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Abstract

We describe a hybrid hardware emulation
environment: the Flexible Architecture for Simulation
and Testing (FAST). FAST integrates field-
programmable gate arrays (FPGAs), microprocessors,
and memory to enable rapid prototyping of chip
multiprocessors, multithreaded architectures, or other
novel computer architectures and chip-level memory
systems.  FAST combines configurable and fixed-
function hardware and software to facilitate rapid
prototyping by utilizing components optimized for their
particular tasks: FPGAs for interconnect and glue
logic; processors for rapid program execution; and
SRAMs for fast memory. Unlike software simulators,
FAST can simulate complex designs at multi-megahertz
speeds regardless of the simulation detail. We illustrate
FAST’s utility by describing mappings of both a small-
scale CMP with speculation support and a large-scale
CMP connected using a network. We then show
performance results from a very simple, decoupled 4-
way CMP executing small test programs.

1. Introduction

Multithreaded microprocessor architectures such as
chip multiprocessors (CMPs) are now ubiquitous in
industry and research. Traditionally, computer
architects have leveraged increasing transistor density
on microprocessor chips to implement single, large
processors that exploit instruction level parallelism
(ILP). However, continued performance gains from
ILP are becoming increasingly difficult to achieve due
to limited parallelism among instructions in typical
applications [26]. Likewise, the problems associated
with designing ever-larger and more complex
monolithic processor cores are becoming increasingly
significant. These problems include higher bug rates,
longer design and verification times caused by the
design complexity and the need to design for increasing
wire delay [19]. This reality has spurred great interest
in exploiting thread-level parallelism (TLP) among

independent threads of instructions to continue
historical microprocessor performance improvement
trends. These multithreaded architectures effectively
integrate multiple homogeneous or heterogeneous
processors onto a single chip [5,16].

Researchers  have  shown  that  chip-level
multithreaded microprocessors enable many new TLP
extraction techniques, which conventional symmetric
multiprocessors (SMPs) cannot exploit, by providing an
order of magnitude improvement in interprocessor
communication latency and bandwidth compared to
conventional ~SMPs.  These improvements in
communication performance enable conventional
parallel applications to be divided up into very fine-
grain threads that can achieve parallel speedups even
when they would slow down on conventional SMP
hardware. Using thread-level speculation (TLS)
support, even nominally sequential applications can be
broken into collections of fine-grain threads that can be
run in parallel on CMPs. TLS support adds hardware to
guarantee that the sequential application will still
execute correctly in parallel. It does this by tracking
dependencies and backing up any threads that violate
the original program’s dataflow [§,15,23,24]. By
eliminating the need for guaranteed thread
independence, TLS makes it much simpler to parallelize
sequential applications.

Unfortunately, because very few actual processor
implementations that are available exploit fine-grain
TLP, and because no TLS architectures exist,
researchers have been forced to rely on simulation or
emulation to evaluate performance and develop
software techniques to exploit CMPs
[1,7,10,17,20,21,25,35,37]. Software-based simulators
allow one to evaluate small benchmarks or fragments of
larger benchmarks using instruction-level simulation,
but are too slow to simulate entire applications within a
reasonable time. Complicated CMP and multiprocessor
designs exacerbate this problem by requiring that many
processors be simulated simultaneously
[5,8,11,15,18,22-24]. The complexity of even the most



basic multithreaded architectures limits instruction-level
simulation to an effective “clock rate” of about 0.05
MHz; most simulators, especially RTL ones, achieve
much less [1,7,10,17,21,35]. Simulation speed therefore
limits the scope and effectiveness of research that can
be performed in reasonable amounts of time.

Many efforts have been made to overcome software
speed limitations using hardware emulation [20,28,30].
Historically, hardware emulation platforms using arrays
of FPGAs have been used to generate rapid prototyping
systems that can simulate entire applications at an RTL
level [2,6,25].  Unfortunately, efforts to compile
multiprocessor designs to these systems have been
limited by poor FPGA logic utilization, limited
interconnectivity in the FPGA arrays, and poor word-
size data manipulation by bit-width FPGA logic units
[25].

