
1 Semi-Supervised Learning with Conditional

Harmonic Mixing

Christopher J. C. Burges

John C. Platt

Recently graph-based algorithms, in which nodes represent data points and links en-

code similarities, have become popular for semi-supervised learning. In this chapter

we introduce a general probabilistic formulation called ‘Conditional Harmonic Mix-

ing’, in which the links are directed, a conditional probability matrix is associated

with each link, and where the numbers of classes can vary from node to node. The

posterior class probability at each node is updated by minimizing the KL divergence

between its distribution and that predicted by its neighbours. We show that for arbi-

trary graphs, as long as each unlabeled point is reachable from at least one training

point, a solution always exists, is unique, and can be found by solving a sparse lin-

ear system iteratively. This result holds even if the graph contains loops, or if the

conditional probability matrices are not consistent. We show how, given a classifier

for a task, CHM can learn its transition probabilities. Using the Reuters database,

we show that CHM improves the accuracy of the best available classifier, for small

training set sizes.

1.1 Introduction

Graphical1, models provide a powerful framework for approaching machine learning

problems. Two common examples are probabilistic graphical models Jordan [1999]

and semi-supervised learning on graphs (see Zhu and Ghahramani [2002], Zhu

et al. [2003a], Zhou et al. [2003]) and which we refer to here as Laplacian SSL.

Graphs have been used as a general representation of preference relations in ranking

1. To Appear in Semi-Supervised Learning, MIT Press, 2006, Eds. O. Chapelle, B.
Schölkopf, A. Zien

2 Semi-Supervised Learning with Conditional Harmonic Mixing

problems (Dekel et al. [2004]) and play a role in various approaches to dimensional

reduction (Burges [2005]). In this paper, we propose a new graph-based approachConditional

Harmonic Mixing to semi-supervised learning called Conditional Harmonic Mixing (CHM).

Probabilistic graphical models such as Bayes nets write a probability distribution

as a product of conditionals, which live on the nodes; the arcs encode conditional

independence assumptions. Laplacian SSL is more closely related to random walks

on networks (Doyle and Snell [1984]): each arc encodes the similarity between

the nodes at its endpoints, and the goal is to use neighborhood structure to

guide the choice of classification (or regression, clustering or ranking) function.

For Laplacian SSL models, the probabilistic interpretation is somewhat indirect

(Zhu et al. [2003a]); for probabilistic graphical models, it is central. In CHM

we propose an intermediate model, where both a probabilistic interpretation and

Laplacian SSL are central. In CHM, no attempt is made to model an overall

joint density; we are only interested, ultimately, in the class conditional posteriors.

Although it is assumed that there exists some underlying joint, the model itself

is viewed as an approximation; in particular, the conditional probabilities may be

approximations, and as a result, inconsistent (i.e. no joint may exist for which

they are the conditionals). This results in some striking differences between CHM

and well known probabilistic graphical models such as Bayes nets: for example, in

CHM, the process of learning the posteriors, given the conditionals, converges to

a global optimum via a straightforward iterative optimization procedure, whatever

the structure of the graph (in particular, even if there are loops), provided only

that there exists a path to each unlabeled point from at least one labeled point. In

this regard, CHM is similar to dependency networks (Heckerman et al. [2001]). In

CHM, as in Laplacian SSL, each node corresponds to a random variable, but unlike

the original Laplacian SSL, the arcs are directed , and each arc carries a matrixDirected Graphs

which models a conditional probability2. The matrices can even be rectangular,

which corresponds to the posteriors at different nodes corresponding to different

numbers of classes for that random variable. We will also investigate learning the

conditional probability matrices themselves from data. In this paper we will consider

CHM models for classification, but the same ideas could be extended for regression,

clustering, ranking, etc.

1.1.1 Conditional Harmonic Mixing: Motivation

CHM is a highly redundant model, in that for a ‘perfect’ CHM model of a given

problem, the posterior for a given node can be computed from the posterior at any

adjacent node, together with the conditional probability matrix on the arc joining

them. However this is an idealization: CHM handles this by asking that the posterior

at a given node be that distribution such that the number of bits needed to describe

the distributions predicted at that node, by the adjacent nodes, is minimized. This

2. Recently, Zhou et al. [2005b] have extended Laplacian SSL to the case of directed arcs.

1.1 Introduction 3

is accomplished by minimizing a KL divergence (see below). Building on an ideaKullback Leibler

Divergence proposed in Zhu et al. [2003a], CHM can also be used to improve the accuracy of

another, given base classifier.

In the graphical approaches to semi supervised learning of Zhu and Ghahramani

[2002], Zhu et al. [2003a], Zhou et al. [2003], the underlying intuition is that the

function should vary smoothly across the graph, so that closely clustered points

tend to be assigned similar function values (the “clustering assumption”). This

leads to the use of undirected arcs in the graph, since the graph is used essentially

to model the density. However there is a second intuition that we wish to add,

and that is of the propagation of information. Consider the graph shown in Figure

1, left panel (in this chapter, filled (unfilled) circles represent labeled (unlabeled)

points), where both arcs have the same weight. In the harmonic solutions of Zhu

and Ghahramani [2002], Zhu et al. [2003a], Zhou et al. [2003], the state of node 2 is

the weighted average of its neighbours. However in this particular graph, it seems

strange to have node 2 care about the state of node 3, since from the information

propagation point of view, all of the label information propagates out from node

1, and all label information about node 3 has already passed through node 2. By

making the arcs directed, as in the right panel, this problem can be addressed

with no loss of generality, since an undirected arc between nodes A and B can be

simulated by adding arcs A→B and B→A.

1 2 3 1 2 3

Figure 1.1 Directional arcs for information flow.

A second reason for using directed arcs is that the relations between points can

themselves be asymmetric (even if both are unlabeled). For example, in KNN, if

point A is the nearest neighbour of point B, point B need not be that of point A.

Such asymmetrical relations can be captured with directed arcs.

CHM shares with Laplacian SSL the desirable property that its solutions areHarmonic

Solutions harmonic, and unique, and can be computed iteratively and efficiently. It shares with

Bayesian graphical models the desirable property that it is a probabilistic model

from the ground up. We end this Section with a simple but useful observation, but

first we must introduce some notation. Suppose nodes i and j (i, j ∈ {1, . . . , N}) are

connected by a directed arc from i to j (throughout, we will index nodes by i, j, k

and vector indices by a, b). We will represent the posterior at any node k as the

vector P (Xk = Ma) ≡ Pk (so that Pk is a vector indexed by a), and the conditional

on the arc as P (Xj |Xi, G) ≡ Pji (so that Pji is a matrix indexed by the class index

at node j and the class index at node i). Then the computation of i’s prediction of

the posterior at j is just the matrix vector multiply PjiPi
.
=
∑

b(Pji)ab(Pi)b. Note

that all conditional matrices are also conditioned on the training data, the graph

4 Semi-Supervised Learning with Conditional Harmonic Mixing

structure, and other factors, which we denote collectively by G. We emphasize that

the number of classes at different nodes can differ, in which case the conditional

matrices joining them will be rectangular. Note also that the Pji are column

stochastic matrices. Similarly we will call any vector whose components are a

nonnegative partition of unity a stochastic vector. Then we have the following

Observation: Given any two stochastic vectors Pi and Pj , there always exists a

conditional probability matrix Pij such that Pi = PijPj .

