
Byzantine Fault Isolation in the Farsite Distributed File System
John R. Douceur and Jon Howell

Microsoft Research
{johndo, howell}@microsoft.com

ABSTRACT
In a peer-to-peer system of interacting Byzantine-fault-tolerant
replicated-state-machine groups, as system scale increases, so
does the probability that a group will manifest a fault. If no
steps are taken to prevent faults from spreading among groups,
a single fault can result in total system failure. To address this
problem, we introduce Byzantine Fault Isolation (BFI), a
technique that enables a distributed system to operate with
application-defined partial correctness when some of its
constituent groups are faulty. We quantify BFI’s benefit and
describe its use in Farsite, a peer-to-peer file system designed to
scale to 100,000 machines.

1 INTRODUCTION
Farsite [2] is a distributed peer-to-peer file system

that runs on a network of desktop workstations and
provides centralized file-system service. File storage in
Farsite is secure, even though the system runs on
unsecured machines. This security is established, in part,
through the use of Byzantine Fault Tolerance (BFT), a
well-known mechanism for building trusted services
from untrusted components [14, 6]. BFT enables a
service to continue functioning correctly as long as fewer
than a third of the machines it is running on are faulty.

Farsite is designed to be scalable. As more and more
workstations make use of the file-system service, the
resources of these workstations become available for use
by the system. However, the BFT technique cannot
exploit these additional resources to achieve the greater
throughput demanded by an increasing user base: Adding
machines to a BFT group decreases throughput, rather
than increasing it.

To achieve an increase in throughput with scale,
Farsite partitions its workload among multiple interacting
BFT groups. Unfortunately, as the count of BFT groups
increases, so too does the probability that some group
will contain enough faulty machines that the group will
be unable to suppress the fault. If the system design does
not account for the failure of one or more BFT groups, a
single group failure can cause the entire system to fail.

The alternative to total failure is degraded operation,
wherein individual group failures cause the system to
operate in a way that is still partially correct, rather than
completely unspecified. However, “partial correctness” is
not something that can be defined in an application-
independent fashion [11]. It is thus not possible to build a
generic substrate that enables an arbitrary service to
degrade gracefully in a meaningful and useful manner.

We have therefore developed a methodology for
designing a distributed system of BFT groups, wherein a
faulty group is prevented from corrupting the entire
system. We call our method Byzantine Fault Isolation
(BFI). BFI makes use of formal specification [15] to
constrain the semantic behavior of a faulty system. The
technique involves selectively weakening the system
semantics and concomitantly strengthening the system
design. Formal specification helps determine when these
two processes have satisfactorily converged.

The next section surveys previous approaches to
resisting Byzantine faults. Section 3 describes the Farsite
file system, the context for our work. Section 4 quantifies
the value of isolating Byzantine faults, and Section 5
describes our technique. Section 6 shows an example of
BFI in Farsite, and Section 7 summarizes.

2 PREVIOUS WORK
In 1980, Pease et al. [23] introduced the problem of

reaching agreement among a group of correctly
functioning processors in the presence of arbitrarily
faulty processors; they proved that a minimum of 3t + 1
processors are needed to tolerate t faults. Two years later,
they christened this the Byzantine Generals Problem
[14], as it has been known ever since. A large body of
research has addressed the problem of Byzantine
agreement, the first decade of which is well surveyed by
Barborak and Malek [4].

In the mid-to-late 1990’s, several researchers
combined Byzantine-fault-tolerant protocols with state-
machine replication [26] to produce toolkits such as
Rampart [24], SecureRing [12], and BFT [6]. These
toolkits provide a replication substrate for services
written as deterministic state machines. The substrate
guarantees that the service will operate correctly as long
as fewer than a third of its replicas are faulty. An
unfortunate property of these toolkits is that their
throughput scales negatively: As the group size grows,
the system throughput shrinks, which is the exact
opposite of the behavior desired for scalable systems.