To address these problems, we have built a Flexible
Architecture for Simulation and Testing (FAST).
FAST uses simple processors combined with state-of-
the-art field-programmable gate arrays (FPGAs) and
memory chips on a single printed circuit board (PCB) to
create a flexible simulation fabric that can execute
millions of instructions per second. The resulting
environment executes code at speeds at least two orders
of magnitude faster than execution-driven software
simulation and an order of magnitude faster than
previous hardware emulation using generic arrays of
FPGAs [2,6]. Using FAST, researchers can rapidly
prototype a variety of CMP architectures in a relatively
short amount of time. FAST allows detailed
investigation of many topics related to the design of
CMPs, including overall system design, memory
hierarchy structures, TLP extraction methods, TLP-
oriented software design for operating systems and
high-level applications, reconfigurable architectures,
embedded systems, and ISA extensions.

This paper presents the initial implementation of our
configurable hardware emulator. Section 2 presents an
overview of the system. Section 3 provides a few
motivating examples of how CMP architectures can be
mapped to the FAST PCB for emulation. Related work
is evaluated in Section 4, while our conclusions and
future plans are presented in Sections 5 and 6.

2. FAST Details

The FAST system is a collection of hardware and
software components that manage and configure on-
board resources. As shown in Figure 1, these resources
exist as functional layers that together can simulate
multiprocessor hardware systems at high speeds. The
layers include: several fixed-function memories and

microprocessors (Hardware), FPGA devices that can be
“morphed” to provide different system-level
functionality using a variety of Verilog memory
hierarchy models (Morphware), and application
benchmarks to be evaluated, low-level software and a
batch operating system to manage functions such as

program loading and I/O (Software). These are
depicted from the bottom up in Figure 1.
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Figure 1. FAST system components.
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Figure 2. FAST high-level overview.

FAST is a single printed circuit board (PCB) system
comprised of four replicated processor tiles and an
associated top-level interconnect, as shown in Figure 2.
Each processor tile contains: an integer and a floating
point datapath, 1 MB of processor local memory, and
FPGAs that manage the processor tile resources and
facilitate reconfiguration. The top-level interconnect is
composed of larger FPGAs to allow communication
between the four processor tiles. It provides several
shared resources, including on/off-PCB 1/O via
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Figure 3. The FAST PCB.

Ethernet and TCP/IP, an expansion connector, 64 MB
of second level memory, on-board Flash memory, and
hardware to manage these resources and facilitate
reconfiguration.

Table 1. Component operating frequency and
core voltage.

Frequency Core

Component Quantity | Max. (MHz) | Voltage (V)
XC2V6000 FPGA [38] 2 400 1.5
XCV1000 FPGA [36] 8 100 2.5
Primary Cache SRAM [32] 16 100 3.3
Secondary Memory SRAM [31] 16 200 33
Ethernet Module [33] 1 44 33
CPLD [38] 1 100 33
Flash [27] 1 10 33
MIPS R30X0 CPU, FPU [25] 8 25 5

Figure 3 is a photograph of the actual FAST PCB.
The 20-layer board is 16" x 16". There are over 27,700
vias with a total of 43 BGA parts and approximately
4220 surface mount components, with about half used
for test points to access various hidden FPGA ball grid
array bumps. Processor tiles occupy each corner of the
PCB. The interconnection components, including
board management, off-PCB communication, and
secondary memory, occupy the center of the PCB.
Table 1 summarizes the FAST PCB components, their
operating frequency, and core voltage.

The MIPS R3000 CPUs and R3010 FPUs were
chosen to form the processing core of the system for

BOTTOM

several important reasons. First, they provide an
exposed primary cache and coprocessor interface,
unlike all present-day processors and commercially
available “hardcore” processor macros in FPGAs. This
architecture allows us to observe or modify the primary
cache interface to the CPU as necessary. Second, the
presence of the FPU expands the application domain to
include floating-point intensive applications, which
would be impractical to run with slow floating-point
emulation. Third, using a “hard” processor core instead
of a “soft” FPGA-implemented core leverages the hard
core’s highly optimized datapath, which is better suited
for word-size data manipulation than groups of FPGA
logic blocks. Furthermore, the simple R3000 pipeline
suits FAST’s goal of exploring non-ILP-intensive
architecture innovations, such as TLP in simple CMPs,
and novel memory hierarchies. However, even though
our main goal is memory hierarchy and TLP
exploration, Section 3.3 explains how simple cores can
emulate more complex cores. Of course, the use of
hard MIPS cores does limit FAST to MIPS ISA, but
various tricks can be used, such as binary translation or
soft cores, to expand FAST’s ISA options.

