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ABSTRACT

While traditional mechanism design typically assumes iso-
morphism between the agents’ type- and action spaces, in
many situations the agents face strict restrictions on their
action space due to, e.g., technical, behavioral or regulatory
reasons. We devise a general framework for the study of
mechanism design in single-parameter environments with re-
stricted action spaces. Our contribution is threefold. First,
we characterize sufficient conditions under which the infor-
mation-theoretically optimal social-choice rule can be imple-
mented in dominant strategies, and prove that any multi-
linear social-choice rule is dominant-strategy implementable
with no additional cost. Second, we identify necessary condi-
tions for the optimality of action-bounded mechanisms, and
fully characterize the optimal mechanisms and strategies in
games with two players and two alternatives. Finally, we
prove that for any multilinear social-choice rule, the optimal
mechanism with k actions incurs an expected loss of O(Elg)
compared to the optimal mechanisms with unrestricted ac-
tion spaces. Our results apply to various economic and com-
putational settings, and we demonstrate their applicability
to signaling games, public-good models and routing in net-
works.
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1. INTRODUCTION

Mechanism design is a sub-field of game theory that stud-
ies how to design rules of games resulting in desirable out-
comes, when the players are rational. In a standard set-
ting, players hold some private information — their “types”
— and choose “actions” from their action spaces to maxi-
mize their utilities. The social planner wishes to implement
a social-choice function, which maps each possible state of
the world (i.e., a profile of the players’ types) to a single
alternative. For example, a government that wishes to un-
dertake a public-good project (e.g., building a bridge) only
if the total benefit for the players exceeds its cost.

Much of the literature on mechanism design restricts at-
tention to direct revelation mechanisms, in which a player’s
action space is identical to his type space. This focus is
owing to the revelation principle that asserts that if some
mechanism achieves a certain result in an equilibrium, the
same result can be achieved in a truthful one — an equilib-
rium where each agent simply reports his private type [15].

Nonetheless, in many environments, direct-revelation
mechanisms are not viable since the actions available for the
players have a limited expressive power. Consider, for ex-
ample, the well-studied “screening” model, where an insur-
ance firm wishes to sell different types of policies to different
drivers based on their caution levels, which is their private
information. In this model, drivers may have a continuum of
possible caution levels, but insurance companies offer only
a few different policies since it might be either infeasible or
illegal to advertise and sell more then few types of policies.

There are various reasons for such strict restrictions on
the action spaces. In some situations, firms are not willing,
or cannot, run a bidding process but prefer fixing a price for
some product or service. The buyers in such environemnts
face only two actions — to buy or not to buy — although they
may have an infinite number of possible values for the item.
In many similar settings, players might be also reluctant to
reveal their accurate types, but willing to disclose partial in-
formation about them. For example, agents will typically be
unwilling to reveal their types, even if it is beneficial for them
in the short run, since it might harm them in future trans-
actions. Agents may also not trust the mechanism to keep
their valuations private [16], or not even know their exact



type while computing it may be expensive [12]. Limitations
on the action space can also be caused by technical con-
straints, such as severe restrictions on the communication
lines [5] or from the the need to perform quick transactions
(e.g., discrete bidding in English auctions [9]).

Consider for example a public-good model: a social plan-
ner needs to decide whether to build a bridge. The two
players in the game have some privately known benefits
01,02 € [0,1] from using this bridge. The social planner
aims to build the bridge only if the sum of these benfits ex-
ceeds the construction cost of the bridge. The social planner
cannot access the private data of the players, and can only
learn about it from the players’ actions. When direct reve-
lation is allowed, the social planner can run the well-known
VCG mechanism, where the players have incentives to re-
port their true data; hence, the planner can elicit the exact
private information of the players and build the bridge only
when it should be built. Assume now that the players can-
not send their entire secret data, but can only choose an
action out of two possible actions (e.g., “0” or “17). Now,
the social planner will clearly no longer be able to always
build the bridge according to her objective function, due to
the limited expressivness of the players’ messages. In this
work we try to analyze what can be achieved in the presence
of such restrictions.

Restrictions on the action space, for specific models, were
studied in several earlier papers. The work of Blumrosen,
Nisan and Segal [4, 6, 5] is the closest in spirit to this paper.
They studied single-item auctions where bidders are allowed
to send messages with severely bounded size. They charac-
terized the optimal mechanisms under this restriction, and
showed that nearly optimal results can be achieved even with
very strict limitations on the action space. Other work stud-
ied similar models for the analysis of discrete-bid ascending
auctions [9, 11, 8, 7], take-it-or-leave-it auctions [17], or for
measuring the effect of discrete “priority classes” of buyers
on the performance of electricity markets [19, 14]. Our work
generalizes the main results of Blumrosen et al. to a gen-
eral mechanism-design framework that can be applied to a
multitude of models. We show that some main properties
proved by Blumrosen et al. are preserved in more general
frameworks (for example, that dominant-strategy equilib-
rium can be achieved with no additional cost, and that the
loss diminishes with the number of possible actions in a sim-
ilar rate), where some other properties do not always hold
(for example, that asymmetric mechanisms are optimal and
that players must always use all their action space).