Throughput scaling is non-positive because a non-
decreasing fraction of replicas redundantly perform each
computation. Throughput scaling is made negative by the
message load of each processor, which is linear in group
size. Some recent research has addressed the latter issue:
Lewis and Saia [16] have developed a protocol that
probabilistically reaches agreement if fewer than an
eighth of the replicas are faulty. The message workload

of each processor is logarithmic in group size, so
throughput scaling is less dramatically negative than for
BFT. Abd-El-Malek et al. [1] have built a replicated state
machine based on the Query/Update (Q/U) protocol,
which requires 5t + 1 processors to tolerate t Byzantine
faults. In theory, this protocol has zero throughput scaling
with system size; however, their implementation exhibits
negative throughput scaling, albeit at a lower rate than
BFT.

The above systems all exhibit two properties: (1) non-
positive throughput scaling and (2) all-or-nothing failure
semantics, meaning that failures beyond the tolerated
threshold can cause the entire system to fail.

In the absence of a Byzantine-fault-tolerant substrate
that provides positive throughput scaling, researchers
have built systems that partition their workload among
multiple machines. However, as the system size grows,
so does the expected number of faulty machines, which
in turn – given all-or-nothing failure semantics – leads to
an increasing likelihood of total system failure. We
observe that this problem could be assuaged if there were
some means to limit the spread of Byzantine faults.

Three avenues of research are related to this problem:
First, several researchers have isolated Byzantine faults
in distributed problems of academic interest, such as
dining philosophers [21], vertex coloring [21], and edge
coloring [25, 18]. Their solutions employ self-stabilizing
protocols to guarantee that correct results are eventually
obtained by all nodes that are beyond a specified distance
(the “containment radius”) from faulty nodes. The formal
notion of fault containment for self-stabilizing systems
was introduced by Ghosh et al. [10], who applied it only
to transient faults. Such transient-fault containment was
achieved by Demirbas et al. [8] for the problem of
tracking in sensor networks. None of this research offers
a broad approach to containing Byzantine faults.

Second, a number of researchers have investigated
ways to limit Byzantine corruption when performing
broadcast [3], multicast [22], or gossip [17, 20]. These
closely related problems have no computational aspect;
they merely propagate data. Furthermore, they have the
property that correct operation implicitly replicates all of
the data to all machines. The resulting redundancy
enables machines to vote on the data’s correctness, as in
the original Byzantine agreement problem.

Third, some researchers have tackled specialized
subclasses of the general problem. Merideth [19]
proposes a proactive fault-containment system that relies
on fault detection, a well-known specialization of fault-
tolerance problems [7]. Krings and McQueen [13]
employ standard Byzantine-fault-tolerant protocols only
for carefully defined “critical functionalities.” The TTP/C
protocol [5] isolates only a constrained subset of
Byzantine faults, namely reception failures and consistent
transmission failures.

Thus, every known technique for building systems
that resist Byzantine faults has at least one of the
following weaknesses:

• Its throughput does not increase with scale.
• It addresses only a narrow academic problem.
• It does not support computation.
• It does not address general Byzantine faults.

3 CONTEXT – FARSITE FILE SYSTEM
We developed BFI in the context of a scalable, peer-

to-peer file system called Farsite [2]. Farsite logically
functions as a centralized file server, but it is physically
distributed among the desktop workstations of a
university or corporation, which may have over 105
machines. In this environment, independent Byzantine
faults are significantly more likely than they would be in
a physically secure server cluster.

Farsite employs different techniques for managing
file content and metadata. File content is encrypted,
replicated, and distributed among the machines in the
system, and a secure hash of each file’s content is
maintained with its metadata. File metadata is managed
by BFT groups of workstations; we call each group a
“server”. Every machine in a Farsite system fills three
roles: a client for its local user, a file host storing
encrypted content of data files, and a member of a BFT
group that acts as a server for metadata.

File metadata is dynamically partitioned among
servers, as follows: A Farsite system is initialized with a
single server, called the root, which initially manages
metadata for all files. When the metadata load on the root
becomes excessive, it assembles a randomly chosen set
of machines into a new BFT group, and it delegates a
subset of its files to this newly formed server. This
process continues as necessary, resulting in a tree of
delegations. The fanout of the tree is a matter of policy.

