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ABSTRACT
We study coalitional games where the value of cooperation
among the agents are solely determined by the attributes
the agents possess, with no assumption as to how these at-
tributes jointly determine this value. This framework al-
lows us to model diverse economic interactions by picking
the right attributes. We study the computational complex-
ity of two coalitional solution concepts for these games —
the Shapley value and the core. We show how the positive
results obtained in this paper imply comparable results for
other games studied in the literature.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics; F.2 [Analysis of Algorithms and Problem Com-
plexity]

General Terms
Algorithms, Economics

Keywords
Coalitional game theory, Multi-attribute model, Compact
representation

1. INTRODUCTION
When agents interact with one another, the value of their

contribution is determined by what they can do with their
skills and resources, rather than simply their identities. Con-
sider the problem of forming a soccer team. For a team to
be successful, a team needs some forwards, midfielders, de-
fenders, and a goalkeeper. The relevant attributes of the
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players are their skills at playing each of the four positions.
The value of a team depends on how well its players can play
these positions. At a finer level, we can extend the model
to consider a wider range of skills, such as passing, shoot-
ing, and tackling, but the value of a team remains solely a
function of the attributes of its players.

Consider an example from the business world. Compa-
nies in the metals industry are usually vertically-integrated
and diversified. They have mines for various types of ores,
and also mills capable of processing and producing differ-
ent kinds of metal. They optimize their production profile
according to the market prices for their products. For ex-
ample, when the price of aluminum goes up, they will allo-
cate more resources to producing aluminum. However, each
company is limited by the amount of ores it has, and its
capacities in processing given kinds of ores. Two or more
companies may benefit from trading ores and processing ca-
pacities with one another. To model the metal industry, the
relevant attributes are the amount of ores and the process-
ing capacities of the companies. Given the exogenous input
of market prices, the value of a group of companies will be
determined by these attributes.

Many real-world problems can be likewise modeled by
picking the right attributes. As attributes apply to both
individual agents and groups of agents, we propose the use
of coalitional game theory to understand what groups may
form and what payoffs the agents may expect in such models.
Coalitional game theory focuses on what groups of agents
can achieve, and thus connects strongly with e-commerce,
as the Internet economies have significantly enhanced the
abilities of business to identify and capitalize on profitable
opportunities of cooperation. Our goal is to understand
the computational aspects of computing the solution con-
cepts (stable and/or fair distribution of payoffs, formally
defined in Section 3) for coalitional games described using
attributes. Our contributions can be summarized as follows:

• We define a formal representation for coalitional games
based on attributes, and relate this representation to
others proposed in the literature. We show that when
compared to other representations, there exists games
for which a multi-attribute description can be expo-
nentially more succinct, and for no game it is worse.

• Given the generality of the model, positive results carry
over to other representations. We discuss two positive
results in the paper, one for the Shapley value and one
for the core, and show how these imply related results
in the literature.



• We study an approximation heuristic for the Shapley
value when its exact values cannot be found efficiently.
We provide an explicit bound on the maximum error
of the estimate, and show that the bound is asymptot-
ically tight. We also carry out experiments to evaluate
how the heuristic performs on random instances.1

2. RELATED WORK
Coalitional game theory has been well studied in eco-

nomics [9, 10, 14]. A vast amount of literature have focused
on defining and comparing solution concepts, and determin-
ing their existence and properties. The first algorithmic
study of coalitional games, as far as we know, is performed
by Deng and Papadimitriou in [5]. They consider coalitional
games defined on graphs, where the players are the vertices
and the value of coalition is determined by the sum of the
weights of the edges spanned by these players. This can be
efficiently modeled and generalized using attributes.

As a formal representation, multi-attribute coalitional games
is closely related to the multi-issue representation of Conitzer
and Sandholm [3] and our work on marginal contribution
networks [7]. Both of these representations are based on
dividing a coalitional game into subgames (termed “issues”
in [3] and “rules” in [7]), and aggregating the subgames via
linear combination. The key difference in our work is the
unrestricted aggregation of subgames: the aggregation could
be via a polynomial function of the attributes, or even by
treating the subgames as input to another computational
problem such as a min-cost flow problem. The relationship
of these models will be made clear after we define the multi-
attribute representation in Section 4.

Another representation proposed in the literature is one
specialized for superadditive games by Conitzer and Sand-
holm [2]. This representation is succinct, but to find the
values of some coalitions may require solving an NP-hard
problem. While it is possible for multi-attribute coalitional
games to efficiently represent these games, it necessarily re-
quires the solution to an NP-hard problem in order to find
out the values of some coalitions. In this paper, we stay
within the boundary of games that admits efficient algo-
rithm for determining the value of coalitions. We will there-
fore not make further comparisons with [2].

The model of coalitional games with attributes has been
considered in the works of Shehory and Kraus. They model
the agents as possessing capabilities that indicates their pro-
ficiencies in different areas, and consider how to efficiently
allocate tasks [12] and the dynamics of coalition formation
[13]. Our work differs significantly as our focus is on reason-
ing about solution concepts. Our model also covers a wider
scope as attributes generalize the notion of capabilities.