This follows trivially from the choice (Pij)ab = (Pi)a ∀b, and just corresponds to

the special case that the probability vectors Pi and Pj are independent. This shows

that CHM is able, in principle, to model any set of posteriors on the nodes, and

that some form of regularization will therefore be needed if we expect, for example,

to learn nontrivial matrices Pij given a set of posteriors Pi. We will impose this

regularization by partitioning the Na arcs in the graph into a small number n of

equivalence classes, where n � Na, such that arcs in a given equivalence class are

to have the same Pij . In this paper, we will use nearest neighbour relations to

determine the equivalence classes.

1.1.2 Related Work

Zhu and Ghahramani [2002], Zhu et al. [2003a], Zhou et al. [2003] introduce

Laplacian SSL for transductive learning using graphs. Each link is given a scalarTransductive

Learning weight that measures the similarity between the data points attached to the nodes

at that link’s endpoints, and each node has a scalar value. The objective function is a

weighted sum of squared differences in function values between pairs of nodes, with

positive weights; minimizing this encourages the modeled function to vary slowly

across nodes. The solution is a harmonic function (Doyle and Snell [1984]) in whichHarmonic

Function each function value is the weighted sum of neighbouring values. The function is

thresholded to make the classification decision. In contrast to Laplacian SSL, at the

solution, for non-diagonal conditional probability matrices, the CHM conditional

harmonic property generates extra additive terms in the function on the nodes,

which are not present in the Gaussian field solution (which is homogeneous in the

function values). The two methods coincide only when the random variables at all

nodes correspond to just two classes, when the conditional probability matrices

in CHM are two by two unit matrices, where all the weights in the Gaussian

random field are unity, and where all nodes are joined by directed arcs in both

directions. Finally, one concrete practical difference is that CHM can handle one-

sided classification problems, where training data from only one class is available,

by using conditional posterior matrices other than unit matrices. In this case, the

objective function in Zhu et al. [2003a] is minimized by attaching the same label to

all the unlabeled data. However either method can handle one-sided classification

problems by leveraging results from an existing one-sided classifier; we will explore

this method below.

Zhu et al. [2003b] embed the label propagation work in a probabilistic framework

1.2 Conditional Harmonic Mixing 5

by showing that the model can be viewed in terms of Gaussian processes. However

to establish the connection, extra assumptions and approximations are required: theGaussian Process

inverse covariance matrix must be regularized, an extra set of unobserved random

variables, which give rise to the labels via a sigmoid conditional, are introduced, and

the posteriors must be approximated (the authors use the Laplace approximation).

CHM, by contrast, is inherently a probabilistic model.

Directed graph models for semi-supervised learning were also considered in Zhou

et al. [2005b]. However in that work, the kinds of graphs considered were specific

to a web-like application, with nodes split into hubs and authorities, and with the

fundamental assumption that the similarity of two nodes in the graph is defined by

their co-linkage (either from parents or children). Again, the aim of the model is to

require that the modeled function vary slowly across ‘similar’ nodes, so the notion

of information propagation described above does not play a direct role; the model

is also not a probabilistic one. More recently, semi-supervised learning on directed

graphs was also studied from a more general point of view in Zhou et al. [2005a].

Finally we emphasize the main differences between CHM and probabilistic graphical

models such as Bayes nets and Markov random fields. Belief nets and MRF’s useBayes Nets

the graph structure to encode conditional independence assumptions about the

random variables in the model, whereas CHM uses the (redundant) graph structure

to model both the flow of information from the training data, and the smoothness

assumptions on the functions being modeled. Evaluating belief nets (for example,

using belief propagation) in the presence of loops in the graph gets complicated

quickly, whereas as we shall see, CHM converges under general conditions, even

in the presence of loops. However both approaches share the fact that they are

probabilistic models.

1.2 Conditional Harmonic Mixing

The structure of the CHM graph will depend on the problem at hand: however all

graphs share the weak constraint that for every3 test node i, there must exist a

path in the graph joining i with a training node. We will refer to such nodes as

label-connected, and to the graph as a whole as label-connected if every test node

in the graph is label-connected. A neighbour of a given node i is defined to be any

node which is adjacent to node i, where ‘adjacent’ means that there exists an arc

from j to i.

We use the following notation: we assume that the random variable at node i has

Mi states (or classes), and that the arc from node i to node j carries a Mj × Mi

conditional probability matrix Pji. We adopt the convention that Pji is the Mj×Mi

3. For readability we use the indices i, j to denote the nodes themselves, since these
quantities appear frequently as subscripts. We use the terms ‘test node’ and ‘unlabeled
node’ interchangeably.

6 Semi-Supervised Learning with Conditional Harmonic Mixing

matrix of all zeros if there is no arc from node i to node j. We denote the posterior

at node i by the vector Pi ∈ R
Mi , for unlabeled nodes, and by Qi ∈ R

Mi for labeled

nodes. Denote the set of labeled nodes by L, with l
.
= |L|, and the set of unlabeled

nodes by U, with u
.
= |U|, let M(i) (N(i)) denote the set of indices of labeled

(unlabeled) nodes adjacent to node i, and define I = M ∪ N with n(i)
.
= ‖I(i)‖.

Finally, for node i, let p(i) be the number of incoming arcs from adjacent test nodes,

and let q(i) be the number of incoming arcs from adjacent train nodes.

1.2.1 The CHM Update Rule

A given node in the graph receives an estimate of its posterior from each of

its neighbours. These estimates may not agree. Suppose that the hypothesised

distribution at node i is Qi, and let the estimates from its n(i) neighbours be Pj , j ∈

I(i), so that Pj = PjkPk for each k ∈ I(i). Given Qi, the number of bits required toKullback Leibler

Divergence describe the distributions Pj is
∑

j{H(Pj)+D(Pj |Qi)}, where H is the entropy and

D the KL divergence. Since we wish to use Qi to describe the combined distributions

Pj as closely as possible, we require that this number of bits be minimized. For

fixed Pj , this is accomplished by setting (Qi)a = (1/n(i))
∑n(i)

j=1(Pj)a. A function

on a graph is called harmonic (Doyle and Snell [1984], Zhu et al. [2003a]) if at eachHarmonic

Function internal node the value of the function is the (possibly weighted) mean of the values

at its neighbouring points (an internal node, as opposed to a boundary node, is one

whose function value is not fixed; below we will just use the terms ‘unlabeled node’

and ‘labeled node’ for internal and boundary nodes). Assuming that a solution

exists, then at the solution, the posterior at a given node is the weighted mean

of the posteriors of its neighbours, where the weights are conditional probability

matrices; hence the name ‘Conditional Harmonic Mixing’.

