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Abstract 
 

We describe a hybrid hardware emulation 
environment: the Flexible Architecture for Simulation 
and Testing (FAST).  FAST integrates field-
programmable gate arrays (FPGAs), microprocessors, 
and memory to enable rapid prototyping of chip 
multiprocessors, multithreaded architectures, or other 
novel computer architectures and chip-level memory 
systems.  FAST combines configurable and fixed-
function hardware and software to facilitate rapid 
prototyping by utilizing components optimized for their 
particular tasks: FPGAs for interconnect and glue 
logic; processors for rapid program execution; and 
SRAMs for fast memory.  Unlike software simulators, 
FAST can simulate complex designs at multi-megahertz 
speeds regardless of the simulation detail.  We illustrate 
FAST’s utility by describing mappings of both a small-
scale CMP with speculation support and a large-scale 
CMP connected using a network.  We then show 
performance results from a very simple, decoupled 4-
way CMP executing small test programs. 
 
1.  Introduction 
 

Multithreaded microprocessor architectures such as 
chip multiprocessors (CMPs) are now ubiquitous in 
industry and research.  Traditionally, computer 
architects have leveraged increasing transistor density 
on microprocessor chips to implement single, large 
processors that exploit instruction level parallelism 
(ILP).  However, continued performance gains from 
ILP are becoming increasingly difficult to achieve due 
to limited parallelism among instructions in typical 
applications [26].  Likewise, the problems associated 
with designing ever-larger and more complex 
monolithic processor cores are becoming increasingly 
significant.  These problems include higher bug rates, 
longer design and verification times caused by the 
design complexity and the need to design for increasing 
wire delay [19].  This reality has spurred great interest 
in exploiting thread-level parallelism (TLP) among 

independent threads of instructions to continue 
historical microprocessor performance improvement 
trends.  These multithreaded architectures effectively 
integrate multiple homogeneous or heterogeneous 
processors onto a single chip [5,16].  

Researchers have shown that chip-level 
multithreaded microprocessors enable many new TLP 
extraction techniques, which conventional symmetric 
multiprocessors (SMPs) cannot exploit, by providing an 
order of magnitude improvement in interprocessor 
communication latency and bandwidth compared to 
conventional SMPs. These improvements in 
communication performance enable conventional 
parallel applications to be divided up into very fine-
grain threads that can achieve parallel speedups even 
when they would slow down on conventional SMP 
hardware.  Using thread-level speculation (TLS) 
support, even nominally sequential applications can be 
broken into collections of fine-grain threads that can be 
run in parallel on CMPs. TLS support adds hardware to 
guarantee that the sequential application will still 
execute correctly in parallel.  It does this by tracking 
dependencies and backing up any threads that violate 
the original program’s dataflow [8,15,23,24].  By 
eliminating the need for guaranteed thread 
independence, TLS makes it much simpler to parallelize 
sequential applications. 

Unfortunately, because very few actual processor 
implementations that are available exploit fine-grain 
TLP, and because no TLS architectures exist, 
researchers have been forced to rely on simulation or 
emulation to evaluate performance and develop 
software techniques to exploit CMPs 
[1,7,10,17,20,21,25,35,37]. Software-based simulators 
allow one to evaluate small benchmarks or fragments of 
larger benchmarks using instruction-level simulation, 
but are too slow to simulate entire applications within a 
reasonable time.  Complicated CMP and multiprocessor 
designs exacerbate this problem by requiring that many 
processors be simulated simultaneously 
[5,8,11,15,18,22-24]. The complexity of even the most 



basic multithreaded architectures limits instruction-level 
simulation to an effective “clock rate” of about 0.05 
MHz; most simulators, especially RTL ones, achieve 
much less [1,7,10,17,21,35]. Simulation speed therefore 
limits the scope and effectiveness of research that can 
be performed in reasonable amounts of time.  

Many efforts have been made to overcome software 
speed limitations using hardware emulation [20,28,30].  
Historically, hardware emulation platforms using arrays 
of FPGAs have been used to generate rapid prototyping 
systems that can simulate entire applications at an RTL 
level [2,6,25].  Unfortunately, efforts to compile 
multiprocessor designs to these systems have been 
limited by poor FPGA logic utilization, limited 
interconnectivity in the FPGA arrays, and poor word-
size data manipulation by bit-width FPGA logic units 
[25]. 

