
Multilingual Information Processing on

Relational Database Architectures

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

A. Kumaran

Department of Computer Science and Automation

Indian Institute of Science

Bangalore 560 012 INDIA

December 2005

cA. Kumaran

December 2005

All rights reserved

i

; �F;

g� zb}�A g� zEv	Z� , g� zd�vo mh��r,.
g� z,sA"A(prb}� t-m{ �F g� rv� nm,; †

Dedicated

To

All my Teachers

��pa ñX ��Xa�P C ñ�
Xp��

�Ha�pa ñX 	z ñ@�8 ñ�� ñ@ 8a�� �Ha8 ñ�

��pa Xp ñ��� ñ((a� X�p ñ�

���pa
 B ñ�� � ñ��p�Pa��P. ‡

† The forces of creation, sustanance and destruction – the material causes of the universe – are the teachers.
Through them, I offer my salutations to the ultimate teacher – the Supreme Being. Upanishat.
‡ He is Knowledge – complete and pure; He is the Knower – omniscient and self-illuminating. Yet, due to
Māya, He manifests Himself as the Teacher and as the Student. He is all-pervading. Thirumandiram.

Acknowledgements

First and foremost, I thank my doctoral thesis advisor, Prof. Jayant R Haritsa, who

taught me not just database management systems, but also fundamental values, such as,

committment, sincerity and hardwork. The latter, I believe, is as bene�cial, if not more,

as the former, in professional and personal life. He continues to demonstrate that by

demanding quality, one can achieve it not only within oneself, but also in those around.

I wish to express my deep gratitude to Prof. Y N Srikant, Prof. M Narasimhamurty,

Prof. Priti Shankar, Prof. Matthew Jacobs and Prof. Y Narahari of Computer Science

Department and Prof. N Balakrishnan, Associate Director of IISc, all of whom have

o�ered regular guidance and assured their faith in me in various ways. I thank them all.

I thank my collegues, Srikanta, Maya, Suresha, Vikram, Amit, Bharat and Aditya,

for endless hours in the Co�ee Board and the Tea Board, discussing academic and other

issues. I also thank other students that contributed to technical content of this thesis {

Nithya, Sivaramakrishnan, Manjunath, Sandhya, Girish, Rupesh, Mitesh and Pavan.

The Institute provided a wonderful environment not just for academics and research,

but also for philosphical musings (long walks & NIAS lectures). I would always miss it.

In my personal life, I am indepted to my parents, Sri. Arumugam and Smt. Chandra,

who had inculcated the love of and discipline for learning, when I was young.

Most important of all, I thank my wife, Vijayalakshmi, for her whole-hearted and

graceful support through the years of my doctoral studies, while managing our family

with two young daughters. My doctoral studies and this thesis were possible, solely due

to her encouragement and complete support.

ii

Publications based on this Thesis

Refereed Papers

1. On Database Support for Multilingual Environments

Proceedings of the 13th IEEE Research Issues in Data Engineering (RIDE/ICDE)

Workshop, held in conjunction with 19th IEEE International Conference on Data

Engineering [pgs. 23-30], Bangalore/Hyderabad, India, March 2003.

2. On the Costs of Multilingualism in Database Systems

Proceedings of the 29th International Conference on Very Large Data Bases (VLDB)

[pgs. 105-116], Berlin, Germany, September 2003.

3. LexEQUAL: Supporting Multilexical Queries in SQL (poster)

Proceedings of the 20th IEEE International Conference on Data Engineering (ICDE)

[pg. 845], Boston, United States, March 2004.

4. LexEQUAL: Supporting Multiscript Matching in Database Systems

Proceedings of the 9th International Conference on Extending Database Technology

(EDBT), published as Advances in Database Technology - EDBT 2004, Springer,

Lecture Notes in Computer Science (LNCS) Vol. 2992, eds. E. Bertino, S.

Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Bohm and

E. Ferrari [pgs. 292-309], Heraklion-Crete, Greece, March 2004.

5. LexEQUAL: Multilexical Matching Operator in SQL (software demo)

Proceedings of the 23rd ACM SIGMOD International Conference on Management

of Data (SIGMOD) [pgs. 949-950], Paris, France, June 2004.

iii

iv

6. MIRA: Multilingual Information-processing on Relational Architectures

Proceedings of the EDBT/ICDE 2004 Workshops, published as Current Trends

in Database Technology: Revised Selected Papers, Springer, Lecture Notes in Com-

puter Science (LNCS) Vol. 3268, eds. W. Lindner, M. Mesiti, C. T�urker, Y.

Tzitzikas, A. Vakali, Vol-3268 [pgs. 12-23], November 2004.

7. On Semantic Multilingual Matching in Relational Systems (poster)

Proceedings of the 13th ACM International Conference on Information and Knowl-

edge Management (CIKM) [pgs. 230-231], Washington DC, United States, Novem-

ber 2004.

8. SemEQUAL: Multilingual Semantic Matching in Relational Systems

Proceedings of the 10th International Conference on Database Systems and Ad-

vanced Applications (DASFAA) [pgs. 214-225], Beijing, China, April 2005.

9. On Pushing Multilingual Query Operators inside Relational Engines

(To appear) Proceedings of the 22nd IEEE International Conference on Data En-

gineering (ICDE), Atlanta, United States, April 2006.

Technical Reports

1. Supporting Multilexical Matching in Database Systems

Technical Report TR-2004-01, DSL/SERC, Indian Institute of Science, 2004.

2. Multilingual Semantic Matching Operator in SQL

Technical Report TR-2004-03, DSL/SERC, Indian Institute of Science, 2004.

3. On Pushing Multilingual Query Operators inside Relational Engines

Technical Report TR-2005-01, DSL/SERC, Indian Institute of Science, 2005.

Abstract

EÆcient storage and query processing of data spanning multiple natural languages are

of crucial importance in today's globalized world. A primary prerequisite to achieve

this goal is that the principal data repositories, relational database systems, should

eÆciently and seamlessly support multilingual data. Our survey of current relational

systems indicates that while they do support storage and management of multilingual

data, querying is restricted to be within a given language, with no crosslingual query

support. Further, quantitative performance study of the systems working on di�erent

character sets has not been published so far and therefore is an open issue.

In this thesis, we �rst pro�le the multilingual performance of a set of current relational

database systems, using an environment based on the TPC benchmark suites. The results

indicate a signi�cant performance degradation while handling multilingual data. While

the di�erential performance is huge when disk traÆc is a factor, it is substantial even

when only in-memory processing is considered. To address this inequity, we propose

a split representation format that reduces the multilingual storage space and largely

eliminates the di�erential performance for most languages except those with unusually

large repertoires.

Next, we propose functionality enhancements that complement the standard lexico-

graphic matching, speci�cally in the multilingual text space. Two new multilingual join

operators { one for joining names across languages and the second for joining multilin-

gual categories based on their meanings { are proposed and formally de�ned. These

operators are implemented in an outside-the-server approach using existing SQL features

of relational systems, and using standard linguistic resources. While the performance

v

vi

of these basic implementations is too slow for real-world deployments, a host of opti-

mization techniques that tune the schema and index choices to match typical linguistic

features are employed and shown to improve the performance to a level suÆcient for

practical use.

Finally, for a full integration of multilingual functionality with the database engine,

we specify a query algebra with a new multilingual storage datatype and the above join

operators. The operators are implemented natively as �rst-class features in an open-

source database system, along with all components that are required to leverage the

relational query optimizer, speci�cally, the operator cost models and their selectivities.

The performance experiments indicate that this native implementation of the multilin-

gual operators improves the performance signi�cantly over the outside-the-server imple-

mentation. Further, the power of the algebra is demonstrated through selection of better

execution plans for queries using the multilingual operators.

In summary, this thesis presents a multilingual query processing architecture, with a

set of functionalities, algorithms, implementation and optimization techniques, all geared

towards the goal of developing natural-language-neutral database engines.

Keywords

Multiscript Text Database Systems

Multilingual Names / Semantic Matching

Homophonic / Homosemic Query Processing

Database Performance

Multilingual Query Algebra

Multilingual Query Processing Architecture

Multilingual Information Retrieval

vii

Contents

Acknowledgements ii

Publications based on this Thesis iii

Abstract v

Keywords vii

Notation and Abbreviations xv

1 Introduction 1
1.1 Motivation for Multilingualism . 1
1.2 Existing Support for Multilingual Data 2

1.2.1 Multilingual Speci�cations in SQL Standard 2
1.2.2 Multilingual Support in Database Systems 2
1.2.3 Multilingualism in Database Research 5

1.3 A Sample Multilingual Application: Books.com 6
1.4 Research Issues Explored . 7

1.4.1 Multilingual Performance . 7
1.4.2 Multilingual Names Matching . 8
1.4.3 Multilingual Semantic Matching 10
1.4.4 Complex Multilingual Operations 12

1.5 Proposed Solution Strategies . 14
1.5.1 Design Goals for Our Research Strategy 14
1.5.2 Multilingual Performance . 15
1.5.3 Multilingual Matching Functionalities 16
1.5.4 Multilingual Query Processing Architecture 22
1.5.5 Applicability in Other Domains 23

1.6 Real-life Multilingual Systems . 23
1.7 Organization of this Thesis . 27

2 Multilingual Performance of Current Systems 30
2.1 Overview of the Chapter . 30
2.2 Setup for Multilingual Performance Study 30

2.2.1 System and Database Environment 31

viii

CONTENTS ix

2.2.2 Dataset . 31
2.2.3 Query Workload . 33
2.2.4 Performance Metrics . 34

2.3 Performance Results . 36
2.3.1 Space Overheads . 36
2.3.2 Separate Table Processing . 37
2.3.3 Common Table Processing . 37
2.3.4 Optimizer Prediction Accuracy 41

2.4 Performance Analysis . 42
2.4.1 Slowdown vis-a-vis String Length 42
2.4.2 Components of the Slowdown . 43

2.5 The Cuniform Storage Format . 46
2.5.1 Sample Unicode and Cuniform Strings 47
2.5.2 Limitations of Cuniform Format 48

2.6 Cuniform Performance . 49
2.6.1 Performance of Cuniform Storage 50
2.6.2 Potential for Further Performance Improvement 52

2.7 Related Research . 52
2.8 Conclusions on Multilingual Performance Study 53

3 Multilingual Names Matching 55
3.1 Overview of the Chapter . 55
3.2 Background Information . 55

3.2.1 Pseudo-Phonetic Matching Function 55
3.2.2 Approximate Matching . 57
3.2.3 Q-Grams . 57

3.3 Multilingual Names Matching Implementation 58
3.3.1 MLNameJoin Implementation Details 59
3.3.2 Linguistic Issues . 60
3.3.3 Existing Database Support for Implementation 61

3.4 MLNameJoin Matching Algorithm . 63
3.5 Access Structures for MLNameJoin . 66

3.5.1 B+ Tree Index . 66
3.5.2 Metric Distance Index . 66
3.5.3 Approximate Index Structures . 70

3.6 Multilingual Names Matching Quality . 72
3.6.1 Dataset . 72
3.6.2 Performance Metrics . 74
3.6.3 Multilingual Names Matching Quality 75

3.7 MLNameJoin Performance . 77
3.7.1 System and Database Environment 77
3.7.2 Dataset . 78
3.7.3 Baseline MLNameJoin Performance 79
3.7.4 Optimization #1: Q-Gram Index 81

CONTENTS x

3.7.5 Optimization #2: Phonemic Index 83
3.8 Related Research . 85
3.9 Conclusions on Multilingual Names Matching 87

4 Multilingual Semantic Matching 89
4.1 Overview of the Chapter . 89
4.2 Background Information . 89

4.2.1 WordNet: A Linguistic Resource 89
4.3 Multilingual Semantic Matching Implementation 92

4.3.1 MLSemJoin Implementation Details 92
4.4 MLSemJoin Matching Algorithm . 96

4.4.1 Derived Operator Approach . 97
4.4.2 Following Through with an Example 97

4.5 MLSemJoin Performance . 99
4.5.1 System and Database Environment 99
4.5.2 Dataset . 99
4.5.3 Query Workload . 100
4.5.4 Performance Metrics . 101

4.6 Performance Results and Analysis . 102
4.6.1 Baseline MLSemJoin Performance 102
4.6.2 Optimization #1: Precomputed Closure 104
4.6.3 Optimization #2: Reversed Traversal 105
4.6.4 Optimization #3: Reorganizing Schema 106
4.6.5 MLSemJoin Performance with Scaling of Languages 107

4.7 Related Research . 109
4.8 Conclusions on Multilingual Semantic Matching 111

5 A Multilingual Operator Algebra 113
5.1 Overview of the Chapter . 113
5.2 Mural: Multilingual Relational Algebra 113

5.2.1 Uniform: A Multilingual Text Datatype 114
5.2.2 Uniform Equality (�) Operator . 116
5.2.3 Uniform Names Matching () Operator 116
5.2.4 Uniform Semantic Matching (�) Operator 118

5.3 Interaction Between Mural Operators . 120
5.4 Relational Completeness of Mural . 121
5.5 Mural Query Optimization Strategies . 123

5.5.1 Cost-based Optimization Strategies 123
5.5.2 Rule-based Optimization Strategies 126

5.6 Related Research . 127

CONTENTS xi

6 A Native Implementation Experience 128
6.1 Overview of the Chapter . 128
6.2 Implementation Methodologies . 128
6.3 A Native Implementation Experience . 130

6.3.1 System Environment . 130
6.3.2 Native 	 Operator Implementation 130
6.3.3 Native �H Operator Implementation 131

6.4 Performance of Native Implementation 132
6.4.1 Performance of 	 Implementation 133
6.4.2 Performance of �H Implementation 134

6.5 Optimizer Prediction Performance . 135
6.5.1 A Motivating Optimization Example 136

6.6 A Prototype Demonstration . 138
6.7 Conclusions on Native Implementation 139

7 Conclusions and Future Research Avenues 140
7.1 Conclusions . 140

7.1.1 Practical Solutions from the Thesis 142
7.2 Future Research Avenues . 144

A Character Encoding Standards 146
A.1 Unicode . 146

B Phonology and Phonemes Encoding Standards 148
B.1 Phonology and Phonemes . 148
B.2 International Phonetic Alphabet . 149

Bibliography 150

List of Tables

1.1 Database Systems vis-a-vis Multilingual Support 3

2.1 Multilingual Performance of Operators 39
2.2 Multilingual EÆciency . 40
2.3 Multilingual Performance of Operators on Cuniform 51

3.1 MLNameJoin Operator Performance 79
3.2 MLNameJoin Operator Baseline Performance 80
3.3 MLNameJoin Performance with Q-Gram Index 82
3.4 MLNameJoin Performance with Phonemic Index 84

4.1 Statistical Pro�le of WordNets . 100
4.2 Closures for English Word Forms 101

5.1 Mural Operator Composition Rules 120
5.2 Symbols used in Mural Operator Cost Models 124
5.3 Mural Operator Cost Models . 125

6.1 Performance of 	 Operator . 133

xii

List of Figures

1.1 Hypothetical Multilingual Books.com Catalog 7
1.2 SQL:1999 Compliant Multilingual Names Query and Result Set . 8
1.3 A Multilingual Names Query . 9
1.4 SQL:1999 Compliant Multilingual Semantic Query and Result Set 10
1.5 A Multilingual Equivalent Semantic Query and Result Set . . . 11
1.6 A Multilingual Generalized Semantic Query and Result Set . . . 12
1.7 Multilingual Publisher Table . 13
1.8 Sample Multilingual Complex Query { 1 13
1.9 Sample Multilingual Complex Query { 2 14
1.10 Sample Multilingual Complex Query { 3 14
1.11 Ontology for Text Data . 17
1.12 Ontology for Names Matching of Text Data 19
1.13 Ontology for Semantic Matching of Text Data 21
1.14 aAqua: An Indic Multilingual Agricultural Portal 26
1.15 Euroseek: A Pan-European Multilingual Search Engine 28

2.1 Data Setup for Performance Study 33
2.2 Query Slowdown with String Size 43
2.3 Query Slowdown with Scaling . 45
2.4 Skinning of Unicode Strings . 48

3.1 Soundex Algorithm . 56
3.2 The MLNameJoin Matching Algorithm 64
3.3 Search EÆciency of Approximate Indexes 71
3.4 Phonemic Representation of Test Data 73
3.5 Distribution of Multiscript Dataset 74
3.6 MLNameJoin Operator Recall and Precision 75
3.7 MLNameJoin Combined Precision-Recall Graphs 77
3.8 Distribution of Generated Multiscript Data Set 79
3.9 MLNameJoin SQL Script with Q-Gram Index 82
3.10 MLNameJoin SQL Script with Phonemic Indexes 84

4.1 Sample Inter-linked WordNet Noun Taxonomic Hierarchy 91
4.2 The MLSemJoin Matching Algorithm 95
4.3 Baseline Performance of Computing Closure 103

xiii

LIST OF FIGURES xiv

4.4 Closure Performance with Precomputed Closures 104
4.5 Closure Performance with Reversed Traversal 106
4.6 Fan-out Histogram and Plot . 107
4.7 Closure Performance with Re-Organized Schema 108
4.8 Closure Performance with Number of Languages 109

5.1 The � Operator . 116
5.2 The 	 Operator . 117
5.3 The � Operator . 119

6.1 Postgres Closure Performance . 134
6.2 Optimizer Prediction Performance 135
6.3 Alternate Query Plans for Example 6:1 137
6.4 A Prototype Implementation . 138

A.1 Sample Encoding in Various Formats 147

Notation and Abbreviations

Abbreviation Stands for

ASCII American Standard Code for Information Interchange
Char/NChar Character / National Character
CJK Chinese, Japanese and Korean
Cuniform Compressed UNIcode FORMat
GiST Generalized Index Structure Tree
ILI Inter-Lingual Index
IPA International Phonetic Association
IR Information Retrieval
ISO International Standards Organization
LHS/RHS Left Hand Side / Right Hand Side
MIRA Multilingual Information-processing on Relational Architecture
MURAL MUltilingual Relational ALgebra
NLP Natural Language Processing
OLTP On-Line Transaction Processing
SQL Structured Query Language
TTS/TTP Text-to-Speech / Text-to-Phoneme Systems
UCS Universal Character Set
UDF User De�ned Function
Uniform UNIcode FORMat
UNL Universal Networking Language
UTF Unicode Transfer Format
WN WordNet (lexical resource)

xv

Chapter 1

Introduction

1.1 Motivation for Multilingualism

EÆcient storage and query processing of data spanning multiple natural languages are

of crucial importance in today's globalized world. A case in point is the changing user

and data demographics of the highly popular Internet, which has become the primary

medium for information access and commerce1. Surveys indicate that the demographics

of the Internet are steadily turning multilingual: the fraction of Internet users that are

non-native English speakers has grown from about half in mid-90's, to about two-thirds

now [24] and it is predicted that the majority of information available in the Internet will

be multilingual by 2010 [132]. The changing demographics will a�ect the way in which

the Internet-based e-Commerce or e-Governance systems are to be deployed: It has been

found that a user is likely to stay twice as long at a site and four-times more likely

to buy a product or consume a service, if the information is presented in their native

language [2]. Hence, it is imperative that the information systems support storage and

management of multilingual data, eÆciently and e�ectively. A primary prerequisite to

achieve this goal is that the principal data repositories { relational database management

systems { should natively support multilingual information.

1The size of Internet user population is � 1 B and generates an economic activity of � 1 T US$ [48].

1

Chapter 1. Introduction 2

1.2 Existing Support for Multilingual Data

All commercial and open-source relational database systems profess support for multi-

lingualism. To baseline the multilingual support currently available, we �rst present a

survey of the multilingual support speci�cation in the SQL standard and that o�ered by

a suite of relational database systems2.

1.2.1 Multilingual Speci�cations in SQL Standard

SQL-92 [83] was the �rst standard that speci�ed SQL features for multilingual support,

and the current SQL:1999 Standard [59, 84] has largely left it unmodi�ed. SQL Stan-

dard speci�es a new datatype { National Char (referred to as NChar) { large enough to

store characters from any language or script. However, the NChar datatype is not a core

requirement in SQL:1999 and hence is not supported uniformly even by SQL:1999 com-

pliant database systems. The NChar datatype may be de�ned and manipulated similar

to the normal character datatype and may be used in all character predicates. Further,

the storage format of NChar is left unspeci�ed in the SQL standard, leading to di�erent

support formats between di�erent database vendors. For the support of a language, spec-

i�cation of its collation { the sort order of the characters in that language { is needed;

SQL standard allows speci�cation of collations dynamically. SQL standard also speci�es

that new repertoires may be de�ned and that a column may be restricted to hold only

characters from such a speci�c repertoire. Finally, the standard speci�es that comparison

and sorting of strings to be meaningful only within a repertoire.

1.2.2 Multilingual Support in Database Systems

Table 1.1 provides a comparison of the multilingual features supported by a suite of

commercial database systems, namely Oracle 9i Database Server (Version 9.0.1), IBM

DB2 Universal Server (Version 7.1.0) and Microsoft SQL Server (Version 8.00.194) and

2Knowledge of multilingual character encodings standards is assumed as a background for this thesis.
However, a brief overview is provided in Appendix A.

Chapter 1. Introduction 3

the popular open-source database systems, namely, My SQL (Version 4.0.3 Beta) and

PostgreSQL (Version 8.0.1-Beta) database servers3. The information provided in this

comparison is gathered from white papers, product literature and other information

published in their respective web-sites [56, 86, 94, 100, 103].

Database Oracle Microsoft IBM DB2 MySQL PostgreSQL

9i Server SQL Server Univ. Server

Storage Unicode UCS-2 Unicode Binary Unicode

Format UTF-8 / 16 UTF-8 UTF-8 / 16 UTF-8

Support At Attribute At Attribute At Attribute At Attribute At Attribute

Level level level and level level level

also Schema

Objects

Collation Pre-de�ned Pre-de�ned Pre-de�ned Pre-de�ned; Pre-de�ned;

Sequence OS Collations User-de�nable User-de�nable

(source-level) (source-level)

Indexing Using only Using only Using only Using Using

prede�ned prede�ned prede�ned prede�ned and prede�ned and

Collations Collations Collations User-de�ned User-de�ned

Collations Collations

Locale � 50 Locales Uses all Locales � 40 Locales � 23 Locales � 30 Locales

pre-speci�ed speci�ed in OS pre-speci�ed pre-speci�ed pre-speci�ed

Query All Char All Char All Char Binary All Char

Predicate predicates predicates predicates predicates predicates

Cross- No Support No Support No Support No Support No Support

Lingual

Queries

Table 1.1: Database Systems vis-a-vis Multilingual Support

While all these database systems except for MySQL Server, support multilingual

storage using either Unicode or UCS-2, the MySQL Server supports storage only using

binary datatype. However, Unicode is in the road-map of all vendors, as the prime candi-

date for multilingual storage. All systems support multilingual speci�cation at all levels

3Locale is the subset of user's computing environment that de�nes the language for user input/output,
the cultural and national conventions for formatting time, date, numeric and monetary data. Collation
sequence speci�es a sort order for the strings in a given language environment. This sort order may be
di�erent from the standard binary sort order of the character codes; in addition, the same character
codes may sort di�erently in di�erent language environments.

Chapter 1. Introduction 4

{ schema, table, record and attribute, while Microsoft SQL Server provides multilingual

support for database catalogs as well. No system has support for restricting the data in a

column to be from a single repertoire, though speci�ed in SQL:1999. All the systems pre-

de�ne collations that are needed for sorting the data for output and for building internal

indexes. Though the SQL standard speci�es user-de�ned collations, none of the systems

have implemented this feature at this time. User de�ned collations may be added only

to the MySQL and PostgreSQL systems, with source changes. Support for linguistic

querying of text data is available in commercial database systems, but the techniques

used are not uniform among the systems, due to the lack of speci�ed guidelines in the

SQL standard. A variety of statistical and natural language processing techniques are

employed, resulting in, for a given query on a given data-set, a non-uniform result sets

among di�erent systems. Further, such querying is done only within a single language

and the capability is available only in a handful of languages.

Multilingual query processing is supported along the same lines as that for standard

database character sets, using Char predicates, in all database systems. However, the use

of Char predicates implies the use of lexicographic comparisons for comparing multilingual

text strings { even for strings that are from di�erent languages. Such a methodology is

bound to fail when the multilingual text strings do not share the same script; the equality

will always fail and the sort order between two multilingual text strings in di�erent scripts

would depend only on the placement of the script in the Unicode codespace. As a result

of such sorting methodology, the indexes that are built on multilingual data will arrange

the strings from di�erent languages in the same order as that of respective languages in

the Unicode codespace. Finally, no database system currently supports cross-language

querying of data { that is, searching across di�erent languages for a given query string.

In summary, our survey indicates that all database systems do provide for the storage

and management of multilingual data, primarily by supporting the Unicode character set

and by specifying collations for supported languages. In query processing, each system

o�ers the same SQL querying power in each of the supported languages; that is, the

same querying capability (lexicographic, regular-expression matching, comparison, etc.)

Chapter 1. Introduction 5

is o�ered within each of the languages. However, no specialized operators or enhanced

query semantics are o�ered to support queries across languages { that is, for combining

information across database columns that may be in di�erent languages.

1.2.3 Multilingualism in Database Research

While a rich body of literature on multilingual information processing exists from the

Natural Language Processing [5] and Information Retrieval [116] communities, there is

comparatively very little in the database context. In database literature, the multilingual

data management issues may be classi�ed as one of, solutions for speci�c languages, data

integration solutions or proprietary solutions.

An implementation of a database system for Arabic data is presented in [71], where

the authors present speci�c issues and solutions for storing, indexing, querying and

presenting Arabic language data, in an object-oriented paradigm. A database for storing

and query processing ideographic Chinese, Japanese and Korean (CJK) character data

is detailed in [81], where the focus was primarily on de�nition of resources needed for

handling ideographic scripts in database systems. While both these papers address issues

speci�c to the languages concerned (Arabic and CJK languages respectively), neither of

them propose general purpose solutions for multilingual data management.

In the second category, the FEMUS [4] system, though referred to as a multilingual

database system, outlines a federated system that can integrate data from di�erent data-

models and the associated query languages; it does not address issues in integrating data

from di�erent natural languages. Similarly, a multilingual query processing framework for

sharing lexical resources is discussed in [139], but the focus of this work is on improving

the eÆciency of administration of multilingual resources in a database environment, and

not on multilingual query processing or performance.

Finally, proprietary solutions exist in integrating multilingual data in speci�c applica-

tions: The Look-Alike-Sound-Alike [78] (LASA) system is employed by the pharmaceutical

industry, to identify strings that look or sound similar to each other, to prevent trade-

mark violations and potentially dangerous medical situations. However, this system

Chapter 1. Introduction 6

works only in Latin-based scripts. The EROS [33] system for art conservation, matches

multilingual records (that refer to diverse objects of art by masters) using specialized

paired multilingual thesaurii that are speci�c to the art domain. However, such systems

do not address general purpose multilingual data management issues.

To the best of our knowledge, there is not much research literature that deals with

issues that are speci�c to supporting multilingualism in database systems or those that

may be extended to general purpose solutions in multilingual data management.

1.3 A Sample Multilingual Application: Books.com

In order to highlight the multilingual data management issues, we �rst outline a hy-

pothetical e-Commerce portal { Books.com { that requires multilingual data storage

and query processing functionality. The same multilingual query paradigm can be used

in other information systems that need to integrate multilingual data, such as, digital

libraries, search engines, etc. This multilingual portal is used as a running example

throughout the reminder of this thesis. Consider Books.com that sells books across the

globe, with the database table { Book { that stores book information in multiple lan-

guages, as shown in Figure 1.1.

The Book table may be considered as a logical view assembled from data from a set

of distributed unilingual databases, each of which stores book data in a local language,

aligned with the local needs. A common view might have been de�ned, as shown in

Figure 1.1, to support searches in a uni�ed manner for multilingual users or for corporate

reports. Clearly, the storage format of such text must be in an encoding scheme that is

capable of storing all language data unambiguously; Without loss of generality, the data

is assumed to be stored in Unicode [125] format, as Unicode is supported by all database

management systems as the default format for storing multilingual data.

The table in Figure 1.1 stores the author's �rst and last names, book title, price

and the subject category of the book. The category of the book is assumed to be from

a well-de�ned classi�cation scheme that spans across languages. All the attributes of

Chapter 1. Introduction 7

Figure 1.1: Hypothetical Multilingual Books.com Catalog

the records are assumed to be in the language of the publication. The column titled

Language is presented here in English in order to enhance the readability of the table; it

may be assumed to be an identi�er corresponding to the language of publication, stored

explicitly or derived implicitly based on the source of the record.

1.4 Research Issues Explored

Given the need for supporting multilingualism in an increasingly global economy and

the state of the commercial art as given in Section 1.2, in this thesis we explore means

of enhancing the support for multilingualism in relational database systems { both in

terms of performance and functionality { as follows:

1.4.1 Multilingual Performance

While the survey given in Section 1.2 indicates the near-uniform multilingual support

of database systems using Unicode, to the best of our knowledge, no quantitative data

has been published on the performance of the systems working on Unicode data; that

is, their multilingual performance, speci�cally their relative performance with respect to

Chapter 1. Introduction 8

that on default character set, is largely unknown.

Hence, in the �rst part of our research, we set out to quantify the multilingual per-

formance of a suite of current commercial and open-source relational database systems,

and to alleviate any di�erential performance in handling multilingual data.

1.4.2 Multilingual Names Matching

As discussed earlier, the current relational systems do not o�er any alternate matching

semantics for integrating data across languages. To rectify this state of a�airs, we de�ne

two functionalities for matching multilingual data: First, the functionality of Multilingual

Names Matching is de�ned, as the retrieval of records that store the same proper name,

perhaps in di�erent natural languages, including names with minor spelling variations in

each of the languages. Though restricted to proper names, such matching represents a

signi�cant part of the user query strings in text databases and search engines, as proper

and generic names constitute a �fth of normal corpora [67].

For example, consider a query by a multilingual user to retrieve the works of an

author, say Nehru, in English, Greek, Hindi and Tamil, in the Books.com catalog shown

in Figure 1.1. A SQL:1999 compliant query and the result set for this retrieval is as given

in Figure 1.2. Note that the output would be in the language of the respective records.

SELECT Author, Title FROM Book

WHERE Author = `Nehru' OR Author = `N���'

OR Author = ` ' OR Author = ` '

Figure 1.2: SQL:1999 Compliant Multilingual Names Query and Result Set

Such a query speci�cation that requires the author's name in several languages is

undesirable, due to requirement of linguistic expertise of the user and the availability

Chapter 1. Introduction 9

of special lexical resources in several languages for the query input. Further, given that

the error rate for English query input is approximately 3% [67], the error in multilingual

query input could be expected to be much worse. Also, similar to the case of monolingual

matching, any di�erences in the spellings between the stored name and the query string

will result in false-dismissals.

Formally, a more intuitive Multilingual Name Join operator (referred simply hereafter

as MLNameJoin) is de�ned as follows: MLNameJoin takes an input name in one language,

and returns all records that have the same name in all or in a user-speci�ed set of

languages. The input query name may be speci�ed either in the most comfortable

language for the user or the one for which the lexical resources for input are available.

The multilingual query given in Figure 1.2, is shown in Figure 1.3 speci�ed with the

MLNameJoin, producing an identical result set. The Threshold parameter speci�ed in

the query determines the quality of matches, as described later in this thesis.

SELECT Author, Title FROM Book

WHERE Author MLNameJoin `Nehru' Threshold 0.25
InLang f English, Greek, Hindi, Tamil g

Figure 1.3: A Multilingual Names Query

The MLNameJoin operator, in addition to having a simpler input syntax, has two

powerful features that extend the power of standard SQL: First, it can express retrieval

of all records matching a name irrespective of the language. The speci�cation of ALL for

the list of languages retrieves all records containing the same author name in any of the

languages. Second, it can also express a join functionality (as given in Section 1.4.4)

that is not possible with standard SQL syntax. In the second part of our research,

we explore a strategy for implementing multilingual names matching on unmodi�ed

relational database systems and optimize the performance of such an implementation.

Chapter 1. Introduction 10

1.4.3 Multilingual Semantic Matching

A second Multilingual Semantic Join operator (referred simply hereafter as MLSemJoin)

is de�ned as follows: MLSemJoin takes an input query classi�cation and outputs all

records that have classi�cations that are equivalent to (or, optionally, subclass of) the

input classi�cation, irrespective of the language of the record. This matching is restricted

to attributes that store the categorical value of a record, possibly in di�erent languages.

Consider in the Books.com example, an SQL:1999 compliant query to retrieve all

History books in a set of user speci�ed languages. Clearly, a query with a selection

condition as Category = `History' would return only those books that have Category

as History, in English. A multilingual query to retrieve the required answer set needs

speci�cation of categorical value strings that are equivalent to `History' in all the

languages in which output is desired. Figure 1.4 shows such a multilingual query in

which the query categorical value, `History', is speci�ed in all the target languages,

namely, English, French and Tamil. The output records have categorical values that are

semantically equivalent to `History'4.

SELECT Author, Title, Category FROM Book

WHERE Category = `History' OR Category = `Histoire'

OR Category = ` '

Figure 1.4: SQL:1999 Compliant Multilingual Semantic Query and Result Set

Just as in the multilingual names matching, speci�cation of the categorical value in

di�erent languages may be undesirable due to the need for linguistic expertise and spe-

cialized lexical resources. Further, the synonyms of the query terms will not be retrieved,

4The second record has as category, the value �b ñ8:` ñP (transliterated as, Charitram) in Tamil,
meaning History.