1.3 Learning in CHM Models

1.3.1 A Simple Model

It’s useful to examine a simple model to fix ideas and to demonstrate a simple

convergence proof. Consider the 3-point graph shown in Figure 1.2, with one labeled

and two unlabeled nodes, and where to simplify the exposition we take the number

of classes at each node to be C.

The consistency conditions arising from the above update rule are:

(

−1 1
2P12

1
2P13

1
2P21 −1 1

2P23

)

P1

P2

P3

= 0 (1.1)

where P3 = (1, 0, 0, . . .) and where the ones in the matrices represent unit matrices.

We wish to prove four properties of these equations, for any choice of conditional

1.3 Learning in CHM Models 7

1

2

P12

P13

P23

P21 3

Figure 1.2 A simple 3-point CHM graph.

probability matrices P23, P21, P12 and P13: first, that a solution always exists,

second, that it is unique, third, that it results in stochastic vectors for the solution

P2 and P3, and fourth, that Jacobi iterates will converge to it (by solving with Jacobi

iterates, we will be able to take advantage of the sparseness of larger problems, as

we will see below). Rearranging, we have

(

1 − 1
2P12

− 1
2P21 1

)(

P1

P2

)

=
1

2

(

P13P3

P23P3

)

(1.2)

The equations will always take this general form, where the matrix on the left is

square (but not necessarily symmetric) and of side Cu, and where the left hand

side depends only on the unlabeled points (whose posteriors we wish to find) and

the right, only on the labeled points. Define:

b
.
=

1

2

(

P13P3

P23P3

)

, M
.
=

(

1 0

0 1

)

, N
.
=

(

0 1
2P12

1
2P21 0

)

(1.3)

and consider the following iterative algorithm for finding the solution, where x(0)

is arbitrary:

Mx(k+1) = Nx(k) + b (1.4)

With the above definitions, this is a Jacobi iteration (Golub and Van Loan [1996],

p. 510), and we have:

Theorem 1 (Golub and Van Loan [1996], Theorem 10.1.1): Suppose b ∈ R
d

and ∆
.
= M −N ∈ R

d×d is nonsingular. If M is nonsingular and the spectral radius

of M−1N satisfies the inequality ρ(M−1N) < 1, then the iterates x(k) defined by

Eq. (1.4) converge to x = ∆−1b for any starting vector x.

Since N here is one half times a column-stochastic matrix, its eigenvalues haveStochastic

Vectors and

Matrices

absolute value at most 1
2 , so ρ(M−1N) < 1. Hence for this graph, a solution

always exists and is unique. If we start with stochastic vectors everywhere (chosen

arbitrarily on the unlabeled nodes), then they will remain stochastic since each

8 Semi-Supervised Learning with Conditional Harmonic Mixing

Jacobi iterate maintains this property, and the solution will be stochastic4. Note

also that the matrix M −N is diagonally dominant, and so has an inverse. However

for the general case, N may not be proportional to a column stochastic matrix, and

furthermore M −N may not be diagonally dominant; we will need a more general

argument.

1.3.2 A General Convergence Proof

At the CHM solution, for each node i, we have the consistency conditions

Pi −
1

p(i) + q(i)

∑

j∈N(i)

PijPj

 =
1

p(i) + q(i)

∑

j∈M(i)

PijQj

 (1.5)

where the right hand side is defined to be zero if M(i) = ∅. Let p =
∑

i∈U
Mi, and

define a block matrix A ∈ R
p×p with ones along the diagonal and whose off-diagonal

elements, which are either zero matrices or are the matrices 1
p(i)+q(i)Pij , are chosen

so that Eq. (1.5) can be written as

AP = Q (1.6)

where P, Q ∈ R
p. Note that the right hand side of Eq. (1.6) is determined by the

training data, that all conditional probability matrices associated with unlabeled-

unlabeled arcs are in A, and that all conditional probability matrices associated

with labeled-unlabeled arcs are in Q. Thus Eq. (1.5) corresponds to the i’th row of

Eq. (1.6) and encapsulates Mi equations. Define the k’th Jacobi iterate byJacobi Iterations

P
(k)
i =

1

p(i) + q(i)

∑

j∈N(i)

PijP
(k−1)
j

+
1

p(i) + q(i)

∑

j∈M(i)

PijQj

 (1.7)

Referring to Theorem 1, we see that in this case, A
.
= M − N where M = I and

Nij
.
= 1

p(i)+q(i)Pij (recall that we define Pij to be the matrix of all zeros, if there is

no arc from node j to node i), and b is the second term on the right hand side of

Eq. (1.7). Then the k’th Jacobi iterate takes the form MP (k) = NP (k−1) + b. We

can now state:

Theorem 2: Consider a label-connected CHM graph with l labeled nodes.

Assume that the vectors at the labeled nodes are fixed and stochastic. Then a

solution to the corresponding CHM equations, Eq. (1.6), always exists and is unique.

Furthermore at the solution, the vector P ∗
i ∈ R

Mi at the ith unlabeled node is

stochastic for all i, and the Jacobi iterates on the graph will always converge to the

same solution, regardless of the initial values given to the Pi.

4. In fact this is true even if the initial vectors on the unlabeled nodes are chosen
arbitrarily, by Theorem 1, since the solution is unique.

1.3 Learning in CHM Models 9

We present the proof in the proof-style advocated by (Lamport [1993]).

Proof:

1. Assume: the CHM graph is label-connected.

2. ρ(N) < 1.

2.1. Proof: Consider the eigenvalue equation:

Nµ = λµ (1.8)

Just as we view N as a block matrix whose i’th, j’th element is the matrix
1

p(i)+q(i)Pij , similarly view µ as a vector whose i’th element is a vector of

dimension Mi. Then let µi be that component of µ whose L1 norm is largest (or

any such component if there are more than one) and consider the corresponding

rows of Eq. (1.8), which encapsulates the Mi equations

1

p(i) + q(i)

∑

j∈N(i)

Pijµj

 = λµi (1.9)

2.1.1 Assume: q(i) > 0 and i : ‖µi‖1 ≥ ‖µj‖1 ∀j.

2.1.1.1 Since Pij is column stochastic, it has unit L1 norm. Thus
∥

∥

∥

∥

∥

∥

∑

j∈N(i)

Pijµj

∥

∥

∥

∥

∥

∥

1

≤
∑

j∈N(i)

∥

∥Pijµj

∥

∥

1

≤
∑

j∈N(i)

‖Pij‖1

∥

∥µj

∥

∥

1

=
∑

j∈N(i)

‖µj‖1

≤ p(i)‖µi‖1

where ‖ · ‖1 denotes the L1 norm, and where the second line follows

from an inequality satisfied by all p norms (Golub and Van Loan

[1996]). Since by assumption q(i) ≥ 1, taking the L1 norm of both

sides of Eq. (1.9) gives |λ| < 1.