Yokoo et al. have also considered a model of coalitional
games where agents are modeled by sets of skills, and these
skills in turn determine the value of coalitions [15]. There are
two major differences between their work and ours. Firstly,
Yokoo et al. assume that each skill is fundamentally different
from another, hence no two agents may possess the same
skill. Also, they focus on developing new solution concepts
that are robust with respect to manipulation by agents. Our
focus is on reasoning about traditional solution concepts.

1We acknowledge that random instances may not be typical
of what happens in practice, but given the generality of our
model, it provides the most unbiased view.

Our work is also related to the study of cooperative games
with committee control [4]. In these games, there is usually
an underlying set of resources each controlled by a (pos-
sibly overlapping) set of players known as the committee,
engaged in a simple game (defined in Section 3). multi-
attribute coalitional games generalize these by considering
relationship between the committee and the resources be-
yond simple games. We note that when restricted to simple
games, we derive similar results to that in [4].

3. PRELIMINARIES
In this section, we will review the relevant concepts of

coalitional game theory and its two most important solution
concepts — the Shapley value and the core. We will then
define the computational questions that will be studied in
the second half of the paper.

3.1 Coalitional Games
Throughout this paper, we assume that payoffs to groups

of agents can be freely distributed among its members. This
transferable utility assumption is commonly made in coali-
tional game theory. The canonical representation of a coali-
tional game with transferable utility is its characteristic form.

Definition 1. A coalition game with transferable utility in
characteristic form is denoted by the pair 〈N, v〉, where

• N is the set of agents; and

• v : 2N 7→ R is a function that maps each group of
agents S ⊆ N to a real-valued payoff.

A group of agents in a game is known as a coalition, and the
entire set of agents is known as the grand coalition.

An important class of coalitional games is the class of
monotonic games.

Definition 2. A coalitional game is monotonic if for all
S ⊂ T ⊆ N , v(S) ≤ v(T ).

Another important class of coalitional games is the class
of simple games. In a simple game, a coalition either wins,
in which case it has a value of 1, or loses, in which case it
has a value of 0. It is often used to model voting situations.
Simple games are often assumed to be monotonic, i.e., if S
wins, then for all T ⊇ S, T also wins. This coincides with
the notion of using simple games as a model for voting. If a
simple game is monotonic, then it is fully described by the
set of minimal winning coalitions, i.e., coalitions S for which
v(S) = 1 but for all coalitions T ⊂ S, v(T ) = 0.

An outcome in a coalitional game specifies the utilities
the agents receive. A solution concept assigns to each coali-
tional game a set of “reasonable” outcomes. Different so-
lution concepts attempt to capture in some way outcomes
that are stable and/or fair. Two of the best known solution
concepts are the Shapley value and the core.

The Shapley value is a normative solution concept that
prescribes a “fair” way to divide the gains from cooperation
when the grand coalition is formed. The division of payoff
to agent i is the average marginal contribution of agent i
over all possible permutations of the agents. Formally,

Definition 3. The Shapley value of agent i, φi(v), in game
〈N, v〉 is given by the following formula

φi(v) =
X

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S))



The core is a descriptive solution concept that focuses on
outcomes that are “stable.” Stability under core means that
no set of players can jointly deviate to improve their payoffs.

Definition 4. An outcome x ∈ R|N| is in the core of the
game 〈N, v〉 if for all S ⊆ N ,X

i∈S

xi ≥ v(S)

Note that the core of a game may be empty, i.e., there may
not exist any payoff vector that satisfies the stability require-
ment for the given game.

3.2 Computational Problems
We will study the following three problems related to so-

lution concepts in coalitional games.

Problem 1. (Shapley Value) Given a description of the
coalitional game and an agent i, compute the Shapley value
of agent i.

Problem 2. (Core Membership) Given a description of
the coalitional game and a payoff vector x such that

P
i∈N xi =

v(N), determine if
P

i∈S xi ≥ v(S) for all S ⊆ N .

Problem 3. (Core Non-emptiness) Given a description
of the coalitional game, determine if there exists any payoff
vector x such that

P
i∈S xi ≥ V (S) for all S ⊆ N , andP

i∈N xi = v(N).

Note that the complexity of the above problems depends
on the how the game is described. All these problems will
be “easy” if the game is described by its characteristic form,
but only so because the description takes space exponen-
tial in the number of agents, and hence simple brute-force
approach takes time polynomial to the input description.
To properly understand the computational complexity ques-
tions, we have to look at compact representation.

4. FORMAL MODEL
In this section, we will give a formal definition of multi-

attribute coalitional games, and show how it is related to
some of the representations discussed in the literature. We
will also discuss some limitations to our proposed approach.

4.1 Multi-Attribute Coalitional Games
A multi-attribute coalitional game (MACG) consists of

two parts: a description of the attributes of the agents,
which we termed an attribute model, and a function that
assigns values to combination of attributes. Together, they
induce a coalitional game over the agents. We first define
the attribute model.

Definition 5. An attribute model is a tuple 〈N, M, A〉, where

• N denotes the set of agents, of size n;

• M denotes the set of attributes, of size m;

• A ∈ Rm×n, the attribute matrix, describes the values
of the attributes of the agents, with Aij denoting the
value of attribute i for agent j.

We can directly define a function that maps combinations
of attributes to real values. However, for many problems,
we can describe the function more compactly by computing
it in two steps: we first compute an aggregate value for
each attribute, then compute the values of combination of
attributes using only the aggregated information. Formally,

Definition 6. An aggregating function (or aggregator) takes
as input a row of the attribute matrix and a coalition S, and
summarizes the attributes of the agents in S with a single
number. We can treat it as a mapping from Rn × 2N 7→ R.