The only difference between directories and data files
is that the former may have no content and the latter may
have no children. This is a small enough distinction that
we refer to them both simply as “files”.

4 MOTIVATION
This section argues for the value of isolating

Byzantine faults in a scalable peer-to-peer system. In
particular, we consider a distributed file system,
specifically a Farsite-like system of interacting BFT
groups. For analytical simplicity, we assume that the
system’s files are partitioned evenly among the
constituent BFT groups, and we assume independent
machine failure. For concreteness, we assume a machine
fault probability of 0.001; in the analysis, we discuss our
sensitivity to this value. We evaluate the operational
fault rate, which is the probability that an operation on a
randomly selected file exhibits a fault.

4.1 Model
If a third or more of the machines in a BFT group are

faulty, the group cannot mask the fault. Therefore, if Pm
is the probability that a machine is faulty, the probability
that a group of size g manifests a fault is:

()()1 1 3 , ,g mP B g g P= − −⎢ ⎥⎣ ⎦

Function B is the cumulative binomial distribution
function. In a system of n BFT groups, the probability
that at least one group manifests a fault is:

()1 0, ,s gP B n P= −

We consider three cases. In the first case, there is no
fault-isolation mechanism, so a single faulty group may
spread misinformation to other groups and thereby
corrupt the entire system. The probability that any given
file operation exhibits a fault is thus equal to the
probability Ps that the system contains even one faulty
group. This is shown by the three dashed lines in Fig. 1
for BFT groups of size 4, 7, and 10, as the count of
groups scales up to 105.

The second case illustrates ideal fault isolation. Each
BFT group can corrupt only operations on the files it
manages, so the probability of a faulty file operation
equals the probability Pg that the file’s managing group is
faulty. System scale is thus irrelevant, as illustrated by
the dark line in Fig. 1 for 4-member BFT groups.

The third case illustrates BFI in Farsite. Pathname
lookups involve metadata from all files along the path, so
a faulty group can corrupt lookups to its descendent
groups’ files. Recall that the count of nodes in a tree with
l levels and node fanout of f is:

() () (), 1 1lN f l f f= − −

In a tree of N(f, l) BFT groups, the expected number of
groups that are faulty or have a faulty ancestor is defined
by the recurrence:

() () () (), , 1 , 1g gF f l P N f l P f F f l= ⋅ + − ⋅ ⋅ −

(),1 gF f P=

Thus, the probability of a faulty absolute-path-based file
operation in a system of N(f, l) BFT groups is:

() (), ,tP F f l N f l=

This is illustrated by the light and medium lines in Fig. 1
for systems in which each 4-member BFT group has 4 or
16 children, respectively. Since not all file operations are
path-based, and since paths can be specified relative to
open files, the operational fault rate will actually be
somewhat lower than that indicated by Fig. 1.

4.2 Analysis
As the light dashed line shows, a single 4-member

group has an operational fault rate of 6×10–6, which is
better than five nines. However, when the scale reaches
105 groups, the operational fault rate is 0.45; almost half
of all operations exhibit faults. By contrast, with a group
fanout of 16, a 105-group Farsite system exhibits an
operational fault rate of 3×10–5, showing that fault
tolerance is largely preserved as scale increases.

An alternate way to improve the large-scale
operational fault rate is to increase the size of BFT
groups. However, as Fig. 1 shows, in a system of 105
groups, the group size must be increased from 4 to 10 to
achieve the operational fault rate that BFI achieves. This
increase cuts the system throughput by 60% (= 1 – 4/10)
or more, because it increases the redundant computation
by a factor of 2.5 (= 10 / 4) and the intra-group message
traffic by a factor of 6.25 (= 102 / 42).