To address these problems, we have built a Flexible 
Architecture for Simulation and Testing (FAST).  
FAST uses simple processors combined with state-of-
the-art field-programmable gate arrays (FPGAs) and 
memory chips on a single printed circuit board (PCB) to 
create a flexible simulation fabric that can execute 
millions of instructions per second.  The resulting 
environment executes code at speeds at least two orders 
of magnitude faster than execution-driven software 
simulation and an order of magnitude faster than 
previous hardware emulation using generic arrays of 
FPGAs [2,6]. Using FAST, researchers can rapidly 
prototype a variety of CMP architectures in a relatively 
short amount of time.  FAST allows detailed 
investigation of many topics related to the design of 
CMPs, including overall system design, memory 
hierarchy structures, TLP extraction methods, TLP-
oriented software design for operating systems and 
high-level applications, reconfigurable architectures, 
embedded systems, and ISA extensions. 

This paper presents the initial implementation of our 
configurable hardware emulator. Section 2 presents an 
overview of the system.  Section 3 provides a few 
motivating examples of how CMP architectures can be 
mapped to the FAST PCB for emulation. Related work 
is evaluated in Section 4, while our conclusions and 
future plans are presented in Sections 5 and 6. 
 
2.  FAST Details 
 

The FAST system is a collection of hardware and 
software components that manage and configure on-
board resources.  As shown in Figure 1, these resources 
exist as functional layers that together can simulate 
multiprocessor hardware systems at high speeds.  The 
layers include: several fixed-function memories and 

microprocessors (Hardware), FPGA devices that can be 
“morphed” to provide different system-level 
functionality using a variety of Verilog memory 
hierarchy models (Morphware), and application 
benchmarks to be evaluated, low-level software and a 
batch operating system to manage functions such as 
program loading and I/O (Software).  These are 
depicted from the bottom up in Figure 1.   

 
Figure 1. FAST system components. 

 
2.1. FAST Hardware 

 

 
FAST Overview Quantity

Level 1 (L1) Memory 1 MB/tile
Level 2 Memory (SM) 64 MB

Flash Memory 16 MB
Integer ALU (CPU) 1/tile

Floating-Point ALU (FPU) 1/tile
Tile FPGAs 2/tile

Board FPGAs (Interconnect) 2/board
 

Figure 2. FAST high-level overview. 
 
FAST is a single printed circuit board (PCB) system 

comprised of four replicated processor tiles and an 
associated top-level interconnect, as shown in Figure 2.  
Each processor tile contains: an integer and a floating 
point datapath, 1 MB of processor local memory, and 
FPGAs that manage the processor tile resources and 
facilitate reconfiguration.  The top-level interconnect is 
composed of larger FPGAs to allow communication 
between the four processor tiles.  It provides several 
shared resources, including on/off-PCB I/O via 



 
Figure 3. The FAST PCB. 
 

Ethernet and TCP/IP, an expansion connector, 64 MB 
of second level memory, on-board Flash memory, and 
hardware to manage these resources and facilitate 
reconfiguration. 
 
Table 1. Component operating frequency and 
core voltage. 
 

Component Quantity 
Frequency  

Max. (MHz)
Core 

Voltage (V)

XC2V6000 FPGA [38] 2 400 1.5
XCV1000 FPGA [36] 8 100 2.5

Primary Cache SRAM [32] 16 100 3.3
Secondary Memory SRAM [31] 16 200 3.3

Ethernet Module [33] 1 44 3.3
CPLD [38] 1 100 3.3
Flash [27] 1 10 3.3

MIPS R30X0 CPU, FPU [25] 8 25 5  
 
Figure 3 is a photograph of the actual FAST PCB.  

The 20-layer board is 16" x 16".  There are over 27,700 
vias with a total of 43 BGA parts and approximately 
4220 surface mount components, with about half used 
for test points to access various hidden FPGA ball grid 
array bumps.  Processor tiles occupy each corner of the 
PCB.  The interconnection components, including 
board management, off-PCB communication, and 
secondary memory, occupy the center of the PCB.  
Table 1 summarizes the FAST PCB components, their 
operating frequency, and core voltage. 