Aggregators often perform basic arithmetic or logical op-
erations. For example, it may compute the sum of the at-
tributes, or evaluate a Boolean expression by treating the
agents i ∈ S as true and j /∈ S as false. Analogous to the
notion of simple games, we call an aggregator simple if its
range is {0, 1}. For any aggregator, there is a set of relevant
agents, and a set of irrelevant agents. An agent i is irrele-
vant to aggregator aj if aj(S ∪ {i}) = aj(S) for all S ⊆ N .
A relevant agent is one not irrelevant.

Given the attribute matrix, an aggregator assigns a value
to each coalition S ⊆ N . Thus, each aggregator defines a
game over N . For aggregator aj , we refer to this induced
game as the game of attribute j, and denote it with aj(A).
When the attribute matrix is clear from the context, we may
drop A and simply denote the game as aj . We may refer to
the game as the aggregator when no ambiguities arise.

We now define the second step of the computation with
the help of aggregators.

Definition 7. An aggregate value function takes as input
the values of the aggregators and maps these to a real value.

In this paper, we will focus on having one aggregator per
attribute. Therefore, in what follows, we will refer to the
aggregate value function as a function over the attributes.
Note that when all aggregators are simple, the aggregate
value function implicitly defines a game over the attributes,
as it assigns a value to each set of attributes T ⊆ M . We
refer to this as the game among attributes.

We now define multi-attribute coalitional game.

Definition 8. A multi-attribute coalitional game is defined
by the tuple 〈N, M, A, a, w〉, where

• 〈N, M, A〉 is an attribute model;

• a is a set of aggregators, one for each attribute; we can
treat the set together as a vector function, mapping
Rm×n × 2N 7→ Rm

• w : Rm 7→ R is an aggregate value function.

This induces a coalitional game with transferable payoffs
〈N, v〉 with players N and the value function defined by

v(S) = w(a(A, S))

Note that MACG as defined is fully capable of represent-
ing any coalitional game 〈N, v〉. We can simply take the set
of attributes as equal to the set of agents, i.e., M = N , an
identity matrix for A, aggregators of sums, and the aggre-
gate value function w to be v.



4.2 An Example
Let us illustrate how MACG can be used to represent a

game with a simple example. Suppose there are four types
of resources in the world: gold, silver, copper, and iron, that
each agent is endowed with some amount of these resources,
and there is a fixed price for each of the resources in the
market. This game can be described using MACG with an
attribute matrix A, where Aij denote the amount of resource
i that agent j is endowed. For each resource, the aggrega-
tor sums together the amount of resources the agents have.
Finally, the aggregate value function takes the dot product
between the market price vector and the aggregate vector.

Note the inherent flexibility in the model: only limited
work would be required to update the game as the market
price changes, or when a new agent arrives.

4.3 Relationship with Other Representations
As briefly discussed in Section 2, MACG is closely related

to two other representations in the literature, the multi-
issue representation of Conitzer and Sandholm [3], and our
work on marginal contribution nets [7]. To make their re-
lationships clear, we first review these two representations.
We have changed the notations from the original papers to
highlight their similarities.

Definition 9. A multi-issue representation is given as a
vector of coalitional games, (v1, v2, . . . vm), each possibly
with a varying set of agents, say N1, . . . , Nm. The coali-
tional game 〈N, v〉 induced by multi-issue representation has
player set N =

Sm
i=1 Ni, and for each coalition S ⊆ N ,

v(S) =
Pm

i=1 v(S ∩ Ni). The games vi are assumed to be
represented in characteristic form.

Definition 10. A marginal contribution net is given as a
set of rules (r1, r2, . . . , rm), where rule ri has a weight wi,
and a pattern pi that is a conjunction over literals (posi-
tive or negative). The agents are represented as literals. A
coalition S is said to satisfy the pattern pi, if we treat the
agents i ∈ S as true, an agent j /∈ S as false, pi(S) eval-
uates to true. Denote the set of literals involved in rule i
by Ni. The coalitional game 〈N, v〉 induced by a marginal
contribution net has player set N =

Sm
i=1 Ni, and for each

coalition S ⊆ N , v(S) =
P

i:pi(S)=true wi.

From these definitions, we can see the relationships among
these three representations clearly. An issue of a multi-issue
representation corresponds to an attribute in MACG. Sim-
ilarly, a rule of a marginal contribution net corresponds to
an attribute in MACG. The aggregate value functions are
simple sums and weighted sums for the respective represen-
tations. Therefore, it is clear that MACG will be no less
succinct than either representation.

However, MACG differs in two important way. Firstly,
there is no restriction on the operations performed by the
aggregate value function over the attributes. This is an im-
portant generalization over the linear combination of issues
or rules in the other two approaches. In particular, there are
games for which MACG can be exponentially more compact.
The proof of the following proposition can be found in the
Appendix.

Proposition 1. Consider the parity game 〈N, v〉 where
coalition S ⊆ N has value v(S) = 1 if |S| is odd, and v(S) =
0 otherwise. MACG can represent the game in O(n) space.

Both multi-issue representation and marginal contribution
nets requires O(2n) space.