A standard mechanism design setting is composed of
agents with private information (their “types”), and a so-
cial planner, who wishes to implement a social choice func-
tion, ¢ — a function that maps any profile of the agents’
types into a chosen alternative. A classic result in this set-
ting says that under some monotonicity assumption on the
agents’ preferences — the “single-crossing” assumption (see
definition below) — a social-choice function is implementable
in dominant strategies if and only if it is monotone in the
players’ types. However, in environments with restricted ac-
tion spaces, the social planner cannot typically implement
every social-choice function due to inherent informational
constraints. That is, for some realizations of the players’
types, the decision of the social planner will be incompatible
with the social-choice function c. In order to quantitatively
measure how well bounded-action mechanisms can approx-

imate the original social-choice functions, we follow a stan-
dard assumption that the social choice function is derived
from a social-value function, g, which assigns a real value
for every alternative A and realization of the players’ types.
The social-choice function ¢ will therefore choose an alterna-
tive that maximizes the social value function, given the type
vector 6 = (61, ..,0r), ie., 0(7) = argmaz:A{g(g, A)}.
Observe that the social-value function is not necessarily the
social welfare function — the social welfare function is a spe-
cial case of g in which g is defined to be the sum of the
players’ valuations for the chosen alternative. Following are
several simple examples of social-value functions:

e Public goods. A government wishes to build a bridge
only if the sum of the benefits that agents gain from
it exceeds its construction cost C. The social value
functions in a 2-player game will therefore be:

g(61, 02,“build” ) =01 402-C and
g(61, 62,“do not build”)=0.

e Routing in networks. Consider a network that is com-
posed of two links in parallel. Each link has a secret
probability p; of transferring a message successfully.
A sender wishes to send his message through the net-
work only if the probability of success is greater than,
say, 90 percent - the known probability in an alternate
network. That is,
g(p1,p2, “send in network”)=1-(1-p1)-(1-p2) and
g(p1,p2,“send in alternate network”)=0.9.

e Single-item auctions. Consider a 2-player auction,
where the auctioneer wishes to allocate the item to the
player who values it the most. The social choice func-
tion is given by: g(61, 02, “player 1 wins”) = 61 and for
the second alternative is g(61, 602, “player 2 wins”) =
0-.

1.1 Our Contribution

In this paper, we present a general framework for the
study of mechanism design in environments with a limited
number of actions. We assume a Bayesian model where
players have one-dimensional private types, independently
distributed on some real interval.

The main question we ask is: when agents are only allowed
to use k different actions, which mechanisms achieve the op-
timal expected social-value? Note that this question is actu-
ally composed of two separate questions. The first question
is an information-theoretic question: what is the optimal
result achievable when the players can only reveal infor-
mation using these k actions (recall that their type space
may be continuous). The other question involves game-
theoretic considerations: what is the best result achievable
with k£ actions, where this result should be achieved in a
dominant-strategy equilibrium. These questions raise the
question about the “price of implementation”: can the opti-
mal information-theoretic result always be implemented in
a dominant-strategy equilibrium? And if not, to what ex-
tent does the dominant-strategy requirement degrades the
optimal result? What we call “the price of implementation”
was also explored in other contexts in game theory where
computational restrictions apply: for example, is it always
true that the optimal polynomial-time approximation ratio
(for example, in combinatorial auctions) can be achieved in
equilibrium? (The answer for this interesting problem is still
unclear, see, e.g., [3, 2, 13].)



Our first contribution is the characterization of sufficient
conditions for implementing the optimal information-
theoretic social-choice rule in dominant strategies. We show
that for the family of multilinear social-value functions (that
is, polynomials where each variable has a degree of at most
one in each monomial) the dominant-strategy implementa-
tion incurs no additional cost.

Theorem: Given any multilinear single-crossing social-
value function, and for any number of alternatives and play-
ers, the social choice rule that is information-theoretically
optimal is implementable in dominant strategies.

Multilinear social-value functions capture many impor-
tant and well-studied models, and include, for instance, the
routing example given above, and any social welfare func-
tion in which the players’ valuations are linear in their types
(such as public-goods and auctions).

The implementability of the information-theoretically op-
timal mechanisms enables us to use a standard routine in
Mechanism Design and first determine the optimal social-
choice rule, and then calculate the appropriate payments
that ensure incentive compatibility. To show this result, we
prove a useful lemma that gives another characterization for
social-choice functions whose “price of implementation” is
zero. We show that for any social-choice function, incentive
compatibility in action-bounded mechanisms is equivalent
to the property that the optimal expected social value is
achieved with non-decreasing strategies (or threshold strate-
gies).1 In other words, this lemma implies that one can
always implement, with dominant strategies, the best social-
choice rule that is achievable with non-decreasing strategies.

Our second contribution is in characterizing the optimal
action-bounded mechanisms. We identify some necessary
conditions for the optimality of mechanisms in general, and
using these conditions, we fully characterize the optimal
mechanisms in environments with two players and two alter-
natives. The optimal mechanisms turn out to be “diagonal”
— that is, in their matrix representation, one alternative will
be chosen in, and only in, entries below one of the main di-
agonals (this term extends the concept of “Priority Games”
used in [5] for bounded-communication auctions). We com-
plete the characterization of the optimal mechanisms with
the depiction of the optimal strategies — strategies that are
“mutually maximizers”. Since the payments in a dominant-
strategy implementation are uniquely defined by a monotone
allocation and a profile of strategies, this also defines the
payments in the mechanism. We give an intuitive proof for
the optimality of such strategies, generalizing the concept
of optimal “mutually-centered” strategies from [4]. Surpris-
ingly, as opposed to the optimal auctions in [4], for some
non-trivial social-value functions, the optimal “diagonal”
mechanism may not utilize all the k available actions.

Theorem: For any multilinear single-crossing social-value
function over two alternatives, the informationally optimal
2-player k-action mechanism is diagonal, and the optimal
dominant strategies are mutually-mazximizers.

Achieving a full characterization of the optimal action-

!The restriction to non-decreasing strategies is very com-
mon in the literature. One remarkable result by Athey [1]
shows that when a non-decreasing strategy is a best response
for any other profile of non-decreasing strategies, a pure
Bayesian-Nash equilibrium must exist.

bounded mechanism for multi-player or multi-alternative
environments seems to be harder. To support this claim,
we observe that the number of mechanisms that satisfy the
necessary conditions above is growing exponentially in the
number of players.

Our next result compares the expected social-value in
k-action mechanisms to the optimal expected social value
when the action space is unrestricted. For any number of
players or alternatives, and for any profile of independent
distribution functions, we construct mechanisms that are
nearly optimal — up to an additive difference of O(k%) This
result is achieved in dominant strategies.