2.1.2 Assume: q(i) = 0 and i : ‖µi‖1 ≥ ‖µj‖1 ∀j.

2.1.2.1 The argument of 2.1.1.1, but with q(i) = 0, gives |λ| ≤ 1, and

if |λ| = 1, then each µj appearing in the sum must have L1 norm

10 Semi-Supervised Learning with Conditional Harmonic Mixing

equal to ‖µi‖1, since for |λ| = 1,

‖µi‖1 =
1

p(i)

∥

∥

∥

∥

∥

∥

∑

j∈N(i)

Pijµj

∥

∥

∥

∥

∥

∥

1

≤
1

p(i)

∑

j∈N(i)

‖Pijµj‖1

≤
1

p(i)

∑

j∈N(i)

‖µj‖1 ≤ ‖µi‖1

where the last step follows from the assumption that µi has largest L1

norm. Thus for each j ∈ N(i), we can repeat the above argument with

µj on the right hand side of Eq. (1.9), and the argument can then

be recursively repeated for each k ∈ N(j), until Eq. (1.9) has been

constructed for every node for which a path exists to node i. However

since the graph is label-connected, that set of nodes will include a

test node which is adjacent to a train node. The previous argument,

which assumed that q > 0, then shows that |λ| < 1. Thus, in general

for any label-connected CHM graph, |λ| < 1, and so ρ(N) < 1.

3. A is nonsingular.

3.1 Proof: Since ρ(N) < 1, the eigenvalues of N all lie strictly within the unit

circle centered on the origin in the complex plane C. Since N = 1−A (cf. Eq.

(1.6), if e is an eigenvector of A with eigenvalue λ, then it is an eigenvector of

N with eigenvalue 1 − λ, and so since 1 − λ lies strictly within the unit circle

centered on the origin in C, λ itself lies strictly within the unit circle centered

on the point {1, 0} ∈ C, so λ 6= 0. Hence none of A’s eigenvalues vanish, and A

is nonsingular.

4. A solution to the CHM equations exists and is unique.

4.1 Proof: Since A is nonsingular, AP = Q has unique solution P = A−1Q.

5. At the solution, the random vector Pi ∈ R
Mi at each unlabeled node is stochastic,

regardless of its initial value.

5.1 Proof: For all unlabeled nodes, choose P
(0)
i to be that stochastic vector

whose first component is 1 and whose remaining components vanish. Then from

Eqn. (1.7), by construction P
(k)
i is stochastic for all k. Hence from Theorem 1

and steps 2 and 3 above, the Jacobi iterates will converge to a unique solution,

and at that solution the Pi will be stochastic for all i ∈ N. Finally, by Theorem

1, the same (unique) solution will be found regardless of the initial values of

the Pi.

We emphasize the following points:

1. The theorem makes no assumptions on the conditional probability matrices,Conditional

Probability

Matrices

1.4 Incorporating Prior Knowledge 11

beyond the requirement that they be column stochastic. In particular, it does not

assume that the conditional probability matrices on the graph are consistent, that is,

that there exists a joint probability from which all conditionals (or even any subset

of them) could be derived by performing appropriate marginalizations. The CHM

algorithm can therefore be applied using measured estimates of the conditional

probability matrices, for which no precise joint exists.

2. In general A is not symmetric (and need not be row- or column-diagonally

dominant).

3. No structure is imposed on the graph beyond its being label-connected. In

particular, the graph can contain loops.

4. The numbers of classes at each node can differ, in which case the conditional

probability matrices will be rectangular.

5. The model handles probabilistic class labels, that is, the Qi can be arbitrary

stochastic vectors.

6. To improve convergence, Gauss-Seidel iterations should be used, instead ofGauss-Seidel

Jacobi iterations. For Gauss-Seidel iterations, the error tends to zero like ρ(M−1N)k

(Golub and Van Loan [1996], p. 514).

1.4 Incorporating Prior Knowledge

Suppose that we are given the outputs of a given classifier on the dataset. The

classifier was trained on the available labeled examples, but the amount of training

data is limited and we wish to use SSL to improve the results. We can adopt an

idea proposed in Zhu et al. [2003a], and for each node in the graph, attach an

additional, labeled node, whose label is the posterior predicted for that datapoint.

In fact CHM allows us to combine several classifiers in this way. This mechanism has

the additional advantage of regularizing the CHM smoothing: the model can apply

more, or less, weight to the original classifier outputs, by adjusting the conditionals

on the arcs. Furthermore, for graphs that fall into several components, some of

which are not label-connected, this method results in sensible predictions for the

disconnected subgraphs; the CHM relaxation can be performed even for subgraphs

containing no labeled data, since the base classifier still makes predictions for those

nodes. In the context of CHM, for brevity we call this procedure of leveraging a baseLifting

classifier over a graph ‘lifting’. We will explore this approach empirically below.

1.5 Learning the Conditionals

We are still faced with the problem of finding the conditional matrices Pij . Here we

propose one method for solving this, which we explore empirically below. Consider

again the simple CHM model shown in Figure 1.2, and to simplify the exposition,

12 Semi-Supervised Learning with Conditional Harmonic Mixing

assume that the number of classes at each node is two, and in addition require

that Pl
.
= P13 = P23 and that Pu

.
= P12 = P21 (l, u denoting labeled, unlabeled

respectively). We can parameterize the matrices as:

Pl =

(

1-v1 v2

v1 1-v2

)

, Pu =

(

1-v3 v4

v3 1-v4

)

(1.10)

where 0 ≤ vi ≤ 1 ∀i. Now suppose that the posteriors on every node in Figure 1.2

are given, and denote components by e.g. [P1a, P1b]. In that case, Eq. (1.1) may be

rewritten as:

−P3a P3b −P2a P2b

P3a −P3b P2a −P2b

−P3a P3b −P1a P1b

P3a −P3b P1a −P1b

v1

v2

v3

v4

=

2P1a − P2a − P3a

2P1b − P2b − P3b

2P2a − P1a − P3a

2P2b − P1b − P3b

(1.11)

which we summarize as Av = z. The matrix A in general need not be square, and

if it is, it may be singular (as it is in this example), and even if it is nonsingular,

computing v by inverting A is not guaranteed to give components vi that lie in the

interval [0, 1]. Thus instead we solve the quadratic programming problem:

arg min
v

‖Av − z‖2 subject to 0 ≤ vi ≤ 1 ∀i (1.12)

The posteriors Pi can simply be the outputs of a given classifier on the problem, if

the classifier outputs are well-calibrated probabilities, or thresholded vectors (whose

elements are 0 or 1) for arbitrary classifiers. To summarize: given some estimate of

the posteriors on every node, the conditional probability matrices on the arcs can

be learned by solving a quadratic programming problem.

1.6 Model Averaging

If sufficient labeled data is available, then a validation set can be used to determine

the optimal graph architecture (i.e. to which neighbours each point should connect).

