resugt, t
image is not local. This human face is also not stationarabse
the statistical property varies depending on the pixeltiooaat the
human face, such as hair, eyes, mouth, or skin.

2.2.1 Pixel-based synthesis

Based on these assumptions, several algorithms exist fihesy
sis. One possibility is to synthesize a new texture pixel xglp
where the value of each new pixel is determined by the lodghae
borhood. Starting from a seed point, [Efros and Leung 1989} g
erates new pixels outward in a spiral fashion. To avoid sargpl
not yet synthesized pixels, the authors adopt a variablghbei-
hood, incorporating only the already synthesized pixele Value
of each output pixel is determined by choosing the inputipisth
a similar neighborhood. This approach produces surptisigopd
results, and is conceptually simple and elegant. Howewertalits
use of exhaustive search of input neighborhoods, the tqubris
quite slow.

[Wei and Levoy 2000] proposed a similar algorithm, but using
fixed neighborhood. This would incorporate garbage pixating
the initial phase of synthesis, but the effect quickly fadeas more
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Figure 5: Pixel-based texture synthesis. The gray region in the dutpu
indicates already synthesized portion.

pixels are synthesized. One good thing about using fixechbeigy
hood is that it allows acceleration via various techniqueshsas
tree-structured vector quantization. The authors furiimgroved
quality and speed via a multi-resolution approach.

These pixel-based algorithms work well for more stochasite
terns, but fail for textures containing regular or largelsgatterns,
which cannot be preserved by synthesizing individual gixel

2.2.2 Patch-based synthesis
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Figure 6: Patch-based texture synthesis. The gray region in the outpu
indicates already synthesized portion.

The quality problem of pixel-based approaches can be inggrov
by synthesizing patches rather than pixels. Many algosthave
been proposed based on this principle, but for the sake ofighs
sion, we will use [Kwatra et al. 2003], which offered the besality
so far. Even though the algorithm synthesizes an outputtchpa,
the basic principle is still very similar to pixel-based gyesis. In
some sense, you can think that a patch is simply a big pixelci&p
ically, the output is produced by assembling patches framrthut
sample. The patch is chosen by matching neighborhoodshvigic
defined as the ring of pixels surrounding the boundary of #ietp
So in some sense, when the patch becomes single pixel, the alg
rithm would reduce to pixel-based synthesis. However, oapm
difference between patch-based and pixel-based appwactiat,
in a patch-based method, we will need to figure out how to campo
ite a new patch with the already synthesized portion of thpwiu
If this is not done carefully, visible seam artifacts willpggar in
the output image. [Kwatra et al. 2003] achieves this by figdhe
minimum error path via graphi-cut. The technique improves t
synthesis quality further by allowing pasting patches alezady-
synthesized regions if this would reduce synthesis error.

2.2.3 Optimization-based synthesis

[Kwatra et al. 2005] provides an interesting twist to thentteof
example-based synthesis. Instead of using patches, tbethig
actually considers individual pixels. But unlike previowmgthods
which synthesize pixels one by one in a greedy fashion, éuls-t
nique considers them all together, and determine theiregahy
optimizing a quadratic error energy function. The errorchion is
determined by mismatches of input/output neighborhocalsnis-
imizing this function leads to better output quality.

Due to the use of iterative optimization, this techniquedsver
than previous work, but it would allow novel synthesis effesuch
as textured flow patterns.

Exercise Implement your favorite example-based synthesis al-
gorithm. Try to run it through a variety of textures. Obsewlgch
ones work and which ones fail. Could you explain, by the prope
ties of the textures and the natural of the algorithm, why lditluey
work or fail?

3 Texture Mapping

After acquiring a texture image, the next step is to decide tw
map it onto the target object surface. There are severatsst
consider here. First, you need to decide roughly how and evher
you would like to apply the texture. This is more or less aistct
or application choice. Then, you need to figure out exactly tie
texture is mapped. Specifically, we would like to minimizstdi-
tion or discontinuity.

There is a huge literature in texture mapping, as it invobvést
of math. Many of these papers have title or keywords contgini
parameterizationso they are pretty easy to identify. Basically, pa-
rameterization means how to represent the object surfage2by
function f(u,v), so that each surface point can be reached by a
particular pair of(u, v) values. These values are called parameters,
and the process of finding(u, v) is called parameterization. A
good parameterization should have low distortion and disico-
ity. The major application of parameterization is texturepping,
as well signal mesh processing.