Chapter 1. Introduction 11

even within the same language (such as, Annals, Chronicle, etc., that are synonyms of

History in English). Finally, even if all the synonyms are speci�ed explicitly, classi�ca-

tion that are specializations of a query term will not be retrieved (such as, Biography,

Autobiography, Genealogy, etc., which are specializations of History in English).

We de�ne formally the multilingual semantic matching as Multilingual Semantic Join

operator that takes input categorical value in one language and returns all multilingual

records that semantically match the input categorical value. Figure 1.5 shows the same

example as in Figure 1.4, but using theMLSemJoin operator, producing an identical result

set. The output contains all books that have categorical values semantically equivalent

to History in the respective languages.

SELECT Author,Title,Category FROM Book

WHERE Category MLSemJoin `History'

InLang fEnglish, French, Tamil g

Figure 1.5: A Multilingual Equivalent Semantic Query and Result Set

The de�nition of the MLSemJoin operator may be made more general, to match not

just on categories that are equivalent to the query categorical value, but also to those that

may be generalized to the query category. In Figure 1.6, theMLSemJoin operator with the

optional ALL clause takes an input category and returns all books that have multilingual

categories that may be generalized to History. Note that the �rst three records in the

output are the same as in Figure 1.5 and have the Category value equivalent to History,

in English, French and Tamil, respectively. The last four records have categorical values

that are subsumed by History5, in the languages speci�ed in the query for output.

5Historiography (Oxford English Dictionary { OED { de�nition: the study of of history writing and
written histories), Autobiography (OED de�nition: writing ones own life history) and Journal (OED
de�nition: a personal record) are considered as specialized branches of History itself. The �fth record

Chapter 1. Introduction 12

SELECT Author,Title,Category FROM Book

WHERE Category MLSemJoin ALL `History'

InLang fEnglish, French, Tamil g

Figure 1.6: A Multilingual Generalized Semantic Query and Result Set

The MLSemJoin operator has features that are not expressible in standard SQL: First,

MLSemJoin may be used for retrieving all records, irrespective of language, that match

a speci�c categorical value. Second, matching on categories that are equivalent and

subsumed by the query categorical value is possible with the proposed operator. Finally,

MLSemJoin may be used for de�ning a join between two multilingual columns, a feature

not possible in standard SQL.

In the third part of our research, we explore a strategy for implementing multilingual

semantic matching using standard linguistic resources and present its implementation,

along with optimization techniques to make the operator eÆcient for practical use.

1.4.4 Complex Multilingual Operations

Similar to normal SQL operators, the multilingual query operators, namely MLNameJoin

and MLSemJoin, may be combined with other SQL operators, as well as among them-

selves, to express more complex queries, depending on the user needs in an application

domain. The declarative speci�cation of such queries makes them intuitive to understand

and express, in addition to being amenable for optimization.

has as category the value �X�b8 ñP (transliterated as suyacharitam) in Tamil, meaning Autobiography.

Chapter 1. Introduction 13

Consider the e-Commerce portal Books.com, whose catalog of books (the Book Table)

is as given in Figure 1.1. Let the publisher information is stored in a Publisher table, as

shown in Figure 1.7. Assume that the Book record includes a foreign key (Book.PubID)

to the publisher of the book.

Figure 1.7: Multilingual Publisher Table

Suppose the user wants to retrieve the books whose author's name is similar to that of

the book's publisher. This query requires a join between the Book and Publisher tables, as

shown in Figure 1.8. While the �rst equijoin join is necessary to establish the relationship

between the books and the publishers, the secondMLNameJoin operator veri�es similarity

of names.

SELECT B.Author

FROM Book B, Publisher P

WHERE B.PubID = P.PubID

AND A.Author MLNameJoin P.Publisher threshold 0.25

Figure 1.8: Sample Multilingual Complex Query { 1

Consider another query to retrieve the books that are published in subjects that are

outside the publisher's area of specialization. This query requires an explicit join of Book

and Publisher tables to establish the publication relatonship and a negated MLSemJoin

operator, as speci�ed in Figure 1.9:

An interesting self-join variation of a complex query to retrieve those authors who

have published books in atleast two distinct areas (possibly in di�erent languages), is

speci�ed as shown in Figure 1.10. This query requires a self join of Book table using

MLNameJoin operator, to ensure similarity of names in di�erent languages, and a pair

Chapter 1. Introduction 14

SELECT B.Title

FROM Books B, Publisher P

WHERE B.PubID = P.PubID

AND NOT (B.Category MLSemJoin ALL P.Specialization)

Figure 1.9: Sample Multilingual Complex Query { 2

of negated MLSemJoin operators between the categories. Note that this answer set is a

superset of the real results, and requires �ltering out those distinct authors who have

similar names.

SELECT B1.Author, B2.Author
FROM Book B1, Book B2

WHERE B1.Author MLNameJoin B2.Author threshold 0.25
AND NOT ((B1.Category MLSemJoin ALL B2.Category)

OR (B2.Category MLSemJoin ALL B1.Category))

Figure 1.10: Sample Multilingual Complex Query { 3

1.5 Proposed Solution Strategies

Next, we outline our research strategy and our solution methodologies for implementing

the proposed multilingual functionalities in relational database systems.

1.5.1 Design Goals for Our Research Strategy

The following design goals were pursued, for the addition of multilingual features to the

relational database systems in a useful, usable and scalable manner.

Relational Systems Oriented: Our focus is on adding multilingual support to rela-

tional database systems { the backbone for most current information systems.

Chapter 1. Introduction 15

Attribute Data Oriented: The focus of multilingual query processing is only on attribute-

level data, in order to support high-volume Internet-based applications. To have a

fast, light-weight query processing of attribute-level data, the usage of linguistic re-

sources, rather than Natural Language Processing (NLP) techniques was pursued.

Note that our approach is well suited for search strategies on documents, since the

inverted index used in the text processing systems contains primarily stemmed text

keywords that are similar to attribute data.

Standards Based: Standard linguistic resources must be preferred in order to en-

sure uniformity and consistency in multilingual query processing, across di�erent

database systems. As a side-e�ect, the techniques would yield the same answer set

for a given query on a given data-set, irrespective of the systems on which they are

implemented.

Customizable Matching: The matching must be customizable by users, depending

on the requirements of speci�c domains and applications.

Few Database Kernel Changes: Database software has been developed and �ne-

tuned over a period of decades, representing substantial resources spent by aca-

demic and industrial research communities. Hence, our aim is to leverage the

capabilities of the system with minimal changes. Also, such an approach makes it

easier for adoption of our methodology among the existing systems.

1.5.2 Multilingual Performance

Our survey on the multilingual support o�ered by a suite of popular commercial and

open-source relational database management systems indicates that almost all the sys-

tems do provide for the storage and management of multilingual data, by their support

of Unicode as the storage mechanism. However, there is no published research literature

on performance implications of Unicode data in database systems.

Chapter 1. Introduction 16

Hence, the �rst part of this thesis, Chapter 2, focuses on quantifying the perfor-

mance of systems handling multilingual data using the standard TPC benchmark suites,

modi�ed appropriately for multilingual environments. The objective was to quantify

the di�erential performance of popular commercial and open-source relational database

systems in storing and processing multilingual data in the Unicode character set, as com-

pared with their performance on the default ISO:8859 character set and to explore ways

of making the performance natural language neutral.

1.5.3 Multilingual Matching Functionalities

In the second part of the thesis, we pursue solution strategies for supporting the cross-

lingual query processing functionalities, speci�cally for implementing the multilingual

names matching and multilingual semantic matching functionalities (as in Sections 1.4.2

and 1.4.3).

Our view of storage and semantics of textual information in database systems is

shown in Figure 1.11. Note that our discussion here pertains exclusively to the text data

types, which are relevant for multilingual information processing. Non-text datatypes,

such as number, date etc., are not relevant and hence are not addressed in this thesis.

The top half of the �gure sketches the ontology of text data stored in database systems,

and the bottom part of the �gure sketches the storage mechanisms that are used to

store textual data. Simply, the top half refers to what types of textual data is stored

in database systems and the bottom half refers to how they are stored. The dotted

and dashed lines represent how the matching semantics of speci�c attribute types are

implemented.

The Text Data in database systems may represent a wide variety of information:

Text String that stores singular string representing a proper name (tagged as Proper

Noun in Figure 1.11), a categorical information (tagged as Category in Figure 1.11) or a

compound string (tagged as Other Text Data in Figure 1.11). The Other Text Data may

represent complex information, such as, an address, a description etc. Another important

type of text information in databases is a document, which may be a very long string

Chapter 1. Introduction 17

Document

Other Text Data Proper NounCategory

Normalized
Text String

Script
(English, Hindi...)

Encoding
(ASCII,ISCII,Unicode...)

Text Data
Semantics

Representation

Text String

Image

Visual

Grapheme

Figure 1.11: Ontology for Text Data

representing a full document (tagged as Document in Figure 1.11). The document may

be stored either as a long text sting in the table itself or as a binary object in a local or a

foreign table or as a logical pointer to the database location where the actual document

is stored; each database system may implement the document storage di�erently and

hence it is not classi�ed under Text String. As mentioned in Sections 1.4.2 and 1.4.3, this

thesis focuses on multilingual query processing on the Proper Noun and Category types of

textual attributes only. Query processing on Other Text Data and Document attributes

requires Natural Language Processing (NLP) algorithms and are beyond the scope of this

thesis.

How the information is represented in the database systems, is sketched by the lower

half of Figure 1.11. Though multimedia systems may store the visual representation,

namely, Glyphs6, as images of the text (tagged as Images in Figure 1.11), normal text

databases store them only as graphemes internally. The Grapheme representation in a

database depends on two orthogonal speci�cations: the Script (such as, English, Hindi,

6The characters are composed into Glyphs by a rendering engine, based on the composition rules and
visual representations that are speci�c to a language.

Chapter 1. Introduction 18

Arabic, Chinese, etc.) and the Encoding (such as, ASCII[57], ISCII[122], Unicode[125],

etc.). Given the two speci�cations, a multilingual text string is represented by a Nor-

malized Text String. While, in general, the Encoding is speci�ed at the database creation

time (as the database character set), the Script is not usually speci�ed explicitly.

Databases employ lexicographic comparison (represented by the dash-dotted line in

Figure 1.11) for all the text operations (such as, matching, sorting, search, etc.), but

this facility fails in multilingual environments { for example, the matching always fails

since the strings are represented in di�erent scripts and the sorting depends solely on the

placement of the scripts in the Unicode codespace. Hence, in multilingual environments,

the semantics of the matching operator itself must be de�ned and their implementations

explored. The solution strategies for the two alternative MLNameJoin and MLSemJoin

matching semantics are presented in the following sections.

Multilingual Names Matching Strategy

In multilingual environments, for a speci�c class of attributes, such as those that store the

names of individuals, corporations and places, we start with the premise that the value

of the string is primarily aural; that is, when a name is explicitly queried for, the user

may be interested in retrieving all names that aurally match the query string irrespective

of the language (at least in the set of languages in which the user is interested). For

example, in MLNameJoin matching semantics, comparing \Nehru" and \ " should

succeed, as both the strings encode the same name in English and Hindi, respectively.

We propose a framework to capture this intention, by transforming the multilingual

name match in the text space to a corresponding match in the phoneme space.

The database text data ontology is augmented to store the phonemic equivalents of

the multilingual text strings. Note that though the ontology is augmented, the phoneme

strings need not be materialized and stored explicitly; they may be generated at the

query processing time. However, materialization may be employed, in order to improve

the query processing eÆciency. The storage of phoneme strings parallels the storage of

grapheme strings in the database systems: a phonemic string may be represented by

Chapter 1. Introduction 19

Image

Document

Using
TTP

Category Other Text Data Proper Noun

Concept

Normalized
Text String

Script
(English, Hindi...)

Encoding
(ASCII,ISCII,Unicode...)

Phoneme
String

Format
(IPA,Arpabet...)

Encoding
(Unicode,ITrans...)

Text Data
Semantics

Representation

Text String

Visual

Grapheme

Aural

Phoneme

Figure 1.12: Ontology for Names Matching of Text Data

specifying a Format and an Encoding. The Format is one among several competing pho-

netic repertoires that specify di�erent phoneme alphabets. While a variety of phoneme

formats are available, the phoneme alphabet speci�ed by the International Phonetic As-

sociation [60] (IPA) was chosen in our strategy, as it covers the set of phonemes from all

the languages and its repertoire is explicitly speci�ed and supported in Unicode. The

Encoding speci�cation for the phoneme strings as Unicode allows the storage and ma-

nipulation of phoneme strings in the NChar datatype, in all the database systems. The

phonetic representations of given multilingual strings may be derived from the standard

Text-to-Phoneme (TTP) systems of the respective languages. However, the transformed

phoneme strings of the same name in di�erent languages may not match exactly, since

phoneme sets of two languages are seldom identical; that is, the same name in two dif-

ferent languages may transliterate only to a pair of close phoneme strings. Hence, we

propose the use of approximate matching techniques to compare phoneme strings. In

summary, we propose to implement the MLNameJoin operator by transforming multi-

lingual text strings to their equivalent phonemic strings in a common alphabet (IPA)

Chapter 1. Introduction 20

and employing approximate matching techniques (shown in dotted line in Figure 1.12),

instead of the standard lexicographic matching (shown in dash-dotted line in Figure 1.12).

Storage of aural representation of multilingual names as an audio �le (in a speci�c

format) or as a mathematical representation (such as the Fourier Transformation of

the waveforms) is possible; however, these choices result in heavy overheads in storage

and/or query processing. Further, our methodology leverages the ready availability of

the multilingual names as text strings in the database systems.

While the use of pre-de�ned mappings between names in di�erent languages is possi-

ble, this approach su�ers from several drawbacks: First, even in the monolingual domain,

proper names su�er from large expansions of the term being matched7; in multilingual

searching, the expansion may be worse. Second, a new name (for which the corresponding

variations may not be readily available) given as an input cannot be handled e�ectively.

Third, such an approach requires creation and constant maintenance of meta-data infor-

mation that could result in large manual overheads. In contrast, our approach is very

generic, and depends only on integration of language-speci�c TTPs and approximate

matching operators with the database system.

Chapter 3 details our strategy of implementing multilingual names matching, by con-

verting matches in text space to phoneme space. Further, an outside-the-server approach

to implement the functionality on existing database systems is presented, along with

optimization techniques to make the performance suÆcient for practical use.

Multilingual Semantic Matching Strategy

Consider the class of attributes that store the classi�cation information of a record (such

as, the Category attribute in Books.com table). The values of this attribute are usu-

ally speci�c Concepts from a well de�ned set. For example, the Category attribute in

Books.com may be from the Dewey Decimal Classi�cation [29] that classi�es all subject

categories. Hence, we propose that the categorical value strings may be compared after

7For example, a popular Internet search engine [50] employs about 600 variations of a popular query
name { Britney Spears, to correct a mis-spelt form of the name.

Chapter 1. Introduction 21

transforming them to canonical semantic atoms using appropriate linguistic resources8.

Further, if the semantic atoms are arranged in a semantic network for the domain (such

as, Dewey Decimal Classi�cation that arrange the subject categories in a taxonomical

hierarchy), more expressive power may be added to the matching, leveraging on the

richer semantics available.

Image

Document

Category Other Text Data Proper Noun

Concept

Synset
WordNet

Multilingual

WordNet
Hierarchies

Normalized
Text String

Script
(English, Hindi...)

Encoding
(ASCII,ISCII,Unicode...)

Text Data
Semantics

Representation

Text String

WordNet
LexMatrix

Visual

Grapheme

Figure 1.13: Ontology for Semantic Matching of Text Data

For MLSemJoin matching functionality, a speci�c linguistic resource { the Word-

Net [135, 39], a Computational Linguistics resource that arranges the concepts of a

language using psycho-linguistic principles, is used. WordNet contains two important

features that may be leveraged for semantic query processing in the linguistic domain:

First, a Lexical Matrix that converts a word form (lexicographic representation) to a

word sense (the semantic atom of the language, called Synset). Second, the Taxonomic

Hierarchy that arranges all the synsets of a language in an inheritance hierarchy based on

8Here we distinguish fromWords and Semantic Atoms, though the semantic atoms may be expressible
only in terms of words. The words in a natural language, in general, have low resolution power and refer
to multiple concepts. For example, in the two contexts \bow and arrow" and \ship's bow", the same
word { bow { instantiates to distinctive semantic atoms.

Chapter 1. Introduction 22

their meanings. Using the above two resources word forms may be mapped to synsets of

that speci�c language and compared. Further, with the available taxonomical hierarchy

of noun forms, matching may also be de�ned on specializations and generalizations of the

synset corresponding to the query term. For multilingual domains, more importantly,

e�orts are under way to develop WordNets in many languages with semantic links be-

tween their individual synsets [37, 65, 19]. The multilingual categorical attribute values

may be matched leveraging the interlinked WordNets in multiple languages (shown as

dashed line in Figure 1.13), instead of the standard lexicographic matching (shown in

dash-dotted line in Figure 1.13).

Chapter 4 presents details of our implementation strategy for multilingual semantic

matching, by leveraging the WordNet linguistic resources that are available in multiple

languages. The implementation methodology uses standard SQL:1999 features on un-

modi�ed relational database systems. Further, optimization strategies for improving the

performance, by tuning storage and access structures to match the characteristics of the

linguistic resources, are presented.

1.5.4 Multilingual Query Processing Architecture

Traditionally, a new functionality is added to the database systems as a user-de�ned

function (UDF), due to its simplicity. However, such an approach su�ers from perfor-

mance overheads due to remote execution and due to the fact that a query using UDFs

cannot be optimized by the query optimizer. Further, the query speci�cation tends

to be unintuitive, since the functional UDF calls get interspersed with declarative SQL

constructs. Hence, for an intuitive and eÆcient functionality enhancement in database

systems, the functionality must be made available as �rst-class engine operators.

Chapter 5 presents a uni�ed multilingual query processing architecture that natively

integrates the proposed multilingual functionality to the database system. A multilin-

gual query algebra { Mural { that speci�es a uniform framework for expressing complex

queries declaratively and intuitively, is presented. Subsequently, Chapter 6 presents a

native implementation of the query processing architecture with Mural algebra on the

Chapter 1. Introduction 23

PostgreSQL open-source relational database system. The performance of such a native

implementation is presented and the power of optimization opportunities that it a�ords,

is demonstrated.

1.5.5 Applicability in Other Domains

It should be specially noted here that though our solution methodology is primarily de-

signed for matching multilingual strings, it is equally applicable for matching of mono-

lingual strings (for example, for matching text strings that are all in English).

Monolingual Names / Semantic Matching

The MLNameJoin operator may be used for matching the English name Catherine

and all its variations, such as Kathrin and Katrina, with the names being matched

phonetically using English TTP and using approximate matching techniques. Similarly,

using only the English WordNet, the semantic matching methodology presented here

may be used for matching Disk Drive with Computer Storage Devices.

Domain-speci�c Semantic Matching

The semantic matching methodology outlined here may be applied, in general, to any

domain, where a well-de�ned ontological hierarchy of concepts is available. For example,

while the WordNet linguistic ontological hierarchies were used in our methodology, the

same query processing methodology may be applied in Bio-informatics domain by using

Gene-Ontology [45] ontology or in Library domain by using Dewey Decimal Classi�ca-

tion [29] system. Specialized domain hierarchies, such as Yahoo!Directory [137] may also

be used for speci�c applications.

1.6 Real-life Multilingual Systems

In this section, a few multilingual initiatives from around the globe are outlined. While

all the initiatives given below cater to a multilingual population, none of them support

cross-lingual searches, as de�ned in this thesis. The functionality we proposed could

enhance the multilingual support provided by each of them, in a meaningful way.

Chapter 1. Introduction 24

Global e-Governance Portals9

In the European Union, one of the most linguistically diverse regions of the world, a

pan-European Union portal { Europe [34] { disseminates information on its legislative,

judicial, economic and social programmes to the member citizens, in all of the EU lan-

guages. The goal of this portal is to provide the public with the information that they are

looking for in their own language or in a language that they can understand.

Similarly, the portals of United Nations [126] or United Nations Educational, Sci-

enti�c and Cultural Organization [127] present data in the six oÆcial languages of the

organizations { namely, English, French, Russian, Spanish, Arabic and Chinese. Among

the stated objectives of the organizations is the dissemination of information to all mem-

ber organizations in a timely and transparent manner, to foster better governance.

Indic e-Governance Portals

The Government of India has introduced several e-Governance initiatives to serve the

citizens of India, eÆciently and e�ectively. Use of local language content is encouraged,

since it provides better access for the vast majority of the population that are functionally

literate only in the local language. For example, Bhoomi [9] is a e-Governance system

designed for computerizing land records of about 20Million agricultural properties in the

local language, Kannada, serving 7 Million farmers in the state of Karnataka in India.

The system is being modi�ed for adoption in di�erent states of the Union of India, in

the respective local languages.

As a result of such multilingual e-Governance systems, other system that need to

integrate data from di�erent sources need to scale multilingually: consider the Income

Tax department of Government of India, which requires a citizen of India to �le an

income tax return, if he/she satis�es any two of the following six criteria [51]:

� Owns a landed property

� Possesses a passport and travels abroad

9Though this portal deals with documents, as indicated earlier, the proposed multilingual matching
operator may be useful here, as the keywords used for inverted-indexes and document searches are
similar to the attribute data in relational database systems.

Chapter 1. Introduction 25

� Owns a motor vehicle

� Subscribes to a telephone or a mobile phone connection

� Possesses a credit card

� Is a member of any exclusive clubs.

An automated system to identify potential tax payers must work with information

that is in di�erent languages; for example, as mentioned earlier, the land records are

maintained in a local language for a large portion of rural properties, whereas the tele-

phone and banking records are maintained in English. Hence it introduces a problem of

matching of names in Indic character set from land records, with names in English from

telephone records, presenting a potential application for the MLNameJoin operator. Sim-

ilarly, there are other demographic data (such as, profession, religion, etc.) that require

the MLSemJoin operator. The matching problem is also compounded by the fact that the

income tax returns themselves may be �led in either English or Hindi. Hence, matching

potential and existing income tax assessees require merging of data in potentially three

or more languages.

aAQUA: A Rural Multilingual Agricultural Portal

aAQUA [1] (almost AllQUestions Answered) is a project of Indian Institute of Technology-

Bombay (IIT-Bombay), and a part of Development Gateway India Research Center,

funded by Government of India. It is currently operational in English and two Indic

languages, to enable Indian farmers to get in touch with and get advice from by the agri-

cultural experts. The portal, as shown in Figure 1.14, provides a multilingual interactive

forum for farmers { primarily from the state of Maharashtra in India { to interact with

experts and among themselves. This portal also provides constantly updated prices on

agricultural commodities in the markets.

The query address system hosted in this portal allows farmers to post queries that

are answered by experts about any agricultural issues of interest, in any of the supported

languages; in addition, it provides a wealth of information on common problems faced

by the farmers, and data about appropriate crop cycles, pesticides, soil and weather

Chapter 1. Introduction 26

Figure 1.14: aAqua: An Indic Multilingual Agricultural Portal

conditions. Potential features that may be supported on the top of aAQUA are the mul-

tilingual names search on entities (say, pesticide names), and the multilingual semantic

search on concepts (say, \vegetable prices"). The pesticide name may be searched in

all the supported languages as the names are likely to be transliterated in di�erent lan-

gauges; the resulting documents may be presented to the user in his/her own language

as the translated pages are also readily available in aAQUA. The semantic search may

return potential answer set for a given search; for example, \price of vegetable" search

may yield prices for di�erent vegetables, and \crop failure" may retrieve articles ranging

from insects in rose buds to ooded rice �elds.

Chapter 1. Introduction 27

Vidyanidhi: E-Scholarship Portal

Vidyanidhi [130] is India's premier digital library initiative to facilitate the creation,

archiving and dissemination of doctoral theses that are produced in a host of Indian

universities, in English and a set of Indic languages. Vidyanidhi is envisioned to evolve

as a national repository of research publications in India, encouraging dissemination and

sharing of knowledge. Such a portal may support searching of potential plagiarism, by

semantically matching the multilingual keywords associated with the scholarly work in

di�erent languages.

Multilingual Search Engines

There are several initiatives that attempt to search multilingual web-sites and docu-

ments. EuroSeek [35] { shown in Figure 1.15 is a search initiative that works currently

with most major European languages and has a stated goal of creating a pan-European

search engine that is transparent to national and linguistic boundaries.

However, EuroSeek, based on the popular Google [50], supports searches based on

patterns (that is, lexicographic) only. As can be noticed in Figure 1.15, the query word

\Mira" is searched only lexicographically even on a collection of documents that are

not in Latin script. Similarly, even in the multilingual UN and UNESCO portals, search

is compartmentalized to each of the oÆcial languages; integration happens, at best, in

matching between those languages that share the same script { such as English and

French. In contrast, some of the local initiatives, such as, Agro Explorer [105, 106],

search based on the meaning that is represented in UNL [129], and hence are language

independent. All search engines may leverage on the alternative matching methodologies

highlighted in this thesis, and enhance support in multilingual domains.

1.7 Organization of this Thesis

The reminder of this thesis is organized in the following manner:

Chapter 2 pro�les the performance of a set of popular database systems in handling multi-

lingual data, using the standard TPC performance test suites, modi�ed appropriately for

Chapter 1. Introduction 28

Figure 1.15: Euroseek: A Pan-European Multilingual Search Engine

multilingual environments. While the results highlight the di�erential multilingual per-

formance of the database systems, we explore eÆcient character representation formats

to make the performance equitable across languages.

Chapter 3 outlines our implementation strategy for multilingual names matching, by

transforming matches in text space to phoneme space. While the basic implementation

using UDF's is too slow for practical use, we show that with specialized indexing tech-

niques, the performance may be improved substantially.

Chapter 4 outlines our implementation strategy for multilingual semantic matching, by

leveraging WordNet linguistic resources. We present our implementation using standard

SQL features on unmodi�ed database systems and a set of optimization techniques that

demonstrate acceptable performance for practical use.

Chapter 1. Introduction 29

In Chapter 5, we formalize the previous functionality proposals as operators and de�ne

a query algebra that ties them together in a unifying multilingual query processing

architecture, along with all the components needed for a native implementation of the

multilingual functionality in a relational database system.

In Chapter 6, we outline a native implementation of the multilingual operators along with

the query algebra, in the PostgreSQL open-source database system. Subsequently, the

performance of such a native implementation is presented, along with the optimization

opportunities a�orded by such an implementation.

Finally, Chapter 7 concludes the thesis, with avenues open for further research, in ex-

tending the problem or solution methodologies.

Traditionally, the database management systems have become transparent to physical

storage formats (by automatic transcriptions) and to logical data models (by programming-

language-neutral access methods). In this thesis, we take the next step of making the

query processing transparent to the natural languages, with a set of functionalities, al-

gorithms, implementation techniques and an architecture, all geared towards the goal of

developing natural-language-neutral database engines.

Chapter 2

Multilingual Performance of

Current Systems

2.1 Overview of the Chapter

In this chapter, we pro�le the performance of a set of popular database systems in han-

dling multilingual data, using the standard TPC [123] performance test suites modi�ed

appropriately for the multilingual environment. The results highlight the inequitous per-

formance of the database systems while working on multilingual data, compared with

their monolingual performance. To alleviate the magnitude of such inequity, we propose

a split storage format that largely eliminates the di�erential performance for most lan-

guages, except those with unusually large repertoires (speci�cally, those with repertoire

size > 256).

2.2 Setup for Multilingual Performance Study

In this section, we �rst describe a testing framewodirk for measuring the di�erential

performance of database systems with respect to multilingual data. Next, we de�ne the

metrics measured to quantify the di�erential performance and subsequently present the

performance of a suite of popular commercial and open-source database systems.

30

Chapter 2. Multilingual Performance of Current Systems 31

2.2.1 System and Database Environment

A standard Intel Pentium IV (1:7 GHz) workstation with 256MB memory running Win-

dows 2000 Professional operating system was used as the test machine for the perfor-

mance study. All the database systems were installed and tested on this machine to

normalize the e�ects of the hardware environment. Before each experiment, the machine

was quiesced and only the database system being tested and allied processes were allowed

to run in order to have measurement parity between the systems.

Four of the popular database systems { speci�cally, Oracle 9i Database Server (Ver-

sion 9.0.1), IBM DB2 Universal Server (Version 7.1.0), Microsoft SQL Server (Version

8.0.194) and PostgreSQL Database Server (Version 8.0.1) { were evaluated in our perfor-

mance study. In the performance section, they are identi�ed randomly, as A, B, C and

D, to protect their identities. The database systems were installed with default con�g-

urations, with the vendor-provided installation scripts. All the systems were con�gured

to use only 64 MB for the database bu�er pool, a popular choice among the systems.

No optimization of the parameter settings was attempted, as the focus of our study was

to report the performance of the database systems under default conditions and not to

optimize individual performance. It is worth noting here that apart from the format

speci�cation of NChar datatype, we found no other database system parameters that are

speci�cally designated for multilingual character sets.

2.2.2 Dataset

The TPC-H benchmark [123] data generator was used to generate a large database

for the performance study. A speci�c table (partsupp) that stores the part-supplier

relationship1 was modi�ed further to hold equivalent data in the default Char character

set and the multilingualNChar character set, as shown in Figure 2.1, for our experiments.

Speci�cally, two di�erent tables { partsuppChar and partsuppNChar, with attributes

1The Part-Supplier relationship in TPC-H benchmarks captures the relationship between Parts and
Suppliers. In addition to foreign keys identifying the part and a supplier, it stores three additional at-
tributes { Price quoted for the part by the supplier, Quantity available with the supplier and Comments,
a general �eld for any remarks.

Chapter 2. Multilingual Performance of Current Systems 32

in Char and NChar (in Unicode format) datatypes, respectively, were created. The Char

attributes are in English, while Tamil, a prominent Indian language, was used for the

NChar attributes.

These tables were populated with a modi�ed TPC-H generator that embeds inte-

ger keys in the part and supplier name attributes, resulting in fSuppName,PartNameg
becoming a candidate key, in the respective tables. After being populated with data,

each of the tables held the same information as the original partsupp table, but with

keys that are in Char or NChar datatypes, respectively. It should be noted that both

the tables contain data of the same logical length, but the NChar attributes need more

physical storage than the Char attributes, due to Unicode format of storage in the NChar

attribute. Thus, the performance of a given query on each of these tables is indicative

of performance of the operators on each of the datatypes.

Finally, a common table, partsuppCom, was created by adjoining all the attributes of

the above two individual tables. While the queries on the partsuppChar and partsuppNChar

tables provide di�erential performance between the datatypes including the I/O costs,

queries on the common partsuppCom table isolate the di�erential performance solely due

to in-memory processing, since the queries need to access the same database blocks irre-

spective of the datatype on which the query was issued, assuming horizontal partitioning

of the table attributes in datablocks. Hence, queries on the common table provide a lower

bound on di�erential performance between the datatypes.

The tables were populated with 4 million records, taking up to 1:2 GB in the common

table. Appropriate commands were issued to ensure that the systems computed the table

statistics necessary for the optimizer to make more precise estimates of operator costs.

Lastly, indexes were created as and when necessary on Char and NChar �elds to measure

index performance.

Chapter 2. Multilingual Performance of Current Systems 33

Figure 2.1: Data Setup for Performance Study

2.2.3 Query Workload

The prime objective of our performance study was to measure the performance of basic

database operators; hence, simple queries as described below were used.

To model the Table-scan operator, a query that scans the appropriate table for retriev-

ing all the parts supplied by a given manufacturer was used. To model the performance

on Char and NChar data types, the select condition was speci�ed on the appropriate

attribute. For example, the table scan query on partsuppCom table is as follows:

select count(*) from partsuppCom

where

(
suppNameChar

suppNameNChar

)
=

(
`Supplier 2503'

`8Xab ñHHpñ̀ 2503'

)

The Index-scan operator performance was measured by running a index-scan query,

which returns 20% of the tuples in the table (i.e. 800; 000 rows), making the run time

large enough to nullify any measurement errors. For example, the index scan query

on partsuppCom table is as follows (after the indexes were created on appropriate at-

tributes):

Chapter 2. Multilingual Performance of Current Systems 34

select count(*) from partsuppCom

where

(
partNameChar

partNameNChar

)
<=

(
`Part 200000'

`Ha� ñP�HXñ̀ 200000'

)

The Join query �nds those suppliers who supply at least two distinct parts, modeling

a multi-scan operation. An example join query that self-joins the partsuppCom table is

given below. The join query was used for measuring performance of the join operator,

using one of three di�erent join techniques : Sort-Merge, Hash or Nested-Loop.

select count(*) from partsuppCom P1, partsuppCom P2

where P1.

(
suppNameChar

suppNameNChar

)
= P2.

(
suppNameChar

suppNameNChar

)

and P1.

(
partNameChar

partNameNChar

)
<> P2.

(
partNameChar

partNameNChar

)

All queries were further simpli�ed by eliminating the post-processing of output data.

As the queries return a large number of records (up to 12M records), an aggregate

function, count(�), is used to nullify the output time. The query plans obtained from

the optimizers con�rmed that most of the work done for the queries was executed in the

targeted basic relational operators. While the individual query run times were measured

as the wall-clock times using database time-stamps, the average runtime from several

identical runs was taken as the runtime of a speci�c query. The number of runs were

chosen such that the error in the computed runtime is less than 5% at the 90% con�dence

interval. Before each query was executed, a large unrelated table was scanned to ush

the database bu�ers and a large unrelated �le was read to ush the OS bu�ers, thereby

ensuring a cold start.

