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Abstract. A semantics-based framework is presented for the definition
and manipulation of class hierarchies for object-oriented languages. The
framework is based on the notion of observable of a class, i.e., an abstrac-
tion of its semantics when focusing on a behavioral property of interest.
We define a semantic subclass relation, capturing the fact that a subclass
preserves the behavior of its superclass up to a given (tunable) observed
property. We study the relation between syntactic subclass, as present
in mainstream object-oriented languages, and the notion of semantic
subclass. The approach is then extended to class hierarchies, leading
to a semantics-based modular treatment of a suite of basic observable-
preserving operators on hierarchies. We instantiate the framework by
presenting effective algorithms that compute a semantic superclass for
two given classes, that extend a hierarchy with a new class, and that
merge two hierarchies by preserving semantic subclass relations.

1 Introduction

In the object-oriented paradigm, a crucial role is played by the notion of class
hierarchy. Being A a subclass of B captures the fact that the state and the
behavior of the elements of A are coherent with the intended meaning of B,
while disregarding the additional features and functionalities that characterize
the subclass.

The approach of mainstream object-oriented languages, like Java and C++,
to class hierarchies can be seen as merely syntactic. In such a view hierarchies
are collections of classes ordered by the transitive closure of explicitly declared
subclass or subtype relations. This is why the main theoretical and practical
contributions to hierarchy refactoring issues [32, 33] combine static and dynamic
analyses that focus only on syntactic elements. However, as pointed out by [29],
this approach has severe limitations, as it leads to troubles when trying to face
the issue of extending a given class hierarchy.

In this paper we adopt an alternative, semantics-based approach for the def-
inition and manipulation of class hierarchies. It uses previous works on abstract
interpretation theory [7], that allows formalizing the notion of different levels of
property abstraction and of abstract semantics. This framework is based on the
notion of observable of a class, i.e., an abstraction of the class semantics that
focuses on a behavioral property of interest. The intuition is that the semantics
of a class can be abstracted by parameterizing it with respect to a given domain
of observables, and that a notion of semantic subclass can then be defined in
terms of preservation of these observables. This notion of semantic subclass can
be seen as a proper generalization of the concept of class subtyping, having the
advantage of being tunable with respect to a given underlying abstract domain
and hence of the properties we are interested to capture.



class Integer {

int x;

init(){ x = 0 }

add() { x += 1 }

sub() { x -= 1 } }

class Even {

int x;

init(){ x = 0 }

add() { x += 2 }

sub() { x -= 2 } }

class Odd {

int x;

init(){ x = 1 }

add() { x += 2 }

sub() { x -= 2 } }

class MultEight{

int x;

init(){ x = 0 }

add() { x += 16 }

sub() { x -= 8 } }

class MultTwelve{

int x;

init(){ x = 0 }

add() { x += 24 }

sub() { x -= 12 } }

Fig. 1. Running examples

The notion of syntactic subclass, forcing that fields and methods have the
same names, is too weak to state something about semantic subclassing, but
compatibility results on the syntactic extension on one hand, and suitable re-
naming functions on the other can be stated that allow us to properly relate the
two subclass relations.

The interest of the notion of semantic subclass become even more interesting
when facing the problem of manipulating class hierarchies which has more than
thousands of classes (for instance, NetBeans [27] is made up of 8328 classes). We
formalize the notion of semantic ordering of hierarchies as “when is it the case
that a hierarchy is more informative with respect to a given observable?”

We show that this notion of semantic subclassing

– can be formally related to the traditional syntactic-based subclassing rela-
tion;

– it is crucial for designing automatic and modular verification tools for poly-
morphic code;

– it enlightens the trade-off between the expressive power of specification lan-
guages for object-oriented languages and the subtype relations they support;

– it is the base to design algorithms and tools for extending, refactoring and
merging class hierarchies.