The MIPS R3000 CPUs and R3010 FPUs were 
chosen to form the processing core of the system for 

several important reasons.  First, they provide an 
exposed primary cache and coprocessor interface, 
unlike all present-day processors and commercially 
available “hardcore” processor macros in FPGAs.  This 
architecture allows us to observe or modify the primary 
cache interface to the CPU as necessary.  Second, the 
presence of the FPU expands the application domain to 
include floating-point intensive applications, which 
would be impractical to run with slow floating-point 
emulation.  Third, using a “hard” processor core instead 
of a “soft” FPGA-implemented core leverages the hard 
core’s highly optimized datapath, which is better suited 
for word-size data manipulation than groups of FPGA 
logic blocks.  Furthermore, the simple R3000 pipeline 
suits FAST’s goal of exploring non-ILP-intensive 
architecture innovations, such as TLP in simple CMPs, 
and novel memory hierarchies.  However, even though 
our main goal is memory hierarchy and TLP 
exploration, Section 3.3 explains how simple cores can 
emulate more complex cores.  Of course, the use of 
hard MIPS cores does limit FAST to MIPS ISA, but 
various tricks can be used, such as binary translation or 
soft cores, to expand FAST’s ISA options. 

The “simulator” clock speed is set by the processors’ 
25 MHz clock frequency.  The FPGAs and SRAM 
memories can operate at much higher speeds enabling 
time-division multiplexing of hardware resources.  This 
allows us to emulate larger virtual bus widths, multi-
way caches, or other resources.  Thus, we are able to 
achieve a maximum of 100 MIPS on our four-processor 



system with simple, in-order processors.  This is an 
order of magnitude less than currently available 
microprocessor peak operating performance.  However, 
it compares very favorably against all forms of 
software-based simulation.  Using full-system 
execution-driven simulators of very simple instruction-
level models on high-speed microprocessors, one can 
achieve only 1-10 MIPS.  With more complex 
instruction-level models, or especially with RTL-level 
models, the effective rate is reduced to levels of 0.05 
MIPS or less using the same high-speed 
microprocessors.  Taking memory delay inefficiencies 
into account, we expect FAST to average about 25–50 
MIPS for CMP full-system simulations.  Therefore, our 
system should realistically provide a performance gain 
of nearly three orders of magnitude over equivalent, 
software-only simulators. 

The FAST PCB presented many hardware design 
challenges, including a mixed voltage design 
environment, several clocking domains, and a complex 
combination of state-of-the-art components with 
outdated processors.  We chose components that 
provided the best performance alternatives while 
satisfying our pin-level visibility constraints.  In order 
to manage the potential design complexity, we selected 
parts to tolerate the variations in technologies on the 
PCB. There are four different voltage domains on the 
board, with core device voltages ranging from 1.5V to 
5V.  For simplicity, however, essentially all I/O 
operates at 3.3V. The only exceptions to this rule are 
the 5V outputs from the processors.  To avoid voltage 
level shifters required to interface 5V signals to the 
modern FPGAs at the heart of the board, we integrate 
two generations of FPGAs, reducing FAST’s cost and 
complexity. As shown in Figure 4, a summary of 
interconnections within the system, only the older, 5V-
tolerant XCV1000 parts interface directly to the MIPS 
components. 

 
2.2. FAST Morphware 
 

The FAST morphware layer describes the field-
programmable gate arrays (FPGAs) and the Verilog 
modules that enable explicit memory hierarchy 
manipulation and investigation. Our state-of-the-art 
FPGAs form a versatile hybrid hardware emulation 
platform.  In aggregate, there are over 20 million 
programmable system gates on the FAST board.  While 
most of these gates will be used to configure the 
memory hierarchy, many can also implement embedded 
counters and other system monitors to collect detailed 
execution statistics at full speed. Thus, we have a highly 

detailed full-system simulator without the slowdown 
associated with equivalently detailed software 
simulators. 

To fully utilize the FAST prototyping substrate, one 
must compile a Verilog model of the memory system, 
performance counters, and associated components. The 
main FAST-specific part of this task is to partition the 
target architecture, or at least a portion of it, across the 
various FPGAs. In general, the modern FPGAs at the 
heart of FAST provide copious amounts of on-chip 
bandwidth, but the number of pins on an FPGA limits 
inter-chip bandwidth and therefore may limit FAST’s 
ability to emulate some architectures. However, the 
high FPGA clock speeds relative to the 25 MHz 
“system” clock do allow some time-division 
multiplexing of the inter-chip buses, enabling virtual 
bus widths much larger than physical resources. Figure 
4 illustrates the FPGAs and the physical bus widths 
between the components on the PCB.  We have 
developed a basic Verilog wrapper that instantiates all 
of these point-to-point connections, to act as a “shell” 
for any suitably partitioned design.  With this shell, the 
fixed parts of the FAST board hardware can be used 
across multiple designs. 

The remainder of this section describes how a typical 
architecture will use the various flexible components to 
implement a wide variety of designs.  While some 
typical memory system functions could be placed in one 
or more of the FPGAs, the jobs assigned to any 
particular chip are somewhat limited by the fixed 
hardware resources attached to it. 