A second important difference of MACG is that the at-
tribute model and the value function is cleanly separated.
As suggested in the example in Section 4.2, this often al-
lows us more efficient update of the values of the game as it
changes. Also, the same attribute model can be evaluated
using different value functions, and the same value function
can be used to evaluate different attribute model. Therefore,
MACG is very suitable for representing multiple games. We
believe the problems of updating games and representing
multiple games are interesting future directions to explore.

4.4 Limitation of One Aggregator per Attribute
Before focusing on one aggregator per attribute for the

rest of the paper, it is natural to wonder if any is lost per
such restriction. The unfortunate answer is yes, best il-
lustrated by the following. Consider again the problem of
forming a soccer team discussed in the introduction, where
we model the attributes of the agents as their ability to take
the four positions of the field, and the value of a team de-
pends on the positions covered. If we first aggregate each
of the attribute individually, we will lose the distributional
information of the attributes. In other words, we will not
be able to distinguish between two teams, one of which has
a player for each position, the other has one player who can
play all positions, but the rest can only play the same one
position.

This loss of distributional information can be recovered
by using aggregators that take as input multiple rows of
the attribute matrix rather than just a single row. Alterna-
tively, if we leave such attributes untouched, we can leave
the burden of correctly evaluating these attributes to the ag-
gregate value function. However, for many problems that we
found in the literature, such as the transportation domain
of [12] and the flow game setting of [4], the distribution of
attributes does not affect the value of the coalitions. In ad-
dition, the problem may become unmanageably complex as
we introduce more complicated aggregators. Therefore, we
will focus on the representation as defined in Definition 8.

5. SHAPLEY VALUE
In this section, we focus on computational issues of find-

ing the Shapley value of a player in MACG. We first set
up the problem with the use of oracles to avoid complexi-
ties arising from the aggregators. We then show that when
attributes are linearly separable, the Shapley value can be
efficiently computed. This generalizes the proofs of related
results in the literature. For the non-linearly separable case,
we consider a natural heuristic for estimating the Shapley
value, and study the heuristic theoretically and empirically.

5.1 Problem Setup
We start by noting that computing the Shapley value for

simple aggregators can be hard in general. In particular, we
can define aggregators to compute weighted majority over
its input set of agents. As noted in [6], finding the Shapley
value of a weighted majority game is #P-hard. Therefore,
discussion of complexity of Shapley value for MACG with
unrestricted aggregators is moot.

Instead of placing explicit restriction on the aggregator,
we assume that the Shapley value of the aggregator can be



answered by an oracle. For notation, let φi(u) denote the
Shapley value for some game u. We make the following
assumption:

Assumption 1. For each aggregator aj in a MACG, there
is an associated oracle that answers the Shapley value of the
game of attribute j. In other words, φi(a

j) is known.

For many aggregators that perform basic operations over
its input, polynomial time oracle for Shapley value exists.
This include operations such as sum, and symmetric func-
tions when the attributes are restricted to {0, 1}. Also, when
only few agents have an effect on the aggregator, brute-force
computation for Shapley value is feasible. Therefore, the
above assumption is reasonable for many settings. In any
case, such abstraction allows us to focus on the aggregate
value function.

5.2 Linearly Separable Attributes
When the aggregate value function can be written as a

linear function of the attributes, the Shapley value of the
game can be efficiently computed.

Theorem 1. Given a game 〈N, v〉 represented as a MACG
〈N, M, A, a, w〉, if the aggregate value function can be writ-
ten as a linear function of its attributes, i.e.,

w(a(A, S)) =

mX
j=1

cja
j(A, S)

The Shapley value of agent i in 〈N, v〉 is given by

φi(v) =

mX
j=1

cjφi(a
j) (1)

Proof. First, we note that Shapley value satisfies an ad-
ditivity axiom [11].

The Shapley value satisfies additivity, namely,
φi(a + b) = φi(a) + φi(b), where 〈N, a + b〉 is
a game defined to be (a + b)(S) = a(S) + b(S)
for all S ⊆ N .

It is also clear that Shapley value satisfies scaling, namely

φi(αv) = αφi(v)

where (αv)(S) = αv(S) for all S ⊆ N .
Since the aggregate value function can be expressed as a

weighted sum of games of attributes,

φi(v) = φi(w(a)) = φi(

mX
j=1

cja
j) =

mX
j=1

cjφi(a
j)

Many positive results regarding efficient computation of
Shapley value in the literature depends on some form of lin-
earity. Examples include the edge-spanning game on graphs
by Deng and Papadimitriou [5], the multi-issue representa-
tion of [3], and the marginal contribution nets of [7]. The
key to determine if the Shapley value can be efficiently com-
puted depends on the linear separability of attributes. Once
this is satisfied, as long as the Shapley value of the game of
attributes can be efficiently determined, the Shapley value
of the entire game can be efficiently computed.

Corollary 1. The Shapley value for the edge-spanning
game of [5], games in multi-issue representation [3], and
games in marginal contribution nets [7], can be computed in
polynomial time.

5.3 Polynomial Combination of Attributes
When the aggregate value function cannot be expressed

as a linear function of its attributes, computing the Shapley
value exactly is difficult. Here, we will focus on aggregate
value function that can be expressed as some polynomial
of its attributes. If we do not place a limit on the degree
of the polynomial, and the game 〈N, v〉 is not necessarily
monotonic, the problem is #P-hard.