The curves in Fig. 1 are based on a machine fault rate
of 10–3. For higher rates, the benefit of BFI is even
greater, since a larger increase in group size (and
corresponding drop in throughput) is needed to achieve
the same operational fault rate as BFI. By contrast, a
lower machine fault rate reduces the benefit, although not
by much: Even with a machine fault probability of 10–5 in
a system of 105 groups, BFI enables 4-member groups to
achieve an operational fault rate that would otherwise
require 7-member groups and an attendant drop in
throughput of over 42% (= 1 – 4/7).

5 BYZANTINE FAULT ISOLATION
BFI is a technique that prevents a faulty BFT group

from corrupting an entire system. The technique is based
on using formal specification to design a distributed
system with well-defined semantics [15]. BFI
semantically specifies the faulty behavior that can
manifest when faults occur in the distributed system.

Several approaches may be used to validate that the
system design adheres to the specified fault semantics. In
our work, we used only informal proof, but greater
confidence can be attained through model checking [15]
or mechanically verified formal proof [9]. Our limited
experience with such methods suggests that they would
be challenging to apply to a formal spec as big as ours.

1×10–7

1×10–6

1×10–5

1×10–4

1×10–3

1×10–2

1×10–1

1×100

1 10 100 1,000 10,000 100,000
system scale (count of BFT groups)

o
p

er
at

io
n

al
 f

au
lt

 r
at

e

BFT 4, no BFI
BFT 7, no BFI
BFT 10, no BFI
BFT 4, tree (4) BFI
BFT 4, tree (16) BFI
BFT 4, ideal BFI

Fig. 1: Faults at scale (machine fault probability = 0.001)

5.1 Formal Distributed System Specification
We follow an approach to formal specification

advocated by Lamport [15]. This approach has three
components: a semantic spec, a distributed-system spec,
and a refinement.* Each of the two specs defines state
information and actions that affect the state.

A semantic specification describes how users
experience the system. Farsite logically functions as a
centralized file server, so Farsite’s semantic spec defines
the behavior of a centralized file server. The state defined
by the semantic spec includes files, handles, and pending
operations. The actions defined by the semantic spec are
file-system operations: open, close, read, write, create,
delete, and move/rename. For example, the semantic spec
says that the open operation resolves a pathname, checks
access rights to the file, adds a new handle to the set of
handles open on the file, and returns the handle to the
caller. The spec also describes the error codes returned if
a pathname fails to resolve or the access rights are
invalid. In sum, the semantic spec characterizes the
system from the users’ point of view.

A distributed-system specification describes how a set
of machines collaborate to produce a desired behavior.
The state defined by the distributed-system spec includes
machines, abstract data structures maintained by
machines, and messages exchanged between machines.
The actions defined by the distributed-system spec are
tasks performed by individual machines or BFT groups:
sending messages, receiving messages, and modifying
local-machine state. For example, the distributed-system
spec says that when a server receives a message from a
client asking for the necessary resources to perform an
open operation, if the server has the resources available,
it sends them to the client; otherwise, it begins the
process of recalling the resources from other clients that
are holding the resources. In sum, the distributed-system
spec characterizes the system from the system designers’
point of view.

A refinement is a formal correspondence between the
semantic spec and the distributed-system spec. It
describes how to interpret distributed-system state as
semantic state and distributed-system actions as semantic
actions. For a state example, the refinement may say that
the attributes of a particular semantic-level file are
defined by a particular data structure on a particular
machine in the distributed system; the particulars express
the system designer’s rules for what data means and
which data is authoritative.

Actions in the distributed-system spec are classified
as either foreground or background actions, according to
whether they have semantic effects. A foreground action

* Lamport uses different terminology because his approach

is applicable to a broader class of problems than distributed
systems.

corresponds to an action in the semantic spec; for
example, updating a certain distributed-system data
structure may correspond to the completion of an open
operation in the semantic spec. A background action
corresponds to a non-action in the semantic spec; for
example, passing resources to a client by means of a
message has no semantic effect.

The basic distributed-system spec defines interactions
among a set of non-faulty machines. The basic semantic
spec defines the user-visible behavior of a fault-free
system. If the system design is correct, the refinement
will show that the distributed-system spec satisfies the
semantic spec.