However often labeled data is scarce, and in fact semi-supervised learning is really

aimed at this case - that is, when labeled data is very scarce, but unlabeled data is

plentiful. Thus in general for SSL methods it is highly desirable to find a way around

having to use validation sets to choose either the model or its parameters. In this

paper we will use model averaging: that is, for a given graph, given a classifier, use

CHM to lift its results; then, do this for a variety of graphs, and simply average the

posteriors assigned by CHM to each node, across all graphs. This, in combination

with learning the conditionals, makes CHM a largely parameter-free approach (once

a general algorithm for constructing the graphs has been chosen), although training

using many graphs may be more computationally expensive than using a validation

set to choose one.

1.7 Experiments 13

1.7 Experiments

We applied CHM to the problem of text categorization, and to five of the benchmark

classification tasks provided with this book.

1.7.1 Reuters-I Data Set

We applied CHM to the problem of the categorization of news articles in the

Reuters-I data set Lewis [1997], with the ModApte split of 9,603 training files

and 3,744 testing files. Each news article is assigned zero or more labels. Each label

is considered to be an independent classification. We train and test on the 10 most

common labels in the data set, which generates 10 separate binary classification

problems.

We ran two kinds of classification experiment: one-sided (where only positive

labeled examples are given), and two-sided (where labeled examples of both classesOne-sided,

Two-sided

Classification

are given). The one-sided task is interesting because for some applications, it is much

easier to obtain labeled data of one class, than of the other, and few algorithms can

handle training data that contains no examples of one of the classes. For the one-

sided problem we investigated using CHM to lift the Rocchio (inductive) classifier

outputs, since of the methods we considered, only the Rocchio algorithm (RocchioRocchio

Algorithm [1971]) was appropriate for the one-sided task.

For the two-sided problem, we tested two inductive algorithms and one transduc-

tive algorithm. The two inductive algorithms were a linear support vector machine

(Dumais et al. [1998], Drucker et al. [1999]) and a mixture of multinomial condi-

tional models (Nigam et al. [2000]). For the mixture model, one multinomial modelMultinomial

Models is used to model positive examples, while one or more multinomial models are used

to model negative examples. EM is used to fit the mixture model to the negative

examples. Hyperparameters (C for the linear SVM and the number of negative

multinomials) are set by optimizing the microaveraged F1 score for the labels for

Reuters classes 11-15 on the train/test split. These hyperparameters are then used

for all ten classes. We also tested Nigam et. al’s method for transduction using

the multinomial mixture model (Nigam et al. [2000]). In that transductive method,

EM is used, not only to learn the negative mixture, but also to infer the labels of

the unlabeled data. Nigam et al. [2000] introduce another hyperparameter, which

is the fractional weight to assign to each unlabeled case. This weight is also tuned

by optimizing the microaveraged F1 score for classes 11-15.

For all experiments, we assume that the prior for the task is known. For the

lifting arcs (i.e. those arcs joining the extra nodes carrying the classifier posteriors

with the unlabeled nodes), we used unit conditional probability matrices, and we

mapped the base classifier outputs to {0, 1}, both for the computation of the learned

matrices, and for the CHM computation itself. We did this because the outputs of

the base classifiers were far from well-calibrated probabilities (or from quantities

that could be mapped to well-calibrated probabilities) as to be expected for very

14 Semi-Supervised Learning with Conditional Harmonic Mixing

small training sets.

For the two-sided case, of the three algorithms used, the SVMs were found to

give the highest overall accuracy, and so we investigated lifting the SVM outputs

with CHM. All of these algorithms make a hard decision about whether a test point

is in, or out of, a class. For all algorithms, we choose the threshold for this decision

point to reproduce the true number of positives on the entire test set (the ‘known

prior’ assumption).

Note that the validation set was not used to tune the CHM model; it was used

only to tune the baseline two-sided classifiers. The motivation for this is that we

wish to see if CHM can be used to improve the accuracy of a given (black box)

classifier, using only very limited training data.

1.7.1.1 Preprocessing, Graph Construction, and Training Data

Each document is pre-processed into a bag of words: that is, only the frequencies

with which words appear in a document are used as features; the position of a word

in a document is ignored. All words within the text, title, and body of the document

are used, except words within the author or dateline, which are excluded. Words

within an 11-word stopword list are also excluded. Every word is stemmed using

the Porter stemmer (Porter [1980]), and the number of occurrences for each stemBag-Of-Words,

TF, TF-IDF is computed for each document (‘term frequency’, or TF). The vector of TF values

is then fed to the multinomial classifiers (which can only accept TF vectors). For

all other classifiers and for constructing the CHM graph, we used TF-IDF features.

Here, IDF (inverse document frequency) (Sparck-Jones [1972]) is the log of the

ratio of the total number of documents to the number of documents in which a

stemmed word appears. This log is multiplied by the term frequency to yield a

TF-IDF feature. The TF-IDF vector for a document is then normalized to lie on

the unit sphere.

For CHM, each graph is constructed using a simple nearest neighbour algorithm:

an arc is added from node i to node j if node i is the k’th nearest neighbour of node

j, for all k ≤ K, where K ∈ {1, 3, 5, 7, 9, 11, 15, 20, 25, 30, 40, 50}, provided node jNearest

Neighbour is not itself a labeled node. The conditional probability matrices for all arcs for a

given k are shared; this imposes a form of regularization on the parameters, and

embodies the idea that k alone should determine the type of link joining the two

nodes. Note that this results in a directed graph which in general has no undirected

equivalent (that is, a pair of unlabeled nodes can have an arc going one way but

not the other, and labeled nodes only have outgoing arcs). The CHM posteriors

at each unlabeled node were then averaged over all twelve graphs to arrive at the

prediction. We tested two CHM algorithms: first, using unit conditional probability

matrices, and second, using learned matrices.

For the one-sided task, we used labeled sets of size 1, 2, 5, 10, 20, 50 and 100,

for each category. For the two-sided task, we used ten times as much labeled data

for each experiment (i.e. labeled sets of size 10, 20, 50, 100, 200, 500 and 1000)

to further explore dependence on training set size. The two-sided training sets are

1.7 Experiments 15

shared amongst all classes: we ensure that at least one positive example for each of

the 10 classes is present in all seven of the training sets.

The results are collected below. For the one-sided task, we plot F1 versus training

set size, for Rocchio, Rocchio plus CHM with unit matrices, and Rocchio plus

CHM for learned matrices in Figure 1.3. It’s interesting that, although on this task

using unit conditional probability matrices gives better mean results, the learned

matrices have lower variance: the results for learned matrices rarely drop below the

Rocchio baseline. Results for the two-sided task are collected in Tables 1.1 through

1.7, where we show results for all classifiers and for all categories, as well as the

microaveraged results.

The Tables give F1 on the unlabeled subsets only. To determine statistical

significance, we treat F1 score as proportions (similar to Yang and Liu [1999]).