The “simulator” clock speed is set by the processors’
25 MHz clock frequency. The FPGAs and SRAM
memories can operate at much higher speeds enabling
time-division multiplexing of hardware resources. This
allows us to emulate larger virtual bus widths, multi-
way caches, or other resources. Thus, we are able to
achieve a maximum of 100 MIPS on our four-processor



system with simple, in-order processors. This is an
order of magnitude less than currently available
microprocessor peak operating performance. However,
it compares very favorably against all forms of
software-based  simulation. Using  full-system
execution-driven simulators of very simple instruction-
level models on high-speed microprocessors, one can
achieve only 1-10 MIPS.  With more complex
instruction-level models, or especially with RTL-level
models, the effective rate is reduced to levels of 0.05
MIPS or less wusing the same high-speed
microprocessors. Taking memory delay inefficiencies
into account, we expect FAST to average about 25-50
MIPS for CMP full-system simulations. Therefore, our
system should realistically provide a performance gain
of nearly three orders of magnitude over equivalent,
software-only simulators.

The FAST PCB presented many hardware design
challenges, including a mixed voltage design
environment, several clocking domains, and a complex
combination of state-of-the-art components with
outdated processors. We chose components that
provided the best performance alternatives while
satisfying our pin-level visibility constraints. In order
to manage the potential design complexity, we selected
parts to tolerate the variations in technologies on the
PCB. There are four different voltage domains on the
board, with core device voltages ranging from 1.5V to
5V. For simplicity, however, essentially all 1/O
operates at 3.3V. The only exceptions to this rule are
the 5V outputs from the processors. To avoid voltage
level shifters required to interface 5V signals to the
modern FPGAs at the heart of the board, we integrate
two generations of FPGAs, reducing FAST’s cost and
complexity. As shown in Figure 4, a summary of
interconnections within the system, only the older, 5V-
tolerant XCV1000 parts interface directly to the MIPS
components.

2.2. FAST Morphware

The FAST morphware layer describes the field-
programmable gate arrays (FPGAs) and the Verilog
modules that enable explicit memory hierarchy
manipulation and investigation. Our state-of-the-art
FPGAs form a versatile hybrid hardware emulation
platform. In aggregate, there are over 20 million
programmable system gates on the FAST board. While
most of these gates will be used to configure the
memory hierarchy, many can also implement embedded
counters and other system monitors to collect detailed
execution statistics at full speed. Thus, we have a highly

detailed full-system simulator without the slowdown
associated with equivalently detailed software
simulators.

To fully utilize the FAST prototyping substrate, one
must compile a Verilog model of the memory system,
performance counters, and associated components. The
main FAST-specific part of this task is to partition the
target architecture, or at least a portion of it, across the
various FPGAs. In general, the modern FPGAs at the
heart of FAST provide copious amounts of on-chip
bandwidth, but the number of pins on an FPGA limits
inter-chip bandwidth and therefore may limit FAST’s
ability to emulate some architectures. However, the
high FPGA clock speeds relative to the 25 MHz
“system” clock do allow some time-division
multiplexing of the inter-chip buses, enabling virtual
bus widths much larger than physical resources. Figure
4 illustrates the FPGAs and the physical bus widths
between the components on the PCB. We have
developed a basic Verilog wrapper that instantiates all
of these point-to-point connections, to act as a “shell”
for any suitably partitioned design. With this shell, the
fixed parts of the FAST board hardware can be used
across multiple designs.

The remainder of this section describes how a typical
architecture will use the various flexible components to
implement a wide variety of designs. While some
typical memory system functions could be placed in one
or more of the FPGAs, the jobs assigned to any
particular chip are somewhat limited by the fixed
hardware resources attached to it.