Theorem: For any multilinear social-value function, the
optimal k-action mechanism incurs an exrpected social loss
of O(5z)-

This is the same asymptotic rate proved for specific en-
vironments in [19, 9, 5]. Note that there are social-choice
functions that can be implemented with k& actions with no
loss at all (for example, the rule “always choose alternative
A”). However, we know that in some settings (e.g., auc-
tions [5]) the optimal loss may be proportional to ,%27 thus
a better general upper bound is impossible.

Finally, we present our results in the context of several
natural applications. First, we give an explicit solution for
a public-good game with k-actions. We show that the op-
timum is achieved in symmetric mechanisms (in contrast to
action-bounded auctions [5]), and that the optimal alloca-
tion scheme depends on the value of the construction cost
C. Then, we study the celebrated signaling model, in which
potential employees send signals about their skills to poten-
tial employers by means of the education level they acquire.
This is a natural application in our context since education
levels are often discrete (e.g., B.A, M.A and PhD). Lastly,
we present our results in the context of routing in networks,
where it is reasonable to assume that links report whether
they have low or high loss rates, but less reasonable to re-
quire them to report their accurate loss rates. The latter
example illustrates how our results apply to settings where
the goal of the social planner is not welfare maximization
(nor variants of it like “affine maximizers”).

The rest of the paper is organized as follows: our model
and notations are described in Section 2. We then describe
our general results regarding implementation in multi-player
and multi-alternative environments in Section 3, including
the asymptotic analysis of the social-value loss. In Sec-
tion 4, we fully characterize the optimal mechanisms for 2-
player environments with two alternative. In Section 5, we
conclude with applying our general results to several well-
studied models. Due to lack of space, some of the proofs
are missing and can be found in the full version that can be
found on the authors’ web pages.

2. MODEL AND PRELIMINARIES

We first describe a standard mechanism-design model for
players with one-dimensional types. Then, in Subsection
2.2, we impose limitation on the action space. The gen-
eral model studies environments with n players and a set
A = {A1, Az, ..., A} of m alternatives. Each player has a
privately known type 0; € [0,,0;] (where 0,,0; € R, 8, < 0,),
and a type-dependent valuation function v;(6;, A) for each
alternative A € A. In other words, player i with type 0; is



willing to pay an amount of v;(0;, A) for alternative A to be
chosen. Each type 6; is independently distributed according
to a publicly known distribution F;, with an always positive
density function f;. We denote the set of all possible type
profiles by © = xI_,[0,,0;].

The social planner has a social-choice function c: © — A,
where the choice of alternatives is made in order to maximize
a social-value fu_n)ctz‘on g(0):©x A—R. Thatis, c¢(0) €
argmazaca{g(0,A)}

We assume that for every alternative A € A, the function
g(+, A) is continuous and differentiable in every type. Since
the players’ types are private information, in order to choose
the optimal alternative, the social planner needs to get the
players’ types as an input. The players reveal information
about their types by choosing an action, from an action set
B.

Each player uses a strategy for determining the action he
plays for any possible type. A strategy for player i is there-
fore a function s; : [0,,0;] — B. We denote a profile of
strategies by s = s1, ..., s, and the set of the strategies of all
players except i by s—;. The utility of player i of type 0; from
alternative A under the payment p; is u; = v;(0;, A) — p;.

2.1 Dominant-Strategy Implementation

Following is a standard definition of a mechanism. The
action space B is traditionally implicit, but we mention it
explicitly since we later examine limitations on B.

DEFINITION 1. A mechanism with an action set B is a
pair (t,p) where:

e t: B™ — A is the allocation rule.”

e p: B"™ — R" is the payment scheme (i.e., p;(b) is the
payment to the ith player given a vector of actions b).

The main goal of this paper is to optimize the expected so-
cial value (in action-bounded mechanisms) while preserving
a dominant-strategy equilibrium.

We say that a strategy s; is dominant for player i in mech-
anism (¢, p) if player ¢ cannot increase his utility by reporting
a different action than s;(6;), regardless of the actions of the
other players b_;.>

DEFINITION 2. We say that a social-choice function h is
implementable with a set of actions B if there exists a mech-
anism (t,p) with a dominant-strategy equilibrium $i, ..., Sn
(where for each i, s; : [Qiﬁi] — B) that always chooses an

alternative according to h, i.e., t(s1(01), ..., $n(0n)) = h(?)

A fundamental result in the mechanism-design literature
states that under the “single-crossing” condition, the mono-
tonicity of the social-choice function is a sufficient and nec-
essary condition for dominant-strategy implementability
(in single-parameter environments). The single-crossing con-
dition (also known as the Spence-Mirrlees condition) ap-
pears, very often implicitly, in almost every paper on mech-
anism design in one-dimensional domains. Without this as-
sumption, general sufficient condition for implementability

2We will show that, w.l.o.g., we can focus on deterministic
allocation schemes.

3That is, for every type #; and every action b;, we have
that v; ((0i, t(si(0i),b-:) )-pi(si(6:), b—i)gvi ( 0i, t(bj,b-i) )-
pi(bi,b_s)

are unknown (for a survey on this topic see [10]). Through-
out this paper, we assume that the valuation functions of
the players are single-crossing, as defined below. A player’s
valuation function will be single-crossing if the effect of an
increment in the player’s type on the player’s valuation for
two alternatives is always greater for one of these alterna-
tives. The single-crossing condition on the players’ pref-
erences actually defines an order on the alternatives. For
example, if the value of player i for alternative A increases
more rapidly than his value for alternative B, we can denote
it by A >; B. Later on, we will use these orders for defining
monotonicity of social-choice functions.

DEFINITION 3. A function h : © x A — R is single cross-
ing with respect to i if there is a weak order >; on the
alternatives, such that for any two alternatives A; »=; A; we

have that for every v €0,

oh( b, A . Oh(d,A)
00; 00;

and ’Lf Aj ~ A (th(lt iS, A = Aj and Aj i Al) then
h(-, A;) = h(-, A;) (i.e., the functions are identical).

