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A Bidirectional Target-Filtering Model of
Speech Coarticulation and Reduction: Two-Stage
Implementation for Phonetic Recognition

Li Deng, Dong Yu, and Alex Acero

Abstract—A structured generative model of speech coar-
ticulation and reduction is described with a novel two-stage
implementation. At the first stage, the dynamics of formants or
vocal tract resonances (VTRs) in fluent speech is generated using
prior information of resonance targets in the phone sequence,
in absence of acoustic data. Bidirectional temporal filtering
with finite-impulse response (FIR) is applied to the segmental
target sequence as the FIR filter’s input, where forward filtering
produces anticipatory coarticulation and backward filtering
produces regressive coarticulation. The filtering process is shown
also to result in realistic resonance-frequency undershooting or
reduction for fast-rate and low-effort speech in a contextually
assimilated manner. At the second stage, the dynamics of speech
cepstra are predicted analytically based on the FIR-filtered and
speaker-adapted VTR targets, and the prediction residuals are
modeled by Gaussian random variables with trainable param-
eters. The combined system of these two stages, thus, generates
correlated and causally related VTR and cepstral dynamics,
where phonetic reduction is represented explicitly in the hidden
resonance space and implicitly in the observed cepstral space. We
present details of model simulation demonstrating quantitative
effects of speaking rate and segment duration on the magnitude
of reduction, agreeing closely with experimental measurement
results in the acoustic-phonetic literature. This two-stage model
is implemented and applied to the TIMIT phonetic recognition
task. Using the N -best (IN = 2000) rescoring paradigm, the new
model, which contains only context-independent parameters, is
shown to significantly reduce the phone error rate of a standard
hidden Markov model (HMM) system under the same experi-
mental conditions.

Index Terms—Cepstral dynamics, contextual assimilation,
filtering of targets, formant dynamics, long-span context de-
pendence, phonetic recognition, phonetic reduction, resonances,
TIMIT.

I. INTRODUCTION

HE IMPORTANCE of incorporating structures of human
speech and language into statistical models for technology
applications has been well known, and active research in this
direction has been pursued in recent years [2], [3], [4], [6], [10],
[11], [19], [27], [31], [33]. For speech recognition applications,
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the dynamic structure of human speech has been exploited
in several ways in the past. Earlier work directly represented
speech dynamics in the observed acoustic domain [5], [16],
[19], [24]. More recent work explored the hidden structure
of speech associated with various levels in the human speech
generation process, either implicitly or explicitly [1], [3], [6],
[8], [14], [22]. Common among these hidden dynamic modeling
approaches is a target-filtering operation in some nonobservable
domain. One directional (left-to-right) target filtering has been
used in [6], [8], and [33]. It functionally approximates the
causal physical system in speech articulation that accounts for
inertia-related perseverance coarticulation, while the anticipa-
tory coarticulation is modeled at the separate phonological level
via the mechanism of nonlinear “atomic unit” overlapping or
target look-ahead [8], [29]. The research reported in this paper
simplifies the previous approach by merging the two separate
levels of coarticulation modeling into the same level of the
hidden dynamics, with bidirectional instead of uni-directional
target filtering. This functionally achieves both anticipatory
and regressive coarticulation, while leaving the phonological
units as the linear phonemic sequence and bypassing the use
of more elaborated nonlinear phonological constructs. This
bidirectional filtering approach was originally proposed in [3],
using a recursive, infinite-impulse response (IIR) filter with a
high computational complexity. The current work presents a
significantly simpler finite-impulse response (FIR) filter im-
plementation of the hidden dynamics in the specific domain
of vocal tract resonances (VTRs) or formants. In conjunction
with the second-stage mapping from the hidden resonances to
observable cepstra using a free-parameter analytical function
(instead of a neural network as in [3]), the new two-stage
model presented in this paper offers significant advantages in
model implementation and in constructing automatic recog-
nition systems that incorporate the hidden dynamic structure
of speech.