The CPLD (XCRL3512XL) and associated Flash
memory (right side of Figure 4) are the system
bootstrapping and monitoring devices. The CPLD
programs the FPGAs using the Xilinx 8-bit parallel
programming ports. There are 8 JTAG groups on the
PCB as well, to provide a secondary system
programming and debugging port. The CPLD also acts
as the memory controller for the Flash memory chip.
This 16M x 8 bit Flash chip (AMD AM29LV652D) has
the capacity to hold all 10 FPGA configurations with at
least 5 MB remaining for storing bootstrap software
code right on the board. The CPLD also controls the
overall state of the board, choosing among FPGA
configuration, application execution, application
debugging, and reset modes.

Each central control FPGA provides over 1100 I/O
pins, a maximum operating clock frequency of 400
MHz, and 6 million system gates each. The Read/Write
Controller (RWC) handles memory hierarchy events
that propagate past the primary caches, such as
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Figure 4. FAST functional diagram with major buses.

write-throughs and cache misses. A wide bus permits the
observation of memory traffic to and from all processor
tiles on a cycle-by-cycle basis, making it possible to
implement cache coherence protocols requiring snooping
on primary cache contents in other processor tiles. This
controller could also be used for inter-processor tile
messaging in systems that do not use traditional memory
coherence [4]. Meanwhile, the Shared Memory
Controller (SMC) manages the 16M x 36 bit (including 4
ECC bits) secondary memory. These synchronous
SRAMs can be configured as a secondary cache or
general-purpose, off-chip memory. The entire memory
can be shared by all processor tiles or segmented into 4M
x 36 bit private partitions assigned to each tile.
Furthermore, time-division multiplexing can be utilized to
implement various set associative cache configurations.
The SMC also controls an 80-pin expansion connector.
This multi-purpose header can be used to connect
multiple FAST prototyping substrates together to create a
larger FAST emulation fabric, to add daughter cards, or to
attach additional memory, such as a DRAM main
memory bank.

Each processor tile retains some flexibility with its two
Xilinx XCV1000 FPGAs. One FPGA is assigned to be
the Local Memory Controller (LMC), and manages the
256K x 36 bit (including 4 ECC bits), dual-ported local
processor tile memory. The LMC serves as the R3000’s
external cache interface, enabling a wide range of virtual
cache configurations while the morphware fakes the
expected direct-mapped cache behavior. Like the SMC,
the LMC can utilize time-division multiplexing to
implement set associative caches or other types of
memory systems. Furthermore, the CPU and FPU always
access the local memory through the LMC, giving it the
ability to modify the instruction and data stream on-the-

fly, if necessary. The second XCV1000 is a
“Coprocessor FPGA” that can be used to add instructions
to the MIPS ISA or to maintain statistics counters. The
MIPS-I ISA has a well-defined coprocessor interface that
can be exploited by this FPGA to add instructions to
implement software control over cache coherence
protocols, additional functional units, or other features.

2.3. FAST Software

There are several software components that facilitate
FAST’s hardware emulation, including: applications, a
program loader, an interactive debugger, a low-level
operating system on the FAST board itself, and a
monitoring and OS support environment that runs on an
attached SGI host workstation.

FAST uses the MIPS-I ISA and the related MIPS-SDE
toolchain running on SGI workstations for application
development. MIPS-based SGI machines simplify the
building and testing process for the MIPS processors on
FAST, but a host running a non-MIPS ISA is also
possible. Using the MIPS-SDE toolchain, we create a
statically linked ELF binary. By using only statically
linked binaries, we eliminate the need for dynamic
linking support in the program loader and/or on-board
OS.

Once generated, a binary can be loaded on the FAST
simulation substrate using one of two different program
loader modes that establish a TCP/IP socket connection
with FAST to download the binary image into FAST’s
secondary memory. The first loader mode provides an
interactive interface, while the second runs batch scripts
non-interactively. ~ The interactive terminal program
facilitates application debugging and monitoring through
an interface similar to GNU gdb [31], while scripting



enables rapid batch execution of binaries to get
performance results. For initial board testing, there is
also a “backdoor” JTAG interface that can directly load
programs into FAST’s secondary memory, bypassing the
normal TCP/IP-based board I/O.

