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Abstract. We provide a static analysis (using both dataflow analysis and theo-
rem proving) to allow state changes within specifications. This can be used for
specification languages that share the same expression sub-language with an im-
plementation language so that method calls can appear in preconditions, postcon-
ditions, and object invariants without violating the soundness of the system.

1 Introduction

An obvious truth is that a software specification is meant to be a description; it is clearly
not the thing that it is describing. Software specifications which share the same expres-
sion language as the implementation programming language run the risk of blurring
this distinction. When specifications contain expressions that change the state of the
program, the meaning of the program may differ depending on whether or not the spec-
ifications are present; the two are no longer independent.

Despite this, there are many reasons for using the same expression language in both
an implementation and its specification. To prevent unwanted interference, specifica-
tions are usually restricted to a side-effect free (pure) subset of the expression language.
An important decision to make is whether (programmer-defined) functions belong in the
subset or not: there are three main current approaches.

— The simplest approach is to forbid the use of functions in specifications altogether.
While easy to implement, this solution does not scale and is overly restrictive on
the practical use of specifications. ESC/Java [16] uses this solution.

— From a theoretical perspective, a pleasing solution is to allow only provably pure
functions. However, an automatic static analysis must be conservative and may
reject some pure functions. JML [21] uses this solution.

— An unsound solution is to request for the programmer to refrain from using func-
tions with side-effects in specifications, but to actually allow the free use of func-
tions. While not restrictive at all (and particularly easy to implement), this means
it is not possible to guarantee that a program’s meaning is unchanged when includ-
ing its specification. It also is impractical for library functions that are beyond the
control of the programmer. Eiffel [24] uses this solution.

We are interested in a sound, practical static analysis that goes beyond purity to
allow benevolent side-effects [[18] so programmers can use functions in specifications as
freely as possible. We propose a definition of observational purity and a static analysis
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to determine it. The intuition behind observational purity is that a function is allowed
to have side-effects only if they are not observable to callers of the function. As with
programs, we restrict our attention to effects that are observable in terms of the source
language (Java or C#) and ignore effects such as memory usage or power consumption.
Our prototypical example of an observationally pure function is one that maintains an
internal cache. Changing this internal cache is a side-effect, but it is not visible outside
of the object. Other examples are methods that write to a log file that is not read by the
rest of the program and methods that perform lazy initialization. Algorithms that are
optimized for amortized complexity, such as a list that uses a “move to front” heuristic,
also perform significant state updates that are not visible externally. Observationally
pure methods often occur in library code that is highly optimized and also frequently
used in specifications, e.g., the equality methods in a string library.

Our proposal uses a conservative static analysis together with a mild verification
condition. It appears that for the many simple cases that occur in practice the proposal
requires very little effort on the part of the programmer.

Section 2] begins by discussing the example of a function that maintains an internal
cache. Then we define observational purity in semantic terms, sketching just enough
formalization to make the ideas clear. The general definition entails a nontrivial proof
obligation. In Section3lwe outline a static analysis that provides a conservative approx-
imation for observational purity; for its application, the only proof obligations are ordi-
nary assertions. In Section 4] we show the resulting annotations and apply our method
to an example. Section [Sldiscusses related work and future directions for our work.

2 Towards Observational Purity

Figure [Tl shows a class C that contains a method f which is meant to compute a
function, expensive, of type T — U . We suppose that this function is expensive
to compute, so as an optimization the actual computation is done only the first time
that f is called for each argument z . The class C maintains an internal cache to
store already computed results. The cache is implemented as a hashtable, ¢, where it
stores pairs (z, expensive(x)) so that future queries for z do a table lookup instead of
recomputing ezpensive(z) . In a more complete example there would be other methods
in the class. Note that class C' does not include method ezpensive in its interface.
Clients use method f and need to be able to express conditions involving c.f(...) for
some object ¢ of type C'.

We assume that expensive is a (weakly) pure function and so can be used in spec-
ifications. But we address the use of f in specifications. One reason to use a function
like f is that, being part of the code interface, it may be more familiar to the program-
mer. Another reason is that an implemented method is needed if the specification is to
be executed by a runtime checker. Finally, in a case like Object.equals , there is no pure
method analogous to ezpensive that could be used in a specification. Each type can
(and probably should) redefine equality so there is no other generally accepted method
that a user could use to specify that two objects should be equal.

