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Abstract
We propose to use Minimum Divergence(MD) as a new measure
of errors in discriminative training. To focus on improving dis-
crimination between any two given acoustic models, we refine the
error definition in terms of Kullback-Leibler Divergence (KLD)
between them. The new measure can be regarded as a modified
version of Minimum Phone Error (MPE) but with a higher reso-
lution than just a symbol matching based criterion. Experimental
recognition results show the new MD based training yields rela-
tive word error rate reductions of 57.8% and 6.1% on TIDigits and
Switchboard databases, respectively, in comparing with the ML
trained baseline systems. The recognition performance of MD is
also shown to be consistently better than that of MPE.

Index Terms: speech recognition, discriminative training, mini-
mum divergence, Kullback-Leibler Divergence, acoustic similar-
ity.

1. Introduction
In the past decade, discriminative training has been shown to be
effective in reducing word error rates of Hidden Markov Model
(HMM) based automatic speech recognition (ASR) systems. The
most widely adopted discriminative criteria, including Maximum
Mutual Information (MMI) [1, 2] and Minimum Classification Er-
ror (MCE) [3], have been shown effective on small-vocabulary
tasks [1, 3]. But it seems harder to obtain significant improvements
on Large Vocabulary Continuous Speech Recognition (LVCSR)
databases such as Switchboard task. Recently, new criteria such as
Minimum Word Error (MWE) [4] and MPE [4], which are based
on error measure at word or phone level, were proposed to improve
recognition performance.

From a unified viewpoint of error minimization, MCE, MWE
and MPE are only different in error definition. String based MCE
is based upon minimizing sentence error rate and MWE on word
error rate, which is more consistent with the popular metric used
in evaluating ASR systems. Hence, the latter yields better word
error rate, at least on the training set [4]. However, MPE performs
slightly but universally better than MWE on testing set [4]. The
success of MPE might be explained as follows: while we are re-
fining acoustic models in discriminative training, it makes more
sense to define errors in a more granular form of acoustic sim-
ilarity. However, binary decision at phone label level is only a
rough approximation of acoustic similarity. The error measure can
be easily influenced by the choice of language model and phone
set definition. For example, in a recognition system where whole
word models are used, phone errors cannot be computed.

Therefore, we propose to use acoustic dissimilarity to define
errors. Acoustic characteristics of speech units are modeled by
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Ms. By measuring KLD [5] between two given HMMs, we
have a physically more meaningful assessment of their acous-
imilarity. Given sufficient training data, “ideal” HMMs can be
ed to represent the underlying distributions and then can be
for calculating KLDs.

Adopting KLD for defining errors, the corresponding training
rion is referred as Minimum Divergence (MD). The criterion
esses the following advantages: 1) It employs acoustic simi-
y for high-resolution error definition, which is directly related
acoustic model refinement; 2) Label comparison is no longer
, which alleviates the influence of chosen language model and
e set and the resultant hard binary decisions caused by label
hing.

The rest of this paper is organized as follows. In section 2, we
ose MD training criterion. In section 3, the algorithm for as-
ing KLDs on word graphs is presented. Some implementation
es are discussed in section 4. We give experimental results and
conclusions in section 5 and 6, respectively.

2. Minimum Divergence Training
is section, in terms of minimum error training, we introduce
oncept of MD criterion.

Unified view of minimum error training

4], various discriminative training criteria are investigated in
s of corresponding error measure, where the objective func-
is an average of the transcription accuracies of all hypotheses
hted by the posterior probabilities. For conciseness, we con-

r single utterance case:

F(θ) =
W ∈M

Pθ(W |O)A(W , W r) (1)

re θ represents the set of the model parameters; O is a se-
ce of acoustic observation vectors; W r is the reference word
ence; M is the hypotheses space; Pθ(W | O) is the gener-
d posterior probability of the hypothesis W given O, which
be formulated as:

Pθ(W |O) =
P κ

θ (O |W )P (W )

W ′∈M P κ
θ (O |W ′)P (W ′)

(2)

re κ is the acoustic scaling factor.
In [4], the gain function A(W , W r) is regarded as an accu-
measure of W given its reference W r. In MWE training, the
function is word accuracy, which matches the commonly used

uation metric of speech recognition perfectly. However, MPE
been shown to be more effective in testing because it provides
re precise measurement of word errors at the phone level. We
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can argue this point by advocating the final goal of discriminative
training. In refining acoustic models to obtain better performance,
it makes more sense to measure acoustic similarity between hy-
potheses instead of word accuracy. However, label matching ei-
ther at word or phone level, is used in MWE or MPE training.
The label matching does not relate acoustic similarity with recog-
nition errors. The measured errors can also be strongly affected
by the phone set definition and language model selection. There-
fore, acoustic similarity is proposed as a finer and more direct error
definition for discriminative training.