To provide low-level OS support for applications
executing on the board, we are porting the PMON system
monitor produced by LSI Logic and Algorithmics.
PMON provides application monitoring and debugging
for MIPS-based evaluation boards; we are modifying it
somewhat to add batch operating system functionality for
FAST [31]. PMON provides the gdb-like interface for
application debugging that makes FAST’s processor state
and memory state visible to the user in interactive
execution mode. We also use it to provide limited OS
support for libc functions when any of the MIPS
processors execute SYSCALL instructions. When 1/O
with the host workstation is necessary, PMON uses
Ethernet through a microcontroller on the FAST board
that handles the TCP/IP protocol details. The
microcontroller transmits messages from the FAST PCB
to the host using both simple terminal-style I/O and using
special messages when OS functionality requires external
support for functions like file I/O. These “OS” messages
reduce the complexity of the on-board FAST OS
significantly while still enabling simulation of real-world
applications that require significant OS support. For
example, in the case of file I/O, the on-board OS only
needs to communicate file handles and buffers associated
with read() and write() calls between the application and
host interface, while leaving the details of disk
management solely to the host’s operating system.

3. Mapping Designs to FAST

The FAST prototyping substrate is designed to map
architectures that employ fine-grained threading,
speculative threading, and chip multiprocessing. We
believe FAST will be able to emulate many examples of
unimplemented research architectures that use these
features. This section describes HYDRA, Smart
Memories, and other specific architectures that could be
mapped to the FAST substrate in a reasonably efficient
manner.

3.1. A Simple CMP with TLS Support, HYDRA

We initially intend to exploit FAST’s prototyping
potential to explore architectures that make use of thread-
level speculation (TLS). This technique offers the
potential to improve sequential program performance by
dissecting a conventional sequential program into
multiple small threads and attempting to execute these
small threads in parallel. This requires hardware support

to monitor writes of data by “earlier” threads that may
potentially be read by “later” threads executing in
parallel. In the event that a “later” thread reads a value
too soon, it must be squashed and restarted so it may read
the new, correct value.  Several researchers have
proposed techniques for controlling the speculative
threads and maintaining the sequential order of committed
program state [8,15,23,24]. Since most of these
techniques were designed to work on CMPs, FAST
should be able to emulate most of these architectures
quite well, with one speculative thread assigned to each
of FAST’s processor tiles at any given time. Because
simulation of these architectures was so important to us,
we examined an RTL description of Hydra [8] during the
development of the FAST PCB to help guide the inter-
FPGA pin allocation on the FAST board. Connections to
allow high interprocessor snooping bandwidth were
included as a result of these investigations.

To date, no system with TLS has been built. This has
forced all TLS evaluation to be performed with software
simulation on small test benchmarks or sampled portions
of larger benchmarks. Unlike these software simulators,
FAST will be able to provide detailed execution statistics
for full benchmarks running on these architectures. In
addition, since FAST has full control over the various
system latencies relative to the 25 MHz processor system
clocks, FAST allows more extensive evaluation of
parameterizable system features, such as memory
latencies, than is practical with slow software-based
simulation.

The FAST prototyping environment will also facilitate
the development of application software and
programming environments optimized for speculatively
multithreaded architectures. Software simulation is too
slow to support the development of the software
infrastructure required either for performance tuning of
applications that have been manually converted to use
TLS or for automated compilation of sequential TLS-
enabled programs. As a result, we expect to use FAST’s
high-speed simulation to gain insight into general
techniques that can be used by programmers or compilers
to exploit the full potential of TLS-based parallelization.

3.2. A Large-Scale, Networked CMP

Several research projects have proposed architectures
composed of multiple “tiled” processors on a single chip
[18,22,25]. Since FAST can only simulate four-core
systems, at most, one might initially conclude that it is not
useful for emulating these architectures. However, FAST
can still prove useful with these architectures. Many
insights can still be gained by simulating just a four-
processor subsection of the design using a single FAST
board. Furthermore, one can use the expansion connector



to emulate larger systems by connecting multiple FAST
boards together. While the expansion connector only has
a relatively limited number of pins, most of these
architectures use a network that limits the number of long
wires needed to connect processors together when they
are physically distant from one another on the chip. Such
relatively narrow networks should map well to the
expansion port. If necessary, some of the secondary
memory could also easily be used to support network
buffering requirements, if they became too large for on-
FPGA buffers.