2.2.4 Performance Metrics

We measured three di�erent performance metrics, to quantify the di�erential perfor-

mance of the database operators and the optimizer while working on multilingual data,

as outlined below:

Chapter 2. Multilingual Performance of Current Systems 35

Operator Performance

The operator performance is measured by the run times for the above simple queries

that approximate the database operators under default conditions. First, a metric Mul-

tilingual Runtime Overhead (MROOper), is de�ned as follows:

MROOper =
TNChar

TChar

where TChar and TNChar are the run times for the operator on Char and NChar datatypes,

respectively. This metric measures the performance overhead of operators working on

multilingual data in Unicode with respect to the corresponding performance on default

character data in ASCII. A �gure close to 1 indicates equitable performance between Char

and NChar data types and the magnitude of the metric indicates the relative ineÆciency

of the database systems in handling multilingual data. We expect no values less than 1

for this metric, since NChar performance cannot be better than that of Char data.

Multilingual EÆciency

Next, an aggregate metric for capturing the relative performance of a given database

system, Multilingual EÆciency (MEDBMS), is de�ned as follows:

MEDBMS = GChar

GNChar

where GNChar is the geometric mean of the run times of operators on NChar data and

GChar is the geometric mean of the run times of operators on Char data. We use the

ratio of the geometric means2 to measure the overall eÆciency, in order to ensure that

all queries are represented in the �nal metric, independent of the scales of their run

times. While the run times from a complete set of operators will model this metric

accurately, we used the run time �gures for the following seven operators measured

in the study { Table-Scan, Sort, Index-Create, Index-Scan and the variations of Join

operator, to provide an estimate of this eÆciency. The MEDBMS measure indicates how

well the database handles multilingual character sets with respect to the basic database

character set, with a value close to 1 indicating equitable performance across the sets.

2Similar to other database benchmarks, such as Bucky [14].

Chapter 2. Multilingual Performance of Current Systems 36

Optimizer Prediction Accuracy

In addition to the operator run times, we also recorded the optimizer estimates of the

cost of each query, to assess the relative accuracy of the optimizer between Char and

NChar datatypes. In all database systems, the optimizer estimate for completing an SQL

query is either output explicitly in the plan diagram or recorded in the plan table along

with the execution plan corresponding to the query. These estimates were retrieved

and recorded for each query run. An optimizer metric, Multilingual Prediction Equity

(MPEOper) is de�ned as follows:

MPEOper =
(ONChar

OChar
)

(TNChar
TChar

)

where OChar and TChar are the optimizer estimate and the actual run time of the query

to run on Char datatype, and ONChar and TNChar are the corresponding numbers for the

query on NChar datatype.

The MPE metric measures how equitable the optimizer is between the two char-

acter datatypes, by comparing the ratio of optimizer prediction to the ratio of actual

performance. An MPE value close to 1 indicates equitable prediction accuracy between

the data types, while signi�cantly deviations from 1 indicate non-uniform prediction

accuracies.

2.3 Performance Results

In this section, we present the results of the experiments that we conducted in the above

framework for a set of popular database systems.

2.3.1 Space Overheads

As expected, there was a space overhead of 100% for multilingual data, since each ASCII

character that is coded in 1-byte in Char attribute, needs 2-bytes in Unicode format.

Curiously, the database systems seem to store even NChar data speci�ed in the UTF-8

format internally as UTF-16 (and convert it to UTF-8 format at the interface layer).

Chapter 2. Multilingual Performance of Current Systems 37

This was con�rmed by a set of experiments in which the same multilingual data was

stored in UTF-16 and UTF-8 formats and a set of queries were run on each; there was no

signi�cant di�erence in the storage size between the two formats and a very slight query

performance degradation (� 4%) in UTF-8 format.

2.3.2 Separate Table Processing

When the Char and NChar datatypes were created and queried in separate tables, namely,

partsuppChar and partsuppNChar, the Table-scan operator was slower on the NChar

table by up to 475% from the corresponding Char performance (for 55 characters long

Char and NChar attributes), and the join operators were slower by up to 275% (for 55

characters long Char and NChar attributes). At �rst glance, it might be thought that

these e�ects are solely due to the increased storage required by NChar. However, as we

will show next, even if all queries are run on a common table, thereby ensuring that the

total disk I/O is identical for both query sets, there still remain computational factors

that come into play resulting in di�erential performance.

2.3.3 Common Table Processing

Table 2.1 presents the performance of the various operators when the queries were run

on the partsuppCom common table, forcing the same database blocks to be accessed,

irrespective of the datatype on which the queries were issued. This implies that the

performance di�erentials are solely due to in-memory processing.

We wish to emphasize that the performance �gures in Table 2.1, are not meant to

compare the absolute performance of database systems in handling multilingual data,

but only to highlight their relative performance in handling Char and NChar data. Hence

we draw attention only to the �gures in the MROOper and MPEOper columns of the

Table 2.1. It should be noted here that the performance of System D was measured on

the same test machine, but with a 512 MB main memory, while all other systems were

measured with a 256 MB main memory. Hence, the absolute runtimes for System D

Chapter 2. Multilingual Performance of Current Systems 38

may be faster, though we expect the relative performance (of NChar vs. Char datatypes)

of system D to be similar, in a machine with less memory.

Table Scan Operator: For the Table-Scan operator, very similar performance for Char

and NChar should be expected in a database that partitions the table data horizon-

tally, since the same database blocks are accessed for both the queries. While we

observe that systems B, C and D do exhibit this behavior, for system A, however,

there is a very substantial di�erence. Such a di�erential may be due to vertical

partitioning of the table data and/or storage of NChar attributes in foreign tables,

or due to a very high overhead in multilingual data processing functions.

Sort Operator: The cost of this operator includes the cost for the required initial table

scan. The di�erential sort cost is between 20% and 40% in systems B, C and D,

but it is a high 80% in system A.

Index Create Operator: All the database systems were slower in building an index

on the NChar attribute by about 20 to 40 percent. Though the slowdown in index

creation may not be a source of concern as it is typically an o�-line activity, index

maintenance, especially in a 24 x 7 operation may well be a�ected adversely by

this slowdown.

Index Scan Operator: The Index-Scan performance �gures indicate that two of the

four systems (speci�cally, systems A and C) have signi�cant deterioration in NChar

performance, and one system has a moderate deterioration of NChar performance

(system B). System D has near equal performance in index-scan. Since the query

is answered by accessing a small number of index blocks, thus incurring only a

small I/O cost, the index scan performance is a good indicator of the absolute

main memory processing eÆciency of the databases with respect to multilingual

data.

Join Operator: For the join operator, the three standard join implementation tech-

niques were evaluated: Sort-Merge, Hash and Nested-Loops. In di�erent relational

Chapter 2. Multilingual Performance of Current Systems 39

Query Query
Database Runtime Runtime MROOper MPEOper

System on Char data on NChar data
(Sec) (Sec)

Table Scan Operator
A 50 136 2.72 0.37
B 116 154 1.33 0.75
C 232 246 1.06 0.94
D 31.2 35.1 1.13 0.89

Sort Operator
A 78 142 1.81 1.30
B 159 235 1.48 0.68
C 352 431 1.22 1.01
D 221 276 1.24 0.80

Index Create Operator
A 214 259 1.21 NA
B 457 591 1.25 NA
C 388 538 1.39 NA
D 156 206 1.32 NA

Index Scan Operator
A 2.73 4.78 1.75 0.38
B 8.51 11.4 1.35 1.55
C 3.33 6.54 1.97 0.31
D 0.78 0.79 1.02 0.99

Join (Sort-Merge) Operator
A 1156 2198 1.92 0.89
B 841 1304 1.55 1.20
C 852 1143 1.34 0.95
D 909 2459 2.70 0.37

Join (Hash) Operator
A 4558 11848 2.60 1.26
B 576 778 1.35 0.75
C 754 971 1.29 1.22
D 3068 5521 1.80 0.55

Join (Nested-Loop) Operator
A 799 823 1.03 0.97
B 323 334 1.03 0.97
C 144 230 1.60 1.16
D 584 791 1.35 0.74

Table 2.1: Multilingual Performance of Operators

Chapter 2. Multilingual Performance of Current Systems 40

database systems, the join operators were invoked by speci�cation of appropriate

system parameters or optimization parameters. In Oracle 9i Database Server, op-

timizer hints were added to the SQL statements that make the optimizer prefer the

desired join operator. In IBM DB2 Universal Server the optimization level may

be set to di�erent values, to ensure that the desired join operator is chosen by the

optimizer. In SQL Server, a desired join operator is chosen by explicit speci�cation

in the corresponding SQL statement. In all these cases, the selection of appropriate

join operator is veri�ed by examining the �nal execution plan for the given SQL

query. In PostgreSQL Database Server the di�erent join operators are forced to be

invoked, after explicitly disabling the other join operators by appropriate setting

of system parameters. Only a small portion of the original table was used for the

Nested-Loop implementation, since joining the full table proved to be prohibitively

expensive (in the order of days), time-wise.

Table 2.1 shows that there are substantial performance di�erences between NChar

and Char, for all the join implementations. Speci�cally, the join queries are 35% to

170% slower for Sort-Merge, 25% to 160% for Hash; the Nested-Loop join is most

equitable, though it could be as much as 60% slower in System C.

To summarize the above results, we computed the Multilingual EÆciency of each of the

database systems using the run time �gures for the seven database operators { the results

are presented in Table 2.2.

Database System MEDBMS

System A 0.57
System B 0.76
System C 0.70
System D 0.69

Table 2.2: Multilingual EÆciency

As can be clearly seen in Tables 2.1 and 2.2, all the database systems are inequitable

Chapter 2. Multilingual Performance of Current Systems 41

with respect to multilingual data, and no single system (or a set of systems) has per-

formed badly consistently in all the operators. Also, there is a wide variation in relative

performance, indicated by theME values ranging from 0:57 to 0:76: for example, System

A is slower by nearly 75% in handling multilingual data.

Some database architectures organize table data in a vertically partitioned manner,

to make the query processing cache-friendly. For example, the Sybase[120] and the Mon-

etDB [90] database systems partition the table data vertically. In such architectures, we

expect absolute performance of our tested queries on both Char and NChar datatypes

to be better, when compared to those in the horizontally partitioned database systems.

Also, we expect the relative performance of database operators on multilingual char-

acter set over the default character set, to be similar to that of storing the Char and

NChar data in separate tables. Conversely, should the output of the query span multiple

attributes or if the selection condition involves multiple attributes, then we expect the

horizontally partitioned database systems to perform better than the vertically parti-

tioned ones. However, such hypothesis needs to be veri�ed with experiments, which we

hope to take up in our future work.

2.3.4 Optimizer Prediction Accuracy

The accuracy of the optimizer is an important factor in database system performance,

since errors in estimation could lead to a huge performance degradation as grossly inef-

�cient plans could be chosen. Table 2.1 also provides the optimizer metric, MPEOper,

for each of the database operators. No MPEOper �gure is calculated for Index-Create

operator, since it is a DDL statement that requires no optimization.

For most of the operators, the optimizer predictions were inequitable (indicated by the

MPE �gures much di�erent from 1). The accuracies of the Table-Scan, Sort, Index-Scan,

Sort-Merge join and Hash join estimates on NChar are di�erent by up to 60%, 30%, 60%,

20% and 25%, with respect to the corresponding Char estimates. In addition, we �nd that

in some cases, the optimizers are impervious to the di�erences between the datatypes;

they estimate the operators to perform equally, though the actual run times vary by

Chapter 2. Multilingual Performance of Current Systems 42

more than 100%. Such inequities in prediction may indicate a non-uniform cost model

between Char and NChar datatypes. In conjunction with the large slowdowns in query

performance, such mis-estimation may have serious impact on database performance,

due to selections of ineÆcient plans for complex queries.

2.4 Performance Analysis

The results from the previous section indicate that all the database systems were slow

in processing data in multilingual character set, compared with their performance in

handling default character set. In this section, we conduct a series of experiments to

understand the trend of, and the reasons for, this multilingual query processing overhead

and to pinpoint the sources of ineÆciency. The database system that exhibited the most

iniquitous performance, namely, system A, was chosen for this study.

2.4.1 Slowdown vis-a-vis String Length

As a �rst step towards calibrating the performance with respect to multilingual data,

we studied the e�ect of the string length on the di�erential performance, MROOper.

Speci�cally, the table scan and a set of join operator queries were run on the common

table with Char and NChar attributes of equal logical length, varying from 15 to 95

characters long. Note that, as mentioned before, though the strings lengths are equal,

the NChar strings need twice as many bytes as Char strings for storage. The experiments

were conducted on the common table to nullify the e�ects of the disk traÆc.

The results for this experiment are shown in Figure 2.2, which captures how the NChar

performance slowdown with respect to Char varies with the length of a text string. The

table scan slowdown is very high at small string lengths but decreases with increasing

length and asymptotically settles at about 125%. At small string lengths, the large

di�erential performance in NChar data indicates very high �xed cost (such as function

call overheads) in NChar data over Char data. As the string length increases, the variable

Chapter 2. Multilingual Performance of Current Systems 43

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

%
 S

lo
w

do
w

n

String Length

Query Slowdown (with String Length)

Table Scan
Join (Sort Merge)

Join (Hash)

Figure 2.2: Query Slowdown with String Size

cost of string comparison becomes signi�cant, dominating the function overheads, and

hence the di�erential performance reduces.

The Hash join technique exhibits a fairly steady trend of increasing di�erential per-

formance with string length, indicating that the operator is a�ected more by the string

processing overheads in NChar than those in Char. Sort-Merge, on the other hand, ex-

hibits a fairly constant slowdown, indicating that the slowdown is balanced between

string processing and disk access.

Overall, one can observe that the slowdowns exist for all operators and at all string

lengths, though it is more serious for short strings for scan operators and for long strings

for join operators. It should be noted that the observed slowdowns are signi�cant for

the chosen queries, given that the runtimes are in the order of tens of seconds for table

scan, and in the order of hundreds of seconds for join operators.

2.4.2 Components of the Slowdown

We took the default size of character attribute in TPC-H database (55 characters) and

conducted a second set of experiments to determine the speci�c reasons for the slowdown.

In database systems, typically the operators are implemented as common functions, but

Chapter 2. Multilingual Performance of Current Systems 44

invoked with di�erent type parameters. Hence it is reasonable to assume that the same

code path will be taken for each of the above queries irrespective of the datatypes on

which the queries were issued, as long as the plans are the same.

Under the above assumption, the slowdown between Char and NChar datatypes may

be attributable to the following three components:

�T = �TI=O +�TType +�TStringProcessing

where �TI=O is the di�erential cost due to the increased disk access for NChar storage

over Char storage, �TType is the di�erential cost in handling di�erent datatype (NChar

vs. Char) and �TStringProcessing is the di�erence in the cost due to processing of the string

{ due to both the function call overheads invoked with di�erent byte lengths and the

actual comparison of di�erent byte strings. Of the three, the �rst factor corresponds

to slowdown due to increased disk access and the next two correspond to that due to

in-memory computation.

The slowdown due to the increased disk access, namely �TI=O, is zero, as all the per-

formances were observed by running the queries on partsuppCom table, thereby forcing

the same disk blocks to be accessed.

Next, to isolate the cost due to the datatype, namely �TType, we created the partsuppCom

table with Char attribute of size 110 and NChar attribute of size 55, forcing each attribute

to store the attribute values in equal number of bytes. The scan and join queries were run

on each datatype as before to �nd any variation in performance which can be attributed

to datatype speci�c processing. The NChar queries are slower by about 10% indicating

that �TType is small, but not insigni�cant.

Finally, to isolate the cost due to the size of the data, namely �TStringProcessing,

we created a set of tables with NChar attributes replaced by Char attributes, but with

di�erent sizes ranging from 55 characters to 165 characters, corresponding to scale factors

between 1 and 3. The keys were embedded at the end of the character strings forcing

each comparison to scan the entire length of the string to determine [in]equality. The

slowdowns of Table-scan and Join queries on scaled up Char attribute, relative to normal

Chapter 2. Multilingual Performance of Current Systems 45

0

50

100

150

200

250

300

350

1 1.5 2 2.5 3

%
 S

lo
w

do
w

n

Scale Factor

Query Slowdown (with Scaling)

Table-scan (Max Comparison)
Table-scan (Min Comparison)

Sort-merge Join (Max Comparison)
Sort-merge Join (Min Comparison)

Hash Join (Max Comparison)
Hash Join (Min Comparison)

Figure 2.3: Query Slowdown with Scaling

Char attribute, are shown in Figure 2.3, as lines marked Max Comparison. The relative

slowdown in a single-scan Table-Scan operator is very low with a maximum slowdown of

10% for a scale up factor of 3. Such negligible relative slowdown indicates that the overall

cost of the operator is dominated by disk I/O, which is equal for the two attributes due

to the common table design. The performance of the multi-scan Sort-Merge and Hash

join operators, however, show that the relative slowdowns increase substantially with

scale-up, indicating that the join and string processing costs dominate disk I/O cost for

long strings. Also, the slowdowns for the Sort-Merge and Hash joins, for a scale up factor

of 2 in Figure 2.3, match closely with those reported earlier, in Table 2.1, for NChar that

takes twice as much space as Char.

The I/O dominated Table-Scan operator exhibits no di�erential performance in the

table with both character attributes, but a substantial di�erence in the table with Char

and NChar attributes. This behaviour indicates that the NChar attribute may be stored

in a foreign table, in database system A. Also, the slowdowns for the Sort-Merge and

the Hash joins in Figure 2.3, for a scale up factor of 2, match closely with those reported

earlier, in Table 2.1, for NChar that takes twice the space as Char. The behaviour of the

processing-dominated joins con�rm the above observation of a foreign table for NChar

Chapter 2. Multilingual Performance of Current Systems 46

attributes.

We also isolated the speci�c costs due to actual string comparison itself, by re-running

the experiments with Char data strings that have integer keys embedded in the beginning

of the string, thus causing nearly 95% of the comparisons to fail in the �rst few bytes

of data itself. The associated performance graphs are marked in Figure 2.3 as Min

Comparison. The di�erence between the operator performance for maximal and minimal

comparison indicates the di�erential cost due to byte comparison itself. We found this

cost to be negligible for the Table-scan operator, con�rming our initial observation that

disk I/O time dominates the string processing time. For Join operators, these costs are

not negligible, and become signi�cant for long strings (up to 15%).

As a result of the above experiments we could e�ectively isolate the main reasons for

the di�erential performance between Char and NChar datatypes in system A as the fol-

lowing: primarily, the di�erential costs associated with the size of the data (> 80%) and,

secondarily, that due to the datatype. Though we have established that the comparison

of strings itself plays a role in the slowdown, we ignore this data-dependent slowdown for

eÆciency improvements. Hence, to improve the performance of NChar it is imperative

that methods to reduce the storage space required by the multilingual character sets be

found.

2.5 The Cuniform Storage Format

In the previous section, the storage size of the multilingual character sets was identi�ed

as the prime reason for the inequitous multilingual performance of the database systems.

In this section, we propose a simple, split storage representation for storing Unicode

data, to reduce the multilingual storage space required. Subsequently, we present the

performance pro�les of the database systems working on this storage format.

Our proposal for the split-representation of Unicode strings stems from the following

two observations:

Character Block Information: Unicode characters are organized in Character Blocks

Chapter 2. Multilingual Performance of Current Systems 47

(variable in length, corresponding to the size of the script used in that language).

Character block information forms a part of the character code in Unicode charac-

ters. Since most scripts in Unicode have less than 256 characters, for these scripts

about half of the Unicode code is used for representing the character block infor-

mation.

Language of an Attribute Value: It is reasonable to assume that in a multilingual

environment, a data item stored in NChar �eld is likely to have all the characters

from the same script. Hence, storing the character block information for each

character would be wasteful of resources in the database context.

Based on the above two observations, we propose a new internal split representation

of Unicode called Cuniform (Compressed UNIcode FORMat), which splits each Unicode

string into two pieces. The �rst piece stores the information about the character block

corresponding to the script from which the characters of the string occur. This infor-

mation may be the starting code of that character block corresponding to the script or

a Script Identi�er that may be translated to the previous one. The second piece stores

the o�sets of each character in the original Unicode string, in the character block corre-

sponding to the speci�c script. We term such splitting of a Unicode string into a pair of

Cuniform strings as \skinning". When the string contains characters from multiple code

blocks, skinning is not possible, and hence the original string is stored without any mod-

i�cation. Skinning allows the code block information to be stored as a meta-data once

for the entire string, e�ectively reducing the storage of Unicode strings, yet ensuring that

the original string is reproducible by assembling the two pieces. The proposed format

is trivially convertible to the Unicode format, since our primary design goal is to �nd a

solution within, and not outside, the framework of Unicode.

2.5.1 Sample Unicode and Cuniform Strings

Examples of Unicode to Cuniform transformation are shown in Figure 2.4. The �rst two

strings (in English and Tamil) have only characters from a single character block each

Chapter 2. Multilingual Performance of Current Systems 48

Figure 2.4: Skinning of Unicode Strings

and hence may be skinned, setting the script identi�er (SID) as the respective code

block identi�er, and the skinned string as the string of o�sets into the code block. The

sizes of the Cuniform strings thus reduce to about half that of the corresponding Unicode

strings. The third string which has mixed scripts is not skinnable, but only a small

fraction of strings is expected to have such a characteristic. The fourth string in Kanji

may be skinned, but since each of the o�sets would need about 2 bytes due to the large

size of the language repertoire, it may not provide any saving over the storage needed

for the Unicode format itself. Hence for such languages that have a large repertoire, the

Unicode strings are stored as-is.

2.5.2 Limitations of Cuniform Format

While there are advantages to the Cuniform representation as discussed above, there are

some limitations as well.

Firstly, if the database stores primarily English (or, Latin based) data, then usage of

Cuniform may add a slight storage and query processing overhead, due to the split nature

of the storage. In such cases, the usage of ISO:8859 format will be more eÆcient.

Secondly, if each of the data items stored in the Cuniform attribute is a mix of char-

acters from di�erent code blocks, the space compression and the associated performance

Chapter 2. Multilingual Performance of Current Systems 49

improvements may not materialize. As Unicode has allocated special blocks for com-

mon characters (e.g., Math symbols), mix of characters from di�erent blocks may occur

frequently in some domains.

Finally, languages with character block size more than 256 may not be able to gain

any performance bene�ts by the Cuniform format. The storage space required to store

strings from such character blocks may be reduced by storing the o�sets; typically, each

o�set may require more than one byte3. However, due to the non-byte aligned nature of

the o�sets, the performance of any substring operation will be more expensive and the

performance bene�ts of Cuniform storage may not materialize.

2.6 Cuniform Performance

Since we lacked access to the source code of the database system A, a prototype of the

Cuniform representation was implemented using an outside the server approach: Each

NChar attribute was converted into a pair of attributes { Cunisid and Cunistring, where

Cunisid is the Script Identi�er that stores the starting code of the character block, and

Cunistring stores the o�sets of each character in the original Unicode string into the

character block corresponding to the script of the Unicode string. During data input, the

common character block of the Unicode string was identi�ed and stored in Cunisid and

the o�sets of each character in the input string was stored in Cunistring. If a mix of code

blocks existed in the input string, then the input string was stored with no modi�cation

in Cunistring and a Mixed (or Null) was inserted into Cunisid. For output, the character

block information from Cunisid was merged byte-by-byte with Cunistring, reconstructing

the original Unicode string. Fortunately, all the database operations may be executed

directly on the Cuniform strings without any explicit conversion to Unicode strings.

In the processing side, all SQL queries need to be recast to handle the split image of

Cuniform attributes. While explicit representation of Unicode strings in NChar attributes

in SELECT, INSERT and UPDATE statements are handled easily by skinning them into

3They need a bit-string of size that is logarithmic in size of the repertoire of the language.

Chapter 2. Multilingual Performance of Current Systems 50

Cuniform format, the predicates involving NChar attributes in WHERE clause need to be

recast into more complex predicates. An equality predicate between NChar attributes

was replaced with a conjunction of equalities on both Cunisid and Cunistring compo-

nents of the respective attributes. Similarly, an inequality predicate was replaced by a

disjunction of inequalities on Cunisid and Cunistring components of the respective at-

tributes. Correlated sub-queries were replaced with the conjunction or disjunction of the

pair of Cuniform attributes, as appropriate. In summary, all operations on the Cuniform

attributes were executed on Cuniform pair of attributes, with no conversion to Unicode,

except for the output.

2.6.1 Performance of Cuniform Storage

To measure the performance of the operators with the multilingual strings stored in the

Cuniform format, we used the following procedure: The common partsuppCom table that

was used for the experiments detailed in Section 2.2 was augmented with Part and Sup-

plier names in Cuniform format. All the NChar values are assumed to be from a distinct

multilingual script and hence each value was skinned into Cuniform format. All the pre-

vious queries, appropriately modi�ed for Cuniform datatype, were run on this new table

and the performance of operators measured. The MROOper for the operators, running

on each of the datatypes in the partsuppCom table are provided in Table 2.34. Also,

no MPEOper �gures were reported, as the optimizer prediction for operators working on

Cuniform datatype is meaningless in an outside-the-server implementation.

As can be seen from Table 2.3, the performance of the operators on multilingual

data in the Cuniform format is vastly better than the corresponding performance in the

Unicode format, except for Index-Scan. The performance of Table-Scan on Cuniform

is almost identical to Char datatype and the performance of join operators are only

marginally slower than that on Char datatype. However, the performance of Index-Scan

4It should be noted that the �gures are slightly di�erent from those presented in Table 2.1, since the
new table has two additional Cuniform attributes and hence incurs additional disk I/O. However, the
MROOper is found to be almost the same as in Table 2.1.

Chapter 2. Multilingual Performance of Current Systems 51

Query Query Query
DBMS Runtime Runtime Runtime MROOper MROOper

Operator on Char on NChar on Cuniform on NChar on Cuniform
(Sec) (Sec) (Sec) (%) (%)

Table Scan 52.9 135 55.5 1.56 1.05
Sort 81.1 143.5 86.1 1.77 1.06

Index Scan 2.89 5.46 5.60 1.88 1.99
Join (Sort-Merge) 1188 2371 1370 1.99 1.15

Join (Hash) 4575 12534 5591 2.74 1.22
Join (Nested-Loops) 805 834 827 1.04 1.03

Table 2.3: Multilingual Performance of Operators on Cuniform

on Cuniform attribute is substantially slower than the corresponding Unicode datatype,

primarily due to the additional overheads of the composite index on a pair of Cuniform

attributes. Signi�cantly, the Cuniform representation incurred only a negligible space

overhead (approximately 2%), a tremendous improvement over NChar's 100%.

Finally, we computed a new Multilingual EÆciency for system A using the Cuniform

performance numbers, which evaluated to 0:83. Compared to the ME �gure of 0:57

presented in Table 2.2, the NChar stored using Cuniform improves the multilingual per-

formance of A substantially, bringing it to within 20% of the performance on the default

ISO:8859 character set.

In summary, Cuniform shows that multilingual data may be stored and manipulated

almost as eÆciently as the default character data in ISO:8859 by using an appropriate

internal storage format. Further, the Cuniform datatype supports substring operations

eÆciently. Speci�cally, when a substring of a Cuniform string is needed, a normal sub-

string function call may be invoked on the string that stores the o�sets and the resulting

substring may be converted into a Unicode string eÆciently, by appending appropriate

code block information corresponding to the script identi�er to every character in the

result. If the script identi�er is NULL, then the substring requires no modi�cation as no

skinning was done to the original Unicode string. Thus, Cuniform retains random access

of its substrings, aiding eÆcient database query processing.

Chapter 2. Multilingual Performance of Current Systems 52

2.6.2 Potential for Further Performance Improvement

An important by-product of skinning Unicode strings into Cuniform strings is the explicit

availability of character block information of the multilingual attributes5. This additional

piece of information may be used for partitioning the multilingual data: either as a query

predicate to improve the selectivity of the query or in partitioning the table data into sub-

tables. Such partitioning of data would make the operators proportionally more eÆcient,

as they need to process only on a subset of the tuples. Suppose the multilingual table

has data in n di�erent langauges, then the table may be horizontally split into n tables,

each storing data from a single language. For selection operation, only that subtable

that contains the records in the language of the query string needs to be examined,

and for join operation, only that subtable that contains the records in the language

of the outer loop value needs to be accessed. Hence, a substantial improvement in

the runtime may be achieved by appropriate partitioning of the table data over the

languages. In our experiments, partitioning the records in the partsupp table assuming

a uniform distribution of data over 5 di�erent languages, we observed the performance

of the operators on NChar in Cuniform format to be faster than even Unicode by about

70% for Table-scan operator and upto 40% for Join operators.

In such an environment, it may be advantageous to store information in multilingual

scripts, rather than in a single script.

2.7 Related Research

To the best of our knowledge, performance evaluation of relational database systems with

respect to multilingual data or their di�erential performance had not been published in

the database research literature.

The following studies address, partially, the compression and eÆcient storage of Uni-

code data: The Standard Compression Scheme for Unicode (SCSU) for Unicode data is

reported to have compression characteristics similar to that of ISO:8859 data, in [133].

5This language identi�er is used in Chapter 5 for designing a new multilingual datatype, Uniform.

Chapter 2. Multilingual Performance of Current Systems 53

SCSU uses a dynamically positioned window covering 128 consecutive characters for com-

pression. This scheme is intended primarily for medium and large text strings, and is

not well suited for attribute level strings. A study of di�erent compression techniques

(such as bzip, gzip, pksip, Hu�man, etc.) on Unicode data is presented in [6] and [40],

where the authors indicate that all these techniques produce similar compression ratios

for basic Unicode �les, for a given Unicode encoding format. An interesting proposal that

they o�er is that it may be advantageous, under certain conditions, to transcode the base

Unicode document (to among one of UTF-8, UTF-16 etc.), and then use a compression

technique, to achieve better performance. However, all their experimentation is done on

large �les and hence, not directly relevant for eÆcient storage of attribute-level data.

Multicode [92] overcomes some of the storage space related issues in Unicode, by al-

lowing eÆcient representation for characters of a language and by allowing special switch

characters to mix characters from a di�erent language in the same multilingual string.

While this scheme optimizes space, the substring searches become more expensive due

to the need for decompression of the entire string; essentially, no random access of sub-

strings is possible. Similarly, the Binary Ordered Compression for Unicode (BOCU) [108]

adapts well for compressing small Unicode strings, but is not suited in environments where

random access of substrings is necessary. In database environments random access of

substrings is essential for supporting normal text operations. Finally, the eÆcient multi-

lingual framework described in [139] makes the administration of multilingual resources

in a multilingual database environment more eÆcient, but not the query performance of

multilingual data.

2.8 Conclusions on Multilingual Performance Study

In this chapter, we focused on identifying the di�erential performance of a suite of pop-

ular database management systems while handling multilingual data, and provided our

solutions to overcome this di�erential performance.

Chapter 2. Multilingual Performance of Current Systems 54

First, an experimental framework to measure the storage and query processing ef-

�ciency of basic database operators on multilingual data was described and the per-

formance of a suite of database systems in this framework was presented. Our exper-

imental results indicate that multilingual data stored in the popular Unicode encoding

su�ers from a serious space overhead and a corresponding query processing overhead,

in all database systems. The query performance overhead was signi�cant, even when

only the in-memory processing is considered. The primary factor for the ineÆciency was

identi�ed as the storage size of multilingual data.

Cuniform, a split internal storage format that is trivially convertible to Unicode, was

proposed to overcome such performance overheads. Multilingual data in the Cuniform

format exhibited marginal space overhead and correspondingly small query overhead, im-

proving signi�cantly the query performance over that in the Unicode format. In addition,

performance of operators on Cuniform could further be improved in highly multilingual

environments by partitioning of data using the explicit script handle available in it.

Chapter 3

Multilingual Names Matching

3.1 Overview of the Chapter

In this chapter, we outline the implementation of the multilingual names join operator

that was proposed in Chapter 1. First, some background needed for this chapter is

provided; next, the MLNameJoin functionality is de�ned formally and our strategy for

the implementation of the functionality, by transforming the matches from the textual

space to the phonetic space, is detailed. Finally, while a basic implementation using

UDFs on database systems was too slow for practical use, we show that with specialized

indexing techniques, the performance may be improved substantially to a level that

appears commensurate with requirements for practical deployment.

3.2 Background Information

In this section, some background needed to implement our multilingual names matching

methodology, is presented.

3.2.1 Pseudo-Phonetic Matching Function

The currently popular algorithm for pseudo-phonetic matching of English text strings in

database systems is the Soundex [73] algorithm. This simple algorithm de�nes groups of

55

Chapter 3. Multilingual Names Matching 56

similar sounding vowels and consonants and converts a given text string into a string of

alpha-numeric characters (the �rst being an alphabet, referred to as Soundex-key, and

the remaining being a numeric between 0 and 6 corresponding to unique consonants in

the string). The transformed string is truncated after 4 characters and the resulting

string is used as a key for the original English name. The details of the algorithm are

shown in Figure 3.1.

Transformation (English to Soundex Code)
B F P V ! 1;
C G J K Q S X Z ! 2;
D T ! 3;
L ! 4;
M N ! 5;
R ! 6.

1. Except in the �rst place of the string:
{ Remove all the vowels and the consonants H, W and Y.
{ Remove all consecutive duplicate characters.

2. Transform to Soundex string, using transformations above.
3. Return the �rst 4 characters of the transformed string.

Figure 3.1: Soundex Algorithm

For example, the Soundex-key for both the English strings, Interpid and International,

is I536. The English word India has a soundex-key of I53 and the word Enterprise

has a soundex-key of E536; both these keys are at an edit-distance of 1 from the original

key, namely I536. Hence one can see that the value of such keys as a similarity measure

is limited. However, they may be used as a �lter for eÆciently narrowing down possible

proximity, which we explore later.