The definition of monotone social-choice functions also re-
quires an order on the actions. This order is implicit in
most of the standard settings where, for example, it is de-
fined by the order on the real numbers (e.g., in direct rev-
elation mechanisms where each type is drawn from a real
interval). When the action space is discrete, the order can
be determined by the names of the actions, for example,
“0”, “17,....7k-1" for k-action mechanisms. (We therefore
describe this order with the standard relation on natural
numbers <, >.)

DEFINITION 4. A deterministic mechanism is monotone
if when player i raises his reported action, and fixing the
actions of the other players, the mechanism never chooses
an inferior alternative fori. That is, for anyb_,; € {0, ..., k—
1L if b > by then t(b], b—;) =i t(bi, b—s).

Following is a classic result regarding the implementability
of social-choice functions in single-parameter environments.
Note, however, that this characterization does not hold when
the action space is bounded.

PROPOSITION 1. Assume that the valuation functions
vi(0;, A) are single crossing and that the action space is un-
restricted. A social-choice function c is dominant-strategy
implementable if and only if ¢ is monotone.

2.2 Action-Bounded Mechanisms

The set of actions B is usually implicit in the literature,
and it is assumed to be isomorphic to the type space. In this
paper, we study environments where this assumption does
not hold. We define a k-action game to be a game in which
the number of possible actions for each player is k, i.e., |B| =
k. In k-action games, the social planner typically cannot
always choose an alternative according to the social choice
function ¢ due to the informational constraints. Instead,
we are interested in implementing a social-choice function
that, with k actions, maximizes the expected social value:

By g (0.t (51(61), 0 50(60))).



DEFINITION 5. We say that a social-choice function h :
O — A is informationally achievable with a set of actions B
if there exists a profile of strategies si, ..., Sn (where for each
i, 8; : [0,,0;] — B), and an allocation rule t : B™ — A,

such that t chooses the same alternative as h for any type
—

profile, i.e., t(s1(01),...,t(0n)) = h(0). If |B| = k, we say
that h is k-action informationally achievable.

Note that this definition does not take into account strate-
gic considerations. For example, consider an environment
with two alternatives A = {4, B}, and the following social-
choice function: ¢(61,02) = Aiff {1 > 1/2 and 02 > 1/2}. €
is informationally achievable with two actions: if both play-
ers bid “0” when their value is greater than 1/2 and “1”
otherwise, then the allocation rule “choose alternative A iff
both players report 1”7 derives exactly the same allocation
for every profile of types. In contrast, it is easy to see that
the function é(01,02) = A iff 61 4+ 62 > 1/2 is not informa-
tionally achievable with two actions.

We now define a social-choice rule that maximizes the
social value under the information-theoretic constraints that
are implied by the limitations on the number of actions.

DEFINITION 6. A social-choice function is k-action infor-
mationally optimal with respect to the social-value function
g, if it achieves the mazimal expected social value among all
the k;action informationally achievable social-choice func-
tions.

Earlier in this section, we defined the single-crossing prop-
erty for the players valuations. We now define a single-
crossing property on the social-value function g. This prop-
erty clearly ensures the monotonicity of the corresponding
social choice rule, and we will later show that it is also useful
for action-bounded environments.

DEFINITION 7. We say that the social-choice rule 9(7, A)
exhibits the single-crossing property if for every player i, g
exhibits the single-crossing property with respect to i.

Note that the definition above requires that g will be sin-
gle crossing with respect to every player i, given her individ-
ual order »>; on the alternatives. That is, the social value
function g will be compatible in this sense with the single-
crossing conditions on the players’ preferences.

Finally, we call attention to a natural set of strategies
— “non-decreasing” strategies, where each player reports a
higher action as her type increases. Equivalently, such
strategies are threshold strategies — strategies where each
player divides his type support into intervals, and simply
reports the interval in which her type lies.

DEFINITION 8. A real vector x = (xo, 1, ..., Tk) 1S a vec-
tor of threshold values if xo < x1 < ... < k.

DEFINITION 9. A strategy s; is a threshold strategy based
on a vector of threshold values x = (zo, 21, ..., T), if for any
action j it holds that s;(0;) = j iff 0; € [x;,xj41]. A strategy
si 18 called a threshold strategy, if there exists a vector x of
threshold values such that s; is a threshold strategy based on
x.

4For simplicity, we assume that a maximum is attained and
thus the optimal function is well defined.

3. IMPLEMENTATION WITH A LIMITED
NUMBER OF ACTIONS

In this section, we study the general model of action-
bounded mechanism design. Our first result is a sufficient
and necessary condition for the implementability of the op-
timal solution achievable with k actions: this condition says
that the optimal social-choice rule is achieved when all the
players use non-decreasing strategies. The basic idea is that
with non-decreasing strategies (i.e., threshold strategies), we
can apply the single-crossing property to show that when a
player raises his reported action, the expected value for his
high-priority alternatives increases faster; therefore, mono-
tonicity must hold. The result holds for any number of play-
ers and alternatives, and for any profile of distribution func-
tions on the players’ types, as long as they are statistically
independent. (It is easy to illustrate that this result does
not hold if the players’ types are dependent.)

LEMMA 1. Consider a single-crossing social-value func-
tion g. The informationally optimal k-action social-choice
function ¢* (with respect to g) is implementable if and only if
c* achieves its optimum when the players use non-decreasing
strategies.

Next, we show that for a wide family of social-value func-
tions — multilinear functions — the “price of implementation”
is zero. That is, the information-theoretically optimal rule
is dominant-strategy implementable. This family of func-
tions captures many common settings from the literature.
In particular, it generalizes the auction setting studied by
Blumrosen et al. [4, 6].

DEFINITION 10. A multilinear function is a polynomial
in which the degree of every variable in each monomial is at
most 1.5 We say that a social-choice rule g is multilinear,
if (-, A) is multilinear for every alternative A € A.