5.2 Specifying Failure Semantics
To understand the system’s behavior under fault

conditions, we modify the distributed-system spec as
follows: We augment the state of each machine with a
new flag indicating whether the machine is corrupt, and
we add a new action that sets a machine’s corrupt flag.
When a machine is corrupt, its local state is undefined,
and it can send arbitrary messages to other machines at
any time.

These modifications to the distributed-system spec
prevent it from refining to the basic semantic spec. The
BFI technique proceeds by progressively modifying the
two specs until the distributed-system spec again satisfies
the semantic spec:

• The semantic spec is weakened to describe how
faults appear to the users of the system.

• The distributed-system spec is strengthened to
quarantine faults from non-corrupt machines.

The art of Byzantine fault isolation is in determining
what modifications to make to the two specs. An overly
weak semantic spec may not isolate faults sufficiently; an
overly strong distributed-system spec may not facilitate a
practical and performant implementation; and a semantic
spec that is too strong or a distributed-system spec that is
too weak will not admit a satisfactory refinement.

In Farsite, we modified the semantic spec by
associating a flag with each file to indicate whether the
file is tainted, and we added an action that sets the flag.
We established a refinement in which a file becomes
tainted if and only if the BFT group that manages the file
becomes corrupt.

It would have been ideal to weaken the semantic spec
so little that tainted files could not corrupt operations on
non-tainted files. Unfortunately, because path-based file
operations involve metadata from all files along the path,
we were unable to design a distributed system that
refined to such a semantic spec. We thus had to weaken
the semantic spec further, permitting tainted files to lie
about their parents and children and thereby to corrupt
path-based operations on the tainted file’s descendents.

We were, however, able to constrain those lies to
prevent a tainted file from affecting operations on files
elsewhere in the namespace. In particular, a tainted file
cannot falsely claim an existing non-tainted file as its
child or parent. Exhaustively, the weakened safety
semantics allow a tainted to appear to…

(1) …have arbitrary contents and attributes,
(2) …not be linked into the file tree,
(3) …not have children that it actually has,
(4) …have children that do not actually exist, or
(5) …have another tainted file as a child or parent.

In addition, the weakened liveness semantics allow
operations involving a tainted file to not complete.

The modifications to Farsite’s distributed-system spec
are far more involved. Some of the key principles include
maintaining redundant information across BFT group
boundaries, augmenting messages with information that
justifies their correctness, ensuring unambiguous chains
of authority over data, and carefully ordering messages
and state updates for operations involving more than two
BFT groups. We illustrate an example in the next section.

6 BFI EXAMPLE: MOVE OPERATION
Our BFI modifications to the distributed-system spec

are too extensive to permit even a high-level summary in
this paper. Nonetheless, to convey the flavor of these
modifications, we outline one example of how we
modified Farsite’s distributed-system spec to satisfy the
semantic spec. The example exploits a redundancy that
we added for BFI, namely that parent-child links are
stored by both parent and child files. If a client observes
inconsistent information about the link between a parent
and a child, the client regards that link as nonexistent.

The specific example we present is a component of
the most complex file-system operation, move, whose
semantics are that an object file has its parent changed
from a source file to a destination file, thereby changing
the full pathnames of all descendents of the object file.

The object, source, and destination files might be
managed by three separate servers, each of which may be
faulty or not. We will not present our full case analysis
here, but we will describe the highlights.

If all non-faulty servers agree on whether the move
succeeds, the refinement defines the semantic result as
the result obtained by the non-faulty servers. Detailed

analysis shows that this satisfies the fault semantics
enumerated above. This rule also covers the case in
which all servers are faulty, because then any semantic
result is consistent with the fault semantics.

If no servers are faulty, our protocol ensures that all
servers agree on the result.

The tricky cases are those in which one server is
faulty and the other two disagree on the result. It would
be ideal to somehow prevent these cases from ever
occurring, but this is provably impossible [23]. As Table
1 shows, for each case (faulty object, faulty source, and
faulty destination), refinement can select a satisfactory
semantic result if the other servers disagree in a particular
way (the a subcases) but not if they disagree in the
opposite way (the b subcases).