Other algorithms, such as Phonix [44] and Metaphone [77] are similar in principle to

Soundex, but they employ, in addition, English spelling and pronunciation rules. It is

clear that the Soundex algorithm and its variations were devised for English, and do not

scale across languages.

Chapter 3. Multilingual Names Matching 57

3.2.2 Approximate Matching

Approximate matching techniques are used for matching strings that are close to each

other in a common alphabet, but which are not exactly equal. A common use for

approximate matching techniques is in Bioinformatics for genomic comparisons and in

Information Retrieval for compensating typographic errors. Several frameworks exist

to capture the notion of closeness of strings. A popular example is the Edit Distance

metric [54], which is used in Approximate String Matching, as given in the following

de�nitions:

De�nition 3.1 [Edit Distance]: The edit distance between two strings in a common

alphabet �, is the minimum number of edit operations (i.e., insertions, deletions and

substitutions) that are needed to transform one string to the other.

De�nition 3.2 [Approximate String Matching]: Two strings are considered to

match approximately, if the edit distance between them is less than a user speci�ed

threshold1.

To compute the edit distance between two given strings Si and Sj, a standard Dy-

namic Programming algorithm [112] may be used. This algorithm sets up a matrix of

size (jSij � jSjj) and computes the transformation of Si to Sj. Though this algorithm

is not the most eÆcient, it is preferred for its exibility and adaptability in modeling a

wide variety of other distance measures[96].

3.2.3 Q-Grams

In situations where approximate matching of strings is applicable, Q-Grams have been

successfully employed to narrow down the search space e�ectively. In this section, we

briey sketch the concepts of q-grams, and refer to [54] for details.

Let � be a string of size n in a given alphabet �. �[i; j], 1 � i � j � n, denotes a

substring starting at position i and ending at position j of �.

1Usually, the threshold is speci�ed as a symmetric function of the input strings, in order to make the
approximate matching symmetric.

Chapter 3. Multilingual Names Matching 58

De�nition 3.3 [Q-Gram]: Given a string � and q, a substring of � of length q, that

is, �[i; i + q � 1], is called a q-gram of �.

The q-grams of � consists of all q-length substrings of �, and is obtained by sliding a

window of size q over the string.

De�nition 3.4 [Positional Q-Gram]: The pair (i; �[i; i+q�1]) is called the positional
q-gram, where i is the starting position of the q-gram in �.

Usually, the q-gram matching techniques use an augmented string �aug, where (q�1)
start symbols (say, /) are pre-pended to � and (q�1) end symbols (say, .) are appended
to �, where / and . are not part of the original alphabet, �. Note that for a given

string �, there are (j�j+q � 1) q-grams. For example, a string LEXEQUAL will have the

following positional q-grams: f(1,//L), (2, /LE), (3, LEX), (4, EXE), (5, XEQ), (6, EQU),
(7, QUA), (8, UAL), (9, AL.), (10, L..)g. The q-gram can be implemented as an auxiliary

table, in the relational databases, in (n � �ave � (q+C)) space, where n is the number of

multilingual strings in the original table, �ave is the average length of the strings and C

is the overhead of storing each of the q-grams.

The intuition behind using q-grams is that strings that match approximately will

share a large number of q-grams [52]; hence, an approximate match may be replaced

by more eÆcient exact matching of the q-grams; further, the database matching func-

tionality may be used eÆciently, since any query using the standard query features may

leverage on the well-developed optimizer of relational systems.

3.3 Multilingual Names Matching Implementation

Multilingual names matching was de�ned as matching of the same names across multiple

languages, as shown in Figure 1.3. Such multiscript matching functionality is applicable

to many user domains, especially with regard to e-Commerce and e-Governance ap-

plications, web search engines, digital libraries and multilingual data warehouses. As

expounded in Section 1.5.3, we assume that when a name is queried for, the primary

intention of the user is in retrieving all names that match aurally, in the speci�ed set

Chapter 3. Multilingual Names Matching 59

of target languages. Hence, the matching is restricted to attributes that contain proper

names (such as attributes containing names of individuals, corporations, cities, etc.),

which are assumed not to have any semantic value other than their vocalizations.

3.3.1 MLNameJoin Implementation Details

In this section, the details of our strategy to implement the multilingual names matching

operator { MLNameJoin { are provided.

Let Li be a natural language with an alphabet �i. Let si in language Li be a

string composed of characters from �i, and let SI be set of all such si. Then, S =

[ISI , represent the set of all name strings in a given set of languages. Similar to

the multilingual name strings, the phoneme strings are assumed to be encoded in the

IPA [60] alphabet, namely, �IPA. Further, it is assumed that every natural language

string can be transformed to a phonetic string in the IPA alphabet (in line with the

phonetic conventions of the language). A transformation, TI , between a given language

string si and a corresponding phonemic string pi, is represented by TI : SI ! SIPA2,

where si 2 SI and pi 2 SIPA. The union of such transformation functions T (= [iTI)
in a set of desired languages, represented by T : S ! SIPA, is assumed to be given as

an input to the query processing engine. Given the above, phonetic equality is de�ned

as follows:

De�nition 3.5 [Phonetic Equality]: Two strings si 2 SI and sj 2 SJ are phonetically

equal, if pi = pj, where pi = T (si) and pj = T (sj).
Example 3.1: Given that f\Nehru" in English, \�@d" in Tamil and \ " in Hindig
have corresponding phonemic representations f \n�hru", \n�ru" and \n�hru"g, only the
English \Nehru" and the Hindi \ " are phonetically equal. �

Though all the names in the above set refer to the same name written in di�erent

languages, it is almost impossible to exactly match their respective phoneme strings,

since the sets of phonemes used by di�erent languages are seldom identical and the rules

for conversion of a textual string to a phoneme string may di�er, due to linguistic and

2Such transformation TI is coded as linguistic rules in the language speci�c TTP engines.

Chapter 3. Multilingual Names Matching 60

cultural di�erences. Hence in the phonetic domain, phonetic closeness, a weaker notion

of equality, is de�ned as follows:

De�nition 3.6 [Phonetic Closeness]: Two strings si and sj are phonetically close if

fd(pi, pj) � tg, where px is the phonemic representation of sx (= T (sx)), d(x,y) is the
edit distance function as per De�nition 3:1, and t is a user de�ned parameter for match.

Example 3.2: With the sample strings as in Example 3:1 and assuming the string

\Nero" has a corresponding phonemic string \nerou", \�@d" is at a phonetic distance of

1 and \Nero" is at a distance of 2, from the English \Nehru". They may be phonetically

close depending on the user speci�ed value of t. �
We propose to implement the MLNameJoin functionality, using phonetic closeness, as

follows:

De�nition 3.7 [MLNameJoin Matching]: fsi MLNameJoin sjg () fd(pi,pj) � tg,
where t is a parameter that is speci�ed for a speci�c domain or application.

De�nition 3:7 provides the basis for multilingual names matching operator for com-

paring phoneme strings corresponding to the multilingual text strings. The quality of

match is determined by the user-speci�ed threshold parameter, t, which is usually de-

�ned symmetrically, as a function of the two phonemic strings pi and pj. Traditionally,

this is speci�ed as a fraction (in the range [0; 1]) of the length of the smaller of the two

strings being compared.

We wish to emphasize that while our implementation methodology works well (as

will be shown in subsequent sections), it may introduce signi�cant (� 15% in our ex-

periments) false-positives in the result set. Depending on the setting for the threshold

parameter, the matching may also have false-negatives; however, at the expense of pre-

cision, the false-negatives may be nulli�ed, by specifying a higher value for the threshold

parameter.

3.3.2 Linguistic Issues

We hasten to add that phonetic matching of multilingual names is, not surprisingly given

the diversity of natural languages, fraught with a variety of linguistic pitfalls, accentuated

Chapter 3. Multilingual Names Matching 61

by the attribute level processing in the database context. While simple lexicographic

variations in names are handled in our methodology, issues such as language-dependent

vocalizations and context-dependent vocalizations, discussed below, appear harder to

resolve, and are left as future extensions to the current work.

Language-dependent Vocalizations A single text string (say, Jesus) could be di�er-

ent phonetically in di�erent languages (\Jesus" in English and \Hesus" in Spanish).

So, it is not clear when a match is being looked for, which vocalization(s) should be

used. One plausible solution is to take the vocalization that is appropriate to the

language in which the base data is present. But, automatic language identi�cation

is not a straightforward issue, as many languages are not uniquely identi�ed by

their associated Unicode character-blocks. With a large corpus of data, IR and

NLP techniques may perhaps be employed to make this identi�cation.

Context-dependent Vocalizations In some languages (especially, Indic), the vocal-

ization of a set of characters is dependent on the surrounding context. For example,

consider the Hindi name Rama. It may have di�erent vocalizations depending on

the gender of the person (pronounced as R�am�a for males and Ram�a for females).

While it is possible to make the appropriate associations in a running text based

on the context, it is nearly impossible while processing the database attributes,

which are stored at an atomic value level. Speci�cally, a noun occurring in iso-

lation may have no cues to its pronunciation, as it does not carry the contextual

information needed for proper vocalization.

3.3.3 Existing Database Support for Implementation

While a survey of general multilingual support by current database systems was outlined

in Section 1.2, in this section, the support provided by database systems, speci�cally for

implementing multilingual names matching functionality, is provided.

Unicode, the default multilingual storage standard supported in all database systems,

speci�es the semantics of comparison of a pair of multilingual strings at three di�erent

Chapter 3. Multilingual Names Matching 62

levels [26]: using base characters (plain vanilla lexicographic matching of the strings),

case (where the case of a character is ignored), or diacritical marks (where the diacritical

marks are ignored). For example, Miller and miller are matched successfully in Level 2

and M�uller and Muller are matched successfully in Level 3, but both the matchings fail

in Level 1. More importantly, such matching levels are applicable only between strings

in languages that share a common script. In Unicode, the comparison of multilingual

strings across scripts is considered only as a binary comparison. Hence, no meaningful

comparison is possible across scripts. Also, the SQL:1999 standard [59, 84] speci�es that

any comparison across collations is binary.

To the best of our knowledge, none of the commercial and open-source database

systems currently support multilingual string matching. Further, their support of even

other techniques to implement our proposal of multilingual names matching is limited,

as given below:

Phonetic Matching Most database systems allow matching text strings using pseudo-

phonetic Soundex algorithm [73], primarily for English text strings.

Regular Expression (LIKE) Matching The regular expression matching feature { the

LIKE predicate that is available in all database systems { are designed for regular

expressions, but cannot be used for approximate matching in metric space.

Multiscript Comparison and Indexing All systems have pre-de�ned collation se-

quences for the supported languages. While comparison within a collation has

normal semantics, comparison across collations is binary; that is, the sort order

is same as that of the binary strings corresponding to the text strings. Conse-

quently, any index built on multiscript strings is based on the binary sort order of

the multilingual text strings.

Approximate Matching Approximate matching is not supported by any of the com-

mercial or open-source databases. However, most database systems support User-

de�ned Functions (UDF) that may be used to add new functionality to the server.

The major drawbacks with UDF implementations are the overheads in making UDF

Chapter 3. Multilingual Names Matching 63

calls and the inability of queries using UDFs to leverage on the well-tuned relational

optimizer, as the UDFs are not costed.

In summary, while current databases are e�ective and eÆcient for processing mono-

lingual data (that is, within a collation sequence), they do not support processing mul-

tilingual strings across languages in an integrated manner.

3.4 MLNameJoin Matching Algorithm

The MLNameJoin algorithm for matching multilingual names strings is provided in this

section, following the strategy outlined in Section 1.5.3. In essence, the multilingual name

strings are converted into equivalent phonemic strings using calls to the TTP engines and

compared using approximate matching techniques.

The algorithm is as shown in Figure 3.2. The MLNameJoin operator accepts two mul-

tilingual text strings and a match threshold value as input. In addition, the language

identi�ers were also input, explicitly3. The strings are �rst transformed to their equiva-

lent phonemic strings using the PhoneticTransform function that takes a multilingual

string in a given language and returns its phonemic representation in IPA alphabet (Lines

3 and 4), by calls to standard TTP systems of the appropriate language. For eÆcient

query processing, we used the materialized phonemic string corresponding to a multilin-

gual text string, instead of an on-line call to TTP system. The edit distance between

them is then computed, using the editdistance function [54] that takes two strings

and returns the edit distance between them; by changing the input parameters for the

matching, the function may be made to compute the standard Levenshtein edit distance,

or a weighted edit distance using a special substitution cost matrix, as required. A dy-

namic programming algorithm is used for this computation, due to the exibility that it

o�ers in experimenting with di�erent cost functions. If the edit distance is less than the

3As explained earlier, automatic identi�cation of the language of the input string is possible only for
a very limited set of languages. In Chapter 5 we propose a new datatype, which stores explicitly the
language identi�ers, which may be used in this function.

Chapter 3. Multilingual Names Matching 64

MLNameJoin (Sl, Ll, Sr, Lr, e, SO)
Input: Input Strings Sl, Sr, Input String Languages Ll, Lr, Threshold e

Set of Languages for output SO
Set of Languages with IPA transformations SL (as global resource)

Output: TRUE, FALSE or NORESOURCE

1. if Ll =2 SL or Ll =2 SL then return NORESOURCE;
2. if Ll 2 SO then
3. Tl PhoneticTransform(Sl ,Ll);
4. Tr PhoneticTransform(Sr ,Lr);
5. if j Tl j � j Tr j then Smaller j Tl j

else Smaller j Tr j;
6. if editdistance(Tl; Tr) � (e � Smaller) then

return TRUE else return FALSE;

editdistance(SL, SR)

Input: String SL, String SR

Output: Edit-distance k

1. Ll j SL j; Lr j SR j;
2. Create DistMatrix[Ll; Lr] and initialize to Zero;
3. for i from 0 to Ll do DistMatrix[i; 0] i;
4. for j from 0 to Lr do DistMatrix[0; j] j;
5. for i from 1 to Ll do
6. for j from 1 to Lr do

7. DistMatrix[i; j] Min

8><
>:

DistMatrix[i� 1; j]+InsCost(SLi)
DistMatrix[i� 1; j � 1]+SubCost(SRj ,SLi)

DistMatrix[i; j � 1]+DelCost(SRj)

9>=
>;

8. return DistMatrix[Ll; Lr];

Figure 3.2: The MLNameJoin Matching Algorithm

Chapter 3. Multilingual Names Matching 65

user-speci�ed threshold value (speci�ed as a fraction of the length of the smaller of the

equivalent phoneme strings), a positive match is agged (Line 6).

Match Threshold Parameter

A user-settable parameter, Threshold (a fraction between 0 and 1) is an input parameter

for the MLNameJoin matching. This parameter speci�es the user tolerance for approx-

imate matching: 0 signi�es that only perfect matches are accepted, whereas a positive

threshold speci�es the allowable error (that is, edit distance) as the fraction of the size

of smaller of the two phonemic strings being compared. The appropriate value for the

threshold parameter is determined by the requirements of the application domain, and

may be set globally by the administrators for the environment.

Intra-Cluster Substitution Cost Parameter

The three cost functions in Figure 3.2 (Line 7), namely InsCost, DelCost and SubsCost,

provide the costs for inserting, deleting and substituting characters in matching the

phonemic strings. With di�erent cost functions, di�erent avors of edit distances may

be implemented easily in the above algorithm. For example, all values set to 1 will

simulate Levenshtein edit distance function.

In addition, MLNameJoin supports a Clustered Edit Distance parameterization, by

extending the Soundex [73] algorithm to the phonetic domain, under the assumptions

that clusters of like phonemes exist and a substitution of a phoneme from within a cluster

is more acceptable as a match than a substitution from across clusters. For example,

a substitution of like-phonemes, such as,
R
(pronounced as sh), is a more acceptable

match for the standard s, than a substitution of distinct-phonemes, such as, k. Hence,

near-equal phonemes are clustered, based on the similarity measure as outlined in [82],

and the substitution cost within a cluster is made a tunable parameter, the Intra-Cluster

Substitution Cost. This parameter may be varied between 0 and 1, with 1 simulating the

standard Levenshtein cost function and lower values modeling the phonetic proximity of

the like-phonemes.

Chapter 3. Multilingual Names Matching 66

3.5 Access Structures for MLNameJoin

The approximate matching algorithm used for implementingMLNameJoin is an expensive

O(n2) algorithm; hence, in this section, we explore di�erent index structures and their

utility in improving the performance of the multilingual names query, by narrowing

the candidate result set, to be checked using explicit calls to MLNameJoin UDF. The

proximity measure (i.e., the edit distance) used for approximate matching of phoneme

strings, is a metric and hence requires specialized index structure. The standard B+Tree

index is also discussed, due to its availability as the standard index structure in all

database systems. It should be noted here that indexes are considered only on the

materialized phoneme strings corresponding to the multilingual names attribute.

3.5.1 B+ Tree Index

The MLNameJoin operator may leverage only marginally on the availability of B+ Tree

index structures on the materialized phoneme strings corresponding to the multilingual

names attribute. The B+ Tree index cannot be used for retrieving those phonetic strings

that are within an edit-distance of k, as the B+ tree uses the lexicographic ordering of

the string values. A proper retrieval based on edit-distance proximity requires the edit-

distance metric measure to be stored explicitly in the index structure or calculated easily

from the contents of the index structure. However, the lexicographic ordering available in

the B+Tree index may be leveraged on, to improve the performance of the MLNameJoin

operator, as follows: �rst, by accessing only the index pages (thus reducing the disk

I/O's), and, second, by reducing the number of invocations of the EditDistance function

to unique values of the attribute (thus reducing in-memory computation). Hence, the

improvements depend directly on the number of replicated values in the dataset.

3.5.2 Metric Distance Index

In this section, an alternate index structure, based on pre-computed and indexed met-

ric distances from a Key String, is introduced. First, some standard properties of the

Chapter 3. Multilingual Names Matching 67

edit-distance metric are provided and subsequently used for designing this index struc-

ture. The performance of the multilingual names matching operator using this index is

discussed later.

Properties of Metric Distances

The following standard properties of edit distances based on their de�nition are used for

designing metric distance index for narrowing the search for a given query string:

Property 3.1: Given two strings a and b at a distance of dab from each other, for any

string s to exist within a distance of das from a and distance of dbs from b, the condition

(das + dbs) � dab must hold. �
Property 3.2: Given two strings a and b at a distance of dab from each other, a query to

return strings within a distance of da and db from a and b respectively, and a candidate

string s at a distance of dsa (< da) from a, it may be in the result set if and only if

dsa + dab � db. �
Property 3.3: Given two strings a and b at a distance of dab from each other, and a

query to return strings within a distance of da and db from a and b respectively, there

could be no satisfying strings, if da + db < dab. �
These properties follows directly from the triangular property of metric distances that

states that given the edit distance between the strings a and s is das and between the

strings s and b is dsb, then the edit distance between the strings a and b is � (das+ dsb).

Example 3.3: Consider a query to �nd the Authors with names close to Silversmith

(match threshold 2) and Aerosmith (match threshold 2). This query could return no

result set as per Property 3:3, since the distance between Silversmith and Aerosmith

is 5. Hence, the query could return with empty result set (correctly), without accessing

any table data. �
Example 3.4: Consider the query to �nd the Authors, phonetically close to Silversmith

(match threshold 2) and to Aerosmith (match threshold 3). Suppose the candidate string

under consideration is Silbersmith; As soon as the edit-distance of the candidate string

from Silversmith is computed as 1, it may be ruled out immediately from the result

Chapter 3. Multilingual Names Matching 68

set, as the distance between Silversmith and Aerosmith is 5, and by Property 3:2, it

cannot be within a distance of 4 from Aerosmith. �
Properties 3:1 through 3:3 are useful in designing the operator implementation, as

they provide means of reducing the edit distance computation, based on the currently

evaluated results with no extra edit distance computations. More importantly, if edit-

distances of all data strings from a known string is stored, these distances could be

exploited intelligently, to reduce the computation required for a given query evaluation,

as given in subsequent sections.

Metric Distance Index Structures

Properties 3:1 through 3:3 suggest an alternative index structure that may be used for

searching close strings: indexing phonemes strings, along with the pre-computed edit-

distances from a known key string, Skey. We generated a candidate string for Skey, of

length equal to the average length of the phonemic string values that are being indexed.

It is not necessary or desirable for the Skey be chosen from among the values of the

attribute, since it may force re-evaluation of all distances when the tuple containing the

key is deleted from the table. The edit-distance of each of the phonemic strings in the

database from Skey is computed and stored along with attribute. A B+tree index is built

on the pair, <distance,string>, called the Metric Distance Index (M).

Using Metric Distance Index for Pruning Search

Given M , a scan query to retrieve the strings that are at an edit-distance less than dq

from the query string, Sq, may be computed as follows: First, compute distance dkq of

Sq from Skey. Second, access the index M , and output all those strings with an indexed

distance dk, such that dkq+dk � dq. Third, of the remaining strings, all strings that are at

an indexed distance of dk, such that jdkq � dkj > dq are clearly not potential candidates

for the answer set, hence pruned. The correctness of Steps 2 and 3 is guaranteed by

Properties 3:1 and 3:2, respectively, and they require no explicit distance computation.

Finally, for each of the remaining strings (say, s, with a known distances ds from the key

Chapter 3. Multilingual Names Matching 69

string Skey), such that dkq + ds � dq, compute edit distance to verify if the edit-distance

dsq � dq, where dsq is the edit distance of s from query string Sq. The �nal step examines

all the remaining strings as candidate strings, and invokes edit distance computation for

all of them. The following examples illustrate the power of using metric distance index

to prune search:

Example 3.5: Consider a query to �nd the Authors, phonetically close to Silversmith,

within a threshold distance of 3. Assume that the metric index structure had been built

with Skey string as Silbersmith. The distance between the query string and Skey is

1. First, all records that have a pre-computed distance of 2 (that is, 3 - 1, where 3 is

the query distance and 1 is the distance between query string and Skey) or less are in

the result set. They may be added to the result set, with no distance computation.

Second, we could eliminate all records that have a pre-computed distance of above 4

(that is, 3 + 1, as before), as they cannot be in the result set. They are eliminated again

with no distance computation. The remaining strings are examined explicitly (with an

invocation of EditDistance function) to verify if they are part of the result set. Thus,

having a metric distance index structure may eliminate a large number of edit-distance

invocations, making the query performance better. �
A join operation merely repeats the above procedure for every unique string of LHS

attribute. The algorithm for using M , on the worst case, examines every string in the

index, and hence a worst case complexity of matching with no index.

Using Weighted Metric Distance Index for Pruning Search

Though standard Levenshtein edit-distance is used in above discussion, speci�c char-

acteristics of phonemes { phonetic closeness { may be exploited for a more intuitive

matching in linguistic domains. The phonemes were clustered based on like-ness [82]

and a weighted substitution cost matrix is devised as follows: all phoneme substitution

within a cluster is costed at a tunable Intra-cluster substitution cost parameter (as dis-

cussed in Section 3.4), with values from [0, 1], and all substitutions across clusters are

Chapter 3. Multilingual Names Matching 70

costed at 1. This weighted substitution matrix is used for computing phonetic close-

ness, which proved to be more intuitive in multilingual names matching. The following

Theorem 3:14 ensures that Properties 3:1 through 3:3 hold for weighted edit-distances

as well.

Theorem 3.1: A distance measure based on weighted substitution matrix remains

metric provided the following conditions hold:

1. The weighted substitution matrix itself is metric;

2. The distance between strings is de�ned as the minimum of the weighted sums

based on substitution matrix. �
The weighted substitution matrix for the clustered phoneme matching, as described

in Section 3.4 has the following characteristics (assuming i; j; p; q 2 �, and Dx, Ix and

Sx;y are deletion, insertion and substitution costs, respectively):

1. 8i Di = Ii = 1;

2. 8i;j;i=j Si;j = 0;

3. � is partitioned into n clusters (Ci; i = 1 : : : n) such that, 8i;j;p;q2Ck Si;j =

Sp;q(2 (0; 1]) and 8i2Cu;j2Cv;u 6=v Si;j = 1.

The clustered phoneme edit distance, based on the above substitution matrix satis�es

the conditions of Theorem 3:1 (in fact, these conditions are stronger than necessary).

Hence, the pruning of search strings for such weighted edit-distances may leverage on

Properties 3:1 through 3:3.

3.5.3 Approximate Index Structures

Approximate Index Structures are designed to identify the candidate records (that is,

those that are within an edit distance of k), without having to examine the entire data

set. While several approximate index structures, such as, BK tree [13], VP tree [138],

M Tree [20] and Bisector tree [69], etc., may be used to get a candidate answer set, an

explicit check is necessary for weeding out false-positives. A representative sample of

approximate index structures were experimented with, to establish their e�ectiveness of

4Here we provide a succinct version of the theorem that was presented and proved in [111].

Chapter 3. Multilingual Names Matching 71

the index in narrowing down the candidate answers while searching approximately for

a query string in the database. The experiments were conducted on a real data set of

� 100; 000 words from an English dictionary. Figure 3.3 plots the real answer set (the

bottom-most curve) and the fraction of database returned as candidate set by di�erent

index structures, for a variety of threshold values in the range [0 to 1].

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 th
e

D
at

ab
as

e
C

om
pa

re
d

Edit Distance as a Fraction of Query String Length

BK Tree
VP Tree
M Tree

Bisector Tree
Real Matches

Figure 3.3: Search EÆciency of Approximate Indexes

The Search EÆciency5 of the approximate indexes may be obtained by dividing the

fraction of database that is the real answer by the fraction of the database that was

returned as a candidate set by the index structure. It is apparent that the eÆciencies of

all the approximate structures are abysmally low (< 1%) for threshold values below 0:5.

It should be noted that in the absence of an index structure, a full scan of the

database must be made, represented by a horizontal line at the y-axis value of 1:0. At

typical threshold values of around 0:3, the cost of using an index structure may well

be higher than a full table scan, due to the random access pattern generated by the

index-structure. However, we pursue the the implementation of approximate indexes,

for the sake of completion and to quantify their search performance for practical query

processing. Since approximate indexes cannot be built and used in an outside-the-server

5Search EÆciency is de�ned as the ratio of the number of real answers to the size of candidate set
returned by an index structure.

Chapter 3. Multilingual Names Matching 72

implementation, the operator performance with only the normal B+Tree and Metric

Distance indexes, are presented here. In our native implementation of the MLNameJoin

operator presented in Chapter 6, the performance of the operator using a height-balanced

version of the metric tree index { namely M-Tree [20] { is presented.

3.6 Multilingual Names Matching Quality

So far, the details of the implementation of MLNameJoin operator, such as, its algorithm,

parameterization, index structures etc., were discussed; In this section, an experimental

setup to measure the quality (in terms of precision and recall) of the implementation

in matching multilingual names is discussed. Subsequently, the results from a set of

matching experiments executed on this setup is presented, along with a methodology for

tuning the parameters for a high quality match.

3.6.1 Dataset

With regard to the datasets to be used in the experiments for establishing the quality of

multilingual names matching, we had two choices: experiment with multilingual lexicons

and verify the match quality by manual relevance judgment, or alternatively, experiment

with tagged multilingual lexicons (that is, those in which the expected matches are

marked beforehand) and verify the quality mechanically. We chose to take the second

approach, but because no tagged lexicons of multiscript names were readily available6,

we created our own lexicon from existing monolingual ones, as described below.

Proper names from three di�erent sources were selected so as to cover common names

in English and Indic domains. The �rst set consists of randomly picked Indic names from

the Bangalore Telephone Directory, covering most frequently used Indian names. These

names were transcribed into two markedly di�erent Indic languages that share no com-

mon characters and are distinct phonetically { Hindi and Tamil. The second set consists

of randomly picked English names from the San Francisco Physicians Directory, covering

6Bi-lingual dictionaries mark semantically equivalent words, and not phonetically, similar nouns.

Chapter 3. Multilingual Names Matching 73

most common American �rst and last names. The third set consisting of generic English

names representing Places, Objects and Chemicals, was picked from the Oxford English

Dictionary. Together the set yielded about 400 names, covering three distinct name

domains. Most of the names were converted from the original script to the other two in

the set fEnglish, Tamil, Hindig, thus yielding about a thousand names, in three di�er-

ent scripts. All phonetically equivalent names (but in di�erent scripts) were manually

tagged with a common tag-number. The tag-number is used subsequently in determining

quality of a match as follows: { any match of two multilingual strings is considered to be

correct if their tag-numbers are the same, and considered to be a false-positive otherwise.

Further, the fraction of false-dismissals can be readily computed since the expected set

of correct matches is known, based on the tag-numbers in a given set of multilingual

names.

To convert English names into corresponding phonetic representations, standard lin-

guistic resources, such as the Oxford English Dictionary [101] and TTP converters avail-

able on-line in the multilingual portal www.ForeignWord.com [42], were used. For Indic

strings, Dhvani TTP converter [30] was used. Further those symbols speci�c to speech

generation, such as the supra-segmentals, diacritics, tones and accents were removed.

Sample phoneme strings for some multiscript strings are shown in Figure 3.4.

Figure 3.4: Phonemic Representation of Test Data

The frequency distribution of the data set with respect to string length is shown in

Figure 3.5, for both lexicographic and materialized phonetic representations. The set had

an average lexicographic length of 7:35 and an average phonemic length of 7:16. Note

that though the Indic strings are typically visually much shorter than the corresponding

Chapter 3. Multilingual Names Matching 74

English strings, their character lengths are similar owing to the fact that most Indic

characters are composite glyphs and are represented by multiple Unicode characters.

Further, it can be observed that their phonemic string length pro�les are nearly identical,

con�rming our hypothesis that their aural representations are similar.

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18

C
ou

nt

String Length

Character Strings
English

Tamil
Hindi

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18

C
ou

nt

String Length

Phonemic Strings
English

Tamil
Hindi

Figure 3.5: Distribution of Multiscript Dataset

3.6.2 Performance Metrics

Multilingual name matching queries (as shown in Figure 1.3) were run on the dataset

described above. For each query, two metrics { Recall and Precision { were measured.

The recall and the precision �gures were computed using the following methodology: each

phonemic string in the data set was matched with every other phonemic string, counting

the number of matches (m1) that were correctly reported (that is, the tag-numbers of

multiscript strings being matched are the same), along with the total number of matches

that are reported as the result (m2). If there are n equivalent groups (that is, those with

a distinct tag-number) with ni of multiscript strings each (note that both n and ni are

known for a given data set), the precision and recall metrics are calculated as follows:

Recall7 = m1/
Pn

i=1(
niC2)

Precision8 = m1/m2.

7Recall, in plain English, is the fraction of correct matches that appear in the result.
8Precision, in plain English, is the fraction of the delivered results that are correct.

Chapter 3. Multilingual Names Matching 75

The expression in the denominator of recall metric is the ideal number of matches, as

every pair of strings (i.e., niC2) with the same tag-number must match. Further, for a

perfect answer set, both the metrics must be 1. Any deviation indicates the inherent

fuzziness in the query processing, due to the di�erences in the phoneme sets of the lan-

guages and the losses in the transformation to phonemic strings. Further, the two query

input parameters { user match threshold and intracluster substitution cost (explained

in Section 3.4) were varied over a range of values in the interval [0,1], to measure their

e�ect on the quality of the output.

3.6.3 Multilingual Names Matching Quality

The plots of the recall and precision metrics, on the matching experiments outlined in

the previous section are provided in Figure 3.6. The results plot the measured metrics

against various combinations of user match threshold and and intracluster substitution

costs parameters.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
ec

al
l

User Match Threshold

Intracluster Substitution Cost: 0.00
Intracluster Substitution Cost: 0.25
Intracluster Substitution Cost: 0.50
Intracluster Substitution Cost: 0.75
Intracluster Substitution Cost: 1.00

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

User Match Threshold

Intracluster Substitution Cost: 0.00
Intracluster Substitution Cost: 0.25
Intracluster Substitution Cost: 0.50
Intracluster Substitution Cost: 0.75
Intracluster Substitution Cost: 1.00

Figure 3.6: MLNameJoin Operator Recall and Precision

The curves in the recall plot of Figure 3.6 indicate, not surprisingly, that the recall

metric improves with increasing user match threshold and asymptotically reaches perfect

recall, after a value of about 0:5, for all intra-cluster substitution costs. An interesting

point to note is that the recall gets better with reducing intracluster substitution costs,

validating the assumption of the Soundex algorithm [73].

Chapter 3. Multilingual Names Matching 76

In contrast, the curves in the precision plot of Figure 3.6 indicate, as expected,

that the precision metric drops with increasing threshold; the drop is negligible for

threshold values upto about 0:3, but is steep beyond. It is interesting to note that with

an intracluster substitution cost of 0, the precision drops very rapidly at a user match

threshold of 0:1 itself. That is, the Soundex method, which is good in recall, is very

ine�ective with respect to precision, as it introduces a large number of false-positives

even at low thresholds.

For an optimal match, the recall and precision values must be as close to 1 as possible.

However, it is apparent from Figure 3.6 that a high recall requires a high threshold value

and a low intracluster substitution cost, and that a high precision requires a low threshold

value and a high intrasubstitution cost. Hence, to obtain the best quality match, it is

important to select optimal parameters that maximize both recall and precision.

Selection of Ideal Parameters for Phonetic Matching

Figure 3.7 shows the combined precision-recall curves, with respect to each of the query

parameters, namely, intracluster substitution cost and user match threshold. For the

sake of clarity, only the plots corresponding to the costs of 0, 0:5 and 1, and plots

corresponding to thresholds of 0:2, 0:3 and 0:4, are shown. The top-right corner of

the precision-recall space corresponds to a perfect match and the closest points on the

precision-recall graphs to the top-right corner correspond to the query parameters that

result in the best match quality.