A central component (Stage I) of the two-stage model presented
in this paper is one that parsimoniously parameterizes the
VTR dynamics within the bidirectional FIR target filtering
framework. This is a joint model for coarticulation and reduction,
both mediated by the hidden or unobserved VTR dynamics.
Dynamic patterns of VTRs in fluent speech, especially those
which are correlated with spectral prominences or formants
for vowel sounds, have been a subject of intensive research in
phonetics and in speech synthesis for many years [15], [17],
[18], [23], [25], [26], [30], [32]. The research has been focusing
on the central issue that the same formant values taken from the
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middle portion of a speech sound from its dynamic pattern can
correspond to different sound classes specified solely in static
terms. This inherent “static” confusion of speech classes without
dynamic aspects of speech sound specification is believed to
be one significant factor impeding current HMM-based speech
recognition for casual-style, conversational speech. The VTR
model in this paper gives dynamic specification of speech
sounds, where the observed dynamic pattern of speech becomes
the result of an interaction among phonetic context, speaking
rate/duration, and spectral rate of change as related to speaking
style [23]. In particular, our model assumes that each speech
sound is specified by a largely context-independent target
(but speaker dependent) in the VTR space, together with the
stiffness parameter specifying how VTR trajectories may be
formed in any given phonetic and prosodic environment. In the
implementation of the model, the stiffness parameter is used
to control temporal filtering of the sequentially arranged, VTR
targets, and is dependent on a range of prosodic factors, speaking
style in particular. The result of the temporal filtering, in both
forward and backward directions, gives rise to the phonetically
realized dynamic VTR patterns. A direct consequence of this
filtering operation is as follows: the shorter a segment is,
the greater the difference becomes between the filter’s input
as the target VTR values and the output as the actual VTR
values. (Note the filter output also depends on the stiffness
parameter associated with speaking style, in addition to the
dependency on the filter input.) Therefore, our model naturally
simulates the target-undershooting, or reduction phenomenon
[18], [23], [25]. Because the input to the filter is the phonetically
composed, discontinuous target sequence, which is smoothed
by the filter resulting in continuous, “reduced” trajectories, this
filter-based model (Stage I) represents the reduction phenomenon
in a contextually assimilated manner. That is, reduction and
coarticulation are jointly represented in the filter model. This
type of model construction has been motivated by the reduction
mechanism suggested originally in [18] and [23].

The organization of this paper as follows. In Section II, we
provide mathematical details of Stage I of the overall two-stage
model. Stage IT of the model is described in Section I1I. This stage
takes the VTR dynamics, which are the output of Stage I, as its
input and produces the corresponding linear predictive coding
(LPC) cepstral vector as its output on a frame-by-frame basis.
Sections IV and V present simulation results for Stage I and Stage
IT components of the model, respectively, and comparisons are
made between model prediction and acoustic measurements in
real speech data. In constructing a phonetic recognizer using
this two-stage model, the overall model’s output in the form
of the cepstral vector sequence is used as the observation for
the recognizer. Specific issues in the recognizer design are
discussed in Section VI, where experimental results using the
N-best rescoring paradigm for the TIMIT phonetic recognition
task are presented also. The results demonstrate the superior
performance of the new system over the conventional HMM
system. Finally, in Section VII, we discuss our future direction of
research toward the goal of recognizing conversational speech,
where a continuously varying degree of phonetic reduction
and “static” sound confusion is captured by the fundamental
mechanism of target filtering as presented in this paper.

II. MODEL STAGE I: FROM RESONANCE TARGET SEQUENCE
TO RESONANCE DYNAMICS

Stage I of the coarticulation and reduction model presented in
this section is responsible for converting a sequence of VTR tar-
gets with discrete jumps at the phone segments’ boundaries into
the a smooth dynamic pattern (i.e., trajectory) across all these
boundaries. Forward as well as backward coarticulation occurs
when the bidirectional filtering and smoothing process makes
the VTR value at each time dependent on not only the VIR
target at the current phone, but also the VTR targets from the
adjacent phones. In the mean time, the filtering process automat-
ically exhibits contextually assimilated reduction when the seg-
ment’s duration is reasonably short, especially when the filter
parameter, which we call stiffness, of the filter is close to one.
Reduction is defined in this paper as VTR target undershooting,
i.e., the physically realized VTR value being away from the
VTR target. When reduction is controlled by the targets of con-
textual (left and right) segments, we say that the reduction is
contextually assimilated.

The model described in this section gives quantitative pre-
diction of the magnitude of contextually assimilated reduction.
It is constructed using a slowly time-varying, FIR filter charac-
terized by the following noncausal, vector-valued, impulse re-
sponse function:

Yy —D<k<O0
ho(k)={ ¢ k=0 (1)
Yiu 0<k<D

where k represents time frame, typically with a length of 10
ms each. 7y ) is the “stiffness” parameter vector, one compo-
nent for each resonance order. Each component is positive and
real-valued, ranging between zero and one. In this paper, 7 is
treated as a deterministic quantity for simplicity purposes. (In
a more comprehensive version of the model, =y is a Gaussian
random vector characterized by the mean vector and covari-
ance matrix.) The subscript s(k) in 741 indicates that the stiff-
ness parameter is dependent on the segment state s(k) which
varies over time. The multiplication of two vectors in (1) is on
the component-by-component basis. D in (1) is the unidirec-
tional length of the impulse response. It represents the temporal
extent of coarticulation in one temporal direction, assumed for
simplicity to be equal in length for the forward direction (antic-
ipatory coarticulation) and the backward direction (regressive
coarticulation).