In fact, in the paper we show how it can be used for the automatic and
modular verification of polymorphic code, for bounding the expressive power of
specification languages for object-oriented languages and for the characterization
of semantic class hierarchies. Intuitively, semantic class hierarchies ensure that,
up to a given observable, classes lower in the hierarchy specializes the behavior
of the upper classes. We instantiate our framework by design algorithms for
extending, refactoring and merging class hierarchies. Such algorithms represent
the basis for our mid-term goal, that is a tool for the modular verification and
the semi-automatic refactoring of large class hierarchies.
Paper Structure. In Section 2, an example introduces the main ideas of the
paper. In Section 3, the notion of observable is introduced as an abstraction of the
concrete semantics. In Section 4, we introduce the semantic subclass relation, we
discuss its relationship with the syntactic notion, and we show its use for modular
verification of polymorphic code. In Section 5, the framework is lifted to class
hierarchies by introducing a suite of refactoring operators. Finally, Section 6
discusses related work, and Section 7 concludes.
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(a) H1, admissible for congruences
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(b) H2, admissible for parities

Fig. 2. H1 and H2, two possible class hierarchies

2 A Motivating Example

Let us consider the five classes described in Fig. 1 that encode different sets of
integer numbers. In class Even, variable x can only take even values, whereas
variable x of Odd takes odd values only. The instance variable of MultEight
and MultTwelve can only be assigned a value that is a multiple of 8 and 12,
respectively.

A first question to address is “What are the admissible hierarchies among
such classes?”. A hierarchy is admissible when the subclasses preserve a given
property of their superclass. So, when the parity of the field x is observed, both
the class hierarchies H1 and H2 in Fig. 2 are admissible. This is true for H1,
as the value of MultEight.x is always a multiple of 8, and in particular it is
even. As a consequence, when just parity is observed, MultEight preserves the
behavior of Even. On the other hand, H2 is also an admissible class hierarchy
w.r.t. parity as the values taken by MultTwelve.x and MultEight.x are even
numbers, too. As a consequence, MultTwelve preserves the parity behavior of its
superclass MultEight. Nevertheless, when we consider a more precise property,
for instance the value taken by x up to a numerical congruence, then H2 is no
longer an admissible hierarchy. In fact, as in general a multiple of 12 is not
a multiple of 8, MultTwelve does not preserve the congruence property of its
ancestor MultEight.

“Why do we need admissible class hierarchies?” For two reasons: (i) it allows
one to design modular verification tools of polymorphic methods, and (ii) it
supports design of semantics-preserving operations on class hierarchies.
To illustrate (i), consider the class hierarchy H1 and the method inv, defined as
follows:

inv(Even e){return 1/(1− e.x%2)}.
In order to prove that inv never performs a division by zero, it suffices to prove it
w.r.t. Even instances. In fact as H1 is admissible for parity, then all the subclasses
of Even preserve the property that x is an even number. Nevertheless, in order
to prove it correct also for all the future extensions of the hierarchy, we need to
assure that all the manipulations on class hierarchies preserve its admissibility.
This leads to (ii).

This semantic approach can be used to define, and prove correct, manipu-
lating operations on class hierarchies that preserve admissibility w.r.t. a given
property. For instance, we will show an algorithm for class insertion. Such an
algorithm, when applied to the classes of Fig. 3 and to the hierarchy H1, returns
the hierarchy H3 in Fig. 4, which is still admissible for congruences (and hence
parities). As a consequence, the method inv is still guaranteed to be correct for
all possible inputs.
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class MultFour { class MultTwenty {

int x; int x;

init() { x = 0 } init() { x = 0 }

add() { x += 4 } add() { x += 20 }

sub() { x -= 4 }} sub() { x -= 60 }}

Fig. 3. Two classes to be added to H1
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Fig. 4. H3: the hierarchy H1 augmented with MultTwenty and MultFour

3 Concrete and Abstract Semantics of Classes

In this section, we introduce the syntax and the concrete semantics of classes.
Then, we define the domain of observables and the abstract semantics of a class.