Assuming that no other methods in the class access ¢, the private field ¢ and the
hashtable it references are effectively encapsulated in f . It should be possible to allow
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class C'{
private Hashtable t:= new Hashtable();
invariant Forall{T zin t.Keys : t[z] = expensive(z)};
public U f(T )
requires z # null;
ensures result = ezpensive(z);

{
if (=t.ContainsKey(z)){

U y:= ...; //compute ezpensive(z)
t.Add(z,y); }
return (U)t[z];
}
}

Fig.1. A class C' that maintains a cache ¢ to avoid recomputing expensive

f to appear in specifications since f(z) = expensive(z) for any z and the side
effect is not observable. The first problem is to formalize what it means to allow [ in
specifications. We choose the following criterion:

assert Q[f] & skip (1)

for any formula @[f] that has invocation(s) of f but is otherwise pure. That is, we
want the assertion to be equivalent to skip with respect to some suitable equivalence
relation that is yet to be determined. It is well known how to express satisfaction of
pre/post specifications in terms of assertions, so our criterion accounts for specifications
as well as other annotations, provided that =2 has two properties:

Preserves correctness: If S = S’ then S and S’ should satisfy the same specifica-
tions.

Congruence: if S = S’ and C[—] is some program context such that C[S] is well
formed then C[S] = C[S'].

Equation (I) formalizes both that f has no effect for runtime checking and that in terms
of static verification it is sound to ignore the effect in reasoning about assert Q[f].
Preservation of correctness ensures that replacing an assertion by skip does not change
the behavior of a program in any way that can be described (observed) by specifications.
An important instance of congruence is that S = S’ implies S; T = S’; T', which
allows (@ to be used to introduce or eliminate a precondition.

Preservation of correctess and congruence are properties of = together with the
programming language and specifications. It could be that a suitable = fails to exist
because programs or specifications include some unusual feature like the ability to de-
termine the absolute number of allocated objects, reachable or not. A common feature
that would be problematic is pointer arithmetic, which makes it possible to indirectly
detect memory allocation. Our examples mostly follow the syntax of C#, which like
Java has no pointer arithmetic, but otherwise they do not depend on the specifics of the
programming language.
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2.1 Semantics

Criterion (I expresses a sense in which f has no effect, but the point is that f does
have an effect. To justify our claims we need to consider a semantics for assert that
has effects.

We write f(z),h — v,k to express that invocation of method f on arguments
x in initial heap h yields value v and final heap k. We include the receiver object
in the list 2 to simplify notation. We model the heap as a finite partial function that
maps each object location (address) to a mutable record of the object’s fields (including
an immutable field that records its allocated type). So dom h is the set of locations
allocatedin h, h o represents the state of object o ,and h o.t is the value of field ¢ of
object o in heap h . For brevity, we assume that local variables are somehow encoded
in the heap, e.g., as a record at a distinguished location. It is not difficult to make a more
precise formalization of our theory, taking proper account of local variables [28§]], but
with these assumptions we can simply write

S,h—k

to express that the result of executing statement S in heap & is heap k. Similarly,
execution of an expression £ in h, yielding heap % and value v, is written

E.h— vk
as in the special case of method call. Now the semantics of assert is defined by
(assert Q),h — k iff Q,h — true, k

In this paper we confine attention to partial correctness of single-threaded programs and
thus it is sound to model divergence by the absence of an outcome. In our semantics,
input and output can be represented by designated objects with sequence-valued fields.

2.2 Weak Purity

As a step on the way to defining =, let us consider weak purity as in JML. For f to
be weakly pure means it has no effect on preexisting objects. But it may well allocate
new ones. New objects may be allocated for a data structure used by some algorithm
to compute a result; such a data structure is garbage upon termination of the algorithm.
New objects may also comprise the result value, e.g., a function might return a new
string. A more complicated example is a method that returns an enumeration in the
form of an [Iterator object: this new object may reference preexisting ones (a cursor
reference into the underlying collection) but also new ones (e.g., an array to represent
the sequence, or a Biglnteger used for a version stamp with a long-lived collection)ﬂ

Definition 1. Expression E is weakly pure iff for any h, v, k,
E,h — v,k implies (domh)<k=nh

where (dom h) <k denotes heap k restricted to the objects allocated in h . Method f
is weakly pure iff the call f(FE) is weakly pure for any weakly pure E .