As can be seen from Figure 3.7, the best possible matching for our dataset is achieved

by a substitution cost between 0:25 and 0:5, and for thresholds between 0:25 and 0:35,

corresponding to the knee regions of the respective curves. With such parameters, the

recall is �95%, and precision is �85%. That is, �5% of the real matches would be false-

dismissals, and about �15% of the results are false-positives, which must be discarded

by post-processing, using non-phonetic methods.

We also would like to emphasize that the quality of approximate matching depends

on the phoneme sets of languages, the accuracy of the phonetic transformations, and

Chapter 3. Multilingual Names Matching 77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

Precision-Recall (By Intracluster Substition Cost)

Intracluster Substitution Cost: 0.00
Intracluster Substitution Cost: 0.50
Intracluster Substitution Cost: 1.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

P
re

ci
si

on

Recall

Precision-Recall (By User Match Threshold)

Threshold: 0.2
Threshold: 0.3
Threshold: 0.4

Figure 3.7: MLNameJoin Combined Precision-Recall Graphs

more importantly, on the data sets themselves. Hence the optimal matching parameters

need to be tuned, for speci�c datasets and domains. While automatic generation of the

ideal matching parameters for a given data set is possible with a given hand-veri�ed

training set using machine learning techniques, such work is left as future extensions to

the current research.

3.7 MLNameJoin Performance

In this section, the performance of query processing using the MLNameJoin operator,

implemented using UDF methodology and a set of di�erent index structures, on a set of

commercial database management systems, is presented. We show that the performance

is primarily a�ected by the high overheads involved in the UDF calls and subsequently,

explore avenues to improve the query performance to a level suÆcient for practical use.

3.7.1 System and Database Environment

A standard Intel Pentium IV (1:7 GHz) workstation with 256MB memory running Win-

dows 2000 Professional operating system was used as the test machine for the perfor-

mance study. Three popular database management systems { Microsoft SQL Server

(Version 8.0.194), IBM DB2 Universal Server (Version 7.1.0) and Oracle 9i Database

Chapter 3. Multilingual Names Matching 78

Server (Version 9.0.1) { were used to measure the baseline performance of the multi-

lingual names matching operator, implemented as a UDF function. The systems are

identi�ed randomly, as A, B and C, to protect their identities. Before each experiment,

the machine was quiesced and only the database system being tested and allied processes

were allowed to run in order to have measurement parity between the systems.

The MLNameJoin operator was implemented on top of the relational database system

in an environment that is appropriate for each of the systems { speci�cally, using the

PL/SQL and Java procedures in Oracle and DB2 database systems respectively, and using

SQL scripts in SQL Server database system. Both the multilingual name string and their

phonetic representations materialized in the IPA alphabet, were stored in Unicode format.

The SQL queries using multilingual names matching MLNameJoin operator invokes the

UDF at the runtime.

3.7.2 Dataset

Since the real multiscript lexicon used in the previous section was not large enough for

performance experiments, a large dataset was synthetically generated using the multi-

script lexicon used in the previous section, as a seed. Speci�cally, each of the multi-

lingual name strings were concatenated, with all remaining name strings within a given

language, generating a set of about 200; 000 names. The corresponding materialized

phoneme strings were also concatenated similarly. Each of the generated records is

tagged with a generated tag number, speci�cally (t1 � 1000 + t2), where t1 and t2 are,

respectively, the tag numbers of the �rst and the second strings being concatenated.

The above scheme ensures that all strings that match will have the same generated tag

number, since the original tag numbers are much less than 1000. Figure 3.8 shows the

frequency distribution of the string lengths of the generated data set { in both character

and (generated) phonetic representations with respect to string lengths. The average

character and phonemic lengths of the generated set are, 14:71 and 14:31, respectively.

Chapter 3. Multilingual Names Matching 79

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 5 10 15 20 25 30 35

C
ou

nt

String Length

Generated Character Strings

 0

 5000

 10000

 15000

 20000

 25000

 30000

 5 10 15 20 25 30 35

C
ou

nt

String Length

Generated Phonemic Strings

Figure 3.8: Distribution of Generated Multiscript Data Set

3.7.3 Baseline MLNameJoin Performance

To create a baseline for performance, the scan and the join queries using the MLNameJoin

operator (along the lines of the samples shown in Figures 1.3 and 1.8) were run on the

large generated data set, in each of the database systems. The baseline performance of

the UDF on the three popular database systems (as the runtime of respective queries, in

Seconds) is given in Table 3.1. The join experiment was done on a 0:2% subset of the

original table, since the full table join using UDF takes order of days to complete.

Query System A System B System C

Scan 2410 1564 1418
Join 2474 2220 4004

Table 3.1: MLNameJoin Operator Performance

As can be seen clearly, the performance of the multilingual names matching oper-

ator, implemented as a UDF is slow in all database systems. The primary reason for

the performance seem to be the UDF, since the equi-join operator (using the standard

lexicographic equality) executes the queries under a second, in each of the database sys-

tems. Hence, we chose a system with the lowest performance, to experiment with some

optimization strategies for making the execution more eÆcient. Though the average

Chapter 3. Multilingual Names Matching 80

performance was worst in System A, we chose System C for the subsequent analysis

and performance improvement due to the fact that its implementation is more tightly

integrated with database server, allowing us to observe the query plans by varying query

parameters and available index structures. Further, the average performance di�erence

between the systems A and C (computed as, 2442 and 2382) is not very signi�cant.

As an immediate measure for improving the performance of the operator, di�erent

index structures were created: First, a B+ Tree index was created on the phonemic

attribute and theMLNameJoin algorithm was modi�ed to invoke the UDF, only on unique

data values. Second, a Metric Distance Index structure (as discussed in Section 3.5.2)

was created and the names matching algorithm modi�ed to invoke the UDF on only

those records which could potentially match with the query string. When there are no

duplicates in the database, the B+Tree index o�ers no performance improvements over

the case with no index, since the UDF is invoked on all records. Hence, for the B+Tree

case, all the attributes are replicated between 1 and 7 uniformly, resulting in an average

multiplicity of 4. For the metric distance index, a random phonemic string of length

equal to the average length of the dataset was used as the Key String. The results of the

performance of System C, with index structures is given in Table 3.2.

Query Matching Methodology Time

Scan MLNameJoin UDF 1418 Sec
Scan MLNameJoin UDF (with B+ Tree Index) 374 Sec
Scan MLNameJoin UDF (with Metric Distance Index) 356 Sec
Join MLNameJoin UDF 4004 Sec
Join MLNameJoin UDF (with B+ Tree Index) 1824 Sec
Join MLNameJoin UDF (with Metric Distance Index) 1728 Sec

Table 3.2: MLNameJoin Operator Baseline Performance

It is clear that even with the index structures, the MLNameJoin operator has un-

acceptably low performance. To improve the eÆciency of matching with MLNameJoin

operator, we explore two alternative optimization techniques { Q-Grams and Phonemic

Indexes { that cheaply provide a candidate answer set, members of which are veri�ed

Chapter 3. Multilingual Names Matching 81

by the accurate but expensive MLNameJoin UDF. These two techniques exhibit di�erent

quality and performance characteristics, and may be chosen depending on application

requirements.

3.7.4 Optimization #1: Q-Gram Index

In this section, we show here that the popular Q-Gram technique for approximate match-

ing of normal text strings [52], may be adapted successfully for phonetic matching as

well. The database was �rst augmented with a table of positional q-grams of the original

phonemic strings. The size of q-grams was set at 3, (that is, trigrams), as it was empiri-

cally shown to perform e�ectively for approximate matching tasks [53]. Subsequently, the

three �lters that are employed and shown to be successful in the monolingual world for

approximate matching were used to �lter out a majority of the non-matching strings, us-

ing standard database operators only. These �lters weed out most non-matches cheaply,

leaving the accurate, but expensive MLNameJoin UDF to be invoked (to weed out false-

positives) on a vastly reduced candidate set. Of the three �lters that are employed here,

the length �lter ensures that the length of the candidate strings are close enough, the

count �lter ensures a minimum number of common q-grams between matching strings

and the position �lter ensures that the matching q-grams are in approximately in the

same positions in the respective strings. A brief descriptions of the �lters are provided

here, and interested readers are referred to [52] for details.

Length Filter leverages the fact that strings that are within an edit distance of k

cannot di�er in length by more than k. This �lter does not depend on the q-grams

themselves, but only on their counts.

Count Filter ensures that the number of matching q-grams between two strings �1 and

�2 of lengths j�1j and j�2j respectively, must be at least (max(j�1j; j�2j)� 1� (k�
1) � q), a necessary condition for two strings to be within an edit-distance of k.

Position Filter ensures that a positional q-gram of one string does not get matched to

a positional q-gram of the second that di�ers from it by more than k positions.

Chapter 3. Multilingual Names Matching 82

SELECT N.ID, N.Name
FROM Names N, AuxNames AN, Query Q, AuxQuery AQ
WHERE N.ID = AN.ID

AND Q.ID = AQ.ID
AND AN.Qgram = AQ.Qgram
AND jlen(N:PName)� len(Q:str)j� e � length(Q:str)
AND jAN:Pos�AQ:Posj � (e � length(Q:str))

GROUP BY N.ID, N.PName
HAVING count(*) � (len(N:PName)� 1� ((e � len(Q:str)� 1) � q))

AND MLNameJoin(N.PName, Q.str, e)

Figure 3.9: MLNameJoin SQL Script with Q-Gram Index

A sample SQL query using q-grams is shown in Figure 3.9, assuming that the query

string is transformed into a record in table Q, and the auxiliary q-gram table of Q is

created in AQ. The Length Filter is implemented in the fourth condition of the SQL

statement, the Position Filter by the �fth condition, and the Count Filter by the GROUP

BY/HAVING clauses. As can be noted in the above SQL expression, the MLNameJoin UDF

function is called at the end, after all three �lters have been utilized, implying that the

UDF is invoked only on those records that has passed through all the �lters.

Query Matching Methodology Time

Scan MLNameJoin UDF + q-gram index 13.5 Sec
Join MLNameJoin UDF + q-gram index 856 Sec

Table 3.3: MLNameJoin Performance with Q-Gram Index

The performance of the selection and join queries, after including the q-gram opti-

mization, are given in Table 3.3. Compared to the values in Table 3.2, the use of this

optimization improves the scan query performance by an order of magnitude and the

join query performance by two-fold. The improvement in join performance is not as dra-

matic as in the case of scans, due to the additional joins that are required on the large

q-gram tables. The performance improvements here are not as high as those reported in

previous literature [52], perhaps due to the use of a standard database system and the

implementation of MLNameJoin as a UDF in an interpreted environment.

Chapter 3. Multilingual Names Matching 83

3.7.5 Optimization #2: Phonemic Index

In this section, we outline a phonemic indexing technique that may be used for access-

ing the near-equal phonemic strings, using a standard database index. We exploit the

following two facts to build a compact database index: First, the substitutions of like

phonemes keeps the recall high (as evidenced in Figure 3.6), and second, phonemic strings

may be transformed into smaller numeric strings for indexing as a number. However,

the downside of this method is that it su�ers from a drop in recall with the de�nition of

our closeness measure based on edit-distance.

To implement the above strategy, the phoneme strings need to be transformed to

a number, such that phoneme strings that are close to each other map to the same

number. For this, a modi�ed version of the Soundex algorithm [73] was used, customized

to the phoneme space: �rst the phonemes were grouped into equivalent clusters along

the lines outlined in [82], and a unique number was assigned to each of the clusters.

Each phoneme string was transformed to a unique numeric string, by concatenating the

cluster identi�ers of each phoneme in the string. The numeric string thus obtained was

converted into an integer { Grouped Phoneme String Identi�er { which is stored along

with the phoneme string. A standard database B+ Tree index was built on the grouped

phoneme string identi�er attribute, thus creating a compact index structure using only

integer datatype.

For an MLNameJoin query using phonemic index, the operand multiscript string is

transformed to its phonetic representation and subsequently to its grouped phoneme

string identi�er, using the same methodology. The index on the grouped phoneme string

identi�er is used to retrieve all the candidate phoneme strings, which are then tested

for a match invoking the MLNameJoin UDF explicitly with the user speci�ed match tol-

erance. The query with MLNameJoin operator is transparently mapped to an internal

query that uses the phonemic index, as shown in Figure 3.10. Note that any two strings

that match in the above scheme are close phonetically, as the di�erences between indi-

vidual phonemes are from only within the pre-de�ned cluster of phonemes. However, the

downside of this methodology is that those strings that are within the classical de�nition

Chapter 3. Multilingual Names Matching 84

of edit-distance, but with substitutions across groups, will not be reported, resulting in

false-dismissals. While some of these false-dismissals may be corrected by a more robust

design of phoneme clusters and cost functions, not all false-dismissals can be corrected

in this method.

SELECT N.ID, N.Name
FROM Names N, Query Q
WHERE N.GroupedPhonStringID = Q.GroupedPhonStringID

AND MLNameJoin(N.PName, Q.PName, e)

Figure 3.10: MLNameJoin SQL Script with Phonemic Indexes

A B+Tree index was created on the grouped phoneme string identi�er attribute and

the same selection and join queries on the large synthetic multiscript dataset were rerun.

TheMLNameJoin operator was modi�ed to use this index, as shown in the SQL expression

in Figure 3.10. The scan and join query performance with the phonemic index, is given

in Table 3.4.

Query Matching Methodology Time

Scan MLNameJoin UDF + phonemic index 0.71 Sec
Join MLNameJoin UDF + phonemic index 15.2 Sec

Table 3.4: MLNameJoin Performance with Phonemic Index

While the performance of the queries with phonemic index is an order of magnitude

better than that achieved with q-gram technique, the phonemic index introduces a small,

but signi�cant 5� 6% false-dismissals, with respect to the classical edit-distance metric.

A more robust grouping of like phonemes may reduce this drop in quality, but may not

eliminate it. Hence, the phonemic index approach may be suitable for applications which

can tolerate false-dismissals, but require a very fast response time.

Chapter 3. Multilingual Names Matching 85

3.8 Related Research

To the best of our knowledge, the problem of matching multilingual names strings across

languages has not been addressed previously in the database research literature. Though

the Information Retrieval (IR) and Speech Processing research communities have pursued

multilingual matching, both these communities have primarily focused on the quality of

matching in the respective domains. While we use some of the techniques proposed

by the IR community, our focus is on the implementation and performance of these

techniques on database systems. Our use of a phonetic matching scheme for multiscript

strings is inspired by the successful use of this technique in the monolingual context by

the database and IR research communities.

There are vast amounts of research literature in the IR community on cross-lingual

search issues, but nearly all of them focus on Natural Language Processing techniques

that may be quite unsuitable for database query processing of attribute level data. We

refer to [116] for a complete list of research in this area. Speci�c phonetic matching

approaches were addressed in [102] and [141], where the authors present their experience

in phonetic matching of uniscript text strings, and provide measures on correctness and

performance of matches with a suite of techniques (such as Soundex, Phonix etc.). Such

algorithms work on English strings only. In [32], the performance of the above algorithms

were evaluated on Swedish names, with similar results reported. Our work extends

some of these ideas for multilingual names matching. Proprietary matching techniques,

based on similar techniques are employed in the pharmaceutical industry [78] to �nd

look-alike sound-alike (LASA) drug names, which may lead to trademark violations or

potentially dangerous medical conditions. A machine learning algorithm for learning

cross-lingual phonetic similarity between English and Chinese strings given a training

set, was explored in [80]. Though this work focuses on learning phonetic similarity

between the two languages, the authors conclude that once the similarity is learned,

the phoneme based approaches for matching multilingual data perform comparably to

grapheme based approaches for monolingual data, supporting our solution strategy for

multilingual names matching using phonemic matching. This study did not evaluate the

Chapter 3. Multilingual Names Matching 86

runtime performance of such matching.

The approximate matching of strings has been a problem of prime interest to the data

integration community. For matching phonemic strings, the basic string edit-distance

metric, for its generality and its exibility for modeling variations that are speci�c for

phonetic domains (such as, phoneme clusters and specialized substitution cost matrix),

were resorted to. A comprehensive comparison of performance of di�erent similarity mea-

sures for names and records matching is presented in [22]. Among the edit-distance based

approaches, the authors concluded that on an average, the Monge-Elken [91] method (a

variation of standard edit-distance function with allowance for di�erential costing of gaps)

resulted in the best match quality, though they also show that the standard edit-distance

measure performed better in nearly half of their datasets. We decided to implement our

multilingual names operator using standard edit-distance method for the exibility it

provided in experimenting with di�erent variations. Further, the performance may be

expected to be similar to that of Monge-Elkin, as both the approaches use the same basic

dynamic-programming algorithm. In [66], the authors present a similarity join technique

for matching string attributes, after mapping them to an Euclidean space using fast

string map algorithm. While the �ltering techniques used in our approach ensured accu-

racy of the results, the approach provided in [66] promises eÆcient performance, at the

expense of a small drop in accuracy. We hope to pursue this technique in the future,

and to verify its utility in database environments with frequent changes in data values.

In addition, the standard edit-distance measure is used successfully for approximate

matching in database research community [52]. The techniques for eÆcient implemen-

tation of edit-distance measure is an active research topic, and we refer to [96] for a

comprehensive survey. The basic techniques from such research were used here, with the

algorithms modi�ed appropriately to suit the requirements of phonetic domain.

Apart from being multiscript, another novel feature of our work is the quanti�cation

of the run-time eÆciency of the multilingual names matching in the context of a pop-

ular state-of-the-art database systems. This is essential for establishing the viability of

multilingual matching in online eCommerce and eGovernance applications. To improve

Chapter 3. Multilingual Names Matching 87

the eÆciency of MLNameJoin, the Q-Gram �lters that were employed successfully in [52]

for approximate matches in monolingual databases were used and shown to be eÆcient

in phonemic space too. We also investigate the phonemic indexes to speed up the match

process { such indexes have been previously considered in [140] where the phonetic close-

ness of English lexicon strings is utilized to build simpler indexes for text searches. Their

evaluation is done with regard to in-memory indexes, whereas our work investigates the

performance for persistent on-disk indexes. Further, these techniques are extended to

multilingual domains.

In [93], a search engine for Indic languages has been described, that searches Devana-

gari documents for a given search strings. Though this system is designed to work with

Unicode character set, the search is primarily restricted to Hindi language. An interest-

ing search option provided in this system is the phonetic tolerance, in which the search

query is expanded with similar sounding words that are generated with substitution of

speci�c characters from an equivalent set. However, this system does not search cross-

lingually. A cross-lingual search feature for Indic languages is proposed in [117, 118],

where the authors present a phonetic distance based measure for similarity based on rep-

resentation of a phoneme as a vector in a multi-dimensional space. The distance between

two sequences of phonemes was computed using a dynamic time warping algorithm [70],

weighted appropriately using a multivalued feature vector [74]. This work focuses on the

linguistic issues in phonetic matching, while our work focuses on database performance

on such matching methodology, and hence are complementary to each other. The ML-

NameJoin algorithm could be easily altered to adopt the similarity measure presented in

their work.

3.9 Conclusions on Multilingual Names Matching

In this chapter, we detailed the implementation of multilingual names matching func-

tionality, as de�ned in Chapter 1. Currently, such functionality is not supported by any

of the current commercial or open-source database systems.

Chapter 3. Multilingual Names Matching 88

Our implementation methodology depends on transforming matching in the lexico-

graphic space to the equivalent phonetic space. The multilingual text strings were con-

verted into equivalent phoneme strings using standard TTP linguistic resources and due

to the inherently fuzzy nature of the phonetic space, approximate matching techniques

were employed for matching the transformed phonemic strings.

The multilingual names matching operator was implemented as a UDF in commercial

systems to con�rm the feasibility of our strategy on unmodi�ed relational database sys-

tems. A suite of experiments to measure the match quality, namely Recall and Precision,

in a real multilingual data set, showed good recall (�95%) and precision (�85%), indicat-
ing the potential of such an approach for practical query processing. Further, we showed

that the poor performance associated with the UDF implementation of approximate

matching may be improved signi�cantly, by employing one of the two alternate meth-

ods: the Q-Gram technique, and a Phonemic Indexing technique. These two techniques

exhibit di�erent quality and performance characteristics, and may be chosen depending

on the requirements of an application. However, both the techniques are capable of im-

proving the multilingual name matching performance by orders of magnitude, to a level

suÆcient for practical adoption in deployed systems.

Chapter 4

Multilingual Semantic Matching

4.1 Overview of the Chapter

In this chapter, after providing some background information, we de�ne formally the

multilingual semantic matching operator { MLSemJoin { that matches multilingual text

strings that store categorical information. Subsequently, we detail our implementation of

the functionality as a derived-operator using existing SQL features of database systems.

Finally, the matching performance is pro�led on a set of commercial database systems;

while the basic implementation may be too slow for practical deployments, we show that

by tuning the storage and indexes to match the characteristics of the linguistic resources,

the performance may be improved to a level suÆcient for practical use.

4.2 Background Information

In this section, some background information on the linguistic resources that are needed

for our semantic matching methodology is provided.

4.2.1 WordNet: A Linguistic Resource

A brief overview of WordNet [135], a standard linguistic resource that organizes words

and their meanings of a language in a form that may be mechanically interpreted, is

89

Chapter 4. Multilingual Semantic Matching 90

presented here; further details may be found in [39]. The availability of WordNet in

multiple languages with rich semantic interlinking between them, has made possible our

proposed implementation of multilingual semantic matching operator.

Word Representations: Form vs. Meaning

A word may be thought of as a lexicalized concept; simply, it is the written form of a

mental concept that may be an object, action, description, relationship, etc. Formally, it

is referred to as aWord-form. The concept that it stands for is referred to asWord-sense,

or in WordNet parlance, Synset. The de�ning philosophy in the design of WordNet is

that a synset is suÆcient to identify a concept uniquely. A short description, similar

to the dictionary meaning, called the Gloss is provided with every synset, for human

understanding. Two words are said to be synonymous, or semantically the same, if they

have the same synset and hence map to the same mental concept. Synonymy satis�es

the Leibniz's principle that says that two words are synonymous if the substitution of

one of the words for the other does not change the truth value of the sentence. WordNet

organizes all relationships between the concepts of a language as a semantic network

between synsets.

The WordNet has a Lexical Matrix function that maps word forms to their meanings,

which constitutes the basis for mapping words to synsets. For example, the word-form

bird corresponds to several di�erent synsets, two of which are fa vertebrate animal that

can typically yg and fan aircraftg ; each of these two synsets is denoted di�erently with
subscripts, in the English Noun Hierarchy shown in Figure 4.1. The synsets of a language

are divided into �ve distinct categories (speci�cally, nouns, verbs, adjectives, adverbs

and relationships), and in this thesis we only consider the Nouns category of words for

multilingual categorical matching; Nouns represent the most signi�cant category of a

language for query processing, since nearly a �fth of the normal text corpora and the

majority of query strings [79] are from this category.

Chapter 4. Multilingual Semantic Matching 91

Interlinked Noun Taxonomical Hierarchy

The nouns in English WordNet are grouped under approximately twenty-�ve distinct

Semantic Primes [39], covering distinct conceptual domains, such as Animal, Artifact,

etc. Under each of the semantic primes, the nouns are organized in a taxonomic hierarchy,

as shown in Figure 4.1, with Hyponyms links signifying the is-a relationships (shown in

solid arrows). Several e�orts are underway { such as the European WordNet (EWN) [37]

and the Indo-WordNet (IWN) [15] { to develop WordNet linguistic resources in di�erent

languages along the lines of English WordNet, including the taxonomic hierarchies of the

respective noun forms. A Chinese WordNet (CWN) initiative, along the lines of English

WordNet, is outlined in [18].

Bird(2)

Mammal Machanical

MouseHuman Flying

Bird

Fauna Artifact

(1)

Man Woman

Mechanishe

Maus

Vogel

Kunstprodukt

Menschlich Flugzeug

Männlicher Weiblicher

Tier

VorrichtungDevice

Machine

Aircraft /

Saugetier

En
g

lis
h

N
o

un
 H

ie
ra

rc
hy

G
e

g
e

nsta
nd

sw
o

rtc
H

ie
ra

rc
hie

D
e

utsc
he

Figure 4.1: Sample Inter-linked WordNet Noun Taxonomic Hierarchy

A common feature among such initiatives is that they keep the basic taxonomic hi-

erarchies nearly the same as that of English and provide mappings from their synsets

to that of English. Further, semantically equivalent synsets between WordNets of dif-

ferent languages are interlinked using Inter-Lingual-Index (ILI) links (shown as dotted

arrows) and are available partly in some western European languages currently [37], and

is planned for in Indic languages [65, 95]. Figure 4.1 shows a simpli�ed interlinked hier-

archy in English and German. Such interlinked hierarchies are used for de�ning semantic

matching in the following section.

Chapter 4. Multilingual Semantic Matching 92

4.3 Multilingual Semantic Matching Implementation

In this section, the crosslingual matching of multilingual text attributes that store cate-

gorical values, as shown in Figure 1.5 and Figure 1.6, is detailed. The intuition behind

the matching strategy is outlined in Section 1.5.3. In this section, �rst the multilingual

semantic matching functionality is described formally and subsequently its implementa-

tion using WordNet linguistic resources is presented.

4.3.1 MLSemJoin Implementation Details

The de�nitions in this section assume only that the values of an attribute are from a

speci�ed domain, D, with a set of distinct atomic semantic values. Within a domain,

the values are assumed to be arranged in a taxonomic hierarchy H that de�ne is-a

relationships among them1. Note that this hierarchy may be a collection of directed

acyclic graphs. Given an atom x and a domain hierarchy H, the transitive closure of
x in H is unique, and is denoted by TH(x). Similarly, the transitive closure of a set

(X) of values from D, is denoted by TH(X), and is de�ned as [iTD(xi), where xi 2 X.

Assuming the above notation, we provide the following de�nitions for semantic matching

using H as:

De�nition 4.1 [Is-A]: Given a taxonomic hierarchy H in domain D and two nodes x

and y in D, x is-a y, () x 2 TH(y).
Example 4.1: The predicate (Man is-a Human) is true, in the hierarchy of Figure 4.1,

since the transitive closure of Human in the English noun taxonomic hierarchy in Fig-

ure 4.1, is fHuman, Man, Womang. �
De�nition 4.2: Given H in domain D and two sets of nodes X and Y in D, X is-a Y ,

() X � TH(Y).
Example 4.2: The predicate (Bird is-a Fauna) will evaluate to false, as the set of synsets

by the lexical matrix function for Bird, namely the set fBird1, Bird2g, is not a subset of the
1The hierarchy determines the domain in which semantic matching is done: while WordNet is used in

linguistic domain, appropriate domain-speci�c hierarchies may be used for matching in speci�c domains.

Chapter 4. Multilingual Semantic Matching 93

closure (in English noun taxonomic hierarchy) of Fauna, which is fFauna, Bird1, Mammal,

Human, Mouse, Man, Womang. �
Since linguistic domain ontologies have low resolution power (that is, words usually

have multiple meanings), a weaker version of the semantic equality is provided, as follows:

De�nition 4.3 [Is-Possibly-A]: Given a taxonomic hierarchy H in domain D and two

sets of nodes X and Y in a domain D, X is-possibly-a Y , i� X \ TH(Y) 6= �.

Example 4.3: The predicate (Bird is-possibly-a Fauna) evaluates to true, as the instan-

tiation of Bird, namely, fBird1, Bird2g has a non-empty intersection with the closure of

Fauna in the English noun taxonomic hierarchy. On the same logic, the predicate (Bird

is-possibly-a Artifact) also evaluates to true. �
We use this weaker notion of semantic equality { namely, is-possibly-a { to implement

the MLSemJoin operator. The direct matching of multilingual categorical values is done

by examining the Inter-Lingual-Indexes (ILI) links between the WordNet taxonomical hi-

erarchies, and the possible matching (which are necessary when the LHS operand value

is a subclass of the RHS operand value) requires an evaluation of the transitive closure

of the RHS operand in the interlinked WordNet hierarchy. Such matching methodology

is semantic as it makes use of WordNet semantic classi�cations from the respective lan-

guages. The usage of WordNet linguistic taxonomic hierarchy, in order to implement

the MLSemJoin operator, is as follows: Let WI be the WordNet of language Li. Let PI
= [i pi, where pi is the semantic primitives (that is, synsets) of Li. By de�nition, WI

contains semantic primitives pi, of Li. The noun taxonomic hierarchy de�nes a set of

DAG's, HI between the elements of PI . A WordNet de�nes a mappingMI, between a

wordform (wi) and its meanings (Pw), as MI:wi ! Pw, where Pw is a set of semantic

primitives of Li, that is, Pw � PI . Consider the union of all semantic primitives of a set
of languages of interest, PML (= [iPI) and the union of interrelationships between them
H (= [iHI). Clearly, H is a set of DAG's, among the elements of PML. Augmenting

H with the ILI links, a taxonomic network, HML, is created. This HML is used for the

implementation of MLSemJoin, as follows:

De�nition 4.4 [MLSemJoin Matching]: Given the multilingual taxonomic hierarchy

Chapter 4. Multilingual Semantic Matching 94

HML, fwiMLSemJoinwjg is true, if fPI is-possibly-a PJg under HML. In this de�nition,

PI = MI(wi) and PJ = MJ (wj), where MX is the lexical matrix function of the

language X.

Note that De�nition 4:4 guarantees not to produce false-dismissals (within the con-

text of WordNet), though it may introduce false-positives by matching on unintended

word-senses.

Example 4.4: The predicate (Bird MLSemJoin Fauna) evaluates to true, as it is the

same as (Bird is-possibly-a Fauna). Similarly, the predicate (Bird MLSemJoin Artifact)

also evaluates to true. �
Example 4.5: Consider the predicate (English \Bird" MLSemJoin German \Kunstpro-

dukt"). The answer is evaluated as, Is fBird1, Bird2g \ fKunstprodukt, Machanishe

Vorrichtung, Flugzeug, Bird2, Artifact, Mechanical Device, Flying Machineg 6= �, which

evaluates to true. �
Example 4.6: Under De�nition 4:4, consider the following canonical MLSemJoin query

predicate:

fAttrg MLSemJoin fConst cg InLanguages L1; L2; : : : ; LN

Let Lc denote the language in which the constant Const is speci�ed, and let Lout =

fL1; L2; : : : LNg. Then,MLC(c) denotes the set of semantic primitives corresponding to

the constant c in language Lc. Then, THML
(MLC(c)) denotes the transitive closure of

the semantic primitives corresponding to c in Lc, under the taxonomic network HML.

Let, �Lout(THML
(MLC(c)) be the set of semantic primitives in the languages in which

the output is desired (= fsjs 2 [iSI , LI 2 Loutg). Further, let the value of the attribute,
in the database tuple currently under consideration, be denoted by d, its language by

Ld, and the set of semantic primitives of d with respect to Ld, by MLD(d). With this

notation, the basic MLSemJoin returns true i�MLD(d)
T
�LOut(THML

(MLC(c)) 6= �. �

Chapter 4. Multilingual Semantic Matching 95

MLSemJoin (StringData, StringQuery, LD, LQ, match, TL)
Input: StringData and StringQuery in languages LD and LQ

Flag match, Target Languages TL
Output: TRUE or FALSE, [Optionally] Gloss of Matched Synset

1. SD MLD(StringData);
2. SQ MLQ(StringQuery);
3. if Match is EQUIVALENT then
4. if (SD \ SQ) 6= � return true else return false;
5. else if Match is GENERALIZED then
6. T CQ TransitiveClosure(SQ; TL);
7. if (SD \ T CQ) 6= � return true else return false;
8. [Optionally] return Gloss of the Matched Synset in a Parameter;

TransitiveClosure (S, TL)
Input: Set of String S, Target Languages TL
Output: The transitive closure of S
1. SC S;

SN �;
2. repeat until no change in S:
3. for every element s in SC
4. SN SN [Synsets that are subclasses of s within the Language Ls

[Synsets linked to s through ILI to a new L � TL ;
5. S S [SN ;

SC SN ;
SN �;

6. return S

Figure 4.2: The MLSemJoin Matching Algorithm

Chapter 4. Multilingual Semantic Matching 96

4.4 MLSemJoin Matching Algorithm

The skeleton of the MLSemJoin algorithm is shown in Figure 4.2. The MLSemJoin takes

two multilingual strings to be matched, along with their language identi�ers2. A user-

speci�ed ag, match, and a set of target languages for matching, are also input. The

MLSemJoin functionality needs two signi�cant steps (distributed among lines 3 through

7): First, the computation of the transitive closure of the synsets of the RHS operand

in the interlinked WordNet taxonomic hierarchy, and second, the testing of non-empty

intersections between the sets of synsets corresponding to the LHS operand values and

the computed transitive closure of the RHS operand. While the second step may be

implemented eÆciently using hash-table based approaches, the �rst step is recognized to

be ineÆcient in relational systems [3, 55, 63]. The TransitiveClosure algorithm computes

the transitive closure of a set S in the interlinked WordNet taxonomic hierarchy HML.

Note that in line 4 of the function, the augmentation is done only for ILI links going

into a target language that has not been visited yet and not to all languages, for the

following reason: The computation of the transitive closure in the traditional sense

reduces precision of the result set with every traversal across languages (due to the

multiple senses for a given word). Due to our modi�cation in computing the closure of

the RHS operand value, the closure computed by the algorithm in Figure 4.2 may be

slightly di�erent from the traditional one. However, we expect the result set to be more

precise, as it takes into consideration the alternate meanings of a query term, only for

the �rst semantic mapping into the target language set. As a useful side e�ect, it keeps

the growth of SN linear in the number of languages in the TL list, hence the computation
is more eÆcient.