Theorem 2. Computing the Shapley value of a MACG
〈N, M, A, a, w〉, when w can be an arbitrary polynomial of
the aggregates a, is #P-hard, even when the Shapley value
of each aggregator can be efficiently computed.

The proof is via reduction from three-dimensional matching,
and details can be found in the Appendix.

Even if we restrict ourselves to monotonic games, and
non-negative coefficients for the polynomial aggregate value
function, computing the exact Shapley value can still be
hard. For example, suppose there are two attributes. All
agents in some set B ⊆ N possess the first attribute, and all
agents in some set C ⊆ N possess the second, and B and C
are disjoint. For a coalition S ⊆ N , the aggregator for the
first evaluates to 1 if and only if |S ∩B| ≥ b′, and similarly,
the aggregator for the second evaluates to 1 if and only if
|S ∩ C| ≥ c′. Let the cardinality of the sets B and C be b
and c. We can verify that the Shapley value of an agent i in
B equals

φi =
1

b

b′−1X
i=0

�
b
i

��
c

c′−1

��
b+c

c′+i−1

� c− c′ + 1

b + c− c′ − i + 1

The equation corresponds to a weighted sum of probability
values of hypergeometric random variables. The correspon-
dence with hypergeometric distribution is due to sampling
without replacement nature of Shapley value. As far as we
know, there is no close-form formula to evaluate the sum
above. In addition, as the number of attributes involved
increases, we move to multi-variate hypergeometric random
variables, and the number of summands grow exponentially
in the number of attributes. Therefore, it is highly unlikely
that the exact Shapley value can be determined efficiently.
Therefore, we look for approximation.

5.3.1 Approximation
First, we need a criteria for evaluating how well an esti-

mate, φ̂, approximates the true Shapley value, φ. We con-
sider the following three natural criteria:

• Maximum underestimate: maxi φi/φ̂i

• Maximum overestimate: maxi φ̂i/φi

• Total variation: 1
2

P
i |φi − φ̂i|, or alternatively

maxS |
P

i∈S φi −
P

i∈S φ̂i|
The total variation criterion is more meaningful when we
normalize the game to having a value of 1 for the grand
coalition, i.e., v(N) = 1. We can also define additive ana-
logues of the under- and overestimates, especially when the
games are normalized.



We will assume for now that the aggregate value func-
tion is a polynomial over the attributes with non-negative
coefficients. We will also assume that the aggregators are
simple. We will evaluate a specific heuristic that is analo-
gous to Equation (1). Suppose the aggregate function can
be written as a polynomial with p terms

w(a(A, S)) =

pX
j=1

cja
j(1)(A, S)aj(2)(A, S) · · · aj(kj)(A, S)

(2)
For term j, the coefficient of the term is cj , its degree kj ,
and the attributes involved in the term are j(1), . . . , j(kj).

We compute an estimate φ̂ to the Shapley value as

φ̂i =

pX
j=1

kjX
l=1

cj

kj
φi(a

j(l)) (3)

The idea behind the estimate is that for each term, we divide
the value of the term equally among all its attributes. This
is represented by the factor

cj

kj
. Then for for each attribute

of an agent, we assign the player a share of value from the
attribute. This share is determined by the Shapley value
of the simple game of that attribute. Without considering
the details of the simple games, this constitutes a fair (but
blind) rule of sharing.

5.3.2 Theoretical analysis of heuristic
We can derive a simple and tight bound for the maximum

(multiplicative) underestimate of the heuristic estimate.

Theorem 3. Given a game 〈N, v〉 represented as a MACG
〈N, M, A, a, w〉, suppose w can be expressed as a polyno-
mial function of its attributes (cf Equation (2)). Let K =

maxjkj, i.e., the maximum degree of the polynomial. Let φ̂
denote the estimated Shapley value using Equation (3), and

φ denote the true Shapley value. For all i ∈ N , φi ≥ Kφ̂i.

Proof. We bound the maximum underestimate term-by-
term. Let tj be the j-th term of the polynomial. We note
that the term can be treated as a game among attributes,
as it assigns a value to each coalition S ⊆ N . Without loss
of generality, renumber attributes j(1) through j(kj) as 1
through kj .

tj(S) = cj

kjY
l=1

al(A, S)

To make the equations less cluttered, let

B(N, S) =
|S|!(|N | − |S| − 1)!

|N |!
and for a game a, contribution of agent i to group S : i /∈ S,

∆i(a, S) = a(S ∪ {i})− a(S)

The true Shapley value of the game tj is

φi(tj) = cj

X
S⊆N\{i}

B(N, S)∆i(tj , S)

For each coalition S, i /∈ S, ∆i(tj , S) = 1 if and only if for

at least one attribute, say l∗, ∆i(a
l∗ , S) = 1. Therefore, if

we sum over all the attributes, we would have included l∗

for sure.

φi(tj) ≤ cj

kjX
j=1

X
S⊆N\{i}

B(N, S)∆i(a
j , S)

= kj

kjX
j=1

cj

kj
φi(a

j)

= kj φ̂i(T )

Summing over the terms, we see that the worst case under-
estimate is by the maximum degree.