To be conservative with our confidence intervals, we treat the number of samples

in the significance test to be the denominator of the F1 score: the number of false

positives plus half the number of errors. Thus, we apply a one-way unbalanced

ANOVA to predict correctness of the sample, given a factor which is the algorithm

used. For those experiments where a main effect is found by ANOVA to be greater

than 99% significant, a post hoc test comparing all pairs of algorithms is performed

(using the Tukey-Kramer correction for repeated tests). In the Tables, we bold the

results that are found by the post hoc test to be better than all of the unbolded

algorithms (at a 99% confidence threshold).

For almost all experiments, the SVM gave higher F1 than the multinomial

mixture or Nigam et al.’s algorithm. CHM gives better results than all other

methods, at a 99% confidence threshold, for the case of 10 labeled points, and

microaveraged over all data sets.

1.7.2 Benchmark Data Sets

We also applied CHM to five of the benchmark classification datasets provided

with this book, namely datasets 1, 2, 4, 5 and 7. Each dataset contains 1500 points,

with either 10 or 100 labeled points, and comes with a 12-fold validation split:

all results quoted here are microaveraged over the twelve splits. A Support Vector

Machine (SVM) was used as the base classifier in these experiments. Given the

limited amount of training data, we chose to use a linear SVM with a very high C

parameter (C=1000), which was effectively a hard-margin classifier.

1.7.2.1 Preprocessing, Graph Construction, and Training Data

For each fold of each data set, we trained a linear SVM with several different

preprocessing alternatives:

Raw data — no pre-processing.

Scaling — after subtracting off the mean, scaling each feature so that they all

have unit variance.

16 Semi-Supervised Learning with Conditional Harmonic Mixing

Norming — after subtracting off the mean for each feature, scaling each data

point so that they all have unit L2 norm.

Sphereing — applying PCA to the raw data, and using the latent coordinates as

input.

Chopping — as in Sphereing, but only choosing the top d latent dimensions,

where d is chosen to cover 90% of the variance of the data.

One of these alternatives was chosen for each fold, by minimizing a generalization

bound of the resulting SVM. For each fold, we compute

arg min
i

R2
i ||w

2
i || (1.13)

where wi is the primal weight vector from the SVM on pre-processing alternative

i, and Ri is the radius of the smallest ball that contains the data (after the ith

pre-processing alternative). We approximate this radius by finding the distance of

the data point that is farther from the mean over the whole data set. This choosing

process usually picks one pre-processing method for all folds of a data set, often

choosing “norming”. However, some data sets (such as data set 4), alternate between

“norming” and “sphereing”.

We investigated a different graph construction mechanism from that used for the

Reuters data. We call the algorithm “Flood Fill”. The Flood Fill method was found

to give similar results to the basic nearest neighbor method, but resulted in smaller

graphs, leading to faster experiments (a typical run, for a given dataset, for both

training set sizes, and for all 12 splits of the validation set, took approximately

50 minutes on a 3GHz machine). The Flood Fill method works as follows: choose

some fixed positive integer n. Add n directed arcs from each labeled node to its

nearest n unlabeled neighbours; all such arcs are assigned flavor = 1. Call the set

of nodes reached in this way N1 (where N1 does not include the training nodes).

For each node in N1, do the same, allowing arcs to land on unlabeled nodes in

N1; assign all arcs generated in this way flavor = 2. At the ith iteration, arcs are

allowed to fall on unlabeled nodes in Ni, but not on nodes Nj , j < i. The process

repeats until either all nodes are reached, or until no further arcs can be added

(note that graphs with disconnected pieces are allowed here). Here we smoothed

(using model averaging) using values for n of 5, 9, 15, 25 and 50. The flood fill

algorithm can create disconnected subgraphs, and since it is not clear how best to

combine outputs of graphs with different connectedness, we simply thresholded the

value at each node after each smoothing step, before taking the average.

We present the results in Tables 1.8 through Table 1.11. We chose two normal-

izations: the “normed/sphered/chopped” normalization, using the above bound; or

just using the “normed” normalization everywhere, combined with a soft-margin

linear SVM classifier (C=10). As in the Reuters experiments, the prior for each

dataset is assumed known. The Tables give accuracies on the unlabeled subsets

only. We applied a two-way ANOVA to assess the statistical significance of these

1.8 Conclusions 17

results, where the two factors are the fold number and the algorithm number, and

the prediction of the ANOVA is the correctness of a sample. For those experiments

where a main effect is found by ANOVA to be greater than a 99% significance level,

a post hoc test comparing all pairs of algorithms is performed (using the Tukey-

Kramer correction for repeated tests). Using a 99% (p < 0.01) significance level

for the post hoc comparisons, we find the results shown in the Tables, where again

statistical significance is indicated with bold versus normal typeface; the results can

be summarized as follows:

In no case is there a statistically significant difference between the learned

conditional matrices, and the unit matrices, for CHM;

CHM beats the SVM for all conditions for datasets 1 and 2.

For the case of dataset 4, with normed-only preprocessing, and l = 100,SVM

beats CHM;

There is no statistically significant difference between results for dataset 5;

For dataset 7, SVM beats CHM for l = 10, and CHM beats SVM for l = 100.

1.7.2.2 Discussion

This work demonstrates that CHM can be used to improve the performance of

the best available classifier, on several datasets, when labeled data is limited.

However the improvement is not uniform; for some datasets we observed that adding

more smoothing (arcs) improved accuracy, while for others increased smoothing

caused accuracy to drop. A method to accurately predict the required amount of

smoothing, for a given problem, would boost the CHM accuracies significantly. We

attempted to overcome this behaviour by model averaging, that is, averaging over

different graphs, but this is a crude way to address the problem. Also in this paper

we only discussed two simple heuristics for constructing the graphs; it would be

useful to explore more sophisticated methods, for example, methods that compute

a local metric (see, for example, Xing et al. [2003]). Other techniques for choosing

the conditionals, for example using leave-one-out on the labeled set, or using a

subgraph that is close to the labeled data, may also be fruitful to explore.

1.8 Conclusions

We have presented Conditional Harmonic Mixing (CHM), a graphical model that

can be used for semi-supervised learning. CHM combines and improves upon ear-

lier work in semi-supervised learning in several ways. First, unlike Bayes networks,

CHM can model and learn using conditional probability distributions that do not

have a consistent joint. This freedom allows us to learn and infer using simple lin-

ear algebra. Second, unlike Laplacian SSL, CHM can model asymmetric influences

between random variables. Indeed, our random variables can have different cardinal-

18 Semi-Supervised Learning with Conditional Harmonic Mixing

ities: CHM is not limited to simply modeling harmonic functions. Finally, CHM can

use a purely inductive algorithm to provide prior knowledge to the semi-supervised

learning, which leads to superior performance on one-sided and two-sided empirical

benchmarks. As the experiments show, one key open question for research is how

to construct graphs that can take full advantage of semi-supervised learning with

CHM: for a given dataset, for some choice of graphs the improvement is signifi-

cant, while for other choices of graph for the same dataset, applying CHM can even

reduce accuracy. This was addressed in the present work by simply using model

averaging over graphs; it seems likely that better methods are possible.