3.1 Syntax
A class is a template for objects. It is provided by the programmer who specifies
the fields, the methods and the class constructor.

Definition 1 (Classes). A class C is a triple 〈F, init, M〉 where F is a set of dis-
tinct variables, init is the class constructor and M is a set of method definitions.
The set of all the classes is denoted by C.

Like in Smalltalk [15], methods are untyped and fields are private. This is
just to simplify the exposition and it does not cause any loss of generality: any
external access to a field f can be simulated by a pair of methods set f/ get f.
Furthermore, we assume that a class has only one constructor. The generalization
to an arbitrary number of constructors is straightforward. The interface of a class
is the set of messages it can answer:

Definition 2 (Class Interface). Given a class C = 〈init, M〉, let Mnames be the
names of C’s methods. Then the interface of C is ι(C) = {init} ∪ Mnames.

3.2 Concrete Semantics
Given a class C = 〈F, init, M〉, every instance of C has an internal state σ ∈ Σ
that is a function from fields to values, i.e., Σ = [F → Dval ], where Dval is the
semantic domain of values.

When a class is instantiated, the class constructor is called to set the internal
state of the new object. This is modeled by a semantic function iJinitK ∈
[Dval → P(Σ)]. We consider sets in order to model non-determinism, e.g., user
input or random choices.
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The semantics of a method m is a function mJmK ∈ [Dval×Σ → P(Dval ×Σ)].
A method is called with two parameters: the method actual parameters and the
internal state of the object it belongs to. The output of a method is a set of pairs
〈 return value (if any), new object state 〉.

The most precise state-based property of a class C is the set of states reached
by any execution of every instance of C in any possible context. In this paper, we
consider just state-based properties. Such an approach can be shown to be an
abstraction of a trace-based semantics for object-oriented languages, [23, 22], in
which just the states before and after the invocation of a method are retained.

The set of states reached by any execution of any instance of a class can
be expressed as a least fixpoint on the complete boolean lattice 〈P(Σ),⊆〉. The
set of the initial states, i.e., the states reached after any invocation of the C
constructor, is:

S0 = {σ ∈ Σ | ∃v ∈ Dval . σ ∈ iJinitK(v)}.

The states reached after the invocation of a method m are given by the method
collecting forward semantics M>JmK ∈ [P(Σ)→ P(Σ)]:

M
>JmK(S) = {σ′ ∈ Σ | ∃σ ∈ S. ∃v ∈ Dval . ∃v′ ∈ Dval . 〈v′, σ′〉 ∈mJmK〈v, σ〉}.

The class reachable states are the least solution of the following recursive equa-
tions:

S = S0 ∪
⋃
m∈M

Sm

Sm = M
>JmK(S) m ∈ M.

(1)

The above equations characterize the set of states that are reachable before and
after the invocation of any method in any instance of the class. Stated otherwise,
they consider all the states reached after any possible invocation, in any order,
with any input values of the methods of a class. A more general situation, in
which the context may update the fields of an object, e.g. , because of aliasing,
is considered in [22].

The least solution of (1) w.r.t. set inclusion corresponds to a tuple 〈S,S0, {m :
Sm}〉 such that S is a class invariant [21, 23, 22], and for each method m, Sm is
the strongest postcondition of the method. The method preconditions can be
obtained by going backward from the postconditions: given a method m and its
postcondition, we consider the set of states from which it is possible to reach
a state in Sm by an invocation of m. Formally, the collecting backward method
semantics M<JmK ∈ [P(Σ)→ P(Σ)] is defined as

M
<JmK(S) = {σ ∈ Σ | ∃σ′ ∈ S. ∃v ∈ Dval . ∃v′ ∈ Dval . 〈v′, σ′〉 ∈mJmK〈v, σ〉}.