In general, it is impossible to obtain a parameterizatiat tas
no distortion or discontinuity, except for simple caseshsas a
plane, a cylinder, or a cone.

3.1 Volume Texture

One way to circumvent the difficulty of surface parametditza
is to synthesize a volumetric, instead of planar texture, @pply
texture mapping by embedding the object into the texturamel
This approach would completely avoid discontinuity or@iibn in
parameterization. In fact, many procedural textures casyhthe-
sized over a 3D domain, and are perfectly suited for this @aagr.

However, for example-based synthesis, it is usually nosiptes
to synthesize a 3D volume from 2D example, unless the texsure
highly random or isotropic, as demonstrated in [Heeger agrgj@n
1995]. Even if the volumetric texture can be synthesizedroply
drawn manually, they can be expensive to store or renderadile t
large data size. This data size problem can be reduced bipgstor
only values at voxels near the surface [(grue) DeBry et a0220
Benson and Davis 2002], but this would make it tricky to rende
efficiently on graphics hardware.

Due to these difficulties, volumetric texture mapping isalsu
employed in conjunction with procedural synthesis.



3.2 Direct Surface Synthesis

Another method to circumvent the difficulty of parametetia is
by synthesizing textures directly over the object surfabieis can
be done by extending 2D texture synthesis via either piaskd
[Turk 2001; Wei and Levoy 2001] or patch-based [Soler et@D22
techniques. By allowing only textures with repeating patsethese
techniques bypass the need for a global parameterizationever,
they cannot deal with general texture images. In additiom com-
puted mapping only applies to one texture and cannot beddase
another different texture.

3.3 Texture Atlas

Texture atlas [Maillot et al. 1993] is the conventional, grethaps
the most popular method for texture mapping in commercigpliap
cations® The basic idea is to partition the object surface into sévera
domains, so that each domain can be easily parameterizeplas a
nar chart. The parameter distortion can be reduced by isicigga
the number of charts. However, care must be taken to avoid dis
continuity across chart boundaries. Once created, a texilas
can be easily rendered as a traditional 2D texture map orhg=p
hardware.

3.4 Base-domain Parameterization

A planar domain is not the most natural choice for paraneeai
complex object. Often, the parameterization can be imputdye
using a base domain that is more similar to the object shape. O
possible choice of the base domain is a simplified mesh [Leé et
1998], utilizing triangles on the base mesh as the domaimuatp-
eterization. These triangular domains avoid the irregoéamdary
problem in general texture atlases. Another possibilitjoisise
poly-cube maps as the base domain [Tarini et al. 2004]. Teis is
an extension of environment cubemaps, suitable for gragtacd-
ware implementation.
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Figure 7:Cube map and Poly-cube map.

Exercise Try to run the UVAtlas program [UVAtlas 2005] to
produce an atlas for your favorite polygonal mesh. Are yad sa
isfied with the quality? If not, try to improve the quality ledr
manually, by an alternative algorithm.

4 Texture Sampling

Now we know how to generate a texture image and how to map
it onto an object surface, we are ready to apply texturinguo o
rendering tasks. However, if you just do this directly, yoigin
encounter annoying artifacts in the rendered images. Ampia

is shown in Figure 8. These artifacts are caused by sigieding

1Automatic texture atlas creation is supported in DirectX MVAtlas.

aliasing

anisotropic filtering

Figure 8:Aliasing and anti-aliasing for texture mapping.

In the rest of this section, we describe what aliasing is,eowd to
prevent them in texturing.

4.1 Signal Aliasing and Anti-aliasing

In a nutshell, aliasing is caused when a signal is sampledaat t
low a rate. An example of 1D signal aliasing is shown in Figwre
On the top image, we see a signal that is sampled at a lower rate
Obviously, this sampling rate is too low and many high fretye
features of the original signal are missed. As a result, when
sampled points are reconstructed, we obtain a totallyreiffesig-
nal, shown in red.

One method to resolve this problem is to sample at a higher rat
Unfortunately, this is not always feasible, and in many aplons
the sampling rate is pre-determined. For example, in gca@ppli-
cations, your screen resolution often limits how dense playgd
image is sampled.

Given a limited sampling rate, the other alternative thataad
avoid the aliasing problem is to pre-filter the signal intoowér
frequency one. This would eliminate the aliasing problemges
now the reconstructed signal will be identical to the orédiras
shown in the bottom case of Figure 9.