! A database query could return even more elaborate structure, but might well perform internal
updates and thus satisty only the weaker observational purity.
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An asserted formula @) is just a boolean expression, possibly involving quantifiers
and other mathematical notations in addition to program expressions. We may as well
assume that the only program expressions that have side effects are method invoca-
tions. So the only possible effects from assert ) are the field updates from method
invocations in @) .

We expect that observational purity will subsume weak purity and thus weakly pure
/ should satisfy Equation (I). Let us consider what equivalence =2 is suitable in the
case of weak purity. Semantic equality is a correctness preserving congruence. But for
weakly pure f it is not the case that the meaning of assert Q[f] is equal to skip,
since f may allocate new objects. So we should perhaps consider heaps equivalent if
they are the same after garbage collection. But when the allocator chooses a location
for a new object, the choice may be influenced by the presence of garbage, so relocation
must also be considered.

Letus write h ~ h’ if h and h’ are the same “modulo renaming of locations” and
“modulo garbage collection” | For values we write v ~ v’ , meaning v = v’ if v, v/
have primitive type but equivalence modulo renaming if they are object locations.

As a candidate interpretation for = in (I), define the relation = on statements by
lifting the state relation = as follows: S ~ S’ iff forall h,h', k, k' with h =~ h', if
S,h— k and S,/ — k' then k =~ k' . In a diagram:

h~h
Sl |9 )
k~E

Relation =~ is not correctness preserving if we admit specifications that are sensitive
to garbage or to specific choices of locations, such as the postcondition “there is an
even number of objects allocated and location 1024 is not allocated”. But specification
languages at the source code level, such as JML, do not allow such a postcondition to be
expressed. For specifications that are insensitive to renaming of locations and garbage
collection, =~ is correctness preserving.

Relation ~ is also a congruence, for the constructs of source languages like C#
and Java that are designed to be insensitive to renaming of locations (which is not the
case in C owing to address arithmetic). Garbage collection in these languages can be
observed, via timing behavior and out-of-memory exceptions, but for reasoning about
specifications an idealized model is often assumed, in which integers and memory are
unbounded. Our semantics is at that level of abstraction, which justifies the assumption
we shall make that ~ is a correctness preserving congruence. This is certainly the case
for standard OO constructs without address arithmetic or bounded memory.

Proposition 1. If @ is weakly pure then assert @) ~ skip.

In the general case, () is some formula that may include several invocations of obser-
vationally pure methods, on arguments that are pure. For simplicity we give the proof

2 These notions are formalized precisely in [28], by indexing the equivalence relation with a
renaming bijection. But the technical details are not necessary to follow the key points of our
proposal. Note that [28] uses slightly different notations than the present paper.
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only for the case where @ is f(z) for some boolean valued weakly pure f . The gen-
eralization is straightforward; indeed it can encoded in this special case, at the cost of
introducing a new method f .

Suppose we have

h=hn
assert f(z) | | skip
koK
By semantics of skip, A’ = k’. By semantics of assert, we have f(z),h —

true, k. And by weak purity of f we have (domh) <k = h. We did not formalize
in detail the effect of statements on local variables but it should be clear that garbage
collection of k gives (domh) <k, so k = (dom h) < k, because method call has no
effect on locals at the call site and neither does assert. Hence k =~ k' follows by
transitivity of ~ from

k ~ (domh)ak = h ~ K = K

This completes the diagram and the proof of assert f(z) ~ skip.

If f is weakly pure, it may allocate new objects and return a reference to one
of them, but it does not otherwise store references to the new objects. The preceding
argument can be adapted to prove the following alternative characterization.

Lemma 1. f is weakly pure iff f(z),h — v,k implies k =~ h forany z,h, v, k.

Having justified the use of weakly pure methods, we note that f in Fig.[Ilis not weakly
pure because it updates a preexisting hashtable. To allow f in specifications we need
to take into account that the hashtable is encapsulated within class C'.