The CPLD (XCRL3512XL) and associated Flash 
memory (right side of Figure 4) are the system 
bootstrapping and monitoring devices. The CPLD 
programs the FPGAs using the Xilinx 8-bit parallel 
programming ports.  There are 8 JTAG groups on the 
PCB as well, to provide a secondary system 
programming and debugging port.  The CPLD also acts 
as the memory controller for the Flash memory chip.  
This 16M x 8 bit Flash chip (AMD AM29LV652D) has 
the capacity to hold all 10 FPGA configurations with at 
least 5 MB remaining for storing bootstrap software 
code right on the board.  The CPLD also controls the 
overall state of the board, choosing among FPGA 
configuration, application execution, application 
debugging, and reset modes. 

Each central control FPGA provides over 1100 I/O 
pins, a maximum operating clock frequency of 400 
MHz, and 6 million system gates each. The Read/Write 
Controller (RWC) handles memory hierarchy events 
that propagate past the primary caches, such as



 
Figure 4. FAST functional diagram with major buses. 

 
write-throughs and cache misses.   A wide bus permits the 
observation of memory traffic to and from all processor 
tiles on a cycle-by-cycle basis, making it possible to 
implement cache coherence protocols requiring snooping 
on primary cache contents in other processor tiles.  This 
controller could also be used for inter-processor tile 
messaging in systems that do not use traditional memory 
coherence [4].  Meanwhile, the Shared Memory 
Controller (SMC) manages the 16M x 36 bit (including 4 
ECC bits) secondary memory.  These synchronous 
SRAMs can be configured as a secondary cache or 
general-purpose, off-chip memory.  The entire memory 
can be shared by all processor tiles or segmented into 4M 
x 36 bit private partitions assigned to each tile.  
Furthermore, time-division multiplexing can be utilized to 
implement various set associative cache configurations.  
The SMC also controls an 80-pin expansion connector.  
This multi-purpose header can be used to connect 
multiple FAST prototyping substrates together to create a 
larger FAST emulation fabric, to add daughter cards, or to 
attach additional memory, such as a DRAM main 
memory bank.   

Each processor tile retains some flexibility with its two 
Xilinx XCV1000 FPGAs. One FPGA is assigned to be 
the Local Memory Controller (LMC), and manages the 
256K x 36 bit (including 4 ECC bits), dual-ported local 
processor tile memory.  The LMC serves as the R3000’s 
external cache interface, enabling a wide range of virtual 
cache configurations while the morphware fakes the 
expected direct-mapped cache behavior.  Like the SMC, 
the LMC can utilize time-division multiplexing to 
implement set associative caches or other types of 
memory systems.  Furthermore, the CPU and FPU always 
access the local memory through the LMC, giving it the 
ability to modify the instruction and data stream on-the-

fly, if necessary.  The second XCV1000 is a 
“Coprocessor FPGA” that can be used to add instructions 
to the MIPS ISA or to maintain statistics counters.  The 
MIPS-I ISA has a well-defined coprocessor interface that 
can be exploited by this FPGA to add instructions to 
implement software control over cache coherence 
protocols, additional functional units, or other features. 

 
2.3. FAST Software 

 
There are several software components that facilitate 

FAST’s hardware emulation, including: applications, a 
program loader, an interactive debugger, a low-level 
operating system on the FAST board itself, and a 
monitoring and OS support environment that runs on an 
attached SGI host workstation. 

FAST uses the MIPS-I ISA and the related MIPS-SDE 
toolchain running on SGI workstations for application 
development.  MIPS-based SGI machines simplify the 
building and testing process for the MIPS processors on 
FAST, but a host running a non-MIPS ISA is also 
possible.  Using the MIPS-SDE toolchain, we create a 
statically linked ELF binary. By using only statically 
linked binaries, we eliminate the need for dynamic 
linking support in the program loader and/or on-board 
OS.   

Once generated, a binary can be loaded on the FAST 
simulation substrate using one of two different program 
loader modes that establish a TCP/IP socket connection 
with FAST to download the binary image into FAST’s 
secondary memory.  The first loader mode provides an 
interactive interface, while the second runs batch scripts 
non-interactively.  The interactive terminal program 
facilitates application debugging and monitoring through 
an interface similar to GNU gdb [31], while scripting 



enables rapid batch execution of binaries to get 
performance results.  For initial board testing, there is 
also a “backdoor” JTAG interface that can directly load 
programs into FAST’s secondary memory, bypassing the 
normal TCP/IP-based board I/O. 