Without loss of generality, since the bound is multiplica-
tive, we can normalize the game to having v(N) = 1. As a
corollary, because we cannot overestimate any set by more
than K times, we obtain a bound on the total variation:

Corollary 2. The total variation between the estimated
Shapley value and the true Shapley value, for K-degree bounded
polynomial aggregate value function, is K−1

K
.

We can show that this bound is tight.

Example 1. Consider a game with n players and K at-
tributes. Let the first (n−1) agents be a member of the first
(K − 1) attributes, and that the corresponding aggregator
returns 1 if any one of the first (K − 1) agents is present.
Let the n-th agent be the sole member of the K-th attribute.
The estimated Shapley will assign a value of K−1

K
1

n−1
to the

first (n− 1) agents and 1
K

to the n-th agent. However, the
true Shapley value of the n-th agent tends to 1 as n → ∞,
and the total variation approaches K−1

K
.

In general, we cannot bound how much φ̂ may overesti-
mate the true Shapley value. The problem is that φ̂i may
be non-zero for agent i even though may have no influence
over the outcome of a game when attributes are multiplied
together, as illustrated by the following example.

Example 2. Consider a game with 2 players and 2 at-
tributes, and let the first agent be a member of both at-
tributes, and the other agent a member of the second at-
tribute. For a coalition S, the first aggregator evaluates to
1 if agent 1 ∈ S, and the second aggregator evaluates to 1 if
both agents are in S. While agent 2 is not a dummy with
respect to the second attribute, it is a dummy with respect
to the product of the attributes. Agent 2 will be assigned a
value of 1

4
by the estimate.

As mentioned, for simple monotonic games, a game is fully
described by its set of minimal winning coalitions. When
the simple aggregators are represented as such, it is possible
to check, in polynomial time, for agents turning dummies
after attributes are multiplied together. Therefore, we can
improve the heuristic estimate in this special case.

5.3.3 Empirical evaluation
Due to a lack of benchmark problems for coalitional games,

we have tested the heuristic on random instances. We be-
lieve more meaningful results can be obtained when we have
real instances to test this heuristic on.

Our experiment is set up as follows. We control three pa-
rameters of the experiment: the number of players (6− 10),
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Figure 1: Experimental results

the number of attributes (3 − 8), and the maximum degree
of the polynomial (2− 5). For each attribute, we randomly
sample one to three minimal winning coalitions. We then
randomly generate a polynomial of the desired maximum
degree with a random number (3 − 12) of terms, each with
a random positive weight. We normalize each game to have
v(N) = 1. The results of the experiments are shown in Fig-
ure 1. The y-axis of the graphs shows the total variation,
and the x-axis the number of players. Each datapoint is an
average of approximately 700 random samples.

Figure 1(a) explores the effect of the maximum degree
and the number of players when the number of attributes is
fixed (at six). As expected, the total variation increases as
the maximum degree increases. On the other hand, there is
only a very small increase in error as the number of players
increases. The error is nowhere near the theoretical worst-
case bound of 1

2
to 4

5
for polynomials of degrees 2 to 5.

Figure 1(b) explores the effect of the number of attributes
and the number of players when the maximum degree of the
polynomial is fixed (at three). We first note that these three
lines are quite tightly clustered together, suggesting that the
number of attributes has relatively little effect on the error
of the estimate. As the number of attributes increases, the
total variation decreases. We think this is an interesting
phenomenon. This is probably due to the precise construct
required for the worst-case bound, and so as more attributes
are available, we have more diverse terms in the polynomial,
and the diversity pushes away from the worst-case bound.

6. CORE-RELATED QUESTIONS
In this section, we look at the complexity of the two

computational problems related to the core: Core Non-
emptiness and Core Membership. We show that the non-
emptiness of core of the game among attributes and the
cores of the aggregators imply non-emptiness of the core of
the game induced by the MACG. We also show that there
appears to be no such general relationship that relates the
core memberships of the game among attributes, games of
attributes, and game induced by MACG.

6.1 Problem Setup
There are many problems in the literature for which the

questions of Core Non-emptiness and Core Member-

ship are known to be hard [1]. For example, for the edge-
spanning game that Deng and Papadimitriou studied [5],
both of these questions are coNP-complete. As MACG can
model the edge-spanning game in the same amount of space,
these hardness results hold for MACG as well.

As in the case for computing Shapley value, we attempt
to find a way around the hardness barrier by assuming the
existence of oracles, and try to build algorithms with these
oracles. First, we consider the aggregate value function.

Assumption 2. For a MACG 〈N, M, A, a, w〉, we assume
there are oracles that answers the questions of Core Non-
emptiness, and Core Membership for the aggregate value
function w.

When the aggregate value function is a non-negative linear
function of its attributes, the core is always non-empty, and
core membership can be determined efficiently.

The concept of core for the game among attributes makes
the most sense when the aggregators are simple games. We
will further assume that these simple games are monotonic.

Assumption 3. For a MACG 〈N, M, A, a, w〉, we assume
all aggregators are monotonic and simple. We also assume
there are oracles that answers the questions of Core Non-
emptiness, and Core Membership for the aggregators.

We consider this a mild assumption. Recall that monotonic
simple games are fully described by their set of minimal win-
ning coalitions (cf Section 3). If the aggregators are repre-
sented as such, Core Non-emptiness and Core Member-
ship can be checked in polynomial time. This is due to the
following well-known result regarding simple games:

Lemma 1. A simple game 〈N, v〉 has a non-empty core
if and only if it has a set of veto players, say V , such that
v(S) = 0 for all S 6⊇ V . Further, A payoff vector x is in the
core if and only if xi = 0 for all i /∈ V .