For example, in case 1, the object server is faulty. In
subcase a, the source believes the move to be successful
so it unlinks the object, but the destination believes the
move to be unsuccessful so it fails to link the object.
Consequently, the object becomes unlinked from the file
tree. However, safety weakness 2 (see previous section)
states that a tainted file may appear to not be linked into
the file tree. Thus, our refinement could interpret the
outcome either as a tainted file successfully moving and
then not appearing linked into the tree or as a tainted file
failing to move and then not appearing linked into the
tree.

The analysis of the a subcases for cases 2 and 3 is
similar albeit slightly more complex, because 2a must be
interpreted as a failed move and 3a must be interpreted as
a successful move, to be consistent with the safety
weaknesses allowed by the failure semantics.

In the b subcases, no semantic result is consistent
with the distributed-system outcome. For example, in
subcase 1b, the destination links the object but the source
does not unlink it. If the refinement were to interpret this
as a successful move, the destination file would become
the object’s parent, but because the source thinks the
move failed, it still believes that it is the object’s parent,
so the object could pretend that the source is in fact its
parent, which our failure semantics disallow. A similar
argument holds for interpreting the result as a failed
move. Since it is impossible to refine the subcase b
outcomes, Farsite must prevent them.

Our protocol precludes the b subcases by ensuring
that the non-faulty servers observe certain ordering
constraints before declaring a move operation successful:
The object server does not commit until after the source
server commits, and the destination server does not
commit until after the source and object servers commit.
Examination of the table shows that this prevents the
problematic subcases. For example, subcase 1b cannot
occur because the destination will not declare success
until it first hears that the source has declared success,
which it has not. Table 1: Fault case analysis for move operation

Case Object Source Dest. Semantic
a faulty success failure either 1
b faulty failure success none
a success faulty failure failure

2
b failure faulty success none
a failure success faulty success

3
b success failure faulty none

7 SUMMARY
Although Byzantine Fault Tolerance (BFT) allows a

trusted service to run on a peer-to-peer system of
untrusted machines, it does not support scaling up to
increase system throughput. Scale-up can be achieved by
partitioning a workload among multiple BFT groups, but
this leads to an increase in the probability of total system
failure as the system scale increases.

To solve this problem, we introduced Byzantine Fault
Isolation (BFI), a methodology for using formal
specification to constrain the semantic behavior of a
faulty system. BFI modifies a system design to formally
recognize that machines may become corrupt, wherein
they have undefined local state and can send arbitrary
messages to other machines. These modifications
highlight areas that require design changes to restrict the
spread of faulty information.

Even in the presence of design features that restrict
faults, corrupt machines may still affect the system’s
semantics. Thus, the BFI technique involves modifying
the system’s defined semantics to reflect the partial
correctness achievable when the system is degraded. BFI
uses formal specification to ensure that the modified
system design satisfies the modified system semantics.

We quantified the benefit of BFI to scalable systems:
In a tree-structured system of 105 BFT groups, wherein a
faulty group can corrupt its descendents’ operations, BFI
can enable 4-member BFT groups to achieve the same
operational fault rate as 10-member BFT groups, without
the corresponding 60% drop in throughput due to
increased replication and message traffic.

We employed the BFI technique in the design of the
Farsite distributed file system, a large and complex peer-
to-peer system designed to scale to 105 machines. BFI
guided us toward adding specific redundancies, enriching
messages, restricting authority, and constraining the order
of distributed operation steps. Using BFI, we related
these design changes to the system’s semantics, thereby
showing that file corruption cannot spread to unrelated
regions of the file-system namespace.

Prior to BFI, no technique has addressed how to
interconnect multiple BFT groups in a way that isolates
Byzantine faults.

REFERENCES
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, J.