Acknowledgements

We thank David Heckerman and Chris Meek for useful discussions.

1.8 Conclusions 19

1 2 5 10 20 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 5 10 20 50 1000.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 5 10 20 50 1000.3 5

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 5 10 20 50 1000.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 5 10 20 50 1000.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 5 10 20 50 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 5 10 20 50 1000.2

0.3

0.4

0.5

0.6

0.7

1 2 5 10 20 50 1000.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 5 10 20 50 1000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 5 10 20 50 1000.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 5 10 20 50 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 1.3 Results for the Rocchio classifiers (solid), Rocchio lifted with CHM, unit con-
ditional matrices (dashed), and Rocchio lifted with learned conditional matrices (dotted).
The y axis is F1, the x axis, training set size. Graphs are arranged left to right in order of
increasing category. Most graphs have the y axis range chosen to be 0.35 for comparison.
The last graph (bottom right) is the microaveraged results over all ten categories.

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.411 0.411 0.446 0.472 0.457

2 0.477 0.477 0.520 0.603 0.592

3 0.308 0.308 0.463 0.520 0.509

4 0.428 0.428 0.507 0.628 0.538

5 0.246 0.246 0.466 0.515 0.482

6 0.249 0.249 0.151 0.111 0.128

7 0.099 0.099 0.474 0.478 0.507

8 0.223 0.223 0.454 0.504 0.472

9 0.347 0.347 0.242 0.274 0.253

10 0.110 0.110 0.233 0.271 0.233

Microaverage 0.374 0.374 0.446 0.491 0.475

Table 1.1 F1 for top ten categories + microaverage F1, for training set size = 10

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.851 0.869 0.903 0.899 0.908

2 0.663 0.797 0.704 0.723 0.735

3 0.302 0.401 0.453 0.516 0.497

4 0.555 0.571 0.572 0.653 0.609

5 0.385 0.170 0.477 0.563 0.527

6 0.285 0.153 0.148 0.103 0.126

7 0.138 0.132 0.488 0.484 0.507

8 0.227 0.344 0.507 0.521 0.525

9 0.407 0.063 0.228 0.270 0.249

10 0.148 0.284 0.275 0.305 0.280

Microaverage 0.614 0.639 0.678 0.694 0.696

Table 1.2 F1 for top ten categories + microaverage F1, for training set size = 20

1.8 Conclusions 21

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.906 0.917 0.935 0.914 0.923

2 0.655 0.711 0.735 0.741 0.749

3 0.438 0.410 0.579 0.681 0.633

4 0.493 0.512 0.585 0.661 0.626

5 0.268 0.405 0.666 0.697 0.708

6 0.341 0.374 0.514 0.545 0.535

7 0.436 0.404 0.356 0.423 0.379

8 0.394 0.298 0.468 0.532 0.493

9 0.133 0.274 0.256 0.288 0.270

10 0.350 0.312 0.444 0.444 0.444

Microaverage 0.652 0.677 0.734 0.748 0.744

Table 1.3 F1 for top ten categories + microaverage F1, for training set size = 50

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.917 0.840 0.939 0.912 0.921

2 0.770 0.863 0.798 0.777 0.791

3 0.397 0.596 0.535 0.599 0.559

4 0.637 0.576 0.668 0.674 0.681

5 0.494 0.606 0.728 0.772 0.773

6 0.350 0.333 0.522 0.573 0.542

7 0.485 0.471 0.571 0.579 0.573

8 0.466 0.384 0.680 0.658 0.673

9 0.313 0.335 0.489 0.641 0.595

10 0.333 0.231 0.410 0.410 0.410

Microaverage 0.712 0.715 0.778 0.776 0.778

Table 1.4 F1 for top ten categories + microaverage F1, for training set size = 100

22 Semi-Supervised Learning with Conditional Harmonic Mixing

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.921 0.925 0.950 0.916 0.923

2 0.799 0.777 0.829 0.817 0.826

3 0.576 0.542 0.587 0.591 0.583

4 0.586 0.628 0.729 0.737 0.734

5 0.618 0.533 0.754 0.782 0.788

6 0.496 0.463 0.696 0.723 0.715

7 0.574 0.493 0.642 0.552 0.595

8 0.361 0.429 0.721 0.721 0.729

9 0.406 0.371 0.519 0.693 0.580

10 0.275 0.352 0.421 0.421 0.421

Microaverage 0.747 0.736 0.813 0.801 0.804

Table 1.5 F1 for top ten categories + microaverage F1, for training set size = 200

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.935 0.935 0.957 0.920 0.930

2 0.781 0.781 0.869 0.835 0.847

3 0.594 0.594 0.691 0.687 0.683

4 0.714 0.714 0.816 0.814 0.820

5 0.696 0.696 0.806 0.821 0.824

6 0.486 0.486 0.704 0.723 0.716

7 0.600 0.600 0.681 0.657 0.679

8 0.565 0.565 0.827 0.775 0.801

9 0.693 0.693 0.704 0.715 0.726

10 0.439 0.439 0.618 0.583 0.610

Microaverage 0.781 0.781 0.856 0.831 0.840

Table 1.6 F1 for top ten categories + microaverage F1, for training set size = 500

1.8 Conclusions 23

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.938 0.940 0.949 0.926 0.933

2 0.843 0.854 0.888 0.854 0.863

3 0.666 0.626 0.702 0.701 0.693

4 0.691 0.638 0.859 0.827 0.833

5 0.803 0.793 0.828 0.807 0.818

6 0.569 0.565 0.724 0.716 0.720

7 0.682 0.611 0.691 0.679 0.693

8 0.627 0.540 0.841 0.762 0.802

9 0.721 0.760 0.806 0.775 0.783

10 0.398 0.385 0.738 0.719 0.724

Microaverage 0.816 0.807 0.869 0.844 0.852

Table 1.7 F1 for top ten categories + microaverage F1, for training set size = 1000

DataSet SVM SVM/CHM SVM/CHM

(10) Unit Learned

1 0.803 0.860 0.859

2 0.751 0.779 0.776

4 0.543 0.530 0.530

5 0.605 0.613 0.612

7 0.589 0.567 0.566

Table 1.8 Accuracy for labeled sets of size 10, using normed/sphered/chopped prepro-
cessing.

DataSet SVM SVM/CHM SVM/CHM

(100) Unit Learned

1 0.922 0.966 0.966

2 0.788 0.816 0.813

4 0.705 0.699 0.702

5 0.747 0.755 0.756

7 0.725 0.755 0.755

Table 1.9 Accuracy for labeled sets of size 100, using normed/sphered/chopped prepro-
cessing.