In (1), c is the normalization constant to ensure that the filter
weights add up to one. This is essential for the model to produce
target undershooting, instead of overshooting. To determine c,
we require that the filter coefficients sum to one

D

>

k=—D

D
ho(k)=c Y 2, =1 @)
k=—D

For simplicity, we make the assumption that over the temporal
span of —D < k < D, the stiffness parameter’s value stays
approximately constant
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That is, the adjacent segments within the temporal span of 2D +
1 in length which contribute to the coarticulated home segment
have the same stiffness parameter value as that of the home seg-
ment. Under this assumption, we simplify (2) to

D D+1
k I+7-2y
e > Al el +2(v+ 92+ +7D)]=Cﬁ~
k=—D
Thus
1—
c(y) = R (3)

T 14y - 29D

The input to the above FIR filter as a linear system is the target
sequence, which is a function of discrete time and is subject to
abrupt jumps at the phone segments’ boundaries. Mathemati-
cally, the input is represented as a sequence of step-wise con-
stant functions with variable durations and heights

t(k) = Z[u(k — kL) —u(k — k2]t %)

r

where u(k) is the unit step function, k7,
are the right boundary sequence of the segments (P in total) in
the utterance, and ki s = s1,82,...,sp are the left boundary
sequence. Note the constraint on these starting and end times:
kL., = k.. The difference of the two boundary sequences gives
the duration sequence. t;, s = s1, So, ..., Sp are the target vec-
tors for segment s. (In a more comprehensive version of the
model, the target vector values are drawn from a statistical distri-
bution, whose parameters are automatically learned in a manner
similar to [7]).

In the work presented in this paper, we assume that both left
and right boundaries (and, hence, the durations) of all the seg-
ments in an utterance are known (e.g., those provided in TIMIT
database). However, in general cases where the current model
is used to predict the VTR frequency trajectories as the FIR
filter’s output, the boundaries in the target sequence input to the
filter are not given. They either come from a recognizer’s forced
alignment results, on which our experimental results described
in this paper are based, or need be learned automatically using
advanced algorithms in a similar spirit to that described in [22].

Given the filter’s impulse response and the input to the filter as
described previously, the filter’s output as the model’s predic-
tion for the VTR trajectories is the convolution between these
two signals. The result of the convolution within the boundaries
of the home segment s is

§ = 81,82,...,8p

k+D
go(k) =hupy #t(h) = D )t nsy 6
T=k—D

where the input target vector’s value and the filter’s stiffness
vector’s value may take not only those associated with the cur-
rent home segment, but also those associated with the adjacent

(a) tss .
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Fig. 1. Tllustrations of the various VIR quantities in model Stage-I in an
utterance with four phone segments. (a) and (b) are for the same four VTR
targets and their filtered results, but the durations of the four segments are
shorter in (b) than in (a).

segments. The latter case happens when the time 7 in (6) goes
beyond the home segment’s boundaries; i.e., when the segment
s(7) occupied at time 7 switches from the home segment to an
adjacent one.

A sequential concatenation of all outputs gs(k), s =
$1,82,...,8p in (5), each corresponding to a single segment
in the utterance, constitutes the model prediction of VTR
trajectories for the entire utterance

P

g(k) =Y [u(k— kL) —u(k -k )lgs, (k). (6)

=1

Note that the convolution operation carried out by the filter in the
model guarantees continuity of the trajectories at each junction
of two adjacent segments, contrasting the discontinuous jump
in the input to the filter at the same junction. This continuity is
applied to all classes of speech sounds including consonantal
closure.

The various VTR quantities in model Stage-I discussed previ-
ously are graphically illustrated in Fig. 1(a). Four segments, or
P = 4, are sequentially concatenated with their respective VTR
targets, where one-dimensional VTR is used as the example for
simplicity. The smoothed curve, g(k), is the result of FIR fil-
tering, which runs over the entire duration of the four segments.
The separate segment-bounded portions of the curve are denoted
with subscript s. Fig. 1(b) shows the same VTR targets and their
filtered results, but the durations of the segments are shorter.

III. MODEL STAGE II: FROM RESONANCE DYNAMICS
TO CEPSTRUM DYNAMICS

We now present Stage II of the overall coarticulation and re-
duction model, which is responsible for converting the VTR
vector g (k) at each time frame & into a corresponding vector of
LPC cepstra o(k). Thus, the smooth dynamic pattern of g(k) as
the output from Stage I is mapped to a dynamic pattern of o(k),
which is typically less smooth, reflecting quantal properties in
speech production [28]. The mapping, as has been implemented,
is in a memoryless fashion (i.e., no temporal smoothing), and is
statistical rather than deterministic.
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To describe this mapping function, we decompose the VTR
vector into a set of () resonant frequencies f and bandwidth b.

That is, let
[ f
={p )

fi b1
and b=

fa bq

The choice of the highest resonance order () in the current im-
plementation of model Stage II is based on a compromise be-
tween the accuracy of the model prediction for data and the pho-
netically meaningful information contained in the resonances
lower than order ). The larger the () is, the greater is the model
prediction accuracy on speech acoustics but the less useful in-
formation is contained in the higher resonances pertaining to
phonetic discrimination. This compromise leads to the empir-
ical choice of @ = 4 in the current model implementation.