The basic idea behind the proof of the following theorem is
as follows: for every player, we show that the expected social
welfare when he chooses any action (fixing the strategies of
the other players) is a linear function of his type. This is a
result of the multilinearity of the social-value function and
of the linearity of expectation. The maximum over a set of
linear functions is a piecewise-linear function, hence the op-
timal social value is achieved when the player uses threshold
strategies (the thresholds are the switching points). Since
the optimum is achieved with threshold strategies, we can
apply Lemma 1 to show the monotonicity of this social-
choice rule. Note that in this argument we characterize the
players’ strategies that maximize the social value, and not
the players’ utilities.

THEOREM 1. If the social-value function is multilinear
and single crossing, the informationally optimal k-action
social-choice function is implementable.

ProOF. We will show that for any k-action mechanism,
the optimal expected social value is achieved when all play-
ers use threshold strategies. This will be shown by proving
that for any player i and for any action b; of player i, the
expected welfare when she chooses the action b; is a lin-
ear function in player i’s type 6;. Then, it will follow from
Lemma 1 that the social choice function is implementable.

For example, f(x,y, z) = zyz + Sy + 7.



For every action b; of player i, let ga denote the probabil-
ity that alternative A is allocated, i.e.,

a1 = Pr [1(s(9)) = Alsi(6:) = bi]

Due to the linearity of expectation, the expected social value
when player i with type 0; reports b; is:

Z qa Eo_, (9(0i,0-:, A) | t(bs, s-i(0-:)) = A) (1)
AcA

= San [ g0 AR O-)d0-) @

AcA

where f2;(6_;) equals H#;iﬁj(gj) for types profiles 6_; such
that ¢(bs, s—i(0—;)) = A, and 0 otherwise.

Since ¢ is multilinear, every function g(6;,0—;, A) is a lin-
ear function in #;, where the coefficients depend on the val-
ues of 6_;. Denote this function by g(6;,0_:, A) = Xo_,0; +
Bo_,. Thus, we can write Equation 2 as:

> qA/e (a0 + Bo,) £4(0-)d(0-)

AcA

= D aa <9¢/9 vkefiffi(ig—i)d(&i) +

AcA

/9 | ﬁeimei)d(ei))

In this expression, each integral is a constant indepen-
dent of 0, when the strategies of the other player are fixed.
Therefore, each summand, thus the whole function, is a lin-
ear function in 6;. For achieving the optimal expected social
value, the player must choose the action that maximizes the
expected social value. A maximum of k linear functions is a
piecewise-linear function with at most k— 1 breaking points.
These breaking points are the thresholds to be used by the
player. For all types between subsequent thresholds, the
optimum is clearly achieved by a single action; Since linear
functions are single-crossing, every action will be maximal
in at most one interval.

The same argument applies to all the players, and there-
fore the optimal social value is obtained with threshold
strategies. [

Observe that the proof of Theorem 1 actually works for
a more general setting. For proving that the information-
theoretically optimal result is achieved with threshold strate-
gies, it is sufficient to show that the social-choice function
exhibits a single-crossing condition on expectation: given
any allocation scheme, and fixing the behavior of the other
players, the expected social value in any two actions (as a
function of 6;) is single crossing. Theorem 1 shows that this
requirement holds for multilinear functions, but we were not
able to give an exact characterization of this general class of
functions.

The implementability of the information-theoretically op-
timal solution makes the characterization of the optimal
incentive-compatible mechanisms significantly easier: we
can apply the standard mechanism-design technique and
first calculate the optimal allocation scheme and then find
the “right” payments.

Observe that if the valuation functions of the players are
linear and single crossing, then the social-welfare function

(i.e., the sum of the players’ valuations) is multilinear and
single-crossing. This holds since the single-crossing condi-
tions on the valuations are defined with a similar order on
the alternatives as in the social-value function. Therefore,
an immediate conclusion from Theorem 1 is that the op-
timal social welfare, which is achievable with k£ actions, is
implementable when the valuations are linear.

COROLLARY 1. If the valuation functions vi(-, A) are sin-
gle crossing and linear in 0; for every player i and for every
alternative, then the informationally optimal k-action social
welfare function is implementable.

3.1 Asymptotic Analysis

In this section we show that the social value loss of mul-
tilinear social-value rules diminishes quadratically with the
number of possible actions, k. This is the same asymptotic
ratio presented in the study of specific models in the same
spirit [19, 5, 18, 9]. The main challenge here, compared
to earlier results, is in dealing with the general mechanism-
design framework, that allows a large family of social-value
functions for any number of players and alternatives. As op-
posed to the specific models, the social-value function may
be asymmetric with respect to the players’ types; for in-
stance, the social-value loss may a-priori occur in any “en-
try” (i.e., profile of actions).

The basic intuition for the proof is that even for this gen-
eral framework, we can construct mechanisms where the
probability of having an allocation that is incompatible with
the original social-choice function is O(%). (This fact holds
for all single-crossing social-choice functions, not only for
multilinear functions.) Then, we can use the multilinearity
to show that the social-value loss will always be O(31) in
the mechanisms we construct. Taken together, the expected
loss becomes O(7). Our proof is constructive — we present
an explicit construction for a mechanism that exhibits the
desired loss in dominant strategies. The additive expected
social-value depends on the length of the support of the type
space. Hence, we assume that the type space is normalized

to [0,1], that is, for every player ¢, 0; =0 and 0, = 1.

THEOREM 2. Assume that the type spaces are normalized
to [0,1]. For any number of players and alternatives, and
for any set of distribution functions of the players’ types, if
the social-value function g is single crossing and multilin-
ear, then the informationally optimal k-action social-choice
function (with respect to g) incurs an expected social-value
loss of O(75)-

Moreover, as discussed in [4], this bound is asymptotically
tight. That is, there exists a set of distribution functions
for the players (the uniform distribution in particular) and
there are social-value functions (e.g., auctions) for which any
mechanism incurs a social-value loss of at least Q(k%) In
that sense, auctions are the hardest problems with respect to
the incurred loss. Yet, note that this claim does not imply
that the loss of any social-choice function will be propor-
tional to Elg For example, in the social choice function that
chooses the same alternative for any type profile, no loss will
be incurred (even with 0 actions).