6.2 Core Non-emptiness
There is a strong connection between the non-emptiness

of the cores of the games among attributes, games of the
attributes, and the game induced by a MACG.

Theorem 4. Given a game 〈N, v〉 represented as a MACG
〈N, M, A, a, w〉, if the core of the game among attributes,



〈M, w〉, is non-empty, and the cores of the games of at-
tributes are non-empty, then the core of 〈N, v〉 is non-empty.

Proof. Let u be an arbitrary payoff vector in the core of
the game among attributes, 〈M, w〉. For each attribute j,
let θj be an arbitrary payoff vector in the core of the game
of attribute j. By Lemma 1, each attribute j must have a
set of veto players; let this set be denoted by P j . For each
agent i ∈ N , let yi =

P
j ujθ

j
i . We claim that this vector y

is in the core of 〈N, v〉. Consider any coalition S ⊆ N ,

v(S) = w(a(A, S)) ≤
X

j:S⊇P j

uj (4)

This is true because an aggregator cannot evaluate to 1 with-
out all members of the veto set. For any attribute j, by
Lemma 1,

P
i∈P j θj

i = 1. Therefore,X
j:S⊇P j

uj =
X

j:S⊇P j

uj

X
i∈P j

θj
i

=
X
i∈S

X
j:S⊇P j

ujθ
j
i

≤
X
i∈S

yi

Note that the proof is constructive, and hence if we are
given an element in the core of the game among attributes,
we can construct an element of the core of the coalitional
game. From Theorem 4, we can obtain the following corol-
laries that have been previously shown in the literature.

Corollary 3. The core of the edge-spanning game of [5]
is non-empty when the edge weights are non-negative.

Proof. Let the players be the vertices, and their at-
tributes the edges incident on them. For each attribute,
there is a veto set — namely, both endpoints of the edges.
As previously observed, an aggregate value function that is a
non-negative linear function of its aggregates has non-empty
core. Therefore, the precondition of Theorem 4 is satisfied,
and the edge-spanning game with non-negative edge weights
has a non-empty core.

Corollary 4 (Theorem 1 of [4]). The core of a flow
game with committee control, where each edge is controlled
by a simple game with a veto set of players, is non-empty.

Proof. We treat each edge of the flow game as an at-
tribute, and so each attribute has a veto set of players. The
core of a flow game (without committee) has been shown
to be non-empty in [8]. We can again invoke Theorem 4 to
show the non-emptiness of core for flow games with commit-
tee control.

However, the core of the game induced by a MACG may
be non-empty even when the core of the game among at-
tributes is empty, as illustrated by the following example.

Example 3. Suppose the minimal winning coalition of all
aggregators in a MACG 〈N, M, A, a, w〉 is N , then v(S) = 0
for all coalitions S ⊂ N . As long as v(N) ≥ 0, any non-
negative vector x that satisfies

P
i∈N xi = v(N) is in the

core of 〈N, v〉.

Complementary to the example above, when all the ag-
gregators have empty cores, the core of 〈N, v〉 is also empty.

Theorem 5. Given a game 〈N, v〉 represented as a MACG
〈N, M, A, a, w〉, if the cores of all aggregators are empty,
v(N) > 0, and for each i ∈ N , v({i}) ≥ 0, then the core of
〈N, v〉 is empty.

Proof. Suppose the core of 〈N, v〉 is non-empty. Let x
be a member of the core, and pick an agent i such that xi >
0. However, for each attribute, since the core is empty, by
Lemma 1, there are at least two disjoint winning coalitions.
Pick the winning coalition Sj that does not include i for
each attribute j. Let S∗ =

S
j Sj . Because S∗ is winning

for all coalitions, v(S∗) = v(N). However,

v(N) =
X
j∈N

xj = xi +
X
j /∈N

xj ≥ xi +
X

j∈S∗
xj >

X
j∈S∗

xj

Therefore, v(S∗) >
P

j∈S∗ xj , contradicting the fact that x

is in the core of 〈N, v〉.
We do not have general results regarding the problem of

Core Non-emptiness when some of the aggregators have
non-empty cores while others have empty cores. We suspect
knowledge about the status of the cores of the aggregators
alone is insufficient to decide this problem.

6.3 Core Membership
Since it is possible for the game induced by the MACG

to have a non-empty core when the core of the aggregate
value function is empty (Example 3), we try to explore the
problem of Core Membership assuming that the core of
both the game among attributes, 〈M, w〉, and the underlying
game, 〈N, v〉, is known to be non-empty, and see if there
is any relationship between their members. One reasonable
requirement is whether a payoff vector x in the core of 〈N, v〉
can be decomposed and re-aggregated to a payoff vector y
in the core of 〈M, w〉. Formally,

Definition 11. We say that a vector x ∈ Rn
≥0 can be de-

composed and re-aggregated into a vector y ∈ Rm
≥0 if there

exists Z ∈ Rm×n
≥0 , such that

yi =

nX
j=1

Zij for all i

xj =

mX
i=1

Zij for all j

We may refer Z as shares.