and the methods preconditions are Bm = M<JmK(Sm).
The concrete class semantics, i.e., the most precise property of a class [10],

is the triple CJCK = 〈S,S0, {m : Bm → Sm}〉.
The use of the concrete semantics CJCK for the definition of the observables

of a class has two drawbacks. First, in general the computation of the least
fixpoint of (1) may be unfeasible and the sets S and Sm and Bm may not be
computer-representable. Therefore, this approach is not suitable for an effective
definition of semantic subclassing. Second, it is too precise, as it may differentiate
classes that do not need to be distinguished. For example, let us consider two
classes StackWithList and StackWithArray which implement a stack by using
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respectively a linked list and a resizable array. Both of them have push and pop
methods. If they are observed using the concrete semantics, then the two classes
are unrelated, as the internal representation of the stack is different. On the
other hand, when the behavior w.r.t. to the invocation of methods is observed,
they act in the same way, e.g., no difference can be made between the values
returned by the respective pop methods: both of them return the value on the
top of the stack.

In order to overcome those drawbacks we consider abstract domains that
encode the relevant properties and abstract semantics that are feasible, i.e. which
are sound, but not necessarily complete, abstractions of the concrete semantics.

3.3 Domain of Observables

An observable of a class C is an approximation of its semantics that captures
some aspects of interest of the behavior of C. We build a domain of observables
starting from an abstraction of sets of object states.

Let us consider an abstract domain 〈P,v〉, which is a complete lattice, related
to the concrete domain by a Galois connection [10]:

〈P(Σ),⊆, ∅, Σ,∪,∩〉 −−−→←−−−α

γ
〈P,v,⊥,>,t,u〉. (2)

For instance, if we are interested in the linear relations between the values of
the fields of the instances of C, we instantiate P with the Octagons abstract
domain [26]. On the other hand if we are interested in object aliasing then we
are likely to choose for P an abstract domain that captures shapes, e.g.,[30, 31].

Once 〈P,v〉 is fixed, the abstract domain 〈O[P ],v[P ]
o 〉 of the observables of

a class is built on top of it. The elements of the abstract domain belong to the
set:

O[P ] = {〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉 | S̄, S̄0, V̄m, B̄m, S̄m ∈ P}.

Intuitively, an element of O[P ] consists of an approximation of the class invariant,
the constructor postcondition, and for each method an approximation of its
precondition and postcondition. A method precondition is in turn made up of
two parts, one for the method input values and the other for that internal object
state. When no ambiguity arises, we write 〈O,vo〉 instead of 〈O[P ],v[P ]

o 〉. We
tacitly assume that if a method n is not defined in a class, then its precondition
and postconditions are respectively > and ⊥.

The partial order vo on O is defined point-wise. Let o1 = 〈Ī , Ī0, {mi :
〈Ūi, R̄i〉 → Īi}〉 and o2 = 〈J̄ , J̄0, {mj : 〈W̄j , Q̄j〉 → J̄j}〉 be two elements3 of
O. Then the order vo is defined as:

o1voo2 ⇐⇒ Ī v J̄ ∧ Ī0 v J̄0 ∧ (∀mi. W̄i v Ūi ∧ Q̄i v R̄i ∧ Īi v J̄i).

If o1 and o2 are the observables of two classes A and B then the order vo ensures
that A preserves the class invariant of B and that the methods of A are a “safe”
replacement of those with the same name in B. Intuitively, the precondition
generalizes the observations, made in the context of type theory, of [3]. It states
two things. First, if the context satisfies W̄i then it satisfies the inherited method
precondition Ūi too (i.e., W̄i v Ūi). Thus the inherited method can be used in
any context where its ancestor can. Second, the state of o1 before the invocation
3 We use the same index for methods with the same name. For instance Pi and Qi are

the preconditions for the homonym method mi of o1 and o2.

6



of a method must be compatible with that of o2 (i.e., Q̄i v R̄i). Finally, the
postcondition of the inherited method must be at least as strong as that of the
ancestor (i.e., Īi v J̄i).