2.2. Defining error by acoustic similarity

A word sequence is acoustically characterized by a sequence of
HMMs. For automatically measuring acoustic similarity between
W and W r, we adopt KLD between the corresponding HMMs:

A(W , W r) = −D(W r ‖ W ) (3)

The HMMs, when they are reasonably well trained in ML
sense, can serve as succinct descriptions of data. We term this
training criterion as MD. In Table 1, comparison among several
minimum error criteria are tabulated.

By adopting the MD criterion, we can refine acoustic models
more directly by measuring discriminative information between a
reference and other hypotheses in a more precise way. The crite-
rion has the following advantages:

1) A strong language model can alleviate or eliminate poten-
tial problems caused by acoustically competing hypotheses in min-
imum error training, so usually a weaker language model is more
appropriate [4]. When fine phone labels are adopted, minor acous-
tic difference can induce hard errors. By focusing on acoustic sim-
ilarity, the above problems can be taken care of gracefully.

2) The similarity based criterion can be used in general pattern
classification, where label comparison at a sub-class level may not
be practical.

3. Measuring KLD in Word Graphs
In this section, we measure the KLD between a reference path
and competing hypotheses in a word graph. As a word sequence
is regarded as a sequence of HMMs, comparing two word se-
quences can be solved by measuring KLD between two sequences
of HMMs.

3.1. KLD between two word sequences

Given two word sequences W and W̃ without their state segmen-
tations, we should use a state matching algorithm to measure the
KLD between the corresponding HMMs [6]. With state segmenta-
tions, the calculation can be further decomposed down to the state
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l:

D(W ‖W̃ ) = D(s1:T ‖ s̃1:T )

= p(o1:T |s1:T ) log
p(o1:T |s1:T )

p(o1:T | s̃1:T )
do1:T

(4)

re T is the number of frames; o1:T and s1:T are the observa-
sequence and hidden state sequence, respectively.
By assuring all observations are independent, we obtain:

D(s1:T ‖ s̃1:T ) =

T

t=1

D(st ‖ s̃t) (5)

which means we can calculate KLD state by state, and sum
up.

Conventionally, each state s is characterized by a Gaussian
ture Model (GMM): p(o |s) = Ms

m=1 ωsmN (o; μsm,Σsm)
the comparison is reduced to measuring KLD between two
Ms. Since there is no closed-form solution, we need to resort
e computationally intensive Monte-Carlo simulations. The
ented transform mechanism [7] has been proposed to approx-

te the KLD measurement of two GMMs.
Let N (o; μ,Σ) be a N -dimensional Gaussian distribution
h is an arbitrary R

N →R function, unscented transform mech-
m suggests approximating the expectation of h by:

N (o; μ,Σ)h(o)do ≈ 1

2N

2N

k=1

h(ok) (6)

re ok(1≤k≤2N) are the artificially chosen “sigma” points:
μ+

√
Nλkuk, ok+N=μ−√Nλkuk(1≤k≤N), where λk, uk

he kth eigenvalue and eigenvector of Σ , respectively. Geomet-
lly, all these “sigma” points are on the principal axes of Σ . (6)
ecise if h is quadratic.
Based on (6), KLD between two Gaussian mixtures is approx-
ted by:

D(s‖ s̃)≈ 1

2N

M

m=1

ωm

2N

k=1

log
p(om,k |s)
p(om,k | s̃) (7)

re om,k is the kth “sigma” point in the mth Gaussian kernel of

m,k | s). By plugging it into (4), we obtain the KLD between
word sequences given their state segmentations.

Word Graph based Calculation

ally, word graph is a compact representation of large hypothe-
space in speech recognition. Because the KLD between a hy-
esised word sequence and the reference can be decomposed
n to the frame level, we have the following word graph based
esentation of (1):
Table 1: Comparison among minimum error criteria. ( P W :Phone sequence corresponding to word sequence W ; LEV(, ) :Levenshtein
distance between two symbol strings; | · |: Number of symbols in a string. )

Criterion A(W , W r) Objective

String based MCE δ(W = W r) Sentence accuracy

MWE |W r| − LEV(W , W r) Word accuracy

MPE |PW r| − LEV(P W , P W r) Phone accuracy

MD −D(W r ‖ W ) Acoustic similarity



Figure 1: Demonstration of Calculating c(w)

F(θ) =
w∈M W ∈M:w∈W

Pθ(W |O)A(w) (8)

where A(w) is the gain function of word arc w. Denote bw, ew the
start frame index and end frame index of w, we have:

A(w) = −
ew

t=bw

D(st
w ‖st

r ) (9)

where the st
w and st

r represent the certain state at time t on arc w
and the reference, respectively.