4. OPTIMAL MECHANISMS FOR TWO
PLAYERS AND TWO ALTERNATIVES

In this section, we present a full characterization of the
optimal mechanisms in action-bounded environments with
two players and two alternatives, where the social-choice
functions are multilinear and single crossing.

Note that in this section, as in most parts of this paper,
we characterize monotone mechanisms by their allocation
scheme and by a profile of strategies for the players. Doing
this, we completely describe which alternative is chosen for
every profile of types of the players. It is well known that
in monotone mechanisms for one dimensional environments,
the allocation scheme uniquely defines the payments in the
dominant-strategy implementation. We find this descrip-
tion, which does not explicitly mention the payments, easier
for the presentation.

A key notion in our characterization of the optimal action-
bounded mechanism, is the notion of non-degenerate mech-
anisms. In a degenerate mechanism, there are two actions
for one of the players that are identical in their allocation.
Intuitively, a degenrate mechanism does not utilize all the
action space it is allowed to use, and therefore it cannot
be optimal. Using this propery, we then define “diagonal”
mechanisms that turns out to exactly characterize the set of
optimal mechanisms.

DEFINITION 11. A mechanism is degenerate with respect
to player i if there exist two actions b;, b} for player i such
that for all profiles b_; of actions of the other players, the
allocation scheme is identical whether player i reports b; or
b; (i.e., Vb—i; t(bhbfi) = t(b;7 bfl))

For example, a 2-player mechanism is degenerate with re-
spect to the “rows” player, if there are two rows with iden-
tical allocation in the matrix representation of the game.

DEFINITION 12. A 2-player 2-alternative mechanism with
k-possible actions is called diagonal if it is monotone, and
non-degenerate with respect to at least one of the players.

The term “diagonal” originates from the matrix represen-
tation of these mechanisms, in which one of the diagonals
determines the boundary between the choice of the two al-
ternatives (see Figure 1). Simple combinatorial considera-
tions show that diagonal mechanisms may come in very few
forms. Interestingly, one of these forms is degenerate with
respect to one of the players; that is, it can be described as
a mechanism with £ — 1 actions for this player.

PROPOSITION 2. Any diagonal 2-player mechanism has
one of the following forms:

1. If both players favor the same alternative (w.l.o.g.,
B >; A fori=1,2) then either
(a). t(bhbz) =B ’Lﬁ bi+b>k—1
(b). t(b1,b2) = B iff b1 +b2 > k.

2. If the two players have conflicting preferences (e.g.,
A >1 B and B >3 A) then either
(a). t(bl,bz) =B Zﬁ b1 > bs
(b) t(bl,bz) =B Zﬁ b1 > ba.

In both cases, the optimal mechanism can also take the
form of one of the possibilities described, except one of the
players is not allowed to choose the “fixed allocation” action.

To complete the description of the optimal allocation
scheme, we now move to determine the optimal strategies
in diagonal mechanisms. We define the notion of mutually-
maximizer thresholds, and show that threshold strategies
based on such thresholds are optimal. The reason why
mutually-maximizer strategies maximize the expected social
value in monotone mechanisms is intuitive: Consider some
action i (“row” in the matrix representation) for player 1. In
a monotone mechanism, the allocation in such a row will be
of the form [A, A, ..., B, B] (assuming that B >3 A). That
is, the alternative A will be chosen for low actions of player
2, and the alternative B will be chosen for higher actions of
player 2. By determining a threshold for player 2, the social
planner actually determines the minimal type of player 2
from which the alternative B will be chosen. For optimiz-
ing the expected social value, this type for player 2 should
clearly be the type for which the expected social value from
A equals the expected social value from B (given that player
1 plays 7); for greater values of player 2, the single-crossing
condition ensures that B will be preferred.

DEFINITION 13. Consider a monotone 2-player mecha-
nism g that is non-degenerate with respect to the two play-
ers, where the players use threshold strategies based on the
threshold vectors x,y. We say that the threshold x; of one
player (w.l.o.g. player 1) is a maximizer if

Eo, ( g(wi,02,A) | 02 € [yj,y+1] ) =
Ep, ( g(xi,02,B) | 02 € [y;,y+1])

where j is the action of player 2 for which the mechanism
swaps the chosen alternative exactly when player 1 plays i,
e, t(i,j) # t(i — 1,7) (we denote, w.l.o.g., t(i,j) = A,

The threshold vectors x,y are called mutually maximizers
if all their thresholds are mazimizers (except the first and
the last).

It turns out that in 2-player, 2-alternative environments,
where the social-choice rule is multilinear and single cross-
ing, the optimal expected social value is achieved in diago-
nal mechanisms with mutually-maximizer strategies. In the
proof, we start with a k x k allocation matrix, and show
that the mechanism cannot be degenerate with respect to
one of the players (we show how to choose this player). If
the player, w.l.o.g., the columns player, is degenerate, then
there are two columns with an identical allocation. These
two columns can be unified to a single action, and the mech-
anism can therefore be described as a k x k — 1 matrix. We
then show that we can insert a new missing column, and
an appropriately chosen threshold, and strictly increase the
expected social value in the mechanism. Therefore, the orig-
inal mechanism was not the optimal k-action mechanism.

THEOREM 3. In environments with two alternatives and
two players, if the social-value function is multilinear and
single crossing, then the optimal k-action mechanism is di-
agonal, and the optimum is achieved with threshold strategies
that are mutually mazimizers.