2The language identi�ers are explicitly provided since identi�cation of a language is not possible
at the attribute level. In Chapter 5, we propose a new datatype which stores the language identi�er
explicitly, along with the value string.

Chapter 4. Multilingual Semantic Matching 97

4.4.1 Derived Operator Approach

While the above algorithm may be implemented as a UDF, we chose to use standard

SQL:1999 features for implementing MLSemJoin as a derived operator in commercial

database management systems. The reasons for this approach are as follows: First,

the UDF call overheads a�ect the performance adversely, as previously observed in the

implementation of MLNameJoin operator; signi�cantly, computation of transitive closure

itself is an expensive operation in relational systems which may be further a�ected by

UDF implementation. Second, the availability of SQL features o�ers an eÆcient solution

that may also leverage on the optimizer for selection of better execution plans.

In our derived operator approach, the transitive closure of the StringQuery on Word-

Net taxonomic hierarchy is computed using the recursive SQL constructs; once computed,

the standard IN clause is used for testing if the LHS operand is a member of the com-

puted transitive closure. An MLSemJoin query is transparently re-written to a standard

SQL query using the above constructs and executed in the relational system. The results

from the SQL query are output to the user, with no modi�cation.

The use of standard SQL constructs helps in leveraging the eÆcient implementations

and optimization opportunities a�orded by the well-tuned relational optimizer. Further,

this approach indicates that the MLSemJoin operator may be implemented on an existing

relational database system. However, in this derived operator approach, some obvious

performance optimization measures, such as, generating the closure only up to the point

to determine set membership of the LHS operand, may not be possible. Further, relevance

ranking of the results is also not possible, as the results from the standard SQL query

are output to the user with no modi�cation.

4.4.2 Following Through with an Example

We present an example to illustrate the derived-operator implementation of theMLSemJoin

function. The WordNet resource is stored in the WL table. The user query,

Chapter 4. Multilingual Semantic Matching 98

SELECT Author, Title FROM Books

WHERE Category MLSemJoin ALL `History'

INLANGUAGES fEnglish, French, Tamilg

is mapped to the following query, where the transitive closure on WL is computed using

the recursive SQL constructs and the set membership is tested by the IN predicate:

WITH Descendants (child, lang)

(SELECT WL.sub, WL.lang FROM WordNet WL

WHERE WL.super = `History'

AND WL.lang IN (`ENGLISH',`FRENCH',`TAMIL')

UNION ALL

SELECT WL.sub, WL.lang FROM WordNet WL, Descendants Dec

WHERE WL.parent = Dec.child AND WL.lang = Dec.lang)

SELECT Author, Title FROM Books

WHERE Category IN (SELECT child FROM Descendants)

Thus, the user query e�ectively translates to the following SQL query:

SELECT Author,Title FROM Books

WHERE Category IN f`History',`Memoir',`Autobiography', ...

`Histoire',`M�emoire', `Autobiographie'...

`�b ñ8:` ñP',`B�t� ñ�',`�X�b8 ñP'...g

Here, the values in the IN clause are the subclasses of History, in English WordNet, and

their equivalents in French and Tamil WordNets. Note that any conjunction (disjunction,

respectively) of MLSemJoin predicates can be handled by computing the intersection

(union, respectively) of closures for the IN predicate.

Chapter 4. Multilingual Semantic Matching 99

4.5 MLSemJoin Performance

In this section, an experimental setup to measure the performance of the MLSemJoin

derived operator is presented, along with the performance of the operator on a set of

popular database systems.

4.5.1 System and Database Environment

A standard Intel Pentium IV (1:7 GHz) workstation with 256MB memory running Win-

dows 2000 Professional operating system, was used as the experimental platform. Three

popular database systems { Oracle 9i Database Server (Version 9.0.1), IBM DB2 Uni-

versal Server (Version 7.1.0) and Microsoft SQL Server (Version 8.0.194) { were installed

with default con�gurations and their performance on MLSemJoin operator was studied.

The database systems are identi�ed in the performance section randomly, as A, B and C,

to protect their individual identities. The MLSemJoin operator itself was implemented

in recursive SQL in the IBM DB2 Universal Server (using WITH clause) and in Oracle 9i

Database Server (using CONNECT BY clause). In Microsoft SQL Server, the recursive

functionality is not supported natively, hence we implemented the closure computation

using SQL scripts.

4.5.2 Dataset

The entire set of noun taxonomic hierarchies of WordNet (Version 1.5), totaling about

110; 000 word forms, 80; 000 synsets and about 140; 000 relationships between them, was

loaded into each of the database systems, in a simple hierarchy table (as Parent-Child

relationships). All the dependent information (such as, Gloss, the textual description)

was stored separately, in order to keep the hierarchy table compact. The needed storage

space for storing English WordNet in the default ISO:8859 character set is approximately

4 MB (including index storage).

Since at this point of time the English WordNet is the most developed, and various

Chapter 4. Multilingual Semantic Matching 100

WordNets are at di�erent stages of development, we used the following strategy to sim-

ulate the interlinked multilingual WordNet resource for our performance experiments:

We �rst compared the structural characteristics of the current versions of Euro and Indo

WordNets with English WordNet [15, 37], and the results are given in Table 4.1.

Characteristic English French German Spanish Hindi

Word Forms (Words) 114,648 32,809 20,453 50,526 22,522
Word Sense (Synsets) 80,000 22,745 15,132 23,378 7,868
Average Synsets per Word Form 2.24 2.18 2.30 2.36 3.89
Average Synset Span-out 1.99 1.44 1.35 2.16 2.29
Equivalence Relations per Synset 1.00 0.99 1.08 0.91 N/A

(to English Synsets)

Table 4.1: Statistical Pro�le of WordNets

The statistics indicate a very close match between the structural characteristics (such

as, average span-out) of di�erent WordNets. In addition, since both Euro and Indo

WordNets have conformance to English WordNet as their stated goal, it is reasonable

to expect that their structures will be similar to that of English WordNet, when fully

developed. Assuming that the WordNet of each language will be similar to that of English

when fully developed, English WordNet was replicated in Unicode format and ILI links

between every English synset and its corresponding synset in the replica were created,

with a probability of 0:95, closely matching the equivalence relations of existingWordNets

to English WordNet. The resulting taxonomic hierarchy is used in the performance

experiments. Note that the replicated WordNets were stored in Unicode format, for an

accurate modeling of the multilingual resources; each of these WordNets requires about

8 MB of storage space (including index storage).

4.5.3 Query Workload

For pro�ling the performance of the MLSemJoin operator, a set of queries that compute

closures of varying sizes in the WordNet taxonomic hierarchy, using recursive SQL con-

structs (as shown in Section 4.4.2) were used. The input strings for the queries were

Chapter 4. Multilingual Semantic Matching 101

chosen such that their closure cardinalities are from a few tens to a few thousands of

synsets. Such selection of query terms provides a suÆciently wide range for calibrating

the performance of the MLSemJoin query, when closures of di�erent sizes are computed.

Table 4.2 shows some of the query terms used for calibration, and the corresponding

closure sizes in English WordNet.

Semantic Primes Size of Closure

Hotel, Restaurant 67
Sex 78
Baby, Children, Kids 107
Profession, Job, Career 298
Business, Company, Organization 488
Music, Song 548
Artist, Creator, Performer 862
Education, Training 969
Food, Drink 2,570
Fauna, Animal 4126
Flora 4955
Knowledge, Subjects 5340
Human, Person 11551

Table 4.2: Closures for English Word Forms

To establish the likely closure size (i.e., the average closure size for likely query

strings), we selected the top-hundred most used nouns in English [11] and the top-�fty

nouns that are used in popular web-search engines [134], and computed the average

of their closure-sizes in English WordNet, which resulted in an average closure size of

around 625. Hence, assuming that a multilingual user would typically want answers in

about three languages, it is realistic to use a �gure of around 2; 000 for a representative

closure size for a typical multilingual query.

4.5.4 Performance Metrics

In all the experiments, the wall-clock runtime of a given query with a speci�c query term

from the list given in Table 4.2 was measured. The queries were run in an SQL or a

Chapter 4. Multilingual Semantic Matching 102

programming language environment, as appropriate. Before each experiment, the test

machine was quiesced and only the database system being tested and allied processes

were allowed to run in order to have measurement parity between the systems. The

average runtime from several identical runs was taken as the runtime of a speci�c query

(the graphs show mean values with relative half-widths about the mean of less than 5%

at the 90% con�dence interval).

It should be noted here that the quality of the retrieval is determined solely by the

coverage (for recall) and the resolution power (for precision) of the taxonomic hierar-

chy used for semantic equivalence. While precise taxonomic hierarchies such as Gene-

Ontology [45] are expected to have perfect recall and precision, the WordNet taxonomic

hierarchy has low resolution power, due to the polysemic words that lead to low precision

of the result set. In our experiments, the quality of the match was not measured, since

most WordNets are not fully developed yet and hence not available for experimentation.

Further, measurement of such quality in the linguistic domain is beyond the scope of

our research, which focuses solely on optimizing the database performance, given the

linguistic hierarchies.

4.6 Performance Results and Analysis

In this section, the performance of a suite of popular database systems in executing the

MLSemJoin functionality, as a derived-operator, is presented, and subsequently, opti-

mized.

4.6.1 Baseline MLSemJoin Performance

For the baseline performance experiments, the interlinked WordNet taxonomic hierarchy

as discussed in Section 4.5.2, was stored and queried. The queries that compute di�erent

closure cardinalities, as given in Section 4.5.3, are run. The SQL-Baseline performance

(in seconds) for the basic closure computation in the three commercial database sys-

tems, is given in Figure 4.3 (the graph is shown in log-log scale). For each system, the

Chapter 4. Multilingual Semantic Matching 103

performance with and without the B+ tree index on the elements of the hierarchy H is

provided. As can be observed, the closure computations are very slow in all the systems

under study, taking up to hundreds of seconds without an index and up to a few seconds

even with an index.

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

T
im

e
(S

ec
.)

Size of Closure

System A (without Index)
System A (with Index)

System B (without Index)
System B (with Index)

System C (without Index)
System C (with Index)

Figure 4.3: Baseline Performance of Computing Closure

The run-times in di�erent database systems are inuenced by their implementation

methodology for computing transitive closures. For example, two systems used breadth-

�rst-search for expanding the result set, while the third used depth-�rst-search. One

system expanded hierarchies a level at a time, thus reducing the overall number of joins,

resulting in smallest run times of the three. Further, one of the systems detected cycles

during traversal and exited gracefully, indicating that it maintains an internal hash-table

(or a sorted list) to make the in-progress closure unique. The other two systems ran

inde�nitely, indicating the absence of such a check. This observation is con�rmed when

the systems report di�erent closure sizes, in the presence of nodes that have multiple

paths from an ancestor (in which case, some of the systems multiply count the descendant

nodes). The query execution plans indicated that indexes on the taxonomic table were

made use of whenever available, in all the systems. However, no optimizations (such as,

sorting, hash-indexes or maintaining incremental views) were used for eÆcient scanning

Chapter 4. Multilingual Semantic Matching 104

of the temporary in-progress closure table.

In summary, irrespective of wide variation in the performance of the di�erent sys-

tems, none of them exhibit a performance suitable for practical use, if the size of the

closure exceeds a few hundred items. Hence, in the following sections, three di�erent opti-

mization techniques to improve the performance of the closure computation, a necessary

component for implementing the MLSemJoin operator, is presented. We choose System

B, which exhibits the worst performance among the three studied, as the candidate for

subsequent optimizations.

4.6.2 Optimization #1: Precomputed Closure

First, a standard optimization technique of pre-computing the closures of every element

in the WordNet hierarchy and storing them explicitly as the immediate children of the

corresponding element, was used. Thus, the closures could be found with a simple scan

of the enhanced table. To further reduce the cost of computation, a clustered index was

built on the parent attribute of the pre-computed table. The transitive closure queries

were run on the resulting data set, and the performance, with and without the index, is

presented in Figure 4.4 (where the graph is shown in log-log scale).

 0.1

 1

 10

 100 1000 10000

T
im

e
(S

ec
.)

Size of Closure

Precomputed Closures (Without Index)
Precomputed Closures (With Index)

Figure 4.4: Closure Performance with Precomputed Closures

Chapter 4. Multilingual Semantic Matching 105

We observe here an improvement in performance, to approximately 7 seconds (with-

out index) for computing any closure cardinality. Understandably, the closure computa-

tion takes approximately the same time, since it can be computed with a single scan of

the table storing the precomputed closures. With the clustered index, as expected, the

runtime is much better, improved by an order of magnitude from the baseline index per-

formance, to under one second. However, this gain comes with the penalty of enormous

storage costs: the space required for the taxonomic tables with precomputed closures

increased by about 30 times, to roughly 120 MB.

4.6.3 Optimization #2: Reversed Traversal

Next, an alternate strategy that improves the run time with no space overheads, was

pursued. First, the implementation of the MLSemJoin functionality was modi�ed to

traverse the taxonomic hierarchy in the reverse order; that is, the transitive closure of

LHS operand traversing the ancestor links was computed, and a check was made to

verify if the RHS is a member of the ancestral closure of the LHS operand. Given that

the average in degree in the WordNet taxonomic hierarchy is 1:124, which is signi�cantly

smaller than the average out degree, a better performance, due to the smaller size of

the ancestral closure, may be expected. A closure computation is still needed as the

WordNet taxonomic hierarchies are not strict trees. The performance of the modi�ed

MLSemJoin is given in Figure 4.5 (where the graph is shown in log-log scale).

As expected, the computation of the closure was improved by 2 orders of magnitude

from the baseline, to a few seconds, without index and to under a second, with index.

It is interesting to note that the graph in Figure 4.5, merely corresponds to the lower

end of Figure 4.3, since the computation is done on the same hierarchy table, with the

primary di�erence being the smaller sized closures that are being computed. However,

this optimization methodology su�ers from a major drawback: while the normal closure

corresponding to the constant RHS needs to be computed only once in the forward

direction, this optimization requires that the reversed closure be computed once per LHS

value, resulting in numerous closure computations. Hence for a canonical MLSemJoin

Chapter 4. Multilingual Semantic Matching 106

 0.01

 0.1

 1

 10

 1 10 100 1000

T
im

e
(S

ec
.)

Size of Closure

Reversed Traversal (Without Index)
Reversed Traversal (With Index)

Figure 4.5: Closure Performance with Reversed Traversal

operator for which the LHS values are from a table attribute and the RHS value is a

constant, this optimization may prove to be expensive.

4.6.4 Optimization #3: Reorganizing Schema

Finally, a third performance optimization strategy that is based on leveraging the distri-

bution of synsets in the WordNet hierarchy to reduce the calls to the expensive recursive

SQL statement, is pursued. First, the span-out of every node in English and Hindi Word-

Nets is computed and plotted. The plot of the span-outs, shown in Figure 4.6, exhibit

a characteristic power-law distribution (with an exponent of �2:75). More interestingly,

the Hindi and English WordNets exhibit a very similar span-out pro�le di�ering only in

scale, suggesting the applicability of power-laws in linguistic domains.

Further analysis indicated that only a small number of synsets (less than 10%) have a

large number of children (more than 16), with the large majority having only a few chil-

dren. This distribution suggests a new, more eÆcient organization of WordNet hierarchy,

where a majority of the sub-classes may be in-lined, along the lines of optimization that

is done in XML arena [28]. We chose to in-line those synsets with up to 16 subclasses in

an in-lined taxonomy table, reducing the number of records in the new in-lined taxonomy

Chapter 4. Multilingual Semantic Matching 107

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

C
ou

nt

Fan-out

English WordNet Fan-out
Hindi WordNet Fan-out

 1

 10

 100

 1000

 1 10 100

C
ou

nt

Fan-out

English WordNet Fan-out
Hindi WordNet Fan-out

Figure 4.6: Fan-out Histogram and Plot

table to about a tenth of that of the original table. All synsets with greater than 16

subclasses remained in the original table. The storage size of the combined original and

the in-lined tables was about 8 MB (when stored in Unicode format), approximately the

same as that in the baseline experiments. The closure computation algorithm is modi-

�ed to take care of the schema changes: the access is made to the in-lined table for all

synsets with up to 16 children, or to the original table, for those synsets with more than

16 children. For the above schema, the performance of the closure queries { with and

without indexes { are shown in Figure 4.7 (where the graph is shown in log-log scale).

As can be observed from Figure 4.7, the performance with reorganized schema is

improved by about 2 orders of magnitude on the plain table, and by about 3 orders of

magnitude on the indexed table, with no perceptible increase in storage requirements from

the baseline. Further, for a closure computation of about 2; 000, the runtime is approxi-

mately 25 milliseconds (with index on the taxonomic hierarchy), which is commensurate

with the requirements for user on-line interaction.

4.6.5 MLSemJoin Performance with Scaling of Languages

Finally, we explore how the performance scales with increase in the number of languages

that are considered for query processing. Simulated experiments, varying the number

Chapter 4. Multilingual Semantic Matching 108

 0.01

 0.1

 1

 10

 100

 100 1000 10000

T
im

e
(S

ec
.)

Size of Closure

Reorganized Schema (Without Index)
Reorganized Schema (With Index)

Figure 4.7: Closure Performance with Re-Organized Schema

of languages from 1 to 8, were conducted. For each experiment an interlinked WordNet

hierarchy with required number of languages (say, n), was created as follows: the English

WordNet was replicated n times, and the ILI links between the replicas created using

a similar methodology as outlined in the performance section. Since the typical query

term requires a closure size of 625 per language, in these experiments runtime to compute

closure sizes of approximately (625 � n) is measured. Further, for each experiment, both

the Precomputed Closure and Reorganized Schema optimizations were implemented, and

their respective performances measured. The results are shown in Figure 4.8 (where the

graph is shown in log-linear scale).

In Figure 4.8, we observe that the query processing time does not grow exponentially

with the number of languages. A linear approximation holds well for the tested perfor-

mance range, for both pre-computed closure and re-organized tables methodologies. The

increase in run times is attributed to two factors: the increasing sizes of the hierarchy

tables proportional to the number of languages, and the increasing cardinality of the

closures being computed, which are proportional to the number of languages. Though

there is an exponential increase in the ILI links in the hierarchy table, their traversals are

bounded by restricting the transitive closure expansion to be within the target languages

Chapter 4. Multilingual Semantic Matching 109

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(S

ec
.)

Number of WordNets

Baseline (Without Index)
Baseline (With Index)

Pre-Computed Closure (Without Index)
Pre-Computed Closure (With Index)
Re-organized Table (Without Index)

Re-organized Table (With Index)

Figure 4.8: Closure Performance with Number of Languages

only. In summary, the index-based run times for the typical query remained within a

few tens of milliseconds, even with about 8 languages, which appears suÆciently small

to support online user interaction for a multilingual user.

Thus, we show that the MLSemJoin functionality may be implemented on unmodi�ed

relational database systems by integrating standard linguistic resources, and leveraging

only on existing SQL features. Further, we show that the performance of this match-

ing may be suÆciently optimized to support online-user interactions for multilingual

e-commerce applications.

4.7 Related Research

To the best of our knowledge, multilingual semantic matching of attribute data { by

integrating standard linguistic resources with the database engine, has not been discussed

previously in the database literature.

Currently, all commercial database systems support some avour of semantic query

processing, based on NLP techniques. However, since no standards have been speci�ed

in SQL [59] for semantic query processing, each vendor [100, 86, 56] has taken an unique

approach for such querying. As a result, the same query on the same document collection

Chapter 4. Multilingual Semantic Matching 110

could yield di�erent answer sets in each of the systems. Further, such NLP techniques

are applied to document data, and not to attribute-level data. Finally, even considering

only queries on documents, such semantic querying is applied on a per-language basis,

with no cross-lingual matches possible. Our approach could be used for cross-lingual

semantic retrieval of attributes (as proposed), or of documents (by appropriately modi-

fying our technique to query on the elements of the inverted index, which is a collection

of multilingual key-words pointing to documents in multiple languages).

Recently a major database vendor proposed an ontological matching operator [25] to

support query processing based on user de�ned ontologies. While their operator is not

yet available in released versions, the operator { when available { may be adopted for

multilingual semantic matching, by using interlinked WordNet taxonomic hierarchies.

However, some of the optimizations proposed in this thesis may be suitable candidates

for improving the performance of their operator, as the reported performance in [25] may

not be practical for query processing with large ontologies (such as, WordNet). The reor-

ganized schema optimization proposed in this thesis may provide a practical space-time

trade-o� for such ontological query processing. Nevertheless, we are heartened by this

parallel e�ort by a commercial database system vendor, as it validates our intuition about

the need for such novel matching methodologies in relational systems. More recently,

in [110], Hopi, a connection index to compute the descendants of a node eÆciently in

an XML collection has been presented. This work could be extended for closure compu-

tation in any taxonomical hierarchy and hence may present an interesting optimization

possibility for MLSemJoin implementation; we hope to explore this possibility in the

future.

International WordNet initiatives [65, 18, 19, 37], with a stated objective of following

near-identical taxonomical structures, are enabling resources for realizing our implemen-

tation. The WordNet based approach was used for semantic information retrieval in

[107], where the emphasis was on the quality of the results and not on performance;

our work on performance of such retrievals is complementary to this research. Similar

approaches have been attempted in other languages as well: in [114] encouraging results

Chapter 4. Multilingual Semantic Matching 111

(up to � 70% accuracy) in noun sense disambiguation using Indo WordNet on Hindi

corpora was reported. A practical system for crosslingual semantic search was reported

in [68], where the Universal Networking Language (UNL) [129] based search strategy of

matching expression graphs, was pursued. In our work, we did not pursue UNL based

crosslingual semantic matching as the MLSemJoin deals with attribute level information

and hence is closer to key-word matching than expression graph matching.

There are vast amounts of literature in the Information Retrieval (IR) Research com-

munity in the areas of Knowledge-based and Natural-language based retrieval. The tech-

niques employed are diverse, ranging from syntactic and morphological analysis [41] to

Machine Translation [36], statistical techniques [46], and Latent Semantic Indexing [27]

for semantic querying in a single language, and to paired dictionaries [115] techniques

for handling cross-language querying. We refer to the Multilingual Information Retrieval

Track of the ACM SIGIR conference [116] for a survey of current techniques. Such tech-

niques are more suited for document level processing and not suited for attribute level

processing in relational systems. Also, in-line with our design goals for consistent query

processing across relational systems, only on standard linguistic resources for query pro-

cessing, were relied upon.

4.8 Conclusions on Multilingual Semantic Matching

In this chapter, we proposed a new multilingual functionality { MLSemJoin { to sup-

port seamless multilingual matching of attributes that store categorical data based on

semantics. The proposal outlines an implementation of this feature, by adopting and

integrating the WordNet linguistic resources in the database system. Multilingual text

attribute data are matched after transforming them to a canonical semantic form (that

is, synset of the corresponding WordNet), and leveraging the rich cross-linked taxonomic

hierarchies of di�erent language-speci�c WordNets.

We outlined a derived-operator approach for implementing the MLSemJoin operator,

using standard SQL:1999 constructs. Our performance experiments with real WordNet

Chapter 4. Multilingual Semantic Matching 112

data on three popular database systems, underscored the ineÆciencies in computing

transitive closure, an essential component for semantic matching. The run times are

in the order of a few seconds, unsuitable for practical deployments. We showed that

by tuning the storage and access structures to match the characteristics of linguistic

resources, the closure computation may be improved up by nearly 3 orders of magnitude

{ to a few milliseconds { to make the operator eÆcient enough for supporting online user

query processing.

The following summary may provide a proper perspective on the operator perfor-

mance with various optimization strategies: the baseline performance of MLSemJoin op-

erator with Education (which includes the subject taxonomic hierarchy shown in Section

4.4.2) as RHS operand is approximately 40 seconds (without index), and approximately 2

seconds (with index). With pre-computed closure optimization, the performance �gures

are 8 seconds (without index) and 0:4 seconds (with index); however the storage required

for WordNet hierarchy went up from the baseline �gure of 4 MB to approximately 120

MB. The reorganized schema optimization produced the best performance �gures of 9

seconds (without index), and 0:02 seconds (with index), with a less than 2% increase in

storage size from the baseline �gure of 4 MB.

These results underscore the viability of the MLSemJoin operator for immediate prac-

tical use, using unmodi�ed commercial relational database systems. As a side e�ect, such

a methodology provides repeatable and consistent results for a given data set across

di�erent database systems. Finally, we expect that for speci�c applications, semantic

matching using domain-speci�c ontological hierarchies may also bene�t from a similar

approach to that outlined here.

Chapter 5

A Multilingual Operator Algebra

5.1 Overview of the Chapter

In the previous chapters, two multilingual join functionalities were proposed and their

implementation methodologies on commercial database systems were presented. In this

chapter, we put these proposals together in a holistic query processing architecture for

multilingual attribute data, by formalizing the multilingual functionalities as operators

and presenting an operator algebra that ties them together in a uni�ed framework.

The required composition rules, cost models and selectivity estimations, for a native

implementation of the architecture in relational database systems, are also presented.

5.2 Mural: Multilingual Relational Algebra

In this section, an operator algebra {MUltilingual Relational ALgebra (Mural), along with a

new datatype Uniform to store the multilingual data and a few Uniform-speci�c operators

along the lines of the multilingual join functionality presented in the previous chapters,

is presented. For the sake of analysis, simpli�ed versions of MLNameJoin and MLSemJoin

functionalities are assumed.

113

Chapter 5. A Multilingual Operator Algebra 114

5.2.1 Uniform: A Multilingual Text Datatype

All the basic types of relational systems are preserved in the Mural algebra except the

Text datatype, which is replaced by Uniform (UNIcode FORMat) datatype, speci�cally to

hold the multilingual text strings. The Uniform datatype implementation parallels the

Cuniform representation presented in Chapter 2. The Uniform datatype is a 2-tuple, where

the �rst part is a text string in a standardized encoding1 (referred to as Text) and the

second part is an identi�er2 for the language of the string (referred to as LangID). A unique

language identi�er is possible only if the text string is in a single language. Unique values

for LangID are allowed for unclassi�ed strings (as, Unknown) or not uniquely classi�able

strings (as, Mixed).

An explicit identi�er is necessary, as several languages share a common script and

a string may have di�erent pronunciations or meanings, depending on its language. It

should be noted here that automatic language detection is not, in general, possible with

attribute level datum, though it is possible for languages that have a one-to-one mapping

to a script.

Example 5.1: While `Sample String', `Une Corde T�emoin' and `�pPa� �` ñP' are

examples of Unicode strings, <`The SQL Standard', English>, < `El Est�andar del

SQL', Spanish> and <`SQL 8` ñP', Mixed> are examples for the Uniform datatype. �

Decomposing and Composing Uniform Datatype

It is apparent that with Uniform datatype as above, standard database operations need

to be rede�ned to work on the new datatype. First, two simple operators on Uniform

datatype are introduced; speci�cally, a Composing Operator (denoted as, �) that can
compose a Uniform datatype out of a given Unicode string and a language identi�er and a

corresponding inverse Decomposing Operator (denoted as, �) that decomposes a Uniform
data to a Unicode string and a language identi�er. These two operators { � and � {

1For the current implementation, we used Unicode as the encoding format for Text part of Uniform.
The skinned Unicode representation may facilitate performance improvements, as outlined in Chapter 2.

2To enhance readability, all the examples present the identi�er as an English string, such as English,
French, etc.; in actual implementation, it is assumed to be an identi�er.

Chapter 5. A Multilingual Operator Algebra 115

may be implemented in a fairly straight forward manner.

Example 5.2: Given a piece of data, (Name Uniform), it may be attened into a

2-tuple of basic datatypes, (fNameText Text, NameLangID IDg). Similarly, given two

appropriate pieces of data, a datum of Uniform datatype may be constructed, by nest-

ing them. For example, consider a relation (TextID Integer, TextString Uniform). In-

stances of this relation may be f<1, <`A Sample String', English>>, <2, <`Une

Corde T�emoin', French>>g in Mural, and may become f<1, `A Sample String' ,

English>, <2, `Une Corde T�emoin' , French>g in normal database schema. In essence,
the MURAL datatype may be thought of as a composite datatype obtained by the nesting

of the Unicode value of the multilingual data and the explicit identi�er for the language.

�

Normal Text Operators on Uniform

All simple text comparison operations (such as, =; 6=; <;>, etc.) applied to Uniform

datatype operate on the text component of the decomposed Uniform datatype. Speci�-

cally, the expression (a R b), where R is one of the normal text operators applied on a

pair of Uniform datatypes a and b, is equivalent to ((�aText(� (a))) R (�bText(� (b)))).

Example 5.3: The (<`Gift', English> = <`Gift', German>) predicate evaluates to

true (the strings are lexicographically the same, but semantically are di�erent). The

predicate (<`Nehru', English> = <` ', Hindi>) evaluates to false (the strings are

lexicographically di�erent, but represent the same name). �
It should be noted that while the =; 6=; <;> operations are legal with Uniform strings,

the results are meaningless when the strings are from di�erent scripts; the equality

always evaluates to false (as it should) and the sorting results depend only on where the

scripts corresponding to the languages occur in the Unicode codespace. Such operational

semantics are preserved in order for Uniform datatype to be consistent with well-known

Text datatype that has this behaviour.

Chapter 5. A Multilingual Operator Algebra 116

5.2.2 Uniform Equality (�) Operator

A simple lexicographic matching operator (�), on Uniform datatype is de�ned as follows:

� : U1 � U2 ! <U1; U2; ftrue,falseg>
This operator compares two Uniform datatypes and results in a tuple composed of the

inputs, tagged with a true or false. The match is tagged with a true if both the components

of the 2-tuples match, or tagged with a false otherwise. � is a simple algorithm that

returns false if the languages of the two strings are di�erent. If the languages are the

same, then the strings are compared using normal lexicographic semantics. The outline

of the � algorithm is as given in Figure 5.1.

� (Ul, Ur)
Input: Uniform Ul, Ur
Output: boolean ag

1. if �LangID(� (Ul)) 6= �LangID(� (Ur)) then return false
else if �Text(� (Ul)) 6= �Text(� (Ur)) then return false
else return true;

Figure 5.1: The � Operator

Example 5.4: The predicate (<`Jean', English> � <`Jean', English>) is true, and

the predicates (<`Jean', English> � <`Jean', French>) and (<`Gift', English> �

<`Gift', German>) are false. �

5.2.3 Uniform Names Matching () Operator

The multilingual name matching 	 operator is speci�ed as follows:

	 : U1�U2!< U1; U2; dist >

The input to 	 is two Uniform datatypes, and the output is a tuple composed of the in-

puts, tagged with the edit-distance between the phonemic representations corresponding

to the text parts of the input Uniform datatypes. Removal of either of the input attributes

is by a subsequent projection operation, which is left to the user. The materialization of

the phoneme strings corresponding to the multilingual strings is left unspeci�ed3. The

3The algorithmic complexity of 	 operator implementation is dominated by the EditDistance function

Chapter 5. A Multilingual Operator Algebra 117

algorithm for 	 is given in Figure 5.2, where a simpli�ed version of the implementa-

tion from Chapter 3, is assumed. The PhoneticTransform function converts the input

multilingual string into its corresponding phonemic string, by using an appropriate TTP

resource.

	 (Ul, Ur)
Input: Uniform Ul, Ur
Output: integer dist

1. Tl PhoneticTransform�LangID(�(Sl)(�Text(� (Ul)));
2. Tr PhoneticTransform�LangID(�(Sr)(�Text(� (Ur)));
3. return EditDistance(Tl; Tr);

Figure 5.2: The 	 Operator

Example 5.5: To select all Authors from table Authors (A) that have names close to

Nehru (match threshold 2), the query expression is as follows:

�A:Author(�dist<2 (A:Author 	 f`Nehru'g)) �
Example 5.6: The expression to join two tables { Authors (A) and Books (B) { based

on the author's name (match threshold 2), is as follows:

�A:Author;B:Author(�dist<2 (A:Author 	 B:Author)) �
Example 5.7: To select all Authors from table Authors (A) that have names close to

Silversmith (match threshold 2) and to (match threshold 3), the query expression is as

follows (
1
and 	

2
are assumed to be the invocations of the 	 operator in the �rst and

second predicates of the query shown, and dist1 and dist2 are the distance results from

the respective invocations.):

�A:Author(�dist1<2 (A:Author 	1
f`Silversmith'g)

^ (�dist2<3 (A:Author 	2
f`Aerosmith'g))) �

that has O(n2) complexity. However, materialization of equivalent phoneme strings at runtime could be
very expensive, especially in multi-scan operators, such as, Nested-Loops join. Hence, it is advantageous
to materialize the corresponding phoneme string and store it explicitly with the multilingual attribute.

Chapter 5. A Multilingual Operator Algebra 118

The 	 Operator Properties

The 	 operator de�ned as above is functionally analogous to the database equality

operator, but with a closeness measure based on the edit-distance between their phonemic

equivalents. The following are the properties of this operator.

Property 5.1: The 	 operator is commutative.

Property 5.2: The 	 operator commutes with selection, sort and join operators.

Property 5.3: The 	 operator commutes with projection, provided the attributes used

in 	 are preserved by the projection operator.

Property 5.4: The 	 operator commutes with aggregate operators, as long as the

aggregation preserves the attribute that is used in 	 operator.

The �rst property follows immediately based on the de�nition, and assuming normal

semantics for threshold measure. The second through fourth properties follow, since the

values in the result set are not altered by the operator.

5.2.4 Uniform Semantic Matching (�) Operator

The multilingual semantic matching operator (�) is speci�ed as follows:

� : U1�U2!< U1; U2; ftrue; falseg >
The input to the � operator is a pair of Uniform strings, and the output is a tuple

composed of the input strings, tagged with flag. F lag is a boolean value, set to true if

u1 2 TH(u2), where H is the WordNet interlinked taxonomic hierarchy and u1, u2 are

the semantic atoms corresponding to the Text components of U1 and U2, respectively.