To update the parameters we use the Extended Baum-Welch
algorithm [4] for minimum error training. The average gain of
sentences passing through a word w can be represented as: [4]

c(w) =
W ∈M,w∈W Pθ(W |O)A(W , W r)

W ∈M,w∈W Pθ(W |O)
(10)

By making use of A(w), we come up with an efficient
forward-backward algorithm for calculating c(w). The pseudo
code of the algorithm is given in Table 2 for completeness, and
an illustration of the measure is depicted in Figure 1. In the algo-
rithm, given a node n, αn and βn denote the forward and backward
likelihoods at the node; φn and ψn denote forward and backward
average accuracy at the node; P (n) and S(n) denote the prede-
cessor node set and successor node set of node n; wm,n denotes
the word arc from node m to n. Given a word arc w, B(w) and
E(w) denote the start node and end node of the arc; P (w) is the
likelihood of the arc. The binary operator a � b between two
nodes a, b means that b is not an ancestor of a in the graph.

4. Implementation Issues
4.1. KLD precomputaion

Practically, all states in our HMM system are tied to a smaller set
GMMs of several thousand states. Hence, we can precompute all
KLDs between any two states to make training more efficient.

4.2. I-smoothing

I-smoothing [4] is important for minimum error training on
LVCSR task. It can be regarded as using a prior of the parameters
based on ML statistics. Practically, it is performed by interpolating
between statistics of ML training and discriminative training:

Γ
′num
jm = Γ num

jm + τ

Γ
′num
jm (o) = Γ num

jm (o) + τ

Γmle
jm

Γmle
jm(o)

Γ
′num
jm (o2) = Γ num

jm (o2) + τ

Γmle
jm

Γmle
jm(o2)

(11)
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Table 2: Forward-backward algorithm for c(w)

itialization:
For each word arc w:

Calculate A(w)

Sort the nodes to: n0 � n1 � . . . � nN

rward:
αn0 = 1, φn0 = 0

for (i = 1; i ≤ N ; i + +)

αni = m∈P (ni)
αm · P (wm,ni)

φni = 1
αni

m∈P (ni)
[φm + A(wm,ni)] · αm · P (wm,ni)

ckward:
βnN = 1, ψnN = 0

for (i = N − 1; i ≥ 0; i −−)

βni = m∈S(ni)
βm · P (wni,m)

ψni = 1
βni

m∈S(ni)
[ψm + A(wni,m)] · βm · P (wni,m)

rmination:
For each word arc w:

c(w) = φB(w) + A(w) + ψE(w)

re Γ , Γ (o), and Γ (o2) denote the occupancy, first order mo-
t and second order moment of a Gaussian kernel, respectively;
subscript jm denotes the mth kernel in the j th state; the su-
cript ‘mle’, ‘num’ indicate those in ML statistics and numera-
tatistics of discriminative training. I-smoothing simply means
ng τ points of ML statistics to numerator statistics of discrim-
ve training. τ is smoothing constant to control the interpola-
.

5. Experiments
Connected digits experiments

rst performed experiments on TIDigits database, a connected
ts recognition task [8]. The corpus vocabulary is made of the
ts ’one’ to ’nine’, plus ’oh’ and ’zero’. All four categories
peakers, i.e., men, women, boys and girls, were used for both
ing and testing. The models are training using 39-dimensional
C features. All digits were modeled using 10-state, left-to-

t whole word HMMs with 6 Gaussians per state. Because of
whole word model, MPE is equivalent to MWE now. The
stic scaling factor κ was set to 1

33
and I-smoothing was not

.

As shown in Figure 2, performance of MD achieves 57.8%
ive error reduction compared with ML baseline and also out-
orms MPE in all iterations.

LVCSR experiments

the Switchboard task, the models are trained on the minitrain
ing sets using the 39-dimensional Perceptual Linear Predic-
(PLP) features. Each tri-phone is modeled by a 3-state HMM.
lly, there are 1500 states with 12 Gaussians per state. The test
s the eval2000 set. Unigram which has been shown to be the
language model for discriminative training [1, 4] is used to
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Figure 2: Performance comparison on TIDigits

generate hypotheses word graphs in training. Tri-gram language
model is used for testing. The acoustic scaling factor κ is set to
1
15

. We use the NIST scoring software [9] to calculate all speech
recognition results. The word error rate of ML baseline is 40.8%
as shown in Figure 3.