2.3 Observational Purity

It is well known that private visibility for fields is not sufficient for encapsulation be-
cause of sharing [19L[13]]. If our example included a method that returned a pointer to
the hashtable, client programs could use it and thereby behave differently depending on
its contents. In such a situation, assert f(z) would not be equivalent to skip because
the effect of f could be observed. There has been extensive work on notions of con-
finement or ownership to address this problem [3,6,/13}26]. Such a notion gives rise to
an equivalence on heaps, written h ~© h/, with the meaning h is indistinguishable
from I/ in code of any class other than C (and, as before, modulo garbage collection
and renaming)E The equivalence extends to statements by defining S ~¢ S’ iff the
relation ~© on states is preserved as in @).

At this point one might hope to simply adapt Lemma [I using ~¢, to serve as
a definition: f would be observationally pure outside C provided that f(z),h —
v,k implies h ~¢ k for any z,h,v, k. Indeed, if f satisfies this condition then
we do have assert f(z) ~© skip. But is the relation ~© a correctness preserving
congruence?

3 The precise definition of ~€ exploits a renaming relation to encode which locations are
confined to class C', i.e., not usable by code of other classes [28].
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We claim that ~© is correctness preserving with respect to specifications except for
private specifications in class C . Public specifications would not refer to encapsulated
state, but private specifications and other code annotations might well refer to it. The
latter can distinguish between assert f(z) and skip.Evenif f has the property that
f(z),h — v,k implies h ~¢ k, it does not make sense to use Equation () to replace
an assert in code of C'.

Unfortunately, the proposed definition is unsatisfactory because ~% 1is not a con-
gruence. As an example, suppose the following method is added to class C' in Figure[Tl

c

public int leak() { return t.Count; }
We have assert f(z) ~¢ skip because f is observationally pure outside C', but
assert f(z);y := leak() #C skip;y := leak()

which shows that the congruence property fails for the context —; y := leak() .

The name “leak” hints that this is a dubious method; it clearly exposes what is
intended to be encapsulated. But congruence fails even for desirable code. Consider the
context y := f(z); —, where f is from Fig.[[l We have y := f(z) #¢ y := f(z)
for the following reason. Consider h, h’ such that h = h' except that for some C
object 0, ho.t and h' 0.t map z to different values, i.e., o.t[z] in h differs from
o.t[z] in A’'.Then h ~© k', because ~© ignores the ¢ field. But v £ v’ where
v, v are the corresponding results of executing f(z), and so k £ k' where k, k'
are the corresponding heaps after y := f(z) . Now clearly skip ~¢ skip, but if we
put skip into the context y := f(z); — then we get

y:=f(z);skip = y:=f(z) #° y:=f(x) = y:=f(z);skip

So the context y := f(x); — is another counterexample to congruence.

~

Indeed, as soon as S = S fails for some S then 22 fails to be a congruence.

2.4 Simulation Relations

The second counterexample to congruence shows the root problem: because ~¢ is

defined to ignore the encapsulated fields and objects, it relates states from which meth-
ods of C' may have quite different behavior. The problem can be solved by requiring
that every method of C preserve ~© but that is impractical: it would disallow any
nontrivial use of the internal state of C' objects.

A more practical solution is obtained by generalizing from ~¢ to some relation =
that is preserved by methods of C'.

Example 1. Typically, h =< h’ just if the heap partitions in such a way that each C -
object has an associated island of its encapsulated representation objects and with the
exception of these objects everything corresponds as in the definition of =~ . For our
running example, one possibility is the relation = defined by: h < b/ iff h ~¢ A’
and moreover for every C -objecﬂ the invariant holds for both A and for h’, i.e.,

* Strictly speaking we should consider pairs o, o’ that correspond, i.e., 0 ~ o’ .
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ho.t[z] = expensive(x) for all z in the domain of keys of & o.t, and the same for
h' 0.t . For this relation we have that f =< f, by contrast with the second counterex-
ample above. The notation f < f is the lift of < from states to methods defined as
follows: If h =< A’ then f(z),h — v,k and f(z),h’ — o',k imply k =< k' and
v~ v, forall z,h,k, v and their primed counterparts.