A corollary from the proof of Theorem 1 is that the optimal
2-player k-action mechanism may be degenerate for one of
the players (that is, equivalent to a game where one of the
players has only k — 1 different actions). However, the proof
identifies the following sufficient condition under which the



o1 |2]3 o 11]2]|3 o(1|2]3 0TT T 273
O|A|A|A|B O|A|A|A|A 0/ B|B|B|B 0TATATATE
1lA|A|B|B 1lA|A|A|B 1/lA|B|B|B TTATATB B
2|A|B|B|B 2|A|A|B|B 2|A|A|B|B STATB BB
3! B|B|B | B 3/l/A|B|B|B 3/lA|A|A|B
Figure 1: The three left tables show all possible diagonal allocation scheme with 4 possible actions for each player.

The rightmost table show an example for a diagonal allocation scheme where one of the player has only k£ — 1 possible

actions.

optimal mechanism will be non-degenerate with respect to
both players: if the players’ preferences are correlated (e.g.,
A =1 B and A >3 B), then the optimal alternative must be
the same under the profiles (6,,802) and (f1,0,). Similarly,
if the players’ preferences are conflicting (e.g., A =1 B and
B >3 A), then the optimal alternative must be the same
under the profiles (8;,60,) and (01,02). Examples in which
this condition holds are the public good model presented in
section 5 and auctions [5].

We do not know how to give an exact characterization of
the optimal mechanisms in multi-player and multi-alternati
ve environments. The hardness stems from the fact that the
necessary conditions we specified before for the optimality
of the mechanisms (i.e., non-degenrate and monotone allo-
cations) are not restrictive enough for the general model. In
other words, for n > 2 players, the number of monotone and
non-degenerate mechanisms becomes exponential in n.

PROPOSITION 3. The number of monotone non- degener-
ate k-action mechanisms in an n-player game is exponential
inmn, even if |A| = 2.

5. EXAMPLES

Our results apply to a variety of economic, computational
and networked settings. In this section, we demonstrate the
applicability of our results to public-good models, signaling
games and routing applications.

5.1 Application 1: Public Goods

The public-good model deals with a social planner (e.g.,
government) that needs to decide whether to supply a pub-
lic good, such as building a bridge. Let Yes and No denote
the respective alternatives of building and not building the
bridge. v = v1,...,v, is the vector of the players’ types —
the values they gain from using the bridge. The decision that
maximizes the social welfare is to build the bridge if and only
if . v is greater than its cost, denoted by C. If the bridge
is built, the social welfare is 3, v; — C, and zero otherwise;
thus, g(v,Yes) = >, v; — C, and g(v, No) = 0. The utility
of player ¢ under payment p; is u; = v; — p; if the bridge is
built, and 0 otherwise. It is well-known that under no re-
striction on the action space, it is possible to induce truthful
revelation by VCG mechanisms, therefore full efficiency can
be achieved. Obviously, when the action set is limited to
k actions, we cannot achieve full efficiency due to the in-
formational constraints. Yet, since g(v,Yes) and g(v, No)
are multilinear and single crossing, we can directly apply
Theorem 1. Hence, the information-theoretically optimal k-
action mechanism is implementable in dominant strategies.

COROLLARY 2. The k-action informationally optimal so-
cial welfare in the n-player public-good game is
implementable in dominant strategies.

Moreover, as Theorem 3 suggests, in the k-action 2-player
public-good game, we can fully characterize the optimal
mechanisms. In the proof of Theorem 3, we saw that when
for both players g(;,0,, A) = g(6:,0;, B), the mechanism is
non-degenerate with respect to both players.® This condi-
tion clearly holds here (1+0—C = 0+1—C), therefore the

optimal mechanisms will use all k£ actions.

COROLLARY 3. The optimal expected welfare in a 2-player
k-action public-good game is achieved with one of the follow-
ing mechanisms:"

1. Allocation: Build the bridge iff b1 + b2 > k.

Strategies: Threshold strategies based on the wvectors
T,y where for every 1 <i < k-1,

z; = C — Elv2|v2 € [Yr—is Yr—i+1]]
yi = C — Evi|v1 € [Xk—i, Th—it1]]

2. Allocation: Build the bridge iff by + b2 > k — 1.

Strategies: Threshold strategies based on the wvectors
T,y where for every 1 < i < k-1:

z; = C — Elv2|v2 € [Yr—i—1, Yr—i)]
yi = C — Elvi|vr € [Th—i—1, Tr—i]]

Recall that we define the optimal mechanisms by their al-
location scheme and by the optimal strategies for the play-
ers. It is well known, that the allocation scheme in mono-
tone mechanisms uniquely defines the payments that ensure
incentive-compatibility. In public-good games, these pay-
ments satisfy the rule that a player pays his lowest value for
which the bridge is built, when the action of the other player
is fixed. Therefore, the payments for the players 1 and 2 re-
porting the actions b1 and b are as follows: in mechanism
1 from Proposition 3, p1 = s, and p2 = yp,; in mechanism
2 from Proposition 3, p1 = zp,—1 and p2 = yp, —1.

We now show a more specific example that assumes uni-
form distributions. The example shows how the optimal
mechanism is determined by the cost C: for low costs, mech-
anism of type 1 is optimal, and for high costs the optimal
mechanism is of type 2. An additional interesting feature of
the optimal mechanisms in the example is that they are sym-
metric with respect to the players. This come as opposed to
the optimal mechanisms in the auction model [5] that are
asymmetric (even when the players’ values are drawn from
identical distributions).

SMore precisely, the condition for non-degeneracy when
B =1 Aand B =2 Ais that sign(g(8;,0:, A)—g(0;,0:, B)) =
sign(g(0:,0;, A) — g(0:,0;, B)) (when sign(0) is considered
both negative and positive).

"We denote zo = yo=0and zr =y = 1.
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Figure 2: Optimal mechanisms in a 2-player, 2-alternative, 2-action public-goods game, when the types are uniformly
distributed in [0,1]. The mechanism on the left is optimal when C <1 and the other is optimal when C > 1.