Having defined vo, it is routine to check that ⊥o = 〈⊥,⊥, {mi : 〈>,>〉 → ⊥}〉
is the smallest element of O and >o = 〈>,>, {mi : 〈⊥,⊥〉 → >}〉 is the largest
one. The join, to, and the meet, uo, operators on O can be defined point-wise.

Suppose that the order relation v on P is decidable [28]. This is the case for
abstract domains used for effective static analyses. As vo is defined in terms of
v and the universal quantification ranges on a finite number of methods then
vo is decidable too.

Theorem 1. Let 〈P,v,⊥,>,t,u〉 be a complete lattice. Then 〈O,vo,⊥o,>o,to,
uo〉 is a complete lattice. Moreover, if v is decidable then vo is decidable too.

From basic abstract interpretation theory [11] we know that A(P(Σ)), the set
of all the abstractions of the concrete domain, is a complete lattice ordered w.r.t.
the “relative” precision, ≤, of abstract domains. As immediate consequence, we
obtain that Galois connections can be lifted to the domain of observables:

Lemma 1. Let 〈P,v〉 and 〈P ′,v′〉 be two domains in A(P(Σ)) such that 〈P,v〉
≤ 〈P ′,v′〉 with the Galois connection 〈α, γ〉. Then,

〈O[P ],v[P ]
o 〉 −−−→←−−−

αo

γo 〈O[P ′],v[P ′]
o 〉

where αo and γo are

α0(〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉 = 〈α(S̄), α(S̄0), {m : 〈α(V̄m), α(B̄m)〉 → α(S̄m)}〉
γ0(〈S̄′, S̄′

0, {m : 〈V̄ ′
m , B̄

′
m〉 → S̄′

m}〉 = 〈γ(S̄′), γ(S̄′
0), {m : 〈γ(V̄ ′

m ), γ(B̄′
m)〉 → γ(S̄′

m)}〉.

3.4 Abstract Semantics

Once the abstract domain is defined, an abstraction of CJCK can be obtained by
considering the abstract counterpart for (1). As a first step we need to consider
the abstraction corresponding to the initial states, and the forward and the
backward collecting semantics. We consider the best abstract counterparts for
such concrete semantic functions.

By Galois connection properties, the best approximation for the initial states
of the class is α(S0) = S̄0. By [11], the best approximation in P of the for-
ward collecting method semantics of m of C is M̄>JmK ∈ [P → P ] defined as
M̄>JmK(S̄) = α ◦M>JmK ◦ γ(S̄). The abstract counterpart for the equations (1)
is the following equation system:

S̄ = S̄0 t
⊔
m∈M

S̄m

S̄m = M̄
>JmK(S̄) m ∈ M.

(3)

The above equations are monotonic and, by the Tarski fixpoint theorem, there
exists a least solution 〈S̄, S̄0, {m : S̄m}〉. Similarly to the concrete case, the ab-
stract preconditions can be obtained by considering the best approximation
of the backward collecting method semantics M̄<JmK ∈ [P → P ] defined as
M̄<JmK(S̄) = α ◦M<JmK ◦γ(S̄). The method abstract preconditions are obtained
by projecting M̄<JmK(S̄m) respectively on the method input values and the in-
stance fields: V̄m = πin(M̄<JmK(S̄m)) and B̄m = πF(M̄<JmK(S̄m)).

To sum up, the triple C̄JCK = 〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉 belongs to the
domain of observables, and it is the best sound approximation of the semantics
of C, w.r.t the properties encoded by the abstract domain 〈P,v〉.
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Theorem 2 (Observable of a Class). Let 〈P,v〉 be an abstract domain that
satisfies (2) and let the observable of a class C w.r.t. the property encoded by
〈P,v〉 be C̄JCK = 〈S̄, S̄0, {m : 〈V̄m, B̄m〉 → S̄m}〉. Then αo(CJCK)voC̄JCK.