Then, the statistical mapping from VTRs to cepstra, which
constitutes Stage II of the model, is represented by

where f =

o(k) = O(gs(k)) + tss + vas (k) )

where vgss is a subsegment-dependent, zero-mean Gaussian
random vector: vgs ~ N(v;0,X.), and pss is a sub-
segment-dependent bias vector for the nonlinear predictive
function O(g;). A subsegment of a phone is defined to be a
consecutive temporal portion of the phone segment. Linear
concatenation of several subsegments constitutes a phone
segment.

In (7), the output of the mapping function O(g) has the fol-
lowing parameter-free, analytical form for its nth vector com-
ponent (i.e., nth-order cepstrum):

Q
op = 2 Z e ™Mb/ f2) cog 27m& ®)
n fs

q=1
where f; denotes sampling frequency of the speech signal. For
TIMIT data which we have used in experiments, we have f; =
16000 Hz. A step-by-step derivation of this analytical form can
be found in [12].

Note that in (7) the terms . + V(&) can be regarded as the
nonlinear prediction residual which is random and are depen-
dent on the subsegment. This differs from the VTR input to the
nonlinear function, which is dependent on a segment instead of
on a subsegment. The finer subsegmental modeling of the pre-
diction residual is based on our empirical observation that the
accuracy of the nonlinear prediction for real speech data typi-
cally varies systematically within a phone segment. This is es-
pecially true for nonstationary phones such as stop consonants,
and is less so for vowels.

IV. RESULTS ON MODEL PREDICTION FOR RESONANCE
DYNAMICS AND REDUCTION

In this section, we present the model simulation results,
demonstrating contextually assimilated reduction. We further

Fig. 2. Spectrogram of three renditions of /iy aa iy/ by one author, with an
increasingly higher speaking rate and increasingly lower speaking efforts. The
horizontal label is time, and the vertical one is frequency.

compare these results with the corresponding results from direct
measurements of reduction in the acoustic-phonetic literature.
To illustrate VTR frequency or formant undershooting, we
first show the spectrogram of three renditions of a three-seg-
ment /iy aa iy/ (uttered by the lead author of this paper) in Fig. 2.
From left to right, the speaking rate increases and speaking ef-
fort decreases, with the durations of the /aa/’s decreasing from
approximately 230 ms to 130 ms. Formant target undershooting
for fi; and f is clearly visible in the spectrogram, where au-
tomatically tracked formants (using the technique described in
[12]) are superimposed (as the solid lines in Fig. 2) to aid iden-
tification of the formant trajectories. (The dashed lines are the
initial estimates, which are then refined to give the solid lines.)

A. Effects of Stiffness Parameter on Reduction

The same kind of target undershooting for f; and f> as in
Fig. 2 is exhibited in the model prediction, shown in Fig. 3,
where we also illustrate the effects of the FIR filter’s stiffness
parameter on the magnitude of formant undershooting or reduc-
tion. The model prediction is the FIR filter’s output for f; and fo
according to g(k) in (6). Fig. 3(a)—(c) corresponds to the use of
the stiffness parameter value (the same for each formant vector
component) set at v = 0.85, 0.75 and 0.65, respectively, where
in each plot the slower /iy aa iy/ sounds (with the duration of /aa/
set at 230 ms or 23 frames) are followed by the faster /iy aa iy/
sounds (with the duration of /aa/ set at 130 ms or 13 frames). f;
and f, targets for /iy/ and /aa/ are set appropriately in the model
also. Comparing the three plots, we have the model’s quantita-
tive prediction for the magnitude of reduction in the faster /aa/
that is decreasing as the -y value decreases.

In Fig. 4(a)—(c), we show the same model prediction as in
Fig. 3 but for different sounds /iy eh iy/, where the targets for
/eh/ are much closer to those of the adjacent sound /iy/ than
in the previous case for /aa/. As such, the absolute amount of
reduction becomes smaller. However, the same effect of the filter
parameter’s value on the size of reduction is shown as for the
previous sounds /iy aa iy/.

B. Effects of Speaking Rate on Reduction

In Fig. 5, we show the effects of speaking rate, measured as
the inverse of the sound segment’s duration, on the magnitude
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Fig. 3. fi and f> formant or VTR frequency trajectories produced from the

model (g(k) in (6)) for a slow /iy aa iy/ followed by a fast /iy aa iy/. (a)—(c)
correspond to the use of the stiffness parameter values of v = 0.85, 0.75, and
0.65, respectively. The amount of formant undershooting or reduction during
the fast /aa/ is decreasing as the v value decreases. The dashed lines indicate the
formant target values and their switch at the segment boundaries.
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Fig. 4. Same as Fig. 3 except for the /iy eh iy/ sounds. Note that the f, and f»
target values for /eh/ are closer to /iy/ than those for /aa/.