This is probably all you need to know to avoid aliasing pratde
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Figure 9: Signal aliasing and antialiasing. Top: The black curve is th
original one, and the red curve is the aliased signal causgthb low sam-
pling rate. The dashed lines indicate sampling locationtt@n: The
filtered signal without aliasing after sampling.

in texturing. A rigorous explanation of aliasing/antisaing will
involve Fourier transform, which we would like to try to addiere.
Instead, we will discuss this issue purely in the spatial @ionvia
concrete examples, as in the next subsection.

4.2 Texture Filtering and Mipmapping

(@) (b) (c)

(d) (e) ®

Figure 10: Anti-aliasing for texture sampling. The original texture i
shown in (a), which has x 8 pixels. When this texture is mapped onto
a polygon withd x 4 pixels, the polygon will appear to be either as (b) or
(c), depending on how it is sampled. This is an aliasing mobl By filter-
ing the texture into lower frequency (d), we achieve cortexture sampling
as shownin (e, ).

Discussing aliasing and anti-aliasing issues using 1Dasign
probably not much fun, so now lets switch to 2D texture images

Assuming we have a very simple texture image, as shown in Fig-
ure 10. The texture has si8ex 8, and we apply it to a polygon,
rendered frontal-parallel with x 4 screen pixels. Because the
screen resolution of the polygon is smaller than the texsize,
we cannot display all the texels simultaneously. So how tig-p
gon will appear? Depending on the numerical precision ofryou

renderer (either in hardware or software) and on where the po
gon is located, you can obtain two different results, shomwbi
c). Obviously, both are incorrect. Worse, when the polygaves
across the screen, it might flicker back and forth betweerivtioe
possibilities. This can be very visually disturbing. Theseixactly
an aliasing problem, since the sampling ré&te 4 is not sufficient
for the texture, which has sizex 8.

To eliminate aliasing, we have to filter the texture so thdbits
not contain any high frequency content that cannot be safiple
4 x 4 resolution. The filtered and down-sampled image is shown
in Figure 10 case (d). In this particular case, the textuoeines a
constant, so the polygon will have consistent appearanceatter
how it is sampled. This is an anti-aliasing technique, comigno
referred as mipmapping [Williams 1983]. In this particutase,
we build a mipmap with two levels.

(@) (b)

()

(d) (e) ®
. [ | [ |
9 (h) (i)

Figure 11:Anti-aliasing for texture sampling. Continue from the poes
case shown in Figure 10, but now we have a more complicatadrpatin
Figure 10, two mipmap levels are enough, but here we neeé thipmap
levels.

For more complicated textures, two mipmap levels might ot b
enough, as demonstrated in Figure 11. In general, for areewtith
size2” x 2, we need to build a mipmap witlV + 1 levels to
avoid aliasing for all possible sampling rates. The middiage
shown in Figure 8 demonstrates the result after mipmappiloge
that the aliasing artifacts are all gone.

4.2.1 Anisotropic Filtering

However, one problem with mipmapping is that it can somegime
over-blur, as shown in Figure 8. When we build a mipmap, we
always filter a higher resolution level isotropically befadown-
sampling for a lower resolution level. This can cause overring
when the desired filter footprint is anisotropic, which cappen
when a polygon is viewed perspectively, as shown in Figure 8.
When the footprint is anisotropic, we will have to encloswith a
big isotropic footprint in order to avoid aliasing (Figur2)1 How-
ever, this would also cause over blurring in the short axishef
anisotropic footprint.

One possible solution to reduce over-blurring is to use imult
ple isotropic footprints to approximate one anisotropiatfoint, as
shown in Figure 12. This was initially proposed by [McCortkac



Figure 12: Anisotropic filtering via isotropic footprints. Left: migap
filtering, causing blurring. Right: anisotropic filteringytmultiple isotropic
footprints.

et al. 1999], and is currently the prevailing solution forsatropic
filtering on graphics hardware. The disadvantage of thiscguh
is that the filtering would become slower due to the use of iplelt
footprints.

[
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Figure 13:Mipmap versus Ripmap.

An alternative solution is to build a ripmap instead of migma
by pre-computing the anisotropic filtering. This is illuated in
Figure 13. Compared to [McCormack et al. 1999], this apgroac
is faster because only one footprint is required. Howeipmap
takes more texture memory. In addition, it only supportseatnopy
in a limited set of directions. In Figure 13, only verticaldanor-
izontal directions are supported. In contrast, [McCormatlal.
1999] can support anisotropic footprint in any directionilelton-
suming memory of a standard mipmap. This is probably why
graphics hardware vendors prefer [McCormack et al. 1998} ov
ripmap.