Example 1. Let us instantiate 〈P,v〉 with Con, the abstract domain of equali-
ties of linear congruences, [16]. The elements of such a domain have the form
x = a mod b, where x is a program variable and a and b are integers. The
representation function γc ∈ [Con→ P(Σ)] is defined as

γc(x = a mod b) = {σ ∈ Σ | ∃k ∈ N. σ(x) = a + k · b}.

Let us consider the classes Even and MultEight in Fig. 2 and let e be the property
x = 0 mod 2, d the property x = 1 mod 2 and u be the property x = 0 mod 8 .
Then the observables of Even and MultEight w.r.t. Con are

C̄JEvenK = 〈e, e, {add : 〈⊥, e〉 → e, sub : 〈⊥, e〉 → e}〉
C̄JOddK = 〈d, d, {add : 〈⊥, d〉 → d, sub : 〈⊥, d〉 → d}〉

C̄JMultEightK = 〈u, u, {add : 〈⊥, u〉 → u, sub : 〈⊥, u〉 → u}〉.

It is worth noting that as add and sub do not have an input parameter, the
corresponding precondition for the input values is ⊥. ut

4 Subclassing

The notion of subclassing can be defined both at semantic and syntactic level.
Given two classes A and B, A is a syntactic subclass of B, denoted A J B, if all
the names defined in B are defined in A too. On the other hand, A is a semantic
subclass of B, denoted A C B, if A preserves the observable of B. The notion of
semantic subclassing is useful for exploring the expressive power of specification
languages and the modular verification of object-oriented programs.

4.1 Syntactic Subclassing

The intuition behind the syntactic subclassing relation is inspired by the Smalltalk
approach to inheritance: a subclass must answer to all the messages sent to its su-
perclass. Stated otherwise, the syntactic subclassing relation is defined in terms
of inclusion of class interfaces:

Definition 3 (Syntactic Subclassing). Let A and B be two classes, ι(·) as in
Def. 2. Then the syntactic subclass relation is defined as A J B⇐⇒ ι(A) ⊇ ι(B).

It is worth noting that as ι(·) does not distinguish between names of fields and
methods, class A = 〈∅, init, f = λx.x + 1〉 is a syntactic subclass of B =〈f, init, ∅〉,
even if in the first case f is a name of a method and in the second it is the name
of a field. This is not surprising in the general, untyped, context we consider.

Example 2. In mainstream object-oriented languages the subclassing mechanism
is provided through class extension. For example, in Java a subclass of a base
class B is created by using the syntactic construct “A extends B { extension }”,
where A is the name of the subclass and extension are the fields and the methods
added and/or redefined by the subclass. As a consequence, if type declarations
are considered part of the fields and method names, then A J B always holds. ut
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Fig. 5. A visualization of the semantic subclassing relation

4.2 Semantic Subclassing

The semantic subclassing relation formalizes the intuition that up-to a given
property, a class A behaves like a class B. For example, if the property of interest
is the type of the class, then A is a semantic subclass of B if its type is a subtype
of B. In our framework, semantic subclassing can be defined in terms of the
preservation of observables. In fact, as vo is the abstract counterpart for the
logical implication then C̄JAKvoC̄JBK means that A preserves the semantics of B,
when a given property of interest is observed. Therefore we can define

Definition 4 (Semantic Subclassing). Let 〈O,vo〉 be an abstract domain of
observables and let A and B be two classes. Then the semantic subclassing relation
with respect to O is defined as A CO B⇐⇒ C̄JAKvoC̄JBK.

Example 3. Let us consider the classes Even, Odd and MultEight and their re-
spective observables as in Ex. 1. Then, as u v e holds, we have that MultEight
CEven. On the other hand, we have that neither e v d nor d v e. As a conse-
quence, Even 6C Odd and Odd 6C Even. ut

Observe that when 〈O,vo〉 is instantiated with the types abstract domain [9]
then the relation defined above coincides with the traditional subtyping-based
definition of subclassing [2].