24 Semi-Supervised Learning with Conditional Harmonic Mixing

DataSet SVM SVM/CHM SVM/CHM

(10) Unit Learned

1 0.803 0.860 0.859

2 0.760 0.799 0.795

4 0.541 0.525 0.527

5 0.605 0.613 0.612

7 0.589 0.567 0.566

Table 1.10 Accuracy for labeled sets of size 10, using normed preprocessing only.

DataSet SVM SVM/CHM SVM/CHM

(100) Unit Learned

1 0.922 0.966 0.966

2 0.870 0.939 0.935

4 0.692 0.600 0.613

5 0.747 0.755 0.756

7 0.725 0.755 0.755

Table 1.11 Accuracy for labeled sets of size 100, using normed preprocessing only.

References

Y. S. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64–69, 1995.

A. K. Agrawala. Learning with a probabilistic teacher. IEEE Transactions on Information Theory,
16:373–379, 1970.

C.J.C. Burges. Geometric Methods for Feature Selection and Dimensional Reduction. In L. Rokach
and O. Maimon, editors, Data Mining and Knowledge Discovery Handbook: A Complete Guide
for Practitioners and Researchers. Kluwer Academic, 2005.

O. Dekel, C.D. Manning, and Y. Singer. Log-linear models for label-ranking. In Advances in
Neural Information Processing Systems 16. MIT Press, 2004.

P.G. Doyle and J.L. Snell. Random Walks and Electric Networks. The Mathematical Associatino
of America, 1984.

H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spam categorization. IEEE
Transactions on Neural Networks, 10(5):1048–1054, 1999.

S.T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proc. ACM International Conference on Information
and Knowledge Management, pages 148–155, 1998.

S. C. Fralick. Learning to recognize patterns wothout a teacher. IEEE Transactions on
Information Theory, 13:57–64, 1967.

G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins, third edition, 1996.

D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks
for inference, collaborative filtering, and data visualization. Journal of Machine Learning
Research, 1:49–75, 2001.

M.I. Jordan, editor. Learning in Graphical Models. MIT Press, 1999.

L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600–608, 1993.

D.D. Lewis. The reuters-21578 data set. http://www.daviddlewis.com/resources/
testcollections/reuters21578/, 1997.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled
documents using EM. Machine Learning, 39(2/3):103–134, 2000.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor, The SMART
Retrieval System: Experiments in Automatic Document Processing, pages 313–323. Prentice-
Hall, 1971.

H. J. Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE
Transactions on Information Theory, 11:363–371, 1965.

K. Sparck-Jones. A statistical interpretation of term specificity and its application in retrieval. J.
of Documentation, 28(1):11–21, 1972.

E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning, with application
to clustering with side information. In Advances in Neural Information Processing Systems,
volume 13. The MIT Press, 2003.

Y. Yang and X. Liu. A re-examination of text categorization methods. In Proc. 21st International
ACM SIGIR Conf., pages 42–49, 1999.

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In NIPS, volume 16, 2003.

D. Zhou, J. Huang, and B. Schölkopf. Learning from Labeled and Unlabeled Data on a Directed
Graph. In Luc De Raedt and Stefan Wrobel, editors, Proceedings of the 22nd International

26 REFERENCES

Conference on Machine Learning, 2005a.

D. Zhou, B. Schölkopf, and T. Hofmann. Semi-supervised learning on directed graphs. In Advances
in Neural Information Processing Systems 18. MIT Press, 2005b.

X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.
Technical report, Carnegie Mellon University, 2002.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In ICML, 2003a.

X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning: from Gaussian fields to
Gaussian processes. Technical Report CMU-CS-03-175, Carnegie Mellon University, 2003b.

Notation and Symbols

Sets of Numbers

N the set of natural numbers, N = {1, 2, . . .}

R the set of reals

[n] compact notation for {1, . . . , n}

x ∈ [a, b] interval a ≤ x ≤ b

x ∈ (a, b] interval a < x ≤ b

x ∈ (a, b) interval a < x < b

|C| cardinality of a set C (for finite sets, the number of elements)

Data

X the input domain

d (used if X is a vector space) dimension of X

M number of classes (for classification)

l, u number of labeled, unlabeled training examples

n total number of examples, n = l + u.

i, j indices, often running over [l] or [n]

xi input patterns xi ∈ X

yi classes yi ∈ [M] (for regression: target values yi ∈ R)

X a sample of input patterns, X = (x1, . . . , xn)

Y a sample of output targets, Y = (y1, . . . , yn)

Xl labeled part of X , Xl = (x1, . . . , xl)

Yl labeled part of Y , Yl = (y1, . . . , yl)

Xu unlabeled part of X , Xu = (xl+1, . . . , xl+u)

Yu unlabeled part of Y , Yu = (yl+1, . . . , yl+u)

Kernels

H feature space induced by a kernel

Φ feature map, Φ : X → H

k (positive definite) kernel

K kernel matrix or Gram matrix, Kij = k(xi, xj)

Vectors, Matrices and Norms

1 vector with all entries equal to one

I identity matrix

A> transposed matrix (or vector)

A−1 inverse matrix (in some cases, pseudo-inverse)

tr (A) trace of a matrix

det (A) determinant of a matrix

〈x,x′〉 dot product between x and x′

‖·‖ 2-norm, ‖x‖ :=
√

〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(

∑N
i=1 |xi|

p
)1/p

, N ∈ N ∪ {∞}

‖·‖
∞

∞-norm , ‖x‖
∞

:= supN
i=1 |xi|, N ∈ N ∪ {∞}

Functions

ln logarithm to base e

log2 logarithm to base 2

f a function, often from X or [n] to R, R
M or [M]

F a family of functions

Lp(X) function spaces, 1 ≤ p ≤ ∞

Probability

P{·} probability of a logical formula

P(C) probability of a set (event) C

p(x) density evaluated at x ∈ X

E [·] expectation of a random variable

Var [·] variance of a random variable

N(µ, σ2) normal distribution with mean µ and variance σ2

Graphs

g graph g = (V, E) with nodes V and edges E

G set of graphs

W weighted adjacency matrix of a graph (Wij 6= 0 ⇔ (i, j) ∈ E)

D (diagonal) degree matrix of a graph, Dii =
∑

j Wij

L normalized graph Laplacian, L = I −D−1/2WD−1/2

L un-normalized graph Laplacian, L = D −W

SVM-related

ρf (x, y) margin of function f on the example (x, y), i.e., y · f(x)

ρf margin of f on the training set, i.e., minm
i=1 ρf (xi, yi)

h VC dimension

C regularization parameter in front of the empirical risk term

λ regularization parameter in front of the regularizer

w weight vector

b constant offset (or threshold)

αi Lagrange multiplier or expansion coefficient

βi Lagrange multiplier

α, β vectors of Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

Q Hessian of a quadratic program

Miscellaneous

IA characteristic (or indicator) function on a set A

i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)

δx Dirac δ, satisfying
∫

δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants C > 0

and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants c > 0

and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right/left hand side”

the end of a proof