As another example, suppose class C represents a bag of objects using an array
which may have null elements. Some operations may have the side effect of compacting
the array (moving non-null elements into the place of nulls). Then h =< &' just if, for
corresponding pairs of arrays the only difference is possible compaction. If C' has other
fields, these are related by =~ .

Definition 2. Fora givenclass C',a C -simulation is a transitive relation < such that
the following conditions hold.

(@) B ~h=k=~Fk implies h' < k', i.e., the relation is insensitive to renaming and
garbage collection;

(b) h =k implies h ~© k,i.e., related heaps cannot be distinguished in the context
of code of classes other than C';

(¢) f = f forevery method f ofclass C,i.e., methods of C preserve <.

Item (a) is a simple healthiness condition that is to be expected. Item (b) and transitivity
are what will justify the use of < in the definition of observational purity; (b) says
that outside C', the relation acts like the simple indistinguishability relation. Item (c)
complements (b), dealing with the problem that code in C' need not preserve ~¢ and
as aresult ~© is not a congruence.

Simulations of various kinds are of fundamental importance in the study of encap-
sulation [25/14]. A standard result is that if a relation has property (c) then in fact it is
preserved by every method of every class. Indeed, it is preserved by every statement and
as a consequence it is a congruence: If S < S’ then C[S] < C[S’] for all well formed
contexts C[—]. By well formed contexts, we mean those which respect encapsulation
boundaries. Encapsulation for this purpose is studied in [3] and other disciplines for en-
capsulating invariants can be used as well, e.g. verification disciplines [6,/26] and type
systems [[17,[13]]. Such disciplines typically base encapsulation boundaries on program
structures such as modules and private fields and in addition some form of alias control.

For simulations used to connect different representations of an abstraction, transi-
tivity does not make sense because the domain and range of the relation are different
state spaces. For our purposes transitivity is needed; it holds for the examples we have
considered, for reasons that become clear in Section

2.5 Observational Purity Via Simulation
Our main definition follows the pattern of Lemmal[ll

Definition 3. Expression E is observationally pure outside C' via =< if and only if
= isa C -simulation and FE,h — v,k implies k£ < h (forall h,v, k). Moreover, £
is observationally pure outside C' iff there exists < such that F is observationally
pure outside C' via <. Finally, f is observationally pure outside C (via <) iff the
call f(z) is observationally pure outside C' (via <) for variable z .
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For a method f it suffices to check the method body, but we formulate it in terms of
application to a variable for clarity.

If f is weakly pure then it is observationally pure, via the relation = . Taking =< in
Def.[3lto be ~, the requisite condition is exactly weak purity. And = is a simulation:
(a) holds by transitivity, (b) by definition, and (c) by congruence.

If every method call in an expression E is observationally pure via =< then it is not
difficult to show that FE is observationally pure via the same relation. One might want
a different simulation to be used for different methods ; this generalization is discussed
in [9]

Theorem 1. If @ is observationally pure outside C' then for any context C[—] of a
class other than C' we have Classert Q] ~© C[skip] .

As with Proposition[T}, we give a proof for the case that @ is a single call f(z).

Suppose f is observationally pure outside C' via <. A consequence of conditions
(a) and (b) of Def.Plis that S < S’ impliesﬁ S ~¢ 8" Sotoprove Classert f(z)] ~¢
C[skip] it suffices to show Classert f(z)] < C[skip]. Because =< is a congruence
(a consequence of condition (c)), this follows from assert f(z) = skip. Finally,
assert f(z) = skip can be proved by an argument similar to that for Proposition[I]
using transitivity of =< and the conditions of Def.[3|for f .

So we have justified that () holds, with ~C for 2, provided that there is a simu-
lation =< with respect to which f is observationally pure.

Relation ~© is correctness preserving for specifications other than private ones for
class (', so it is suitable for annotations and specifications of classes other than C'.
Thus, for ~© , Equation (1) should only be used in code outside C'.

An attractive feature of our account is that simulations are intimately connected
with established theories of encapsulation; our approach can be carried out given suit-
able forms of encapsulation such as ownership confinement [[12] or the assertion based
encapsulation of the Boogie methodology [6].