The function of τ is used to interpolate the contributions be-
tween ML and discriminative training. In minimum error training,
varying τ can affect the performance significantly. We experimen-
tally select an appropriate τ first.

With respect to τ , the recognition performance of the models
after the first iteration are depicted in Figure 3. We observe that
a too small or too large smoothing constant leads to lower perfor-
mance as expected. Also, we found that MD outperforms MPE
consistently after the first iteration, which reveals the advantage of
acoustic similarity based error definition.

Note that best performances are achieved with τ around 300-
400 in both MPE and MD training, here we select the value 400 for
τ in the following iterations. As shown in Figure 4, performance of
MD result is slightly better than MPE in all iterations. After four
iterations, MD achieved 6.1% relative error reduction compared
with the ML baseline, which is better than the reduction achieved
by MPE. Although the improvement given by MD is not large, it
is quite consistent in all experiments.

6. Conclusions and Future Work

In this paper, a new minimum divergence based discriminative
training criterion, which defines errors based upon acoustic sim-
ilarity, is proposed and tested. From the results we observe that
by focusing on refining error measured between acoustic mod-
els, KLD based high-resolution error definition is more precise,
which leads to better discriminative acoustic models and consis-
tent recognition performance improvement.

In our future work, for more effective discriminative training
on large vocabulary continuous speech recognition tasks, we will
incorporate more competing hypotheses which are acoustically
similar to the reference and can be obtained with a weaker lan-
guage model. Symbol based error definition becomes even coarser
when a weaker language model is used. By using the minimum di-
vergence criterion, a sharpened error measure is possible and bet-
ter performance is expected. Also noise robustness of MD will be
investigated as parts of our future work.

Figu
smo

Figu
itera

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

2413

INTERSPEECH 2006 - ICSLP
Smoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τSmoothing Constant τ
100 200 300 400 500

38.5

39

39.5

40

40.5

41

W
or

d 
E

rr
or

 R
at

e 
(%

)

ML baseline

MPE
MD

Smoothing Constant τ

re 3: Performance comparison on Switchboard with respect to
othing constant τ after the first iteration

1 2 3 4 5
38.2

38.4

38.6

38.8

39

Iteration

W
or

d 
E

rr
or

 R
at

e 
(%

)

MPE

MD

re 4: Performance comparison on Switchboard with respect to
tion

7. References
R. Schluter, Investigations on Discriminative Training Crite-
ria, Ph.D.thesis, Aachen University, 2000.

V. Valtchev, J.J. Odell, P.C. Woodland and S.J. Young,
”MMIE Training of Large Vocabulary Speech Recognition
Systems”, Speech Communication, Vol. 22, pp. 303-314.

B.-H. Juang, W. Chou and C.-H. Lee, ”Minimum Classifi-
cation Error Rate Methods for Speech Recognition,” IEEE
Trans. on Speech and Audio Processing, Vol. 5, No. 3, pp.
257-265, May 1997.

D. Povey, Discriminative Training for Large Vocabulary
Speech Recognition, Ph.D. thesis, Cambridge University,
2004.

S. Kullback and R.A. Leibler, ”On Information and Suffi-
ciency”, Ann. Math. Stat., Vol. 22, pp. 79-86, 1951.

P. Liu, F. K. Soong, J.-L. Zhou, “Effective Estimation
of Kullback-Leibler Divergence between Speech Models”,
Technical Report, Microsoft Research Asia, 2005.

J. Goldberger, ”An Efficient Image Similarity Measure based
on Approximations of KL-Divergence between Two Gaus-
sian Mixtures”, in Proc. International Conference on Com-
puter Vision 2003, pp. 370-377, Nice, France, 2003.

R. G. Leonard. ”A database for speaker-independent digit
recognition”, Proc. ICASSP, pp. 42.11.1-42.11.4, SanDiego,
CA, March 1984.

D.S. Pallett, W.M. Fisher, J.G. Fiscus, ”Tools for the Analy-
sis of Benchmark Speech Recognition Tests”, Proc. ICASSP,
pp. 97-100, 1990.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Frank K. Soong
	Also by Jian-Lai Zhou
	Also by Ren-Hua Wang
	------------------------------