To provide low-level OS support for applications 
executing on the board, we are porting the PMON system 
monitor produced by LSI Logic and Algorithmics.  
PMON provides application monitoring and debugging 
for MIPS-based evaluation boards; we are modifying it 
somewhat to add batch operating system functionality for 
FAST [31].  PMON provides the gdb-like interface for 
application debugging that makes FAST’s processor state 
and memory state visible to the user in interactive 
execution mode.  We also use it to provide limited OS 
support for libc functions when any of the MIPS 
processors execute SYSCALL instructions.  When I/O 
with the host workstation is necessary, PMON uses 
Ethernet through a microcontroller on the FAST board 
that handles the TCP/IP protocol details.  The 
microcontroller transmits messages from the FAST PCB 
to the host using both simple terminal-style I/O and using 
special messages when OS functionality requires external 
support for functions like file I/O. These “OS” messages 
reduce the complexity of the on-board FAST OS 
significantly while still enabling simulation of real-world 
applications that require significant OS support.  For 
example, in the case of file I/O, the on-board OS only 
needs to communicate file handles and buffers associated 
with read() and write() calls between the application and 
host interface, while leaving the details of disk 
management solely to the host’s operating system. 

 

3.  Mapping Designs to FAST 
 
The FAST prototyping substrate is designed to map 

architectures that employ fine-grained threading, 
speculative threading, and chip multiprocessing.  We 
believe FAST will be able to emulate many examples of 
unimplemented research architectures that use these 
features.  This section describes HYDRA, Smart 
Memories, and other specific architectures that could be 
mapped to the FAST substrate in a reasonably efficient 
manner. 

 
3.1. A Simple CMP with TLS Support, HYDRA 

 
We initially intend to exploit FAST’s prototyping 

potential to explore architectures that make use of thread-
level speculation (TLS).  This technique offers the 
potential to improve sequential program performance by 
dissecting a conventional sequential program into 
multiple small threads and attempting to execute these 
small threads in parallel. This requires hardware support 

to monitor writes of data by “earlier” threads that may 
potentially be read by “later” threads executing in 
parallel.  In the event that a “later” thread reads a value 
too soon, it must be squashed and restarted so it may read 
the new, correct value.  Several researchers have 
proposed techniques for controlling the speculative 
threads and maintaining the sequential order of committed 
program state [8,15,23,24].  Since most of these 
techniques were designed to work on CMPs, FAST 
should be able to emulate most of these architectures 
quite well, with one speculative thread assigned to each 
of FAST’s processor tiles at any given time. Because 
simulation of these architectures was so important to us, 
we examined an RTL description of Hydra [8] during the 
development of the FAST PCB to help guide the inter-
FPGA pin allocation on the FAST board.   Connections to 
allow high interprocessor snooping bandwidth were 
included as a result of these investigations. 

To date, no system with TLS has been built. This has 
forced all TLS evaluation to be performed with software 
simulation on small test benchmarks or sampled portions 
of larger benchmarks.  Unlike these software simulators, 
FAST will be able to provide detailed execution statistics 
for full benchmarks running on these architectures.  In 
addition, since FAST has full control over the various 
system latencies relative to the 25 MHz processor system 
clocks, FAST allows more extensive evaluation of 
parameterizable system features, such as memory 
latencies, than is practical with slow software-based 
simulation. 

The FAST prototyping environment will also facilitate 
the development of application software and 
programming environments optimized for speculatively 
multithreaded architectures. Software simulation is too 
slow to support the development of the software 
infrastructure required either for performance tuning of 
applications that have been manually converted to use 
TLS or for automated compilation of sequential TLS-
enabled programs.  As a result, we expect to use FAST’s 
high-speed simulation to gain insight into general 
techniques that can be used by programmers or compilers 
to exploit the full potential of TLS-based parallelization. 

 
3.2. A Large-Scale, Networked CMP 

 
Several research projects have proposed architectures 

composed of multiple “tiled” processors on a single chip 
[18,22,25].  Since FAST can only simulate four-core 
systems, at most, one might initially conclude that it is not 
useful for emulating these architectures.  However, FAST 
can still prove useful with these architectures.  Many 
insights can still be gained by simulating just a four-
processor subsection of the design using a single FAST 
board.  Furthermore, one can use the expansion connector 



to emulate larger systems by connecting multiple FAST 
boards together.  While the expansion connector only has 
a relatively limited number of pins, most of these 
architectures use a network that limits the number of long 
wires needed to connect processors together when they 
are physically distant from one another on the chip.  Such 
relatively narrow networks should map well to the 
expansion port.  If necessary, some of the secondary 
memory could also easily be used to support network 
buffering requirements, if they became too large for on-
FPGA buffers. 