An unattractive feature of our account is that it appears to require the definition
of a relation < and proof that all methods of the class C' preserve it. Moreover, the
program must conform to some encapsulation discipline, and possibly additional con-
ditions be imposed on =<, to ensure that Def. 2lb) holds and that congruence follows
from Def.2lc). Such disciplines exist but impose nontrivial restrictions and/or depend
on significant additional program annotations. In Section[3] we show that it is enough to
have an encapsulation discipline that supports object invariants and for the programmer
to reason about assertions rather than simulations.

By contrast, to check whether a method is weakly pure it suffices to check the code
of the method (including overriding implementations).

3 Using Information Flow Analysis to Check Observational Purity

The requirement in Def. Bl that f(z),h — v,k implies k& < h, expresses a very
strong form of encapsulation for f. Encapsulation usually means hiding of internal

5 This glosses over a technicality: the relation needs to be established initially by constructors.
A formalization is worked out in [28]].
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representations but not hiding of the represented information. By contrast, an observa-
tionally pure method reveals nothing about state, not even in terms of abstract values.
This is akin to secure information flow policy, in particular confidentiality: public out-
puts must reveal nothing at all about secret inputs. In this section we show how static
analysis for secure information flow can be used to check observational purity.

As indicated in the running example, for purposes of observational purity a simula-
tion < would typically be defined so that i =< h’ if and only if

- h~Y R —i.e., fields of objects not of type C are related by ~;

— fields of C that are not affected by the observationally pure methods are also
related by = ; and

— I(h) and I(h'), where some object invariant is associated with class C' and I
expresses that each instance of C' satisfies the invariant.

The first and second items are similar. Earlier we focused on the class as a natural en-
capsulation boundary, which motivated the definition of ~ | but we can combine the
two items using a relation ~ that expresses hiding of just the fields affected by the
observationally pure method. Suppose method f of class C' is claimed to be observa-
tionally pure. Define h ~ h’ iff h and h’ agree, up to ~, on all fields except those
written by f §

Anticipating the connection with secure information flow, let us assume that some
methods of C' are marked as ObservationallyPure and the fields written by those
methods are marked as Secret [1 Parameters and results of some private methods of C'
may also be marked as secret. All other fields, parameters, and results are considered
open, the unmarked default. Now » ~ h’ means that, up to ~, heaps h and b’ differ
only in their secret parts.

To summarize the preceding paragraphs, we have observed that the typical < fac-
tors so that

h< h/iff h <~ B and I(h) and I(1) 3)

The next observation is that if we instantiate Def.[2] with ~ for =< then condition (c)
is exactly the termination-insensitive noninterference property checked by dependency
or information flow analysis [[1,31]. Condition (a) of Def.[2lholds by definition of ~ .
If all secret fields are in class C' then (b) also holds by definition of ~ .

For OO programs there are modular, type based information flow analyses that
check each method implementation separately, relative to a fixed security labelling of
method parameters and returns that is invariant under subclassing [27,14,33]]. Restric-
tions are imposed only on methods that read or write secret fields or have secret pa-
rameters or results. Thus, in our application where only the putatively pure methods
involve secrets, only their implementations need to be checked by the analysis.

Our proposal is therefore to use ~ as the standard simulation to witness observa-
tional purity. Two issues remain to be addressed:

® This glosses over the considerations mentioned in Footnote 3]

7 We use the term “open” instead of “public” to avoid confusion with the visibility modifiers
(private, protected, public) that are common in object-oriented programming. The security
literature often uses “high” for secret and “low” for open.
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— how can we check whether a method marked observationally pure does have the
property in Def.Bl(that f(z),h — v, k implies k& ~ h ) with respectto ~?

— do the examples of interest satisfy the restrictions of standard information flow
analysis?

The first item is easy. The property is familiar in information flow analysis: The rule for
checking a conditional “if F then S else S’ requires that, if F reads secrets then
S and S’ do not write open fields [15]]. Not writing open fields is expressed by the
property that S, h — k implies k& ~ h. The ability to check this property is included
in any information flow analysis.