Wylie. “Fault-scalable Byzantine Fault-Tolerant
Services.” 20th SOSP, 2005.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.
Theimer, R. P. Wattenhofer. “FARSITE: Federated,
Available, and Reliable Storage for an Incompletely
Trusted Environment.” 5th OSDI, 2002.

[3] Y. Azar, S. Kutten, B. Patt-Shamir. “Distributed Error
Confinement.” PODC, 2003.

[4] M. Barborak, M. Malek. “The Consensus Problem in
Fault-Tolerant Computing.” ACM Computing Surveys,
25(2), 1993.

[5] G. Bauer, H. Kopetz, W. Steiner. “Byzantine Fault
Containment in TTP/C.” Workshop on Real-Time LANs
in the Internet Age, 2002.

[6] M. Castro, B. Liskov, “Practical Byzantine Fault
Tolerance.” 3rd OSDI, 1999.

[7] T. D. Chandra, S. Toueg. “Unreliable Failure Detectors
for Asynchronous Systems.” JACM 43(2), 1996.

[8] M. Demirbas, A. Arora, T. Nolte, N. Lynch. “A
Hierarchy-Based Fault-Local Stabilizing Algorithm for
Tracking in Sensor Networks.” 8th OPODIS, 2004.

[9] U. Engberg, P. Grønning, L. Lamport. “Mechanical
Verification of Concurrent Systems with TLA.” 4th
Computer Aided Verification, 1992.

[10] S. Ghosh, A. Gupta, T. Herman, S. V. Pemmaraju. “Fault-
Containing Self-Stabilizing Algorithms.” PODC, 1996.

[11] M. P. Herlihy, J. M. Wing. “Specifying Graceful
Degradation.” IEEE TPDS 2(1), 1991.

[12] K. P. Kihlstrom, L. E. Moser, P. M. Melliar-Smith. “The
SecureRing Protocols for Securing Group
Communication.” Hawaii International Conference on
System Sciences, 1998.

[13] A. W. Krings, M. A. McQueen. “A Byzantine Resilient
Approach to Network Security.” 29th International
Symposium on Fault-Tolerant Computing, 1999.

[14] L. Lamport, R. Shostak, M. Pease. “The Byzantine
Generals Problem.” ACM TPLS, 4(3), 1982.

[15] L. Lamport. Specifying Systems. Addison-Wesley, 2003.
[16] C.S. Lewis, J. Saia. “Scalable Byzantine Agreement.”

Technical Report, University of New Mexico, 2004.
[17] D. Malkhi, Y. Mansour, M. K. Reiter, “On Diffusing

Updates in a Byzantine Environment.” 18th SRDS, 1999.
[18] T. Masuzawa, S. Tixeuil. “A Self-Stabilizing Link-

Coloring Protocol Resilient to Unbounded Byzantine
Faults in Arbitrary Networks.” Laboratoire de Recherche
en Informatique Report #1396, 2005.

[19] M. G. Merideth. “Enhancing Survivability with Proactive
Fault-Containment.” DSN Student Forum, 2003.

[20] Y. M. Minsky, F. B. Schneider. “Tolerating Malicious
Gossip.” Distributed Computing, 16(1), 2003.

[21] M. Nesterenko, A. Arora. “Tolerance to Unbounded
Byzantine Faults.” SRDS, 2002.

[22] V. Pappas, B. Zhang, A. Terzis, L. Zhang, “Fault-
Tolerant Data Delivery for Multicast Overlay Networks.”
ICDCS, 2004.

[23] M. Pease, R. Shostak, L. Lamport. “Reaching Agreement
in the Presence of Faults.” JACM 27(2), 1980.

[24] M. K. Reiter. “The Rampart Toolkit for Building High-
Integrity Services.” TPDS (LNCS 938), 1995.

[25] Y. Sakurai, F Ooshita, T. Masuzawa. “A Self-stabilizing
Link-Coloring Protocol Resilient to Byzantine Faults in
Tree Networks.” 8th OPODIS, 2004.

[26] F. Schneider. “Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial.” ACM
Computing Surveys, 22(4), 1990.