In order to verify these ideas, we looked closely at the
Stanford Smart Memories design [18] while designing the
expansion port. This CMP has 10’s of processor tiles
clustered together into small groups of tiles that share a
common network port. A single FAST board could
emulate a group of four processors, while the expansion
port could be daisy chained to additional FAST boards to
allow emulation of a large system.

3.3. Emulating More Complex Cores

The MIPS R3000 external interfaces to both cache and
coprocessors provide visibility that can be used to
transform FAST’s simple in-order single-issue cores into
a wide variety of other microarchitectures, because the
two FPGAs in each processor tile have full control over
the data and instruction streams fed into the processor.
Auxiliary structures can be maintained in these FPGAs,
such as counters and monitors, to make it possible to
change the definition of a “simulated machine cycle” or to
adjust or interpret the instruction streams. With these
FPGAs, we can define several MIPS R3000 cycles as one
target machine cycle to gang instructions together into
“single-cycle” packets.

Depending on the underlying architecture, these
instruction packets could be executed intra-tile (very long
instruction word, VLIW) or inter-tile (single instruction
multiple data, SIMD). We prefer to execute VLIW
packets serially, instead of in parallel across the processor
tiles, because simulating the shared register file used by
all VLIW issue slots across processor tiles would require
many extra store instructions to make all instruction
results visible to the FPGAs. On the other hand, SIMD
packets can be spread across processor tiles executing
identical instruction streams because one instruction
specifies the operation for several parallel data “lanes” of
execution, which do not share data between lanes on a
cycle-by-cycle basis. When the number of “lanes”
exceeds the number of processor tiles, both serial and
parallel execution methods may be used. Finally, cores
with more complex instruction fetch mechanisms could
also be implemented using these techniques with
variable-length ~ “simulated machine cycle” times.

Implementing an instruction window in the LMC could
be used to enable fine-grain multithreaded emulation
and/or wide-issue superscalar core emulation.

3.4. Embedded SOC Architectures

VLSI process scaling has increased the complexity of
embedded and application-specific processor-based
designs. FAST enables full or partial system emulation
for a wide variety of these systems by manipulating the
memory hierarchy and defining the number of processor
tile cycles per target machine cycle. MIPS-based
processor cores are widely used for embedded systems
and we envision collections of these processors working
in concert for system-on-a-chip (SOC) designs. FAST is
an ideal prototyping platform for continued research in
these types of embedded systems [20].

4. Initial Performance Results

In FAST’s initial stages of bring-up, testing, and
prototyping, we have successfully powered-up the PCB,
programmed all the FPGAs with simple test Verilog,
programmed the coprocessor FPGA to issue instructions,
and run small test programs on the R3000s. Initially, we
have configured FAST as 4 independent processors
requesting instructions from the local coprocessor FPGA.
On reset or processor power-up, the R3000 starts
executing instructions from uncached kernel address
space [27]. In this address space, the R3000
communicates using the system bus and can process one
instruction every three cycles.  This asynchronous
interface requires a run, stall, and fix-up cycle for every
instruction. With all 4 processors executing independent
instruction streams with a CPI of 3, we are able to achieve
an aggregate instruction throughput of 33.33 MIPS.
Figure 5 shows an oscilloscope trace of the instruction
read and execute phase. The top waveform is the 25
MHz system clock generated by the R3000 that is fed
back to the FPGA.

Eile Setup M = Help

Figure 5. Oscilloscope waveform showing 3
instruction fetch cycles.



The middle waveform is the active-low instruction
request signal produced by the R3000 and the bottom
waveform is the active-low FPGA-generated instruction
ready signal indicating to the R3000 that an instruction is
on the data bus.