The second item is problematic. Of course any fully automatic analysis is conserv-
ative and will reject some programs that are acceptable semantically. What we hope is
that a large class of typical examples will be accepted. Unfortunately, all of our exam-
ples will be rejected by the standard rules, because of manifest dependence of (open)
results on secret state. For example, the return expression of method f in Fig. [l is
(U)t[z], which is considered secret because ¢ is. The standard rule [15] for assign-
ment is that

If y issecretor E isopenthen “y := E ” has secure flow.

We model the statement return E as assignment result := E to a special variable.
The example is rejected because a secret expression is assigned to the open result.

It would seem that, for f in our running example, (c) with ~ for =< fails, for
the same reason (c) with ~€ for = fails, i.e., these relations allow the secret state
to differ arbitrarily. But recall the factorization (3); what is preserved by code of C
is the conjunction of ~ with the object invariant. Hence, if we restrict attention to
heaps satisfying the invariant then ~ is preserved, because, in such heaps, f(z) returns
expensive(x) regardless of whether z is in the cache or not.

One could devise information flow rules that directly take an invariant into account.
Instead, we propose the following rule for assignments, which is of interest in the case
that y is open and E secret.

If E’ is open then “assert £ = E’; y := E ” has secure flow. 4)

It is not difficult to show that this is sound with respect to the noninterference property,
i.e., condition (c). For our running example, the code would be annotated like this:

assert (U)t[z] = expensive(z); result :== (U)t[z]

If h ~ b’ initially but 7(h) or I(h’) fails then one of the assertions fails and there
is no pair k, k" of result heaps —and thus no counterexample to the noninterference
property. On the other hand, if the invariant holds in both initial heaps then the corre-
sponding results are equivalent (modulo =) as required. The role of the invariant is
now to prove that the assertion is valid.

4 The Running Example

To support flow analysis, class C is annotated as shown in Figure 2l Note that the
required assertion preceding the return is an immediate consequence of the class
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class C'{

[Secret]
private Hashtable t:= new Hashtable();
invariant Forall{T zin t.Keys : t[z] = expensive(z)};
[ObservationallyPure]
public U f(T z)
requires z # null;
ensures result = ezpensive(z);

{
if (=t.ContainsKey(z)){

U y := ...; //compute expensive(z)
t.Add(z,y); }
assert (U)t[z] = expensive(z);
return (U)t[z];
}
}

Fig. 2. The annotated class C . The “leak” of secret information has been guarded by an assertion.

invariant that has been introduced as part of specifying the correctness of f regardless
of the issue of purity.

Our approach would prevent the method leak (from Section[2.3)) from being added
to class C'. Because ¢ is secret, expression ¢.Count is secret but the result is open.
To include such a method, the programmer would have to validate an assertion relating
t.Count , the number of items in the hashtable, to some open data, which is unlikely to
be possible.

It is important to also consider how information can be revealed via control flow.
Suppose the programmer added the following method to the example class C'.

[ObservationallyPure]
public U problem(T =x)
requires z # null;
ensures result = ezpensive(z);
{ if (¢t.ContainsKey(z)) throw new Ezception(...); else return f(z); }

If z had been an argument to f in a previous state, then problem(z) throws an ex-
ception, otherwise it returns expensive(z). As mentioned earlier, information flow
analyses check that in the branches of a conditional with secret guard, there are no
flows on open channels (e.g., assignments to an open variable, normal or exceptional
return) [31]]. For exceptional flows and unstructured code, control dependencies are
tracked [[L1]; an open flow is not allowed if the program counter is influenced by se-
crets. Method problem is thus rejected as insecure.

Following the pattern of our new rule @) one can introduce the following asser-
tion/conditional rule:

If E’ isopenand Sy and S; have secure flow then so does
“assert £ = E’;if (F) then S else $; ™.
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In fact this is a direct consequence of (@) as the code can be rewritten using a fresh, open
variable y as follows: assert £ = E’; y:= F; if (y) then S else S . For field
update z.f := FE the rule is similar to the rule for assignment in that if E is secret
then f must also be marked as secreth

The assertion/conditional rule would not apply to method problem unless the pro-
grammer could find an open expression equal to ¢.ContainsKey(z) which is unlikely.
The method is rejected as it should be.