Removal of either of the input attributes is by a subsequent projection operation, which

is left to the user. The skeleton of the algorithm is as shown in Figure 5.3, which assumes

a simpli�ed version of the MLSemJoin operator implementation as given in Chapter 4. It

should be noted here that the �H operator is, by de�nition, asymmetrical and hence is

non-commutative; in this simpli�ed version of �H, the operator is used only to verify if

the LHS operand is a subclass of the RHS operand, as this variety is the more expensive

alternative for the �H operator. The operator properties are discussed subsequently and

Chapter 5. A Multilingual Operator Algebra 119

their e�ect on alternative plan generation is discussed in Section 5.3.

�H (UData, UQuery)
Input: Uniform UData, UQuery
Output: boolean ag
1. T CQ TransitiveClosure(�Text(� (UQuery));H);
2. if �Text(� (UData)) 2 T CQ 6= � then return true else return false;

Figure 5.3: The � Operator

Example 5.8: The query to retrieve all Books that are categorized under History, may

be retrieved as follows:

�B:BookID(�flag=true(B:Category �H f`History'g)) �

The � Operator Properties

The following are the properties of �H:

Property 5.5: The �H operator is not commutative.

Property 5.6: The �H operator commutes with selection, sort or join operators.

Property 5.7: The �H operator commutes with projection, provided the attributes

used in �H are preserved by the projection operator.

Property 5.8: The �H operator commutes with aggregate operators, as long as the

aggregation preserves the attribute that is used in �H.

Property 5.9: The de�nition implies that A �H B is true, i� A is a descendant of B,

in H. Or, equivalently, A �H B is true, i� B is an ancestor of A, in H.
The Property 5:5 follows directly from the de�nition of the �H operator, based on the

fact that the transitive closure is computed only for the right-hand-side operand of the

predicate. Hence, in general, (A �H B) 6= (B �H A). This property can be used for

reducing the plan search space. Properties 5:6 through 5:8 follow from the algebra of

the standard relational operators, and provide means of rearranging the �H operator

with other relational operators, in order to generate candidate execution plans without

a�ecting the result set. Property 5:9 follows directly from graph theory (as H is a set of

Chapter 5. A Multilingual Operator Algebra 120

DAG's), and suggests an alternative method for implementing �H operator, by traversing

H in the reverse direction.

5.3 Interaction Between Mural Operators

In this section, an overview of the composition of the new operators, namely, �;	 and

�H, with each other and with the traditional relational algebra operators, namely �, �
and � and the aggregation operator �, is presented, based on Properties 5:1 through

5:9. The highlights are given in Table 5.1, along with some illustrative examples.

Oper Commutativity Associativity Distributes Over

� Yes Yes �; �; �;	;�H;�
	 Yes Yes �; �; �;�;�H;�
�H No Yes �; �;�;�
Table 5.1: Mural Operator Composition Rules

These composition rules are essential for the optimizer, to enumerate and cost al-

ternative plans for a given query, by reordering the multilingual operators �, 	 and

�H among themselves and/or with other relational operators. Such enumeration of al-

ternative plans is used to choose the most eÆcient plan, based on estimated execution

time.

Example 5.10: The query to get the addresses of Authors whose names are close to

Silversmith (match threshold 3) and whose total book sales exceeded 1M, may be exe-

cuted in the following two ways:

Plan 1: �C:Author(�dist�3(C:Author 	 f`Silversmith'g)
�!C(��(sales)>1;000;000 (�A:Author;�(sales)))))

Plan 2: �A:Author(��(sales)>1;000;000 (�A:Author;�(sales)

(�dist�3(A:Author 	 f`Silversmith'g))))
The �rst plan aggregates every author's book sales and checks if any of those authors

with sales of > 1M have a name that is close to Silversmith. The second one retrieves

Chapter 5. A Multilingual Operator Algebra 121

authors whose name is close to Silversmith and checks if their book sales exceed 1M. �
Example 5.11: The query to �nd all Authors whose names are close to Silversmith

(match threshold 3) and who has authored History books, may be evaluated as follows:

Plan 1: �D:Author(�dist�3(D:Author 	 f`Silversmith'g))
�!D(�flag=true (C:Category �H f`History'g)) �!C(A ./AuthorID B)

The above expression can also be transformed to the following equivalent expression, in

which the 	 and the �H operators are evaluated independently and joined using the

standard ./ operator. Each plan may have a very di�erent runtime, depending on the

size and pro�le of data in the tables Author and Book:

Plan 2: �A:Author((�dist�3(A:Author 	 f`Silversmith'g))
./AuthorID (�flag=true(B:Category �H f`History'g))) �

5.4 Relational Completeness of Mural

A formal system is said to be Relationally Complete [21] if it is at least as powerful as

relational algebra, or equivalently, if all relational algebra queries may be expressed in

the proposed system. In this section we show that Mural is relationally complete.

Lemma 5.1 [Mapping Lemma]: There exists a mapping scheme
Sch between aMural

schema and a standard relational schema.

Proof: Mural has all the datatypes of standard relational algebra, excepting the Text

datatype (which is replaced by the Uniform datatype). Hence, for all schema objects,

other than Text,
Sch is identity.
Sch between Uniform and text datatypes is de�ned

as follows: Given a n-tuple relation RMural (= fr1; r2; :::rng) in Mural speci�cation and

that ri is of Uniform datatype, RMural can be mapped onto an equivalent relation RRel in

standard relational algebra, where RRel is, ((RMural�ri)[(�(ri))) (that is, fr1; r2; :::ri�1;
riText ; riLangID ; :::; rng). The resulting R

0

Rel is a relation composed of (n + 1)-tuple of

standard relational datatypes. Similarly, a given a n-tuple relation SRel composed of

standard relational datatypes, may be converted into (n � 1)-tuple relation SMural in

Mural algebra, by composing Uniform datatype from two appropriate standard relational

Chapter 5. A Multilingual Operator Algebra 122

datatypes (say, si of type Text and sj of type ID) as, ((SRel � si � sj) [(�(si; sj))). In
the absence of the language identi�er, a new identi�er attribute may be created (with a

value of Null), yielding an n-tuple in Mural algebra. Thus, a relation in normal relational

algebra may be transformed with no loss of information into a relation in Mural, and

vice-versa. �
Theorem 5.2 [Relational Completeness Theorem]: There is a mapping scheme

that maps a relational algebra database D to aMural database
(D), such that, for every

query Q on D, there is a corresponding expression Q̂ such that Q̂(
(D)) =
(Q(D)).

Proof: For proving relational completeness, it is only necessary to show the existence

of mappings for all possible queries from standard database to the transformed database,

and not vice-versa. Mapping lemma de�nes and ensures that a mapping exists between

a Mural schema and a schema in standard algebra.

For normal datatype attributes and normal relational algebra operators, the
 is

identity, trivially. The new operators �;	;�H can be applied only on Uniform datatype;

hence, there is no need for de�ning
 for these operators. We only need to show that

a
 for normal Text manipulating operators applied on D has an equivalence in
(D).

Suppose Q is an expression (in conjunctive normal form) in standard relational algebra (=

q1^q2^:::^qn). Each qi is a disjunction of the form qi1_qi2_:::_qidi , where qij is a predicate
of the form (a R b), where R is one of the standard operators on standard relational

attributes, a and b. As discussed in Section 5.2.1, such operations, depending on whether

the text part or the ID part was used in Q, may be mapped to an expression Q̂ as,

((�auniText
(�(auni))) R (�bunitext

(�(buni)))) or ((�auniID
(�(auni))) R (�buniID

(�(buni)))),
where auni is �(auniText ; auniID) and buni is �(buniText; buniID).
Thus, the Mural algebra is relationally complete. �

A critically important outcome of the above result is that the existing systems, which

are relationally complete, may be extended relatively easily to handle multilingual data.

Only new multilingual datatype and operator functionality needs to be added. In Chap-

ter 6, our methodology to extend relational database management systems and the stan-

dard database query language SQL to encompass multilingual operators, is presented.

Chapter 5. A Multilingual Operator Algebra 123

5.5 Mural Query Optimization Strategies

In this section, some optimization opportunities a�orded by the Mural algebraic de�ni-

tions of multilingual operators, are presented.

5.5.1 Cost-based Optimization Strategies

For Cost-based optimization strategies, the following speci�c inputs are needed:

� Composition rules between operators

� Operator cost models

� Estimated output size of operators

The composition rules of the operators were discussed in Section 5.3. The cost

models and the estimated output sizes operators, are discussed in this section.

Operator Cost Analysis

Two variations of each of the operators are analysed in this section: Speci�cally, they

are, scan type, which is of the form <Attr> Oper <Const>, and join type, which is of

the form <Attr> Oper <Attr>. For a scan version of the operator, the RHS operand

is a constant and hence only a scan of the LHS table is costed. For a join version of

the operator, a combination of the basic nested-loops and hash type join procedure is

costed. Speci�cally, a nested-loops type join procedure is done, but with the LHS and

RHS values partitioned, so that the operators are invoked only on unique values pairs

of the operands4. For � operator, the phoneme strings are assumed to be materialized

and the indexes are assumed to be created on the materialized phoneme strings. All

edit-distance computations are assumed to be implemented using diagonal transition [96]

algorithm for its better complexity.

The notation to be used for de�ning the cost models are given in Table 5.2 and the

costs of operations { both the disk I/O operations and the algorithmic complexity in

4It should be noted here that the standard versions of sort-merge or hash join types cannot be used,
since the operators need to be invoked for every pair of unique LHS and RHS operand values.

Chapter 5. A Multilingual Operator Algebra 124

Symbol Represents

LHS (L) and RHS (R) Operands

RL, RR No. of Records in L, R
UL, UR No. of Unique Values of L, R
lL, lR Avg. length of Records in L, R
PL, PR No. of Pages in L, R
EL, ER No. of Pages for Exact Index in L, R
AL, AR No. of Pages for Approximate Index in L, R
IL, IR No. of keys per Index page
k 	 Error Tolerance (as a fraction in (0; 1])
� 	 Size of the Alphabet (= j�j)
RH No. of Records storing H (=jHj)
PH No. of Pages storing H
EH No. of Pages storing Index of H
f; h Average fan-out and height of H

Table 5.2: Symbols used in Mural Operator Cost Models

big-O notation { are given in Table 5.3.

Estimation of Output Size of Operators

In this subsection, heuristics to estimate the output size of the multilingual matching op-

erators, based on the the input sizes and other meta-information stored in the database,

are presented.

Estimation of Size of � Output: The output size of the � operator is similar

to that of a normal equality operator for Text datatype. Accurate estimations may

be obtained by maintaining histograms; An end-biased histogram [62] is employed for

estimation, as it is shown to be practical and near-optimal, for database estimation.

Estimation of Size of 	 Output: Estimation of matching in metric domain is

a known open problem. In our work, we employed a simple estimation technique based

on the practical and near-optimal end-biased histograms [62], as follows: The 10 most-

frequent values of the phonemic string attribute are stored, along with their frequencies,

explicitly in the histogram associated with that attribute. The selectivities based on

the approximate matching (with the user speci�ed threshold for the speci�c query) from

Chapter 5. A Multilingual Operator Algebra 125

Operator Remarks Algorithm Disk
Complexity I/O

scan-type Operations

� No Index RLlL PL
� Index logELILlL logEL

	 No Index RLlLk=
p
� PL

	 Approximate Index RLlLk
2=
p
� AL

�H No Index RL+RH(h+1) PH(h+1)
�H Index on H RL+logEH(h+1) logEH(h+1)

join-type Operations

� No Index RLRRlL 3(PL + PR)
� Index ULlogERIRlR EL + ER

	 No Index RLRRlLk=
p
� 3(PL + PR)

	 Approximate Index RLRRlLk
2=
p
� AL + AR

�H No Index RL +RR + RRRH(h+1) 3(PL+PR)+PH
�H Index on H RL +RR + RRlogEH(h+1) 3(PL+PR)+EH

Table 5.3: Mural Operator Cost Models

among these most frequent values are used as an approximation for the selectivity of the

entire query. For a scan query, the query string is compared (using the approximate

matching algorithmwith the user speci�ed threshold value) with the most frequent values

of the attribute, and for a join query, the most frequent values of each of the LHS and

the RHS operands are compared with each other; the resulting selectivity is used as the

selectivity of the 	 operator.

Estimation of Size of �H Output: The output size of �H operator is estimated

using the notation in Table 5.2, as follows: Given the average height of H is h, the

selectivity of scan predicate is given by (h+1)=jHj, and the selectivity of join predicate

is given by RL(h+ 1)=jHj. In the case where closures are pre-computed and stored, the

estimation accuracy may be improved further by using the exact values as, jTH(v)j =jHj
and RLjTH(v)j =jHj, respectively, where jTH(v)j is the size of the closure of v in H.

Chapter 5. A Multilingual Operator Algebra 126

5.5.2 Rule-based Optimization Strategies

In addition to the cost-based optimization given in the previous section, several rule-

based optimization heuristics may be applied to e�ectively reduce the cost of the query.

Some of the signi�cant heuristics are described below:

Reducing Input Size to 	 and �H : The selection and grouping operators are pushed

below 	 and �H, to reduce the size of the input to these expensive operators.

Sort Input to 	 and �H : Sorting the input values, though it incurs additional cost,

saves invocations of expensive 	 and �H operators. However, explicit sorting

may be avoided, by pushing 	 and �H above those operators that produce sorted

output, such as index-scan.

Partitioned Input Values : Partitioning of the input values could be used in re-

stricting the invocation of 	 and �H operators to only unique values. Hence all

structures that sort or partition data, such as the B+tree indexes, must be used.

Order 	 and �H, by decreasing selectivity : Highly selective operators, including

those among 	 and �H, must be pushed to the bottom of the execution tree, in

order to reduce the input size to the 	 and �H operators. In case of �H, the highly

selective operators must be pushed beyond the RHS branch of �H operator; for

example, 	 with small threshold parameter or �H with a RHS value deep in the

taxonomic tree, must be pushed down.

Use of Approximate Index Structures: The availability of approximate index struc-

tures may reduce the in-memory computations for the 	 operator, by only invoking

	 on a fraction of the table; however, they could very well increase the disk I/O

cost, due to the random access pattern that they direct. Hence, it should be used

only for small match thresholds (say, � 0:2). For higher match thresholds, a full

scan of the table may reduce the disk I/O cost.

Chapter 5. A Multilingual Operator Algebra 127

5.6 Related Research

To the best of our knowledge, an algebra for adding multilingual functionality, has not

been discussed earlier in database literature. While our implementation proposals in

Chapters 3 and 4 were motivated by the need to add multilingual functionality on un-

modi�ed relational database systems as they exist today, in this Chapter we proposed a

holistic approach to multilingual query processing, with a query algebra.

Our motivation and approach for a query algebra for multilingual query processing

parallels the domain-speci�c algebras that are available (such as PiQA[121] in Bioin-

formatics and TAX[64] in XML query processing). The Mural algebra would make the

query processing declarative and amenable for optimization by the relational optimizer.

For approximate matching algorithm techniques and cost models for implementing the

	 and �H operators, we leverage on the fertile research for string matching, presented

in [17, 63, 96, 97, 98]. Estimation of the output size for the � operator is based on

the end-serial histograms[61]. However, the estimation of the output for approximate

matching is a known open problem. An estimation technique presented in [16] is based

on an assumption that the selectivity of a short substring approximates the selectivity

of the whole string; such assumption, while applicable for text data in speci�c domains,

is not a valid assumption in the phonetic domains. In our implementation, we resorted

to a simple estimation technique paralleling the estimations in text space using end-

serial histograms, but with approximate matching of the most frequent values. A good

estimation technique in metric space, is still an open research problem.

Chapter 6

A Native Implementation

Experience

6.1 Overview of the Chapter

Di�erent integration strategies exist for adding new functionalities to the kernel of re-

lational database systems. In previous chapters, UDF-based and SQL-based approaches

were pursued for implementing MLNameJoin and MLSemJoin, primarily due to the fact

that the implementations were on unmodi�ed commercial database systems to demon-

strate the addition of these functionalities to existing systems. In this chapter, we present

our experience in native implementation of the functionalities on an open-source database

system, and subsequently demonstrate the optimization opportunities that such an im-

plementation a�ords.

6.2 Implementation Methodologies

The methodology to add a functionality to a database system may be classi�ed, as either

Outside-the-Server or Native, based on how tightly the functionality is integrated with

the server.

128

Chapter 6. A Native Implementation Experience 129

Outside-the-Server Implementation

An outside-the-server approach implements a new functionality, without any source mod-

i�cation to the existing servers. Usually, a functionality is added using UDFs or using

stored procedures in an appropriate programing environment supported by the system.

While such a methodology adds a functionality relatively easily to the existing systems,

it su�ers from signi�cant overheads in processing the UDF calls. Further, the queries

may not be optimized by the relational query optimizer, as no costing could be done

on the UDF calls. A relatively eÆcient variation in outside-the-server implementation is

to execute the UDF in an unfenced mode; that is, the UDF executes in the same server

address space. While the query execution is more eÆcient since the call overheads are

largely eliminated, selection of better execution plans may still not be possible due to

the lack of optimizer support. In addition, most commercial systems do not allow such

unfenced execution.

Native Implementation

The Native implementation makes a new functionality fully integrated with the database

system by making it a �rst class operator in the system. The functionality is at the

same level as other relational operators (such as, scan, sort etc.). While the execution is

eÆcient as it executes as a part of the server process, more importantly, the feature is part

of the operator algebra, enabling the query optimizer to generate alternate equivalent

plans and choose the best plan for execution. Costing of the plans require speci�c cost

models for the operator depending on the algorithm and the input operand sizes, and an

estimation model to predict the expected size of the output of this operator. Further,

only at this level of integration, any specialized index structures (speci�c to the new

operator) may be integrated with the query processing engine. As a result, this level

of integration is the hardest to achieve, but once achieved, provides the best results,

performance-wise, due to the e�ective and eÆcient execution of queries using the new

operator.

Chapter 6. A Native Implementation Experience 130

6.3 A Native Implementation Experience

In this section, we outline implementation of a multilingual query processing architecture

{ MIRA [76] { that integrates the multilingual functionalities natively to the PostgreSQL

open-source database system, along with the Mural algebra, as speci�ed in Chapter 5.

Performance experiments were conducted on this native implementation, and a base-

line outside-the-server implementation, to demonstrate and quantify the performance

improvement. Subsequently, the optimization opportunities that such a native imple-

mentation a�orded, are highlighted.

6.3.1 System Environment

The native implementation of the functionality was done on the PostgreSQL open-source

database system [103] (Version 7.3.4)1, on RedHat Linux (Version 2.4) operating system.

The implementation was installed and the performance of queries measured on a stand-

alone standard Intel Pentium IV workstation (2:3 GHz) with 1 GB main Memory. The

operator algorithms themselves were implemented in the C language and built into the

database server. In order to quantify the performance improvement speci�cally due to the

native implementation, baseline outside-the-server implementations of the two operators

were also done on PL/SQL environment. The PL/SQL environment was chosen, even

though more eÆcient PL/C was available in the PostgreSQL database system, primarily

in order to have a meaningful comparison parity with the commercial systems, where

only an interpreted PL/SQL or Java environment was available for adding UDFs.

6.3.2 Native 	 Operator Implementation

The 	 operator was implemented as a binary join operator, using the facility provided

by the PostgreSQL system to de�ne new operators. Since there is no facility to add a

tertiary operator in PostgreSQL system, the third parameter { match threshold { was

1We opted to implement MIRA on Version 7.3.4 of PostgreSQL database system, as the newer Version
8.0.1 was available only as a beta version at the time of our implementation.

Chapter 6. A Native Implementation Experience 131

implemented as a user settable session parameter. As a side e�ect, the value of this

parameter may be set globally by the administrators of the system depending on the

requirements of the domain. Further, default value for this parameter may be set and,

optionally, such defaults may even be made unmodi�able by the users. The 	 algorithm

in Figure 5.2 is modi�ed to take two operands from the operator speci�cation and the

threshold parameter from the session parameter setting. The algorithmwas implemented

in C language and built into database system. This approach allowed us to implement a

few optimization measures such as pre-allocation of space on the heap for the dynamic

programming algorithm for the entire query, instead of the default allocation on stack

for each invocation of the matching function, thus making the execution more eÆcient.

An open-source text-to-phoneme engine { Dhvani [30], was integrated with the sys-

tem, after modifying it to output the phonemic strings in the standard IPA alphabet.

From an eÆciency point of view, the phonemic strings corresponding to the multilin-

gual strings were materialized and stored persistently to avoid repeated conversions (as

happens during a join processing). A specialized index structure for metric spaces {

M -Tree [20] { was added using the GiST feature available in PostgreSQL system. The

materialized phoneme strings were indexed using this M-Tree index structure. The cost

models and the selectivity estimations of the 	 operator, as outlined in Table 5.3 and

Section 5.5.1, were added to the optimizer code. Finally, the 	 operator was added to

the command repertoire of the PostgreSQL database system, so user SQL queries may

use the 	 operator, natively.

6.3.3 Native �H Operator Implementation

The �H operator was added to PostgreSQL system, also as a binary join operator, using

the operator addition facility in the system. The multilingual semantic matching func-

tionality, as given in Figure 5.3, was implemented in C and built into the database system.

WordNet taxonomic hierarchies were stored in the database tables, but due to the high

cost involved in computing closures over the database tables, the hierarchy records were

read once and pinned in the main memory. We bene�ted by this optimization strategy

Chapter 6. A Native Implementation Experience 132

since the size of WordNet hierarchy is in the order of a few MB, and can �t easily in the

main memory, though this strategy may not work for very large H that may not �t in

the main memory. The in-progress closure set is materialized as a hash-table in the main

memory and used to prevent insertion of duplicate values during closure computation.

Further, once the closure is computed, the same hash-table is used for checking if the

LHS operand values are members of the closure (line 7 of the Algorithm in Figure 4.2).

To reduce potentially multiple closure computations on the same RHS operand value,

the hash-table is persistently maintained in the main memory for possible reuse. When

a closure is needed for an RHS operand value, the materialized hash table in the main-

memory is �rst checked to see if the closure is already available for the same RHS value.

Thus, a class of operators that need to process several LHS operand values for a given

RHS operand value, may amortize the cost of computing and materializing the closures.

An example for such e�ective reuse is the nested-loops join query using �H operator

with RHS operand table as the outer loop; this loop may reuse the closure computed

for an RHS operand value in the outer loop, for all of the LHS operand values in the

inner loop. Further optimization was achieved by sorting the RHS operand values and

computing the closure only for unique values. The cost model as given in Table 5.3 and

the selectivity estimation as given in Section 5.5.1, were added to the optimizer code.

Finally, the new �H operator was added to the command repertoire of the PostgreSQL

database system, so user SQL queries may use the �H operator, natively.

6.4 Performance of Native Implementation

In this section, we explore the performance of the native implementation of the multi-

lingual functionality on the PostgreSQL database system, and compare it with the cor-

responding baseline (i.e., outside-the-server) performance in the PL/SQL environment.

Chapter 6. A Native Implementation Experience 133

6.4.1 Performance of 	 Implementation

First, the baseline performance of the PL/SQL based implementation of the 	 operator

in the PostgreSQL database system was established, by running the 	 queries (scan and

join types) on the same dataset that was used for MLNameJoin experiments on the com-

mercial systems (as detailed in Section 2.2.2). In the baseline experiments, the standard

B+Tree index is used, with duplicated data as given in Section 3.7.3. After implementing

the 	 operator natively as detailed in Section 6.3.2, the same performance experiments

were repeated. For native implementation, an M-Tree index on the materialized phoneme

strings was used.

Table 6.1 provides the baseline and native performance of the 	 operator (with and

without appropriate indexes), in the PostgreSQL database system:

Query Type Scan-type Join-type
(Sec.) (Sec.)

Baseline No Index 3618 453
Implementation With B+Tree Index 498 169

Native No Index 5.20 1.97
Implementation With M-Tree Index 4.24 1.92

Table 6.1: Performance of 	 Operator

As can be seen, the baseline performance (�rst two lines in Table 6.1) is approximately

similar to that of the commercial systems. The main impediment to the performance is

the expensive UDF invocations. The native performance of the operator (last two lines

in Table 6.1) is about two orders of magnitude better, even over the indexed baseline

performance.

Surprisingly, the metric M -index, was not found to be very e�ective in improving

the performance. The scan operator was faster by about 20%, but the join operator was

hardly made any more eÆcient by the index. Such ine�ective performance is the result

of the metric index's low Search EÆciency (as presented in Section 3.5.3); metric index

structures with poor search eÆciency pose a major handicap for database processing,

Chapter 6. A Native Implementation Experience 134

and hence present a viable area for further research.

6.4.2 Performance of �H Implementation

Similarly, the basic �H operator was implemented as a UDF in the PL/SQL environment,

and a baseline performance is established, by running queries as speci�ed in Section 4.5.3.

After a native implementation of the �H operator, the same queries were run to establish

any improvements in performance. In both the cases the queries were repeated with a

B+Tree index on the parent attribute of the taxonomy table, to quantify the e�ect of

the index.

Figure 6.1 presents the performance of the baseline and the native implementation

of �H operator, on a suite of queries computing closure cardinalities of various sizes in

the WordNet taxonomic hierarchy. Note that the graph is shown in log-log scale.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

T
im

e
 (

S
ec

.)

Size of Closure

Performance of Closure Computation

Baseline (No Index)
Baseline (B+Tree Index)

Native (No Index)
Native (B+Tree Index)

Figure 6.1: Postgres Closure Performance

It is observed that the baseline no-index and index performance are similar to that

of System B (in Chapter 4), which was chosen for subsequent optimizations. Further,

in this baseline implementation, even the indexed performance is of the order of a few

seconds. Compared with the baseline performance of the �H operator, the performance

of the native implementation (without an index), was found to be about an order of

Chapter 6. A Native Implementation Experience 135

magnitude better. With index, the performance was more than two orders of magnitude

better, con�rming the expected eÆciency of the native implementation. In addition,

such performance with a few tens of milliseconds for a closure size of around 2; 000, is

suÆcient for practical deployments.

6.5 Optimizer Prediction Performance

In order to ascertain the the accuracy of the optimizer in predicting the query costs,

using the cost models and selectivity estimations that were presented in Sections 5.5.1

and 5.5.1, we used the following methodology: A set of 16 tables, with varying data

characteristics (such as, tuple count, attribute size, number of database blocks, etc.)

were created. A set of scan and join queries using our multilingual operators were run

on several combinations of the tables created as above. For each query, the optimizer

predicted cost and the actual runtime (in milliseconds) of the query were recorded,

to ascertain the correlation between the two measured metrics. Figure 6.2 plots the

predicted optimizer costs and the actual runtimes of the queries, which indicates a fairly

linear correlation between the metrics.

 1000

 10000

 100000

 10000 100000 1e+06 1e+07

T
im

e
 (

m
Se

c.
)

Optimizer Predicted Cost

Optimizer Predicted Cost vs Actual Time

Figure 6.2: Optimizer Prediction Performance

Chapter 6. A Native Implementation Experience 136

The computed correlation coeÆcient2 on the plot is about 0:92, indicating a well

correlated data set, implying reasonably accurate cost models and selectivity estimations.

Though there are some errors in computing large queries, these errors were found to be

in the same range as those for the queries with standard relational operators.

6.5.1 A Motivating Optimization Example

Next, we highlight the power of the Mural algebra and optimization strategies to distin-

guish between eÆcient and ineÆcient execution plans, with the following example:

Example 6.1: Assume a relational schema that has Author (A) table with AuthorID

and AName, Publisher (P) table with PublisherID and PName, and Book (B) table with

BookID and foreign keys to Author and Publisher. Now consider the query { Find the

books whose author's name sounds like that of a publisher's name (match threshold of 3).

For this query, both of the following expressions (also shown pictorially in Figure 6.3)

capture the query semantics:

Plan 1: �B:BookID

(�(Threshold�3)(A:AName;P:PName

(P, (A ./BookID B))))

Plan 2: �B:BookID(B ./BookID

(�(Threshold�3)(A:AName;P:PName(P;A))))

The tables Author, Book and Publisher were created along the lines of our examples

in the previous sections, with 100; 000, 1 Million and 1; 000 tuples, respectively. To

compare di�erent plans, we forced the optimizer to evaluate and run di�erent execution

plans for the same query on the same tables, by enabling or disabling di�erent optimizer

2The correlation coeÆcient (r) quanti�es the quality of the least squares �tting to a given pair of

metrics. The correlation coeÆcient between two metrics x and y is computed as,
q
S2
xy=SxxSyy, where

Sxy = �xy � n�x�y, Sxx = �x2 � n�x2 and Syy = �y2 � n�y2. A correlation coeÆcient value of 1 indicates
perfect correlation and a value of 0 indicates absence of any correlation between the metrics.

Chapter 6. A Native Implementation Experience 137

options. The optimizer predicted cost and the runtime of the execution of the query

(with di�erent execution plans) were recorded.

Plan − 1 πBookID

ΨAName,PName (Threshold:3)

Plan − 2 πBookID

Book

Materialize(BookID,...)

Materialize(PublisherID,Name)

Publisher

Author

ΨAName,PName (Threshold:3)

Author

Hash(AuthorID) Book

NL−Join(AuthorID)

NL−Join(AuthorID)
Publisher

Figure 6.3: Alternate Query Plans for Example 6:1

In the above example, the optimizer predicted cost and the runtime for Plan(1)

were 2; 439; 370 and 82 seconds, respectively. The corresponding �gures for Plan(2)

were 7; 513; 852 and 2338 seconds, respectively. Clearly, Plan(1) is superior (in terms

of runtime, an observation after execution) and was chosen (due to its lower apriori

predicted cost by the optimizer) for execution by the optimizer.

This example demonstrates the e�ectiveness of the query optimizer in selecting ef-

fective execution plans, as the runtime for Plan(2) is nearly 30 times that of Plan(1).

Further, the fact that di�erent query execution plans could be chosen, by changing the

pro�le of the data (such as, size of attributes, number of records, amount of duplication in

the table, etc.) in the underlying table, con�rms the ability of the optimizer to cost and

choose alternate plans in our native implementation of the multilingual functionalities

in the PostgreSQL database system. �

Chapter 6. A Native Implementation Experience 138

6.6 A Prototype Demonstration

A prototype implementation of the multilingual query processing architecture presented

in this thesis {MIRA { was demonstrated in the ACM SIGMOD International Conference

on Management of Data, in Paris, France, in 2004 [75].

Figure 6.4: A Prototype Implementation

The prototype was implemented following the outside-the-server methodology, to

demonstrate the multilingual querying capabilities outlined in this thesis. The func-

tionalities were implemented on Oracle 9i[100] Database Server, using PL/SQL environ-

ment. The user-interface was developed in Java [119] environment to facilitate multi-

lingual input and output, on Microsoft Windows 2000 Professional [86] platform. The

FreeTTS [43] English text-to-speech engine was integrated with the user-interface to

vocalize speci�c input and output strings.

Chapter 6. A Native Implementation Experience 139

A screen shot from the system is shown in Figure 6.4, that demonstrates the multi-

lingual names retrieval capabilities of the 	 operator, for an English input name \Sarah"

(Match Threshold 0:4 and Intracluster Substitution Cost 0:5), with the answers retrieved

in English, Tamil and Hindi.

6.7 Conclusions on Native Implementation

Our earlier implementations presented in Chapters 3 and 4 were meant to demonstrate

that the functionality proposed in this thesis may be implemented using existing features

of relational database systems. While such approaches have performance overheads, they

provide a viable solution to implement the functionality on commercial systems as they

exist today. In this chapter, we presented a native implementation of the multilingual

functionality as �rst class operators, on PostgreSQL open-source relational database sys-

tem. This implementation demonstrated nearly two orders of magnitude better perfor-

mance, over a baseline implementation that paralleled the approach taken in the earlier

chapters. Such improvement in performance suggests that it is worthwhile moving the

functionality natively in the commercial systems too, by the respective vendors.

The real signi�cance of the native implementation is its ability to leverage the re-

lational query optimizer to generate alternate query execution plans and choose the

most e�ective plan for a given query. The ability of the optimizer to choose an e�ec-

tive plan, based on the Mural operator algebra, cost-models and operator selectivities

that are integrated with the PostgreSQL database system, was highlighted in this native

implementation.

Chapter 7

Conclusions and Future Research

Avenues

7.1 Conclusions

In this thesis, we motivated the need for seamless multilingual processing of text data

in relational database systems { the backbone for most global e-Commerce and e-

Governance portals that need to manage text data in multiple languages, simultane-

ously. A survey of popular relational systems indicates that the multilingual support of

the systems is limited and that the query performance is highly inequitous between lan-

guages based on the Latin script and those using alternative scripts. Further, crosslingual

queries that combine information across database columns in di�erent languages are not

supported.

First, we calibrated the performance of a suite of relational database systems in

handling multilingual data, using a multilingual environment based on popular TPC

benchmarks. The results indicated a signi�cant performance degradation while handling

multilingual data. While the di�erential performance was huge when disk traÆc was a

factor, it was substantial even when only in-memory processing was considered. To alle-

viate these problems, we proposed a split representation format, Cuniform, which reduced

the space needed for storing multilingual data. The experimental results with Cuniform

140

Chapter 7. Conclusions and Future Research Avenues 141

showed that it largely eliminated the di�erential performance for most languages, except

those with unusually large repertoires.