In order to verify these ideas, we looked closely at the 
Stanford Smart Memories design [18] while designing the 
expansion port.  This CMP has 10’s of processor tiles 
clustered together into small groups of tiles that share a 
common network port.  A single FAST board could 
emulate a group of four processors, while the expansion 
port could be daisy chained to additional FAST boards to 
allow emulation of a large system. 

 

3.3. Emulating More Complex Cores 
 

The MIPS R3000 external interfaces to both cache and 
coprocessors provide visibility that can be used to 
transform FAST’s simple in-order single-issue cores into 
a wide variety of other microarchitectures, because the 
two FPGAs in each processor tile have full control over 
the data and instruction streams fed into the processor.  
Auxiliary structures can be maintained in these FPGAs, 
such as counters and monitors, to make it possible to 
change the definition of a “simulated machine cycle” or to 
adjust or interpret the instruction streams.  With these 
FPGAs, we can define several MIPS R3000 cycles as one 
target machine cycle to gang instructions together into 
“single-cycle” packets.   

Depending on the underlying architecture, these 
instruction packets could be executed intra-tile (very long 
instruction word, VLIW) or inter-tile (single instruction 
multiple data, SIMD).  We prefer to execute VLIW 
packets serially, instead of in parallel across the processor 
tiles, because simulating the shared register file used by 
all VLIW issue slots across processor tiles would require 
many extra store instructions to make all instruction 
results visible to the FPGAs.  On the other hand, SIMD 
packets can be spread across processor tiles executing 
identical instruction streams because one instruction 
specifies the operation for several parallel data “lanes” of 
execution, which do not share data between lanes on a 
cycle-by-cycle basis. When the number of “lanes” 
exceeds the number of processor tiles, both serial and 
parallel execution methods may be used.  Finally, cores 
with more complex instruction fetch mechanisms could 
also be implemented using these techniques with 
variable-length “simulated machine cycle” times.  

Implementing an instruction window in the LMC could 
be used to enable fine-grain multithreaded emulation 
and/or wide-issue superscalar core emulation. 

 
3.4. Embedded SOC Architectures 

 
VLSI process scaling has increased the complexity of 

embedded and application-specific processor-based 
designs.  FAST enables full or partial system emulation 
for a wide variety of these systems by manipulating the 
memory hierarchy and defining the number of processor 
tile cycles per target machine cycle.  MIPS-based 
processor cores are widely used for embedded systems 
and we envision collections of these processors working 
in concert for system-on-a-chip (SOC) designs. FAST is 
an ideal prototyping platform for continued research in 
these types of embedded systems [20]. 

 

4.  Initial Performance Results 
 

In FAST’s initial stages of bring-up, testing, and 
prototyping, we have successfully powered-up the PCB, 
programmed all the FPGAs with simple test Verilog, 
programmed the coprocessor FPGA to issue instructions, 
and run small test programs on the R3000s.  Initially, we 
have configured FAST as 4 independent processors 
requesting instructions from the local coprocessor FPGA.  
On reset or processor power-up, the R3000 starts 
executing instructions from uncached kernel address 
space [27].  In this address space, the R3000 
communicates using the system bus and can process one 
instruction every three cycles.  This asynchronous 
interface requires a run, stall, and fix-up cycle for every 
instruction.  With all 4 processors executing independent 
instruction streams with a CPI of 3, we are able to achieve 
an aggregate instruction throughput of 33.33 MIPS.  
Figure 5 shows an oscilloscope trace of the instruction 
read and execute phase.  The top waveform is the 25 
MHz system clock generated by the R3000 that is fed 
back to the FPGA.   

 
Figure 5. Oscilloscope waveform showing 3 
instruction fetch cycles. 



The middle waveform is the active-low instruction 
request signal produced by the R3000 and the bottom 
waveform is the active-low FPGA-generated instruction 
ready signal indicating to the R3000 that an instruction is 
on the data bus.   