The relation between classes, concrete semantics and observables can be vi-
sualized by the diagram in Fig. 5. When the abstract semantics of A and B are
compared, that of A implies the one of B. This means that A refines B w.r.t. the
properties encoded by the abstract domain O, in accord with the mundane ap-
proach of inheritance where a subclass is as a specialization of its ancestors [25].

The next lemma states the monotonicity of C w.r.t. the observed properties:

Lemma 2. Let A and B be classes, 〈P,v〉 and 〈P ′,v′〉 be abstract domains in
A(P(Σ)) such that 〈P,v〉 ≤ 〈P ′,v′〉. If A CO[P ] B then A CO[P ′] B.

By Lemma 2, the more precise the domain of observables, the more precise the
induced subclass relation. If we observe a more precise property about the class
semantics then we are able to better distinguish between the different classes.

Example 4. Let us consider the hierarchies H1 and H2 depicted in Fig. 2. As the
domain of congruences is (strictly) more precise than the domain of parities, H1

is also admissible for parities, by Lemma 2. Observe that in general the converse
is not true: for instance H2 is not admissible for congruences. ut

When considering the identity Galois connection 〈λx. x, λx. x〉, Def. 4 above
boils down to the observation of the concrete semantics, so that by Lemma
2, CO[P(Σ)] is the most precise semantic subclassing relation. Furthermore, the
semantic subclass relation induced by the most abstract domain is the trivial
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one, in which all classes are in relation with all others. As a consequence, given
two classes A and B there always exist an abstract domain of observables O such
that A CO B. However, in general there not exists a least domain of observables
such that the two are in the semantic subclass relation, as shown by the following
example:

Example 5. Let us consider two classes A and B that are equal except for a
method m defined as:

A.m() {
x = 1; y = 2;
if (x > 0) && (y % 2 == 0) {
x = 1; y = 4; }

else {
x = 1; y = 8; }}

B.m() {
x = 1; y = 2;
if (x > 0) && (y % 2 == 0) {
x = 1; y = 2; }

else {
x = 3; y = 10; }}

When considering the domain of intervals [10] as observables, we infer that
A CIntervals B as ([1, 1], [4, 8]) v ([1, 3], [2, 10]) and when considering the domain
of parities as observables, we infer that A CParities B as (odd, even) v (odd, even).
In fact, in both cases the abstract domain is not precise enough to capture the
branch chosen by the conditional statement. Nevertheless, when considering the
reduced product, [11], Intervals× Parities we have that A 6CIntervals×Parities B as

(([1, 1], odd), ([4, 4], even)) 6v (([1, 1], odd), ([2, 2], even)).

As a consequence, if there exists a least domain O such that A CO B, then O
should be strictly smaller than both Intervals and Parities as the two domains
are not comparable. Then, O must be smaller or equal to the reduced product
of the two domains. We have just shown that it cannot be equal. By Lemma 2
it follows that it cannot be smaller, too. ut

Observation. The previous example emphasizes a strict link between the concept
of subtyping in specification languages for object-oriented programs and the
notion of abstraction. Let us consider two classes A and B, two specification
languages L1 and L2, and the strongest properties we can express about the
behavior of A and B in L1 and in L2, say respectively ϕA

1, ϕ
B
1 and ϕA

2, ϕ
B
2. Let us

suppose that ϕA
1 ⇒ ϕB

1 and ϕA
2 ⇒ ϕB

2. By definition of behavioral subtyping, [18],
A is a subclass of B in both L1 and in L2. Nevertheless, by Ex. 5, by the definition
of observable of a class, and by basic abstract interpretation theory [8], it follows
that if we consider a specification language L3 expressive enough to contain both
L1 and L2, and the corresponding strongest properties ϕA

3, ϕ
B
3, then ϕA

3 6⇒ ϕB
3.

This means that when a more expressive language is used then the classes A and
B are no more related. This fact enlightens an interesting trade-off between the
expressive power of specification languages for object-oriented programs and the
granularity of the subtyping relation they support.

4.3 Modular Verification of Polymorphic Code