of formant undershooting. Subplots (a), (b), and (c) correspond
to three decreasing durations of the sound /aa/ in the /iy aa iy/
sound sequence. They illustrate an increasing amount of the re-
duction with the decreasing duration or increasing speaking rate.
Symbol “x” in Fig. 5 indicates the f; and fo formant values at
the central portions of vowels /aa/, which are predicted from
the model and are used to quantify the magnitude of reduc-
tion. These values (separately for f1 and f5) for /aa/ are plotted
against the inversed duration in Fig. 6, together with the corre-
sponding values for /eh/ (i.e., IPA ¢€) in the /iy eh iy/ sound se-
quence. The most interesting observation is that as the speaking
rate increases, the distinction between vowels /aa/ and /eh/ grad-
ually diminishes if their static formant values extracted from the
dynamic patterns are used as the sole measure for the difference
between the sounds. We refer to this phenomenon as “static”
sound confusion induced by increased speaking rate (or/and by
a greater degree of sloppiness in speaking).

C. Comparisons With Formant Measurement Data

The “static” sound confusion between /aa/ and /eh/ quantita-
tively predicted by the model as shown in Fig. 6 is consistent
with the formant measurement data published in [25], where
thousands of natural sound tokens were used to investigate the
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Fig. 5. fi and f> formant trajectories produced from the model for three
different durations of /aa/ in the /iy aa iy/ sounds. (a) 25 frames (250 ms). (b)
20 frames. (c) 15 frames. The same ~ value of 0.85 is used. The amount of
target undershooting increases as the duration is shortened or the speaking rate
is increased. Symbol “x” indicates the f; and f» formant values at the central
portions of vowels of /aa/.

2000 T T T T T

/7¥//4,”//_T/‘//ﬁ

1800 fel // i

- e
—
16001 |
ral
. 1400
)
£
Py
2
2 1200 |
5
El
=z
e
= 1000+ |
5
£
S
5 800 |
-
s ~
~o—_
& e00F pq I
—e—
o 5 o— —
| ——— e
400 el
200 — 5 4 5 o ‘ ‘ ‘
2 3 4 5 6 7 ° ’ N

Speaking rate (inverse of duration in seconds)

Fig. 6. Relationship, based on model prediction, between the f; and f»
formant values at the central portions of vowels and the speaking rate. Vowel
/aa/ is in the carry-phrase /iy aa iy/, and vowel /eh/ in /iy eh iy/. Note that as the
speaking rate increases, the distinction between vowels /aa/ and /eh/ measured
by the difference between their static formant values gradually diminishes. The
same ~ value of 0.9 is used in generating all points in the figure.

relationship between the degree of formant undershooting and
speaking rate.! We reorganized and replotted the raw data from
[25] in Fig. 7, in the same formant as Fig. 6. While the mea-
sures of speaking rate differ between the measurement data and
model prediction and cannot be easily converted to each other,
they are generally consistent with each other.2 The similar trend
for the greater degree of “static”” sound confusion as speaking
rate increases is shown clearly from both the measurement data
(Fig. 7) and prediction (Fig. 6).

D. Model Prediction of VIR Trajectories for Real Speech
Utterances

We have used Stage I of the model to predict actual VTR fre-
quency trajectories for speech utterances from TIMIT database.
Only the phone identities and their boundaries are input to the

I'We are grateful to Dr. M. Pitermann for providing us with raw data of formant
measurements published in [25], which allows us to do the replotting.

2We again thank Dr. M. Pitermann for useful discussions on this point.
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Data —— Speaker A (Pitermann, 2000)
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Fig.7. Formant measurement data from literature are reorganized and plotted,
showing similar trends to the model prediction under similar conditions.

model for the prediction, and no use is made of speech acous-
tics; i.e., only Stage I of the model, and not Stage II, is used. This
differs from the task of formant or VTR tracking where speech
acoustics is always used [12].

Given the phone sequence in any utterance, we first break up
the compound phones (affricates and diphthongs) into their con-
stituents. Then we obtain the initial VTR target values based on
limited context dependency by table lookup (see details in [9,
Ch. 13]). Then automatic and iterative target adaptation is per-
formed for each phone-like unit based on the difference between
the results of a VTR tracker (described in [11]) and the VTR
prediction from the FIR filter model. (This iterative adaptation
algorithm will not be described in this paper due to space limita-
tion.) Note these target values are provided not only to vowels,
but also to consonants for which the resonance frequency targets
are used with weak or no acoustic manifestation. The converged
target values, together with the phone boundaries provided from
the TIMIT database, form the input to the FIR filter in Stage I
of the model and the output of the filter gives the predicted VTR
frequency trajectories.

Three example utterances from TIMIT (S11039, SI1669, and
SI2299) are shown in Figs. 8—10. The step-wise dashed lines
(f1/fo/ fslf4) are the target sequences as inputs to the FIR filter,
and the continuous lines (f1/f2/f3/f4) are the outputs of the
filter as the predicted VTR frequency trajectories. Parameters
~v and D are fixed and not automatically learned. To facilitate
assessment of the accuracy in the prediction, the inputs and out-
puts are superimposed on the spectrograms of these utterances,
where the true resonances are shown as the dark bands. For the
majority of frames, the filter’s output either coincides or is close
to the true VTR frequencies, even though no acoustic informa-
tion is used. Also, comparing the input and output of the filter,
we observe only a rather mild degree of target undershooting or
reduction in these and many other TIMIT utterances we have
examined but not shown here.