Currently, we are working on the cache interface 
between the R3000 and the LMC FPGA.  We have 
instantiated a 1K entry instruction and a 1K entry data 
caches using the FPGA’s BRAMs and tested hand coded 
example programs that exercise loads, stores, and simple 
integer arithmetic.  We use the coprocessor FPGA to 
issue instructions that cause the processor to jump into 
cached kernel space.  Once in cached kernel space, the 
LMC FPGA services instruction and data requests from 
the processor.  We have also been able to run trivial 
programs compiled with gcc or the MIPS SDE toolchain.  
This method allows us to achieve 100 MIPS on FAST 
using the preloaded programs ranging from 8 to 53 
instructions.  Meeting timing constraints has been the 
major source of errors with respect to FAST’s initial 
processor tile functionality. 

The FAST PCB uses 4 different power planes as 
shown in Table 1.  All programmable I/O use 3.3V, while 
we also supply 5 V directly to the PCB and use DC-to-
DC step down voltage regulators to deliver 2.5 V and 1.5 
V to the Xilinx FPGA cores.  In our initial tests, we 
consume 3 W of I/O power, 2.5 W of core FPGA, clock 
distribution and voltage regulator power, and each 
processor consumes 2.75 W for an overall power 
dissipation of 16.5 W without FPUs. 

 
4.1. Software Toolchain 

 
FAST uses MIPS processors.  The initial programs 

that were executed in small cache structures on FAST 
were all hand coded.  We have been also able to compile 
trivial test programs, preload the FPGA caches and 
execute programs on the processor.  We use an SGI 
version of gcc and related SGI software tools or MIPS 
SDE 6.02, an embedded MIPS software toolchain, to 
generate statically linked binaries targeting the R3000.  
Dynamic linking is possible, but requires much more 
board-level support software.  We set the starting text and 
data segment addresses so that they efficiently map in the 
cache.  We then disassemble the binaries and modify this 
output to generate initialization files for the FPGA 
BRAMs acting as 1K entry instruction and data caches.  
We envision a similar process when running these 
programs from FAST’s main memory, although the 
initialization file format may change.  Section 6 outlines 
what resources are necessary to execute large programs 
using this development toolchain. 

Currently, there is no operating system for FAST.  We 
are building the initial infrastructure required to run 

applications.  These “infrastructure” Verilog modules 
serve as the building blocks for future emulated systems, 
as well as the initial skeleton to support future OS and 
low-level software development.  We envision using 
PMON, a batch OS for MIPS based development boards 
[31], for FAST.  

 
5.  Related Work 

 
FAST bridges the gap between fully flexible FPGA 

prototyping arrays [25,35] and application-targeted 
processor blades and processor subsystems [20,30].  We 
have built FAST to provide a prototyping substrate for 
future systems, instead of just exploring design trade-offs 
for current systems.  The synergy exploited by combining 
the optimized characteristics of FPGAs and 
microprocessors is also similar to reconfigurable research 
using configurable components as coprocessors [9].  
FAST augments this functionality by manipulating the 
memory hierarchy as well. Within a processor tile, FAST 
can be configured to use a variety of cache configurations 
or other memory structures like FIFOs or stacks.  The 
same is true for the secondary memory, which can also be 
shared by all the processor tiles or partitioned for 
processor-tile private memory.  While this flexibility 
exists for FPGA-only systems, the performance of FPGA-
only instantiated designs is limited by resource hungry 
memories, which result in poor resource utilization and 
slow down performance greatly. 

RPM was a prototyping system designed to emulate 
existing multiprocessors and their various memory design 
trade-offs [2,6].  RPM, like FAST, is very similar to a 
cycle-by-cycle RTL simulator.  Similarly, both systems 
use FPGAs as memory controllers.  FAST adds to RPM 
by allowing FPGAs to augment individual processors’ 
core capabilities. Also, FAST targets emulating systems 
that do not exist, such as HYDRA [8] and Smart 
Memories [18], facilitating future hardware and software 
exploration and development.  MPOC is another 
hardware emulation system that used multiple processor 
cards with a VME bus interconnect [20].  This system 
uses a MIPS-processor based hardware emulator with 
architecture reconfiguration abilities limited to signals 
visible on the VME bus. 

Finally, both Altera and Xilinx provide FPGA 
development boards that feature embedded hard or soft 
processor cores with a collection of software development 
tools [28,39].  All the systems that feature FPGAs with 
hard cores operate with a clock frequency of several 
hundred megahertz.  These systems have several 
drawbacks that FAST addresses.  All the cores lack 
floating-point units, requiring that floating-point intensive 
applications use very slow emulation code.  All of the 



cores have primary caches, but there is no visibility 
within the core to allow modification of these caches.  To 
monitor cache activity, users would have to disable each 
processor core’s cache and instantiate the caches with 
FPGA resources and buses.   