EXAMPLE 1. Suppose that the types of both players are
uniformly distributed on [0,1]. Figure 2 illustrates the op-
timal mechanisms for k = 2, and shows how both the allo-
cation scheme and the payments depend on the construction
cost C. Then, the welfare-mazimizing mechanisms are:

o [f the cost of building is at least 1:
Allocation: Build iff bu + b2 > k
Strategies: The thresholds of both players are (for i =

2(k—i)-C —4i
{1, k=1}), mi = (2k—2)1 - %zzﬁl“

o [f the cost of building is smaller than 1:
Allocation: Build iff bp +b2 > k — 1

Strategies: The thresholds of both players are (for i =
{1,...,k=1}), z; = 2<

2k—1

5.2 Application 2: Signaling

We now study a signaling model in labor markets. In
this model, the type of each worker, 6; € [0, 6], describes
the worker’s productivity level. The firm wants to make her

hiring decisions according to a decision function f (7) For
example, the firm may want to hire the most productive
worker (like the auction model), or hire a group of work-
ers only if their sum of productivities is greater than some
threshold (similar to the public-good model). However, the
worker’s productivity is invisible to the firm; the firm only
observes the worker’s education level e that should convey
signals about her productivity level. Note that the assump-
tion here is that acquiring education, at any level, does not
affect the productivity of the worker, but only signals about
the worker’s skills.

A main component in this model, is the fact that as the
worker is more productive, it is easier for him to acquire
high-level education. In addition, the cost of acquiring ed-
ucation increases with the education level. More formally,
a continuous function C/(e, #) describes the cost to a worker
from acquiring each education level as a function of his pro-
ductivity. The standard assumptions about the cost func-
tion are: % > 0, % < ,% < 0, where the latter re-
quirement is exactly equivalent to the single-crossing prop-
erty (when C is differentiable in both variables). The utility
of a worker is determined according to the education level he
chooses and the wage w(e) attached to this education level,
that is, ui(e,0;) = —C(0s,e) + w(e).

An action for a worker in this game is the education level
he chooses to acquire. In standard models, this action space
is continuous, and then a “fully separating equilibrium” ex-
ists (under the single-crossing conditions on the cost func-
tion). That is, there exists an equilibrium in which every
type is mapped into a different education level; thus, the
firm can induce the exact productivity levels of the workers

by this signaling mechanism. However, it is hard to imagine
a world with a continuum of education levels. It is usually
the case that there are only several discrete education levels
(e.g., BSc, MSc, PhD).

With k education levels, the firm may not be able to ex-
actly follow the decision function f. For achieving the best
result in k actions, the firm may want the workers to play ac-
cording to specific threshold strategies. It turns out that the
standard condition, the single-crossing condition on the cost
function, suffices for ensuring that these threshold strategies
will be dominant for the players. We can now apply Theo-
rem 2, and show that if the decision function f of the firm
is multilinear (i.e., the decisions are made to maximize a
set of multilinear functions), then the firm can design the
education system such that the expected loss will be O(k%)7
with a dominant-strategy equilibrium. Note that while in
the classic example of the job market it is not reasonable for
each firm to select the education level, in other reasonable
applications the social planners may be able to determine
the thresholds, e.g., by fixing the levels of qualifying exams
or other means for the players to demonstrate their skills.

COROLLARY 4. Consider a multilinear decision function
f, and a single-crossing cost function for the players. With k
education levels, the firm can implement in dominant strate-
gies a decision function that incurs a loss of O(k%) compared
with the decision function f.

5.3 Application 3: Routing

In our last example, we show the applicability of our re-
sults to routing in lossy networks. In such systems, a sender
needs to decide through which network to transmit his mes-
sage. It is natural to assume that the agents (i.e., links) may
not be able to report their accurate probabilities of success,
but only, e.g., whether these are “low”, “intermediate”, or
“high”. In this example, we focus on parallel-path networks.

Let N1, N2 denote two networks, where each network is
composed of multiple parallel paths with variable lengths
from a given source to a given sink (an example for such a
network appears in Figure 3). The edges in these networks
are controlled by different selfish agents, and each edge ap-
pears only in one of the networks. Suppose that the sender,
who wishes to send a message from the source to the sink,
knows the topology of each network, but the probability of
success on each link, p;, is the link’s private information.
The problem of the sender is to decide whether to send a
message through the network Ni; or through an alternate
network No. Obviously, the sender wishes to send the mes-
sage through N only if the total probability of success in Ny
is greater than the success probability in Na. Let f~ () de-
note the probability of success in network N with a success-
probability vector p’. The social choice function in this ex-
ample is thus: ¢(p) € argmazn, nyy {1 (D), FV2(P)}.
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Figure 3: An example for a parallel-path network,
where each link has a probability p; for transmission suc-
cess. We show that the overall probability of success in
such networks is multilinear in p;, and thus the optimal
k-action social-choice function is dominant-strategy im-
plementable.

In this example, we assume that every agent has a single-
crossing valuation function over the alternatives. That is,
each player wishes that the message will be sent through
his network, and his benefit is positively correlated with his
secret data (e.g., the valuation of player ¢ may be exactly
pi). We would like to emphasize that the social planner
in this example (the sender) does not aim to maximize the
social welfare. That is, the social value is not the sum of the
players’ types nor any weighted sum of the types (“affine
maximizer”).

The success probability of sending a message through a
parallel-path network is multilinear, since it can be expressed
by the following multilinear formula (where P denotes the
set of all paths between the source and the sink):

- JIa-TI»» ()

PeP jeEP

For example, in the network presented in figure 3, the
probability of success is given by

f(P)=1—(1—=pip2)-(1—ps)- (1 — paps)

Thus, if all the candidate networks are parallel-path net-
works, the social-value function is multilinear, and we can
apply Theorem 1 and get the following corollary. Note that
for every link 4, the partial derivative in p; of the success
probability written in Equation 3 is positive. In all the other
networks, that do not contain link ¢, the partial derivative
is clearly zero. Therefore, the social-value function is single
crossing and our general results can be applied.

COROLLARY 5. For any social-choice function that maz-
imizes the success probability over parallel-path networks,
the informationally optimal k-action social-choice function
is implementable (for any k).
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