5 Conclusions

When specifications do not modify the observable state of a program, specifications can
be combined with programs without changing their meaning. This makes it much easier
to implement both static and dynamic analysis tools. The distinction can be made by
completely separating the functions used in specifications from those in the program,
which is attractive in theory. But OO code includes many purely functional methods,
indeed many that only read state, and terminate for obvious reasons, often under no
preconditions. For runtime checking it is surely better to use such a method in speci-
fications rather than re-implementing it merely for theoretical elegance. Moreover, re-
quiring the use of a special specification library for functions that are manifestly present
in the code creates an unnecessary impediment to programmers’ writing and using spec-
ifications.

Specifications are usually at a high level of abstraction that ignores phenomena such
as real time, power consumption, and even memory size. Once the door is opened to
using program functions in specifications, it is natural to allow those that have an effect
such as memory allocation that is not observable at the level of reasoning. We push
this idea further, arguing that effects can be ignored in the context of a specification if
encapsulation prevents the effects from being observable in that context.

Many library methods are weakly pure. But there are also many accessor methods
that are intended to be pure, as indicated by the names and by documentation, but which
are not weakly pure. It would be convenient to have them available for use in contracts.

5.1 Related Work

Runtime verification using AsmL [10] does not restrict the use of functions in specifica-
tions. It provides an alternative data space from the implementation so that side-effects
in this space are insulated from the data space of the implementation. But AsmL is
unsound since it allows full interoperability with arbitrary components.

JML has decided on the conservative approach of outlawing all side-effects [20]
except construction of new objects. Library methods that cause side-effects cannot be
used in specifications; instead, pure replacements must be used. This complicates life
for specifiers: one must always be aware of which methods one can use and which are
outlawed. Also, not all of the current JML tools are capable of using the replacement
methods.

8 There is an additional restriction that if z is secret then f must be so too; open fields could
be updated through an open alias of z . See [4] for an explanation.
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These issues have long been known in the Eiffel community; Meyer [24] discusses
at length the desire to allow benevolent side-effects. However, Eiffel does not enforce
any policy, but leaves it as a design principle.

Leino [22] explores benevolent side effects with respect to modifies specifications.

Sélcianu and Rinard [32] have designed a purity analysis that is able to distinguish
updates to pre-existing objects and newly allocated objects. The mutation of the latter is
allowed in a pure method. They also are able to extract regular-expression descriptions
of updates that violate purity. This analysis supports the intended notion of purity of
JML but is less conservative than the analysis used in the JML tools.

A preliminary version of this paper appeared as [8]. Naumann [28] subsequently
formalized the general theory in terms of simulations (justifying our Section[2)) but did
not develop the connection with information flow or consider extensive examples.

Banerjee and Naumann [3]] give a general theory of simulations for encapsulated
data representations, using an instance-based notion of heap encapsulation closely re-
lated to ownership types [12}[13]]. In recent work [3] they give an instance-based theory
of simulations using an adaptation of the Boogie methodology [6L23] which uses mu-
table notion of ownership for modular reasoning about object invariants. It seems likely
that a notion of simulation suitable for observational purity could be based on other
units of modularity such as the package [[17]]; in some sense that’s closer to what an
information flow analysis does.

A prototype checker for secure information flow in single-threaded Java programs,
based on proven sound rules [4], is being developed as part of the dissertation research
of Qi Sun [33]. The Jif prototypeﬁ checks information flow for Java; based on work
of Andrew Myers [27], it deals with more sophisticated flow policies. The FlowCaml
systerr@ is based on provably sound rules [29,/30]] and handles a substantial fragment
of Objective Caml, though omitting object-oriented features. Amtoft et al. [2] have
developed a logic for checking information flow and shown how it applies to our leading
example.

The security literature has extensive work on declassification, i.e., intentional flows
from secret to open. Our rule () may appear to be a form of declassification, but it does
not allow any leakage of information which is the point of declassification [31]].

5.2 Future Work

We plan to perform an analysis of the .NET base class library to see how many functions
that would informally be considered as pure are actually observationally pure, but not
weakly pure. We are also implementing our observational purity system in the context
of the Spec# project [7] within Microsoft Research. This context provides automated
theorem-proving support to check assertions. For simple examples involving lazy ini-
tialization and caches, superficial syntactic heuristics might be adequate for checking
the relevant assertions.
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