V. RESULTS ON MODEL PREDICTION
FOR CEPSTRUM DYNAMICS

The predicted VTR dynamics by model Stage I in Figs. 8-10
are fed into model Stage II, to produce the predicted LPC

Frequency (kHz)

150 200
Frame (10ms)

Fig. 8. fi/fa/fs/fs VTR frequency trajectories (smooth lines) generated
from the FIR model (Stage I) using the phone sequence and duration of a
speech utterance (SI1039) taken from the TIMIT database. The target sequence
is shown as stepwise lines, switching at the phone boundaries labeled in the
database. They are superimposed on the utterance’s spectrogram. The utterance
is “He has never, himself, done anything for which to be hated — which of us
has.”

Frequency (kHz)

80 100
Frame (10ms)

Fig. 9. Same as Fig. 8 except with another utterance “Be excited and don’t
identify yourself” (S11669).

v=[0.6], D=7
;

Frequency (kHz)

150
Frame (10ms)

Fig. 10. Same as Fig. 8 except with the third utterance “Sometimes, he
coincided with my father’s being at home” (S12299).

cepstra in Figs. 11-13, respectively, for the previous three
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Fig. 11. LPC cepstra with order one (C1), two (C2), and three (C3) predicted

from the Stage II of the model (solid lines) using the input from the FIR model’s
output for utterance SI1039. Dashed lines are the LPC cepstral data C1, C2, and
C3 computed directly from the waveform.
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Fig. 12. Same as Fig. 11 except with the second utterance (S12299).
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Fig. 13.  Same as Fig. 11 except with the third utterance (SI1669).

example TIMIT utterances. Note that the model prediction
includes residual means, which are trained from the full TIMIT
data set using an hidden Markov model toolkit (HTK) tool.
The zero-mean random component of the residual is ignored
in these figures. The residual means for the substates (three
for each phone) are added sequentially to the output of the
nonlinear function (8), assuming each substate occupies three
equal-length sub-segments of the entire phone segment length
provided by TIMIT database. To avoid display cluttering,
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Fig. 14. Block diagram for the N -best evaluation procedure.

only LPC cepstra with orders one (Cl), two (C2), and three
(C3) are shown here, as the solid lines. Dashed lines are the
LPC cepstral data C1, C2, and C3 computed directly from the
waveforms of the same utterances for comparison purposes.
The data and the model prediction generally agree with each
other, somewhat better for lower order cepstra than for higher
order ones. We found that these discrepancies are generally
within the variances of the prediction residuals automatically
trained from the entire TIMIT training set (using an HTK tool
for monophone HMM training).

VI. APPLICATIONS TO PHONETIC RECOGNITION
A. Recognizer Design

In the two-stage implementation of the coarticulation and
reduction model presented so far, we ignore the variability in
the VTR dynamics in the prediction of the cepstrum dynamics.
This significantly simplifies the application of the model as
a phonetic recognizer. That is, given any phone sequence
with possible phone segmentation (e.g., derived from N-best
hypotheses), model Stage I generates deterministic VIR tra-
jectories. Feeding these into probabilistic model Stage II, a
likelihood can be computed using the Gaussian assumption
of the cepstral residual. This scoring mechanism allows the
recognizer to perform N-best rescoring in a straightforward
manner. The block diagram for the recognizer that executes the
N -best evaluation procedure is shown in Fig. 14, where Stage-I
and Stage-II of the model for each of the /N-best hypotheses
are represented by the blocks labeled as “FIR (filter)” and
“nonlinear mapping,” respectively. The “table lookup” block
represents the construction process for forming the VTR target
sequence, using the target values stored in the table that are
trained in advance.

In the recognizer evaluation procedure, shown as the oper-
ation following the “nonlinear mapping” block in Fig. 14, the
nonlinear prediction of LPC cepstra according to (8) is directly
subtracted from the LPC cepstral data as the recognizer’s
input acoustic features. This difference, separately for each
of the N-best hypotheses computed from a state-of-the-art
triphone HMM, forms the residual sequence that follows a
monophone Gaussian HMM. We use an HTK tool (Hvite)
to directly compute the likelihood for the residual sequence,
which is exactly the same as the likelihood for the original LPC
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cepstral data sequence, given each of the N-best hypotheses.
This likelihood computation operation is shown in the blocks
labeled as “Gaussian score” in Fig. 14. The results of this set of
computations are reranked as the recognizer’s final output for
the recognition accuracy determination, which we will present
shortly.