When there is no restriction on the entries of Z, it is al-
ways possible to decompose a payoff vector x in the core of
〈N, v〉 to a payoff vector y in the core of 〈M, w〉. However, it
seems reasonable to restrict that if an agent j is irrelevant to
the aggregator i, i.e., i never changes the outcome of aggre-
gator j, then Zij should be restricted to be 0. Unfortunately,
this restriction is already too strong.

Example 4. Consider a MACG 〈N, M, A, a, w〉 with two
players and three attributes. Suppose agent 1 is irrelevant
to attribute 1, and agent 2 is irrelevant to attributes 2 and
3. For any set of attributes T ⊆ M , let w be defined as

w(T ) =

8><>:0 if |T | = 0 or 1

6 if |T | = 2

10 if |T | = 3



Since the core of a game with a finite number of players forms
a polytope, we can verify that the set of vectors (4, 4, 2),
(4, 2, 4), and (2, 4, 4), fully characterize the core C of 〈M, w〉.
On the other hand, the vector (10, 0) is in the core of 〈N, v〉.
This vector cannot be decomposed and re-aggregated to a
vector in C under the stated restriction.

Because of the apparent lack of relationship among mem-
bers of the core of 〈N, v〉 and that of 〈M, w〉, we believe an
algorithm for testing Core Membership will require more
input than just the veto sets of the aggregators and the ora-
cle of Core Membership for the aggregate value function.

7. CONCLUDING REMARKS
Multi-attribute coalitional games constitute a very nat-

ural way of modeling problems of interest. Its space re-
quirement compares favorably with other representations
discussed in the literature, and hence it serves well as a
prototype to study computational complexity of coalitional
game theory for a variety of problems. Positive results ob-
tained under this representation can easily be translated to
results about other representations. Some of these corollary
results have been discussed in Sections 5 and 6.

An important direction to explore in the future is the
question of efficiency in updating a game, and how to evalu-
ate the solution concepts without starting from scratch. As
pointed out at the end of Section 4.3, MACG is very nat-
urally suited for updates. Representation results regarding
efficiency of updates, and algorithmic results regarding how
to compute the different solution concepts from updates, will
both be very interesting.

Our work on approximating the Shapley value when the
aggregate value function is a non-linear function of the at-
tributes suggests more work to be done there as well. Given
the natural probabilistic interpretation of the Shapley value,
we believe that a random sampling approach may have sig-
nificantly better theoretical guarantees.
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Appendix
We complete the missing proofs from the main text here.
To prove Proposition 1, we need the following lemma.

Lemma 2. Marginal contribution nets when all coalitions
are restricted to have values 0 or 1 have the same represen-
tation power as an AND/OR circuit with negation at the
literal level (i.e., AC0 circuit) of depth two.

Proof. If a rule assigns a negative value in the marginal
contribution nets, we can write the rule by a corresponding
set of at most n rules, where n is the number of agents, such
that each of which has positive values through application of
De Morgan’s Law. With all values of the rules non-negative,
we can treat the weighted summation step of marginal con-
tribution nets can be viewed as an OR, and each rule as
a conjunction over literals, possibly negated. This exactly
match up with an AND/OR circuit of depth two.

Proof (Proposition 1). The parity game can be rep-
resented with a MACG using a single attribute, aggregator
of sum, and an aggregate value function that evaluates that
sum modulus two.

As a Boolean function, parity is known to require an expo-
nential number of prime implicants. By Lemma 2, a prime
implicant is the exact analogue of a pattern in a rule of mar-
ginal contribution nets. Therefore, to represent the parity
function, a marginal contribution nets must be an exponen-
tial number of rules.

Finally, as shown in [7], a marginal contribution net is at
worst a factor of O(n) less compact than multi-issue rep-
resentation. Therefore, multi-issue representation will also



take exponential space to represent the parity game. This
is assuming that each issue in the game is represented in
characteristic form.

Proof (Theorem 2). An instance of three-dimensional
matching is as follows [6]: Given set P ⊆ W × X × Y ,
where W , X, Y are disjoint sets having the same number q
of elements, does there exist a matching P ′ ⊆ P such that
|P ′| = q and no two elements of P ′ agree in any coordi-
nate. For notation, let P = {p1, p2, . . . , pK}. We construct
a MACG 〈N, M, A, a, w〉 as follows:

• M : Let attributes 1 to q correspond to elements in W ,
(q+1) to 2q correspond to elements in X, (2q+1) to 3q
corresponds to element in Y , and let there be a special
attribute (3q + 1).

• N : Let player i corresponds to pi, and let there be a
special player ?.

• A: Let Aji = 1 if the element corresponding to at-
tribute j is in pi. Thus, for the first K columns, there
are exactly three non-zero entries. We also set
A(3q+1)? = 1.

• a: for each aggregator j, aj(A(S)) = 1 if and only if
sum of row j of A(S) equals 1.

• w: product over all aj .

In the game 〈N, v〉 that corresponds to this construction,
v(S) = 1 if and only if all attributes are covered exactly
once. Therefore, for ? /∈ T ⊆ N , v(T ∪ {?}) − v(T ) = 1 if
and only if T covers attributes 1 to 3q exactly once. Since
all such T , if exists, must be of size q, the number of three-
dimensional matchings is given by

φ?(v)
(K + 1)!

q!(K − q)!