Next, we proposed extending the standard database lexicographic matching seman-

tics for processing of multilingual text data, with motivating examples. Two speci�c

multilingual join operators were proposed, based on commonly available linguistic re-

sources. We proposed the MLNameJoin operator for matching multilingual names that

may be in di�erent languages and scripts, adding a join functionality that was not pos-

sible in lexicographic space. We proposed implementation of MLNameJoin operator by

transforming the matches in the multilingual text space into matches in an equivalent

phoneme space, after converting the multilingual strings to their equivalent phoneme

strings in a canonical format. Approximate matching techniques were employed for

matching these phoneme strings, due to the inherently fuzzy nature of the phoneme

space. We demonstrated that we could simultaneously achieve good recall and precision

by appropriate settings of the tunable match parameters. Further, while the basic per-

formance of MLNameJoin on a commercial database system using user-de�ned functions

was very ineÆcient, we showed that the performance could be improved substantially, to

a level acceptable for practical implementations, by using q-gram or phonetic indexing

techniques.

We also proposed the MLSemJoin operator to match multilingual categorical at-

tributes across languages, as well as to match categories to their subclasses in a tax-

onomical hierarchy. To implement the MLSemJoin operator, we leveraged the Word-

Net linguistic resources that de�ne rich semantic relationships between the semantic

primitives of a language. A performance evaluation of MLSemJoin, implemented using

standard SQL on a commercial database system, indicated unacceptably slow response

times, due to the computation of transitive closure, a necessary feature for implementing

the MLSemJoin operator. However, by tuning the schema and index choices to match

typical features of linguistic taxonomies, we demonstrated that the performance can be

improved to a level commensurate with on-line user interaction.

Chapter 7. Conclusions and Future Research Avenues 142

For a full integration of multilingual functionality with the database engine, we speci-

�ed a query algebra, Mural, with a new multilingual storage datatype and the above join

operators. The operators were implemented as �rst-class features in the PostgreSQL

open-source database system, along with all components that were required to leverage

the relational query optimizer, speci�cally, the operator cost models and their selectivi-

ties. The experiments demonstrated that this native implementation of the multilingual

operators improved the performance signi�cantly over the outside-the-server implemen-

tation. Further, the power of the algebra was demonstrated through selection of better

execution plans for queries using the multilingual operators.

In summary, this thesis presented a multilingual query processing architecture with

a comprehensive set of functionalities, algorithms, implementation and optimization

techniques, all geared towards achieving the goal of developing natural-language-neutral

database engines.

7.1.1 Practical Solutions from the Thesis

This thesis proposes novel multilingual query processing semantics, along with the imple-

mentation and optimization strategies to realize them in current database management

systems. While some of the advanced features require a native implementation, most of

the query processing semantics may be realized on o�-the-shelf commercial and open-

source database management systems, and used for multilingual query processing, even

today. In this section, we outline those functionalities that may be realized and their

implications on query processing functionality and eÆciency.

MLNameJoin Operator This operator may be added as an outside-the-server SQL callable

function in all existing database management systems. Though the functionality

may thus be added easily, it may su�er from large function call overheads. The

query runtime may be improved by using the standard B+ index on the Q-Grams of

the materialized phoneme strings corresponding to the multilingual data. In addi-

tion, in open-source database systems, the overheads may be reduced signi�cantly

Chapter 7. Conclusions and Future Research Avenues 143

by making the function execute within the server space. However, a native imple-

mentation is required to leverage the relational query optimizer, in order to ensure

e�ective and eÆcient execution of complex queries that employ the MLNameJoin

operator.

MLSemJoin Operator This operator may be implemented by storing the taxonomical

hierarchy in a table and computing the transitive closure of its nodes in a subquery.

As detailed in Chapter 4, the closure computation is ineÆcient in relational sys-

tems and results in heavy runtime overheads. However, such an approach is still

practical, if the taxonomic hierarchy is small; in such cases, the closures of all ele-

ments may be pre-computed and stored explicitly to improve the runtime eÆciency.

For large taxonomic hierarchies, re-organization of storage is necessary to make the

query performance acceptable for practical use. In all these cases, the MLNameJoin

operator needs to be implemented as a callable function, and may therefore not

leverage the optimizer for e�ective execution. A native implementation is necessary

for leveraging the query optimizer.

Cuniform Datatype The Cuniform datatype may be implemented on existing database

management systems as an object that has a pair of attributes as its private mem-

bers. Query processing based on these two attributes will result in a performance

pro�le similar to that presented in Chapter 2. However, since the input and output

of the system require strings to be in the Unicode format, and the internal process-

ing will be in the Cuniform format, eÆcient transcoding between the two formats

must be added to the input/output layer of the query processing system.

MURAL Algebra and Optimizer Support Of the strategies proposed in this thesis,

adding the Mural query algebra is the critical element in making the database sys-

tem natively multilingual. While adding the functionalities is possible and may

even be made eÆcient, there can be no assurance that the runtime is the best pos-

sible for a given query and for a given state of the database. Addition of the Mural

algebra with its necessary components requires substantial modi�cations to the

Chapter 7. Conclusions and Future Research Avenues 144

optimizer code, and hence can be done only by the respective commercial database

system vendors. While we have demonstrated the power of the Mural algebra in

the open-source PostgreSQL database system, we hope that other database system

vendors may add similar native multilingual support to their systems, in the future.

7.2 Future Research Avenues

The following are some of the future research areas, extending the ideas presented in this

thesis, which could be pursued in the future.

Approximate Indexes for EÆcient Searches

Though several approximate index structures o�er search capability on a data set,

all of them su�er from low search eÆciency. The search eÆciency is an indicator of the

e�ectiveness of the index in narrowing down the search, as explained in Section 3.5.3.

For example, a query with a user match threshold of 0:5 returned about 75% of the

strings in the database as candidate matches, while less than 1% of the database are real

matches. Hence, better techniques to improve the e�ectiveness of an index in narrowing

the search must be found. Better partitioning and clustering techniques in the Metric

space may be explored, for building approximate indexes with better search eÆciencies.

Automatic Tuning of Phonetic Match Quality

In MLNameJoin operator, the parameter settings for the best match quality clearly

depend on the application domain. From the research point of view, the match quality

is strongly inuenced by the phoneme set of the languages being considered and the

contents of the database. The determination of optimal match parameters as a function

of the above two may be automated based on user-supplied, pre-tagged training dataset.

Further, domain-speci�c datasets may be used for greatly improving the accuracy, and

thereby the usability, of the matching operator.

Domain-Speci�c Ontologies

Chapter 7. Conclusions and Future Research Avenues 145

While our proposed MLSemJoin operator used WordNet taxonomic hierarchies for

semantic matching, the same methodology may be applied to speci�c domains with well-

de�ned ontological hierarchies. The domain-speci�c ontologies may be expected to be

faster and more precise, due to their compact nature and due to their high resolution

power. Experiments with smaller and more precise domain speci�c ontologies and par-

ticipation on evaluation of result quality by the domain experts, may underscore the

utility of the MLSemJoin operator.

Multilingual Glyphic Matching

With the advent of Internet naming convention that makes use of Unicode characters

(rather than the traditionalASCII characters), it is now possible that two URL strings may

look the same, though spelt with characters from di�erent character sets. For example,

an exact look-alike URL string of the popular search engine, http://www.google.com may

be constructed with a combination of characters from English and other languages (by

replacing the LATIN CHARACTER SMALL O in google withMALAYALAM LETTER TTHA

or TIBETAN DIGIT ZERO), as http://www.g00gle.com, misleading users who are more

prone to click a hyperlink, than to type out the URL. The need for �nding such look-alike

and sound-alike character strings [78] (though in the monolingual domains) is important

in the pharmaceutical industry, for detecting trademark violations and for preventing

potentially dangerous medical situations.

Multilingual Performance Suites

The multilingual performance tests presented in this thesis were based on the standard

TPC benchmark suites that are used for calibrating the performance of database systems

for OLAP applications. A real-life multilingual application, with a well de�ned data set,

query set and hand-tagged or hand-veri�ed answer set, may provide a more intuitive

framework for comparing the quality and performance of multilingual systems. It would

be useful for the research community to identify such a comprehensive application and

design a comprehensive and scalable performance suites, for comparing di�erent database

management systems, for multilingual deployments.

Appendix A

Character Encoding Standards

In this appendix, we review basic concepts and standards for representing and encoding

multilingual data.

A Character is the smallest component of a written language that has a semantic

value. The set of all the characters in a language is called a Repertoire. A Character

Encoding assigns a unique value to each of the characters in a repertoire. There are

several well-known encodings, such as ISO:8859 [57] (based on ASCII), UCS-2 [58] and

Unicode [125], that form the basis for storage and interchange of text data among infor-

mation processing systems. Regional encodings, such as ISCII [12] for Indic languages,

also exist, catering to speci�c regional requirements. While ISO:8859 based character

sets are the most widely used currently, Unicode is becoming a de-facto standard for

global interchange of information.

A.1 Unicode

Unicode [125] is a uniform 2-byte encoding standard that allows storage of characters

from any known alphabet or ideographic system irrespective of platform or programming

environments. Unicode is closely aligned to the ISO:10646 [58] standard, called Universal

Character Set (UCS). The Unicode codes are arranged in Character Blocks, which encode

contiguously the characters of a given Script, typically but not always, characters in a

146

Appendix A. Character Encoding Standards 147

single repertoire. Unicode has speci�ed 3 di�erent byte encodings, called Unicode Transfer

Format (UTF), speci�cally as UTF-8, UTF-16 and UTF-32, to store the same character

codes in a byte, word or double-word formats. While UTF-16 speci�es the basic 2-byte

representation similar to UCS-2, UTF-8 provides a variable length encoding that preserves

the encoding of the ISO:8859 based character sets (1-byte per character), while using 2,

3 or 4 bytes for other character sets. Such preference for ISO:8859 is primarily due to

the existence of large legacy data. Each of these encodings are equivalent and can be

transformed into the others by simple, fast bit-wise operations. A vendor is free to choose

from any of the above three encodings to be fully compliant with Unicode [124].

Figure A.1: Sample Encoding in Various Formats

Figure A.1 shows some sample strings in three di�erent scripts (Latin script for En-

glish, Indic script for Tamil, and CJK { standing for Chinese, Japanese and Korean {

script for Kanji). Each string is shown in UTF-16 and UTF-8 encodings. The English

string that needs 1 byte/character in ASCII needs double the space in UTF-16 but pre-

serves the ASCII encoding in UTF-8. Indic and CJK scripts are coded in 2 bytes in the

UTF-16 encoding, but need 3 bytes in the UTF-8 encoding. Speci�cally, the storage for

Indic characters doubles in UTF-16 and triples in UTF-8, from their proprietary ISCII

encoding, in which each Indic character is encoded in one byte. It should be noted here

that due to the large repertoire size of CJK languages, any proprietary encoding of these

languages would need a minimum of 2 bytes per character, equal to the storage needed

under Unicode.

Appendix B

Phonology and Phonemes Encoding

Standards

In this appendix, we review basics on phonology and phonemes for representing the

vocalization of text, that are needed to implement our multilingual names matching

methodology.

B.1 Phonology and Phonemes

Phonology is the study of sound structure related to speech, conforming to the grammar

of a language. Each human language usually has between 20 to 40 abstract linguistic

units, called Phonemes, that provide an alphabet of sounds to describe the articulation

of the words in that language. A Phone is the physical sound produced conforming to a

phoneme. Since the phone is produced by the vocal tracks of individuals, there are in�nite

variations of phones (called Allophones) that are possible based on speaker's individual,

cultural and environmental factors. However, they are identi�ed with a speci�c phoneme

using common aural signatures. Fundamentally, phonemes are to speech, what characters

are to written text.

Phonemes are grouped together in syllables, which are in turn grouped together in

words of a language. Not all possible orders of phonemes are allowed, much as not

148

Appendix B. Phonology and Phonemes Encoding Standards 149

all possible sequences of characters are allowed in the written text. However, there is

no simple, one-to-one mapping between characters of a language to phonemes, as the

vocalization of the characters depend on context of the character within the word, or

even words around it. Such rules of the mapping of a group of characters to a group of

phonemes are extensively researched in Linguistics and Speech Processing communities.

While such transformation rules are outside the scope of this thesis, they are coded in

standard implementations of Text-to-Speech/Text-to-Phoneme (TTS/TTP) systems of a

language.

B.2 International Phonetic Alphabet

International Phonetic Association (IPA) [60] is one of the popular standards for de-

scribing phonemes of any given language1. The phonetic alphabet of IPA is capable of

representing the full range of vocalizations primitives, irrespective of languages. Popu-

lar linguistic resources, such as Oxford English Dictionary [101], de�ne and publish the

phonemic equivalent of nouns in IPA alphabets and standard TTP systems can generate

a phonetically equivalent IPA string for a given character string of that language. Some

TTP engines generate phonemes in one of the other phoneme standards and not in IPA;

in all cases, such phoneme strings may be mapped IPA strings, using linguistic rules.

The IPA alphabets are described by a combination of the basic Latin character set

and characters from a speci�c IPA block in the Unicode[125] encoding scheme. Hence,

phonetic representation of character strings in any language may be stored and manip-

ulated as Unicode strings in IPA character set. Further, since Unicode is supported in

all database systems as the default encoding scheme for multilingual text, it provides a

transparent mechanism for storing phoneme strings as well. That is, IPA strings may be

stored and manipulated as NChar data, in the standard database systems.

1There are other standards available for coding the phonemes but they are usually restricted in
their coverage of phonemes, since they are designed either for a speci�c language or a group of related
languages. Examples for such standards are, Arpabet [67] that is designed speci�cally for American
English and ITrans [122] designed for a subset of Indic languages.

Bibliography

[1] aAQUA Project. http://aaqua.persistent.co.in/mvnforum/mvnforum/index

[2] The Aberdeen Group Ltd. http://www.aberdeen.com

[3] R. Agrawal and H. V. Jagadish. Direct algorithms for computing Transitive Closure

of DB Relations. Proc. of the 13th Intl. Conf. on Very Large Data Bases (VLDB),

1987.

[4] M. Andersson, Y. Dupont, S. Spaccapietra, K. Yetongnon, M. Tresch and H. Ye.

FEMUS: A Federated Multilingual Database System. Advanced Database Systems,

Springer-Verlag, 1993.

[5] The Association for Computational Linguistics. http://www.aclweb.org

[6] S. Atkin and R. Stansifer. Unicode Text Compression. Proc. of the 22nd Intl. Unicode

Conf., 2002.

[7] R. Baeza-Yates and G. Navarro. Faster Approximate String Matching. Algorithmica,

23(2), 1999.

[8] C. Bell. Customer Experience @ Amazon.com. Keynote Address at the SIGMOD

Intl. Conf. on Mgmt. of Data, 2002.

[9] Bhoomi: Computerized Land Records System. http://www.revdept-01.kar.nic.in

[10] P. A. Boncz, A. N. Wilschut and M. L. Kersten. Flattening an Object Algebra to

Provide Performance. Proc. of the 14th IEEE Intl. Conf. on Data Engg., 1998.

150

BIBLIOGRAPHY 151

[11] The British National Corpus. http://www.comp.lancs.ac.uk

Oxford University Press, Oxford, UK, 2001.

[12] Bureau of Indian Standards. IS 13194:1991 8{bit Coded Character Set for Informa-

tion Interchange. 1991.

[13] W. A. Burkhard and R. M. Keller. Some Approaches to Best-match File Searching.

Comm. of the ACM, 16(4), 1973.

[14] M. J. Carey, D. J. DeWitt, J. F. Naughton, M. Asgarian, P. Brown, J. E. Gehrke

and D. N. Shah. The BUCKY Object-Relational Benchmark. Proc. of the ACM

SIGMOD Intl. Conf. on Mgmt. of Data, 1997.

[15] Centre for Indian Language Technology, IIT-Bombay. http://www.c�lt.iitb.ac.in

[16] S. Chaudhuri, V. Ganti and L. Gravano. Selectivity Estimation for String Predicates:

Overcoming the Underestimation Problem. Proc. of the 20th IEEE Intl. Conf. on

Data Engg., 2004.

[17] E. Chavez, G. Navarro, R. Baeza-Yates and J. Marroquin. Searching in Metric

Space. ACM Computing Surveys, 33(3), 2001.

[18] H. Chen, C. Lin and W. Lin. Building a Chinese-English WordNet for Translingual

Applications. ACM Trans. on Asian Languages Information Processing, 1(2), 2002.

[19] K. S. Choi and H. S. Bae. Procedures and Problems in Building a Korean-Chinese-

Japanese WordNet with Shared Semantic Hierarchy. Proc. of the 2nd Global WordNet

Conf. 2004.

[20] P. Ciaccia, M. Patella and P. Zezula. M-Tree: An EÆcient Access Method for

Similarity Search in Metric Spaces. Proc. of the 23rd Intl. Conf. on Very Large Data

Bases (VLDB), 1997.

[21] E. Codd. Relational Completeness of Data Base Sublanguages. in Database Systems,

Prentice-Hall, Englewood Cli�s, New Jersey, 1972.

BIBLIOGRAPHY 152

[22] W. Cohen, P. Ravikumar and S. E. Fienberg. A Comparison of String Distance Met-

rics for Name-Matching Tasks. Proc. of the IJCAI-2003 Workshop on Information

Integration on the Workshop (IIWeb-03), 2003.

[23] W. Cohen, P. Ravikumar and S. E. Fienberg. A Comparison of String Metrics for

Matching Names and Records. Proc. of the Workshop on Data Cleaning in Conjunc-

tion with SIGKDD, 2003.

[24] The Computer Scope Ltd., Dublin, Ireland. http://www.NUA.ie/Surveys

[25] S. Das, E. I. Chong, G. Eadon, J. Srinivasan Supporting Ontology-based Seman-

tic Matching in RDBMS. Proc. of the 30th Intl. Conf. on Very Large Data Bases

(VLDB), 2004.

[26] M. Davis. Unicode collation algorithm. Unicode Consortium Technical Report, 2001.

[27] S. Deerwester, S. T. Dumais and W. C. Ogden. Indexing by Latent Semantic

Analysis. Jour. of American Soc. of Information Sciences, 41(6), 1990.

[28] A. Deutsch, M. Fernandez and D. Siciu. Storing Semistructured Data with

STORED. Proc. of the ACM SIGMOD Intl. Conf. on Mgmt. of Data, 1999.

[29] Dewey Decimal Classi�cation System. http://www.oclc.org

[30] Dhvani - A Text-to-Speech System for Indian Languages.

http://dhvani.sourceforge.net

[31] The Dublin Core Metadata Initiative. http://www.dublincore.org

[32] K. Erikson. Approximate Swedish Name Matching - Survey and Test of Di�er-

ent Algorithms. Technical Report TRITA-NA-E9721, Royal Institute of Technology,

Stockholm, Sweden, 1997.

[33] The EROS System. http://merovingio.c2rmf.cnrs.fr/eros/eros.xhtml

[34] The Europe Portal. http://europe.eu.int

BIBLIOGRAPHY 153

[35] The EuroSeek Corporation. http://www.euroseek.com

[36] The Euro-Spider. http://www.eurospider.ch

[37] The Euro-WordNet. http://www.illc.uva.nl/EuroWordNet

[38] The Euro-WordNet { Final Results Report.

http://www.illc.uva.nl/EWN/�nalresults-ewn.html

[39] C. Fellbaum and G. A. Miller. WordNet: An electronic lexical database (language,

speech and communication). MIT Press, Cambridge, Massachusetts, 1998.

[40] P. Fenwick and S. Brierley. Compression of Unicode Files. Proc. of the Data Com-

pression Conf., 1998.

[41] C. Fluhr, D. Schmit, F. Elkateb and K. Gurtner. Multilingual Database and

Crosslingual Interrogation in a Real Internet Application. Proc. of the AAAI Sym.

on Crosslanguage Text and Speech Retrieval, 1997.

[42] The Foreign Word { The Language Site, http://www.ForeignWord.com

[43] FreeTTS Speech Synthesis System. http://freetts.sourceforge.net and

http://research.sun.com

[44] T. N. Gadd. PHONIX: The Algorithm. Program, 24(4), October 1990.

[45] The Gene Ontology. http://www.geneontology.org

[46] F. Gey, A. Chen, M. Buckland and R. Larson. Translingual Vocabulary Mapping for

Multilingual Information Access. Proc. of the 25th ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2002.

[47] J. Gilarranz, J. Gonzalo and F. Verdejo. An Approach to Conceptual Text Retrieval

using the Euro-WordNet Multilingual Semantic Database. Proc. of the AAAI Conf.

on Crosslanguage Text and Speech Retrieval, 1997.

[48] The Global Reach. http://www.globalreach.biz

BIBLIOGRAPHY 154

[49] The Global WordNet Association. http://www.globalwordnet.org

[50] The Google Corporation. http://www.google.com

[51] Income Tax Department, Ministry of Finance, Government of India.

http://www.incometaxindia.gov.in

[52] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan and

D. Srivastava. Approximate String Joins in a Database (almost) for Free. Proc. of

the 27th Intl. Conf. on Very Large Data Bases (VLDB), 2001.

[53] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text Joins in an RDBMS

for Web Data Integration. Proc. of the World-Wide Web (WWW) Conf., 2003.

[54] D. Gus�eld. Algorithms on Strings, Trees and Sequences. Cambridge University

Press, Cambridge, United Kingdom, 2001.

[55] J. Han, H. Lu. Some Performance Results on Recursive Query Processing in Rela-

tional Database Systems. Proc. of the 2nd IEEE Intl. Conf. on Data Engg., 1986.

[56] IBM Corporation, Armonk, New York. http://www.ibm.com

[57] International Organization for Standardization. ISO/IEC 8859 Information Pro-

cessing { 8-bit Single-byte Graphic Coded Character Sets. 1999.

[58] International Organization for Standardization. ISO/IEC 10646-1:1993, Universal

Multiple-Octet Coded Character Set (UCS). 1993.

[59] International Organization for Standardization. ISO/IEC 9075-1-5:1999, Informa-

tion Technology { Database Languages { SQL (parts 1 through 5). 1999.

[60] International Phonetic Association. Univ. of Glasgow, Glasgow, UK.

http://www.arts.gla.ac.uk/IPA/ipa.html

[61] Y. Ioannidis. Universality of Serial Histograms. Proc. of the 19th Intl. Conf. on

Very Large Data Bases (VLDB), 1993.

BIBLIOGRAPHY 155

[62] Y. Ioannidis and V. Poosala. Histogram-based Solutions to Diverse Database Esti-

mation Problems. IEEE Data Engineering, 18(3), 1995.

[63] Y. Ioannidis. On the Computation of Transitive Closure of Relational Operators.

Proc. of the 12th Intl. Conf. on Very Large Data Bases (VLDB), 1986.

[64] H. V. Jagadish, L. Lakshmanan, D. Srivastava and K. Thompson. TAX: A Tree

Algebra for XML. Proc. of the DBPL Conf., 2001.

[65] B. D. Jayaram and P. Bhattacharyya. Report on Indo-WordNet Workshop. Central

Institute of Indian Languages, January 1999.

[66] L. Jin, C. Li and S. Mehrotra. EÆcient Record Linkage in Large Data Sets. Proc.

of the 8th Intl. Conf. on Database Systems for Advanced Applications (DASFAA),

2003.

[67] D. Jurafskey and J. Martin. Speech and Language Processing. Pearson Education,

New Delhi, India, 2000.

[68] S. Kagathara, M. Deodalkar and P. Bhattacharyya. A Multistage Fall-back Search

Strategy for Cross Lingual Information Retrieval. Proc. of the Sym. on Indian Mor-

phology, Phonology and Language Engineering, 2005.

[69] I. Kalantari and G. McDonald. A Data Structure and Algorithm for the Nearest

Point Problem. IEEE Trans. on Software Engineering, 9(5), 1983.

[70] E. Keogh. Exact Indexing of Dynamic Time Warping. Proc. of the 28th Intl. Conf.

on Very Large Data Bases (VLDB), 2002.

[71] R. King and A. Morfeq. Bayan: An Arabic Text Database Management System.

Proc. of the ACM SIGMOD Intl. Conf. on Mgmt. of Data, 1990.

[72] D. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms.

Addison-Wesley, Reading, Massachusetts, 1968.

BIBLIOGRAPHY 156

[73] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley, Reading, Massachusetts, 1973.

[74] G. Kondrak. A New Algorithm for the Alignment of Phonetic Sequences. Proc. of the

1st Meeting of North American Chapter of Association of Computational Linguistics,

2000.

[75] A. Kumaran and J. R. Haritsa. LexEQUAL: Multilexical Matching Operator in

SQL. Proc. of the ACM SIGMOD Intl. Conf. on Mgmt. of Data, 2004.

[76] A. Kumaran. MIRA: Multilingual Information-processing on Relational Architec-

ture. Spinger's Lecture Notes in Computer Science (Volume: 3268), November 2004.

[77] A. J. Lait and B. Randell. An Assessment of Name Matching Algorithms. Technical

Report, Department of Computing Sciences, University of NewCastle upon Tyne,

1993.

[78] B. Lambert, K. Chang and S. Lin. Descriptive analysis of the drug name lexicon.

Drug Information Journal, 35(1), 2001.

[79] M. Liberman and K. Church. Text Analysis and Word Pronunciation in TTS Syn-

thesis. Advances in Speech Processing, 1992.

[80] W. Lin and H. Chen. Backward Machine Transliteration by Learning Phonetic

Similarity. Proc. of the 6th Conf. on Natural Language Learning, 2002.

[81] C. Lu and K. Lee. A Multilingual Database Management System for Ideographic

Languages. Chinese University of Hong Kong Technical Report, 1992.

[82] P. Mareuil, C. Corredor-Ardoy and M. Adda-Decker. Multilingual Automatic

Phoneme Clustering. Proc. of the 14th Intl. Congress of Phonetic Sciences, 1999.

[83] J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide.

Morgan Kaufmann, San Francisco, California, 1993.

BIBLIOGRAPHY 157

[84] J. Melton and A. R. Simon. SQL 1999: Understanding Relational Language Com-

ponents. Morgan Kaufmann, San Francisco, California, 2001.

[85] E. Mena, V. Kashyap, A. Illarramendi and A. Sheth. Domain Speci�c Ontologies

for Semantic Information Brokering on Global Information Infrastructure, 1998.

[86] Microsoft Corporation, Redmond, Washington. http://www.microsoft.com

[87] G. A. Miller. WordNet: A Lexical Database. Comm. of the ACM, 38(11), 1995.

[88] G. A. Miller. Nouns in WordNet: A Lexical Inheritance System. Princeton Univer-

sity, Princeton, New Jersey, 1993.

[89] The MIRA Project. http://dsl.serc.iisc.ernet.in/ projects/MIRA

[90] The Monet DB. http://monetdb.cwi.nl

[91] A. Monge and C. Elkan. The Field-matching problem: Algorithms and Applications,

Proc. of the 2nd Intl. Conf. on Knowledge Discovery and Data Mining, 1996.

[92] M. Mudawwar. Multicode: A Multilingual Text Encoding. IEEE Computer Maga-

zine, April 1997.

[93] A. Mujoo, M. Kumar. Malviya, R. Moona, T. V. Prabhakar. A Search Engine for

Indian Languages. Proc. of the 1st Intl. Conf. on Electronic Commerce and Web

Technologies (EC-Web 2000), 2000.

[94] MySQL AB, Uppsala, Sweden. http://www.mysql.com

[95] D. Narayan, D. Chakrabarty, P. Pande and P. Bhattacharyya. Experience in Build-

ing the Indo WordNet - A WordNet for Hindi. Intl. Conf. on Global WordNet (GWC),

2002.

[96] G. Navarro. A Guided Tour to Approximate String Matching. ACM Computing

Surveys, 33(1), 2001.

BIBLIOGRAPHY 158

[97] G. Navarro, E. Sutinen, J. Tanninen, J. Tarhio. Indexing Text with Approximate

q-grams. Proc. of the 11th Combinatorial Pattern Matching Conf., 2000.

[98] G. Navarro, R. Baeza-Yates, E. Sutinen and J. Tarhio. Indexing Methods for Ap-

proximate String Matching. IEEE Data Engg. Bulletin, 24(4), 2001.

[99] The OntoWeb. http://ontoweb.aifb.uni-karlsruhe.de

[100] Oracle Corporation, Redwood Shores, California. http://www.oracle.com

[101] The Oxford English Dictionary. Oxford University Press, Oxford, UK, 1999.

[102] U. Pfeifer, T. Poersch and N. Fuhr. Searching Proper Names in Databases. Proc.

of the Conf. Hypertext-Information Retrieval-Multimedia, 1995.

[103] PostgreSQL Database Systems, Berkeley, California. http://www.postgresql.com

[104] L. Rabiner and B. Juang. Fundamentals of Speech Processing. Prentice Hall,

Englewood Cli�s, New Jersey, 1993.

[105] Agro Explorer System. http://agro.mlasia.iitb.ac.in

[106] M. Surve, S. Singh, S. Kagathara, K. Venkatasivaramasastry, S. Dubey, G. Rane,

J. Saraswati, S. Badodekar, A. Iyer, A. Almeida, R. Nikam, C. G. Pere, P. Bhat-

tacharyya. AgroExplorer: A Meaning Based Multilingual Search Engine. Intl. Conf.

on Digital Libraries, 2004.

[107] R. Richardson and A. F. Smeaton. Using WordNet in a Knowledge-based Approach

to Information Retrieval. Working Paper CA-0395, Dublin City University, 1999.

[108] M. Scherer and M. Davis. BOCU-1: Mime Compatible Unicode Compression.

Unicode Notes #6 of Unicode Consortium, 2002.

[109] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price.

Access Path Selection in a Relational Database Management System. Proc. of the

ACM SIGMOD Intl. Conf. on Mgmt. of Data, 1979.

BIBLIOGRAPHY 159

[110] R. Schenkel, A. Theobald and G. Weikum. HOPI: An EÆcient Connection In-

dex for Complex XML Document Collection. Proc. of 9th Intl. Conf. on Extending

Database Technology, , 2004.

[111] P. H. Sellers. On the Theory and Computation of Evolutionary Distances. SIAM

Jour. of Applied Math., 26(4), 1974.

[112] P. H. Sellers. The Theory and Computation of Evolutionary Distances: Pattern

Recognition. Jour. of Algorithms, 1(4), 1980.

[113] Semantic Web. http://www.w3.org/2001/sw

[114] M. Sinha, M. Kumar, P. Pande, L. Kashyap and P. Bhattacharyya. Hindi Word

Sense Disambiguation. Proc. of the Intl. Sym. on Machine Translation, Natural

Language Processing and Translation Support Systems, 2004.

[115] D. Soergel. Multilingual Thesauri in Cross-language Text and Speech Retrieval.

Proc. of the AAAI Sym. on Crosslanguage Text and Speech Retrieval, 1997.

[116] Special Interest Group in Information Retrieval (ACM SIGIR).

http://www.acm.org/sigir

[117] S. Sriram. A Report on Transliteration and Crosslingual Search. Birla Institute of

Technology and Science, 2004.

[118] S. Sriram, P. P. Talukdar, S. Badaskar, K. Bali and A. G. Ramakrishnan. Phonetic

Distance Based Crosslingual Search. Proc. of the Intl. Conf. on Natural Language

Processing, 2004.

[119] Sun Microsystems Corporation. http://www.sun.com

[120] Sybase Corporation. http://www.sybase.com

[121] S. Tata and J. M. Patel. PiQA: An Algebra for Querying Protein Data Sets. Proc.

of the 15th Intl. Conf. on Scienti�c and Statistical Database Management, 2003.

BIBLIOGRAPHY 160

[122] Technology Development for Indian Languages. http://tdil.mit.gov.in

[123] The Transaction Processing Council, San Francisco, California. http://www.tpc.org

[124] The Unicode Consortium, Mountain View, California. http://www.unicode.org

[125] The Unicode Consortium. The Unicode Standard. Addison-Wesley, Reading, Mas-

sachusetts, 2000.

[126] The United Nations. http://www.un.org

[127] The United Nations Eductional, Scienti�c and Cultural Organization.

http://www.unesco.org

[128] The Unisyn Project. The Center for Speech Technology Research, Univ. of Edin-

burgh, United Kingdom. http://www.cstr.ed.ac.uk/projects/unisyn

[129] The Universal Networking Language (UNL) System. The UNDL Foundation.

http://www.undl.org

[130] Vidyanidhi: The Digital Library and E-Scholarship Portal.

http://www.vidyanidhi.org.in

[131] P. Vossen. EuroWordNet: Final Report. University of Amsterdam, 1999.

[132] The WebFountain. http://www.almaden.ibm.com/WebFountain

[133] M. Wolf. Standard Compression Scheme for Unicode. Technical Standard #6 of

Unicode Consortium, 2002.

[134] Word Discover. http://www.worddiscover.com

[135] The WordNet. http://www.cogsci.princeton.edu/~wn

[136] The World Wide Web Consortium. http://www.w3c.org

[137] Yahoo!Dictionary. http://www.yahoo.com

BIBLIOGRAPHY 161

[138] P. N. Yianilos. Datastructures and Algorithms for Nearest Neighbor Search in

General Metric Spaces. Proc. of the 4th ACM-SIAM Sym. on Discrete Algorithms,

1993.

[139] C. Yip. A Framework for the Support of Multilingual Computing Environment.

Tech. Rep. TR-97-02, University of Hong Kong, 1997.

[140] J. Zobel and P. Dart. Finding Approximate Matches in Large Lexicons. Software

{ Practice and Experience, 25(3), 1995.

[141] J. Zobel and P. Dart. Phonetic String Matching: Lessons from Information Re-

trieval. Proc. of the 19th ACM SIGIR Conf., 1996.