One specific aspect of the recognizer design that we have de-
veloped in this work is to naturally incorporate the delta and ac-
celeration features into the recognizer. We first decompose the
LPC cepstral feature differentials (delta and acceleration) for
each frame in the data into the part that can be predicted from
the VTR [according to (8)] and the part that cannot be predicted
[i.e., the residual terms pss + Vis(k) in (7)]. Thus, the basic
Stage-1I model as described in (7) is expanded to ones that con-
sist of delta and acceleration components as well. For the pre-
dictable part in these new components, we directly compute the
frame differentials of the predicted LPC cepstral values from
(8). For the unpredictable part that cannot make use of any infor-
mation from the model, we train the delta and acceleration pa-
rameters of means and variances for the residuals using the cor-
responding frame-differential LPC cepstral training data. One
desirable property of this technique for treating delta and accel-
eration features is that in the degenerative case where the pre-
dictive model component (8) is removed by setting it to zero, the
recognizer automatically becomes a conventional (monophone)
HMM system.

B. Recognizer Training

To compute the previous residual likelihood requires that
residual means and variances of each substate of each phone
in the N-best hypotheses be known. These (monophone) pa-
rameters are trained automatically from the TIMIT training set.
Again, given the training script, including both phone sequences
and phone boundaries, model Stage I generates deterministic
VTR trajectories and model Stage II generates predicted cep-
stral trajectories. Subtracting the predicted cepstral trajectories
from the cepstral training data on a frame-by-frame basis gives
residuals for the training set. Treating these residuals as the
“training data,” we apply an HTK tool to train a set of residual
monophone HMMs. The mean and variance parameters of
these models are used for N-best rescoring as described in the
preceding subsection.

Because our current simplistic two-stage implementation
of the model ignores the VTR variability across speakers and
across utterances, it is necessary to provide reasonably accurate
VTR targets in order to obtain a high likelihood for the correct
phone sequence. To achieve this, we have developed and ap-
plied an iterative target training and adaptation technique for
each of the N-best hypotheses before the rescoring process
takes place as described previously.

Finally, the parameters in model Stage I, D and -y are empir-
ically set for the TIMIT experiments. They are determined by
fitting the model prediction to the formant data in training utter-
ances. It is found that the fixed values of D = 7 and v = 0.6 al-
ready provide good fit to the data for most of the TIMIT training
data we have examined. It appears that these parameters may not

need to be made as dependent on phones, on speakers, or utter-
ances for the TIMIT data.?

C. Phonetic Recognition Task and Results

The phonetic recognition experiments which we carried out
to evaluate our two-stage coarticulatory model are based on
the widely used TIMIT database. We built two-stage acoustic
models using the standard 61 label set, which are folded into 48
classes, in training the residual means and variances for each
subsegment of each class. VIR targets are trained and then
adapted for each phone segment instead of subsegment. For
diphthongs and affricates, two separate targets are trained, as-
suming one target following another. Phonetic recognition er-
rors are tabulated using the 39 labels adopted by many other
researchers to report recognition results. Model parameters are
trained on the designated training set of 462 speakers, and re-
sults are reported on the standard core test set with a total of
192 utterances by 24 speakers.*

We use the INV-best rescoring paradigm to evaluate the new
two-stage coarticulatory model. For each of the 192 core test
utterances, we use a standard triphone HMM with a decision
tree to generate a very large N-best list where N = 2000. A
biphone language model is used to generate this /V-best list in
order to improve the quality of the list as much as possible. Also,
Mel-frequency cepstral coefficients with delta and acceleration
features are used in generating this N -best list. The reason why
a language model and Mel-frequency warping are used for the
HMM to generate the N-best list is because we desire to create
the list with the highest quality possible in order to provide the
richest set of candidates possible for scoring the new recognizer
based on the two-stage, target-filtering model. The oracle phone
error rate is about 17% for the full top 2000 list. Although the
use of Mel-frequency warping for cepstral features is known to
benefit the HMM performance, it has not been used for the two-
stage, target-filtering model. This is because of the requirement
for model Stage-II to generate not the LPC cepstrum as in (8)
but its Mel-warped version. No simple analytical form of the
mapping function is available and to predict the Mel-warped
cepstra requires more complicated model Stage-II than the one
presented in this paper.

With the use of a flat phone language model and of the LPC
cepstra (including delta and acceleration) as features, the phone
recognition accuracy for the standard triphone HMM is 64%, as
shown at the top row in Table L. This baseline result is produced
by a full decoder in HTK. Under the above experimental con-
ditions, we evaluate the top-one accuracy (100% minus substi-
tution, deletion, and insertion errors) using the N = 2000 best
list for our new coarticulatory model. It gives 71.91%, signifi-
cantly higher than the triphone HMM (22% relative error rate
reduction), despite the use of only context independent model
parameters. To assess the effect of using the N-best list gen-
erated by the HMM which is substantially different from the
new model, i.e., the effect of combining different recognition

3This is not the case, however, for other speech data such as Switchboard that
we have examined.