Implementing an external primary cache for embedded 
hard cores may result in one of two performance 
penalties.  The first option, if possible, is to slow the 
embedded processor’s clock speed down to the speed of 
the external cache, making the embedded hardcore as 
slow or slower than FAST’s MIPS processors.  In this 
case, the main speed restriction can often be caused by 
the processor bus interfaces instead of the additional 
cache and related logic.  Alternatively, one can operate 
the embedded processor at speed, but require the 
processor to stall on any cache access, including cache 
hits.  At the very least, the processor must be stalled, 
potentially draining the pipeline, and restarted once the 
cache request can be filled.  As a result, the effective 
“clock rate” will be very slow and hard to control 
precisely.  This second option would require error prone 
complex accounting and statistics gathering and would 
simulate unrealistic pipeline and instruction interaction 
behavior.   

Furthermore, the Altera and Xilinx boards do not have 
FPGAs with 4 embedded processor cores.  Thus, if we 
were using these development options, we would not be 
able to emulate our initial target architecture [8] with a 
single development board.  The first option outlined 
above–slowing down the processor to match the external 
cache interface–yields valid simulation results (if it is 
possible to slow the embedded processor core), but we 
believe the performance would degrade further when 
interfacing multiple development boards to create a 4-
processor emulation system.  The second option–stalling 
on every cache access–exacerbates the simulation 
accuracy problems when interfacing multiple boards.  
Regardless of the cache implementation options, the 
FPGA also restricts the size of the cache due to the 
resource limitations, thereby restricting the architecture 
exploration.  This is not the case with the FAST 
emulation platform, because it interfaces to actual SRAM 
chips.  On the other hand, the main advantage of these 
FPGA development boards is the software toolchain and 
support. 

Software simulators have many advantages compared 
to hardware emulation.  Hardware emulation has real 
capital costs of building the hardware, which is beyond 
the normal costs required to develop a software simulator.  
In most cases, simulators are distributed in academia for 
free, which leads to their widespread use.  Even after 
acquiring all donated components, FAST still costs about 
$5000 to be manufactured and assembled for quantities 
on the order of tens of boards.  Hardware emulation 

requires additional effort to guarantee that the 
components, especially FPGAs, meet the timing 
constraints of the other components.  FAST uses 25 MHz 
MIPS R3000’s.  These processors have particular timing 
requirements related to the caches and other processor 
events.  These requirements can be ignored in software 
simulation, but may reduce the fidelity of the software 
simulator.  If timing is violated, the processors don’t 
execute instructions or the cache access fails for the 
SRAMs.  Software simulators can also be designed to 
leverage existing software infrastructure, like Simics [17].  
In our case, we must develop all the tools from scratch or 
modify existing software and hardware tools.  Finally, the 
main benefits of hardware emulation are the undeniable 
simulation fidelity, fast simulation, and application 
development capabilities. 

 
6.  Future Work and Conclusions 

 
We have built FAST to be a flexible, simple, and 

effective way to emulate chip multiprocessors or similar 
tightly-coupled multithreaded architectures, even those 
incorporating features, such as thread-level speculation 
(TLS), that are not available on any current multithreaded 
architectures.  With the FAST substrate, we can perform 
conventional validation of these architectures, evaluate 
full benchmark applications that cannot be feasibly 
simulated, and explore software techniques for dividing 
programs into threads, all within a reasonable amount of 
time.  Our initial results indicate that FAST can rapidly 
emulate chip multiprocessor systems. With the processor 
initialization module complete, we will continue to build 
Verilog interface modules that can be used as simulation 
building blocks for multiple configurations. 

While the basic design of FAST can handle all of these 
goals, there are several improvements that could reduce 
simulation time even further.  We are using an embedded 
microcontroller with an Ethernet port to provide an 
external FAST communication interface that is very 
simple but unfortunately often slow.  We would like to 
find an equally simple but faster interface in the future, 
possibly from existing products like the modules provided 
by Altera [28].  We would also like to add another level 
of memory to expand FAST’s capabilities. By using 
DRAM and an associated DRAM controller, we could 
store more complicated OS and benchmark data on the 
board, reducing the need for off-board communication — 
and latency.  Another alternative is to addu a daughter 
card with a Compact Flash module, similar to those 
modules for Altera development boards [28], directly to 
the expansion header.  This would enable FAST to 
execute benchmarks that have large memory footprints.  
We are also currently developing more system software 



infrastructure to reduce the effort of mapping new 
architectures onto FAST. 
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