Currently, we are working on the cache interface
between the R3000 and the LMC FPGA. We have
instantiated a 1K entry instruction and a 1K entry data
caches using the FPGA’s BRAMs and tested hand coded
example programs that exercise loads, stores, and simple
integer arithmetic. We use the coprocessor FPGA to
issue instructions that cause the processor to jump into
cached kernel space. Once in cached kernel space, the
LMC FPGA services instruction and data requests from
the processor. We have also been able to run trivial
programs compiled with gcc or the MIPS SDE toolchain.
This method allows us to achieve 100 MIPS on FAST
using the preloaded programs ranging from 8 to 53
instructions. Meeting timing constraints has been the
major source of errors with respect to FAST’s initial
processor tile functionality.

The FAST PCB uses 4 different power planes as
shown in Table 1. All programmable I/O use 3.3V, while
we also supply 5 V directly to the PCB and use DC-to-
DC step down voltage regulators to deliver 2.5 V and 1.5
V to the Xilinx FPGA cores. In our initial tests, we
consume 3 W of I/O power, 2.5 W of core FPGA, clock
distribution and voltage regulator power, and each
processor consumes 2.75 W for an overall power
dissipation of 16.5 W without FPUs.

4.1. Software Toolchain

FAST uses MIPS processors. The initial programs
that were executed in small cache structures on FAST
were all hand coded. We have been also able to compile
trivial test programs, preload the FPGA caches and
execute programs on the processor. We use an SGI
version of gcc and related SGI software tools or MIPS
SDE 6.02, an embedded MIPS software toolchain, to
generate statically linked binaries targeting the R3000.
Dynamic linking is possible, but requires much more
board-level support software. We set the starting text and
data segment addresses so that they efficiently map in the
cache. We then disassemble the binaries and modify this
output to generate initialization files for the FPGA
BRAMSs acting as 1K entry instruction and data caches.
We envision a similar process when running these
programs from FAST’s main memory, although the
initialization file format may change. Section 6 outlines
what resources are necessary to execute large programs
using this development toolchain.

Currently, there is no operating system for FAST. We
are building the initial infrastructure required to run

applications. These “infrastructure” Verilog modules
serve as the building blocks for future emulated systems,
as well as the initial skeleton to support future OS and
low-level software development. We envision using
PMON, a batch OS for MIPS based development boards
[31], for FAST.

5. Related Work

FAST bridges the gap between fully flexible FPGA
prototyping arrays [25,35] and application-targeted
processor blades and processor subsystems [20,30]. We
have built FAST to provide a prototyping substrate for
future systems, instead of just exploring design trade-offs
for current systems. The synergy exploited by combining
the optimized characteristics of FPGAs and
microprocessors is also similar to reconfigurable research
using configurable components as coprocessors [9].
FAST augments this functionality by manipulating the
memory hierarchy as well. Within a processor tile, FAST
can be configured to use a variety of cache configurations
or other memory structures like FIFOs or stacks. The
same is true for the secondary memory, which can also be
shared by all the processor tiles or partitioned for
processor-tile private memory. While this flexibility
exists for FPGA-only systems, the performance of FPGA-
only instantiated designs is limited by resource hungry
memories, which result in poor resource utilization and
slow down performance greatly.

RPM was a prototyping system designed to emulate
existing multiprocessors and their various memory design
trade-offs [2,6]. RPM, like FAST, is very similar to a
cycle-by-cycle RTL simulator. Similarly, both systems
use FPGAs as memory controllers. FAST adds to RPM
by allowing FPGAs to augment individual processors’
core capabilities. Also, FAST targets emulating systems
that do not exist, such as HYDRA [8] and Smart
Memories [18], facilitating future hardware and software
exploration and development. MPOC is another
hardware emulation system that used multiple processor
cards with a VME bus interconnect [20]. This system
uses a MIPS-processor based hardware emulator with
architecture reconfiguration abilities limited to signals
visible on the VME bus.

Finally, both Altera and Xilinx provide FPGA
development boards that feature embedded hard or soft
processor cores with a collection of software development
tools [28,39]. All the systems that feature FPGAs with
hard cores operate with a clock frequency of several
hundred megahertz. These systems have several
drawbacks that FAST addresses. All the cores lack
floating-point units, requiring that floating-point intensive
applications use very slow emulation code. All of the



cores have primary caches, but there is no visibility
within the core to allow modification of these caches. To
monitor cache activity, users would have to disable each
processor core’s cache and instantiate the caches with
FPGA resources and buses.