4We thank Dr. J. Glass of MIT who prompted us to use the core test set, and
provided us with the file list, for the evaluation.
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TABLE 1
PHONETIC RECOGNITION ACCURACY ON TIMIT CORE TEST SET (192
UTTERANCES) USING THE BI-DIRECTIONAL TARGET-FILTERING MODEL OF
SPEECH COARTICULATION WITH A TWO-STAGE IMPLEMENTATION
(LABELED AS “NEW MODEL”) IN COMPARISON WITH A CONVENTIONAL
RECOGNIZER (LABELED AS “TRIPHONE-HMM”). NO LANGUAGE MODEL
IS USED, AND THE FEATURES FOR BOTH SYSTEMS ARE THE SAME
LPC CEPSTRA. THE HMMS MEAN AND VARIANCE PARAMETERS ARE
CONDITIONED ON TRIPHONES CLUSTERED BY DECISION TREE, USING THE
STANDARD HTK TOOLS. THE NEW MODEL IS PARAMETERIZED BY
CONTEXT-INDEPENDENT, SEGMENT-SPECIFIC VTR TARGET VECTORS, AND BY
THE CONTEXT-INDEPENDENT, SUBSEGMENT-SPECIFIC RESIDUAL MEANS AND
VARIANCES. N -BEST RESCORING 1S USED FOR THE NEW MODEL, WITH
WIDELY VARYING SIZES OF N TO ASSESS THE ROVER EFFECT

Model Type N-in-Nbest Top-one Accuracy
Triphone-HMM || (full decoding) 64.00%
New Model 2000 71.91%
1000 71.80%
800 72.18%
500 72.36%
300 72.47%
100 72.40%

systems (as related to the ROVER effect’), we rescore our new
model using a varying size N in the N-best list. The top-one
accuracies are listed in the remaining rows in Table I. As can
be seen, the ROVER effect is relatively minor, and it is virtu-
ally eliminated by using large N -best lists for NV being between
1000 and 2000. The converging accuracy of 71.91% is, thus,
established that is not biased by the ROVER effect. Note that
the previous results are obtained with no use of combination
between the original HMM scores and the new model’s scores.
The new model’s scores are used alone to do reordering of the
N-best list

VII. SUMMARY AND CONCLUSION

In this paper, we first presented a quantitative model for
predicting VTR dynamics, accounting for the related reduction
and “static” speech sound confusion phenomena. This model
is based on bidirectional filtering of phone-dependent, VIR
target sequences implemented with a temporally symmetric
FIR digital filter. This forms Stage I of an overall two-stage
speech generation model, where the final Stage II takes the
output of Stage I as its input and generates the LPC cepstra via
a parameter-free, analytical nonlinear prediction function. The
errors of this nonlinear prediction for the LPC cepstral speech
data are represented by phone-subsegment dependent Gaussian
random variables, whose parameters are automatically trained
from a set of phonetically labeled training data.

We present details of model simulation that demonstrates
quantitative effects of speaking rate and segment duration on
the magnitude of reduction. Both VTR dynamics and cepstral
dynamics as outputs from model Stage I and Stage II, respec-
tively, are compared with and shown to be close to real speech
data.

5The strict ROVER effect refers to that for combining system outputs [13].
Here we have a slightly different condition of combining two different system
properties at an intermediate level.

A phonetic recognizer is constructed using this new genera-
tive model of speech dynamics, and is evaluated in the standard
TIMIT phonetic recognition task. N-best rescoring is used for
the evaluation, with varying size of N from 100 to 2000. We
demonstrate 22% error rate reduction using the new model com-
pared with the standard HMM under the following three iden-
tical conditions: 1) the same input feature parameters of LPC
cepstra to the recognizers; 2) the same full set of TIMIT training
data; and 3) the same flat language models. This significant per-
formance gain is validated after removing the ROVER effect by
using an increasingly larger size of /NV-best lists where a con-
verging recognition accuracy is observed.

The development of the model presented in this paper is moti-
vated by phonetic theories and experiments on sound reduction
in free-style speech. We intend to use the model as one major
source of a priori knowledge about the speech structure for au-
tomatic recognition of conversational speech. We have accumu-
lated evidence that the strong reduction and “static” sound con-
fusion in this mixed style of speech, ranging widely in the hyper-
hypo speaking continuum, are responsible for many recognition
errors by state-of-the-art automatic systems. The new model is
demonstrated in simulation experiments to be capable of re-
solving the confusion with dynamic speech specification, thus,
it would be more useful for conversational speech. conversa-
tional speech recognition. Our future research in this direction
involves relaxing the current simplifying assumption of deter-
ministic VTR dynamics at Stage I of the model, aiming at an
integrated solution that simultaneously takes into account the in-
evitable variabilities in both hidden VTR and observed acoustic
domains. We are currently also working on extending the LPC
cepstral features to the Mel-warped features within the same
generative modeling framework as presented in this paper.
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