Exercise Render a perceptively viewed checker-board pattern
(as in Figure 8) on your graphics chip. Try to tune the angotr
texture filtering option to see the impact on visual qualitgd @om-
putation speed. Can you design a good quality test for anjsiot
texture filtering on graphics hardware?

5 Texturing on Graphics Hardware

We have now introduced the basic ideas about texturing,dirg
texture generation, texture mapping, and texture sampiWegnow
move on to look at some applications and implementatioressu
for real-time texturing on graphics hardware. For offlinglag@a-
tions such as ray tracing, these are relatively non-isseeause
we dont care too much about computation speed. In fact, iresom
applications the entire scene is represented as micraypotyand

no texture is used. However, for real-time applicationsimg on
graphics hardware, we have to carefully consider thesesssu
order to achieve good performance.

5.1 Modeling Geometry as Texture

The performance of a real-time application often dependshen
geometry complexity of the scene. One method to simplify the
geometry is to represent detailed surface bumps by textapsm
Depending on the desired visual effect, surface geometnybea
approximated as bump maps [Blinn 1978], which uses textiares
modulate surface normals but ignoring self-occlusion atibs-
ettes, or displacement maps [Cook 1984], which handlesisiced,
shadowing and silhouettes at the expense of more geomaedry pr
cessing.

Recently, several techniques have been proposed to reisder d
placement maps on programmable graphics hardware viaréextu
maps without increasing geometry complexity. [Wang et 603}
pre-computes displacement of a small surface patch frormsede
set of viewing angles. This 4D information is stored and com-
pressed as a set of texture maps, and are looked-up duririgmen
for rendering. [Policarpo et al. 2005] reduces the data &izZ2D
by performing binary search to find the correct displacemehts
binary search is heuristic and does not guarantee a corypéate
curate result. [Donnelly 2005] improves the search rolasstrvia
sphere tracing, with 3D texture storage.

Texturing can be utilized to accelerate many other aspefcts o
rendering, such as reflections, refractions, shading,aglidiomi-
nation, animation, and motion blur. A good reference forsthe
techniques is [Akenine-Moller and Haines 2002], as wellgran
Symposium of Interactive 3D Graphics and Games.

Exercise Implement one of the displacement texture map tech-
niques as described above. Since they are all approxinsatfmeal
displacements, they must all break under certain situstidny to
figure out when they will break, by varying the parametershef t
algorithm, like texture resolution, displacement fieldginency, or
number of search iterations.

5.2 Texture Compression

The computation power of recent graphics hardware has keten a
vancing in an amazing speed. Unfortunately, this is not &se ¢or
memory latency and bandwidth. As a result, a texture reddlins
tion is becoming more and more expensive compared to ariitbme
instructions. For good performance, we have to either redbe
amount of texture read, and/or improve the texture cachereolce.

We can achieve these goals by texture compression. Texture
compression has several advantages. First, it reducesderem-
ory usage. So that given the same amount of memory, an applica
tion can use more textures if compressed. Second, a corepress
texture often improves cache coherence, since a singleréega-
tum covers more texels than an uncompressed texture.

There are a variety of methods to compress textures. Inyheor
a texture can be compressed by ordinary image compresgjon al
rithms, but for hardware implementation, the algorithm hallew
random access and real-time decompression. The currewlasth
for texture compression is DXT [DXT 1998], which compresses
4 x 4 pixel blocks independently. DXT is simple, fast, and works
surprisingly well for a variety of natural images, but thergoes-
sion ratio is limited (8:1). For textures containing repegtpat-
terns, much high compression ratio can be achieved via igobs
such as texture tiling via shader programming [Wei 2004].

In general, improving texturing performance on graphicsiha
ware is a hot on-going research, both in terms of GPU ardhigec
or shader programming tricks.



Exercise Experiment with DXT compression on a graphics
chip. Try to observe the compression artifacts, and comeitipav
criteria on which textures can be compressed well and whach ¢
not, in terms of visual quality.

6 Conclusion

We have introduced the three basic components of textutag:
ture generation, texture map, and texture sampling, as deell
scribed the issues on graphics hardware. Texturing issglty
much research in progress; pay attention to latest advamaces-
ferences!
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