Implementing an external primary cache for embedded
hard cores may result in one of two performance
penalties. The first option, if possible, is to slow the
embedded processor’s clock speed down to the speed of
the external cache, making the embedded hardcore as
slow or slower than FAST’s MIPS processors. In this
case, the main speed restriction can often be caused by
the processor bus interfaces instead of the additional
cache and related logic. Alternatively, one can operate
the embedded processor at speed, but require the
processor to stall on any cache access, including cache
hits. At the very least, the processor must be stalled,
potentially draining the pipeline, and restarted once the
cache request can be filled. As a result, the effective
“clock rate” will be very slow and hard to control
precisely. This second option would require error prone
complex accounting and statistics gathering and would
simulate unrealistic pipeline and instruction interaction
behavior.

Furthermore, the Altera and Xilinx boards do not have
FPGAs with 4 embedded processor cores. Thus, if we
were using these development options, we would not be
able to emulate our initial target architecture [8] with a
single development board. The first option outlined
above—slowing down the processor to match the external
cache interface—yields valid simulation results (if it is
possible to slow the embedded processor core), but we
believe the performance would degrade further when
interfacing multiple development boards to create a 4-
processor emulation system. The second option—stalling
on every cache access—exacerbates the simulation
accuracy problems when interfacing multiple boards.
Regardless of the cache implementation options, the
FPGA also restricts the size of the cache due to the
resource limitations, thereby restricting the architecture
exploration.  This is not the case with the FAST
emulation platform, because it interfaces to actual SRAM
chips. On the other hand, the main advantage of these
FPGA development boards is the software toolchain and
support.

Software simulators have many advantages compared
to hardware emulation. Hardware emulation has real
capital costs of building the hardware, which is beyond
the normal costs required to develop a software simulator.
In most cases, simulators are distributed in academia for
free, which leads to their widespread use. Even after
acquiring all donated components, FAST still costs about
$5000 to be manufactured and assembled for quantities
on the order of tens of boards. Hardware emulation

requires additional effort to guarantee that the
components, especially FPGAs, meet the timing
constraints of the other components. FAST uses 25 MHz
MIPS R3000’s. These processors have particular timing
requirements related to the caches and other processor
events. These requirements can be ignored in software
simulation, but may reduce the fidelity of the software
simulator. If timing is violated, the processors don’t
execute instructions or the cache access fails for the
SRAMs. Software simulators can also be designed to
leverage existing software infrastructure, like Simics [17].
In our case, we must develop all the tools from scratch or
modify existing software and hardware tools. Finally, the
main benefits of hardware emulation are the undeniable
simulation fidelity, fast simulation, and application
development capabilities.

6. Future Work and Conclusions

We have built FAST to be a flexible, simple, and
effective way to emulate chip multiprocessors or similar
tightly-coupled multithreaded architectures, even those
incorporating features, such as thread-level speculation
(TLS), that are not available on any current multithreaded
architectures. With the FAST substrate, we can perform
conventional validation of these architectures, evaluate

full benchmark applications that cannot be feasibly

simulated, and explore software techniques for dividing
programs into threads, all within a reasonable amount of
time. Our initial results indicate that FAST can rapidly
emulate chip multiprocessor systems. With the processor
initialization module complete, we will continue to build
Verilog interface modules that can be used as simulation
building blocks for multiple configurations.

While the basic design of FAST can handle all of these
goals, there are several improvements that could reduce
simulation time even further. We are using an embedded
microcontroller with an Ethernet port to provide an
external FAST communication interface that is very
simple but unfortunately often slow. We would like to
find an equally simple but faster interface in the future,
possibly from existing products like the modules provided
by Altera [28]. We would also like to add another level
of memory to expand FAST’s capabilities. By using
DRAM and an associated DRAM controller, we could
store more complicated OS and benchmark data on the
board, reducing the need for off-board communication —
and latency. Another alternative is to addu a daughter
card with a Compact Flash module, similar to those
modules for Altera development boards [28], directly to
the expansion header. This would enable FAST to
execute benchmarks that have large memory footprints.
We are also currently developing more system software



infrastructure to reduce the effort of mapping new
architectures onto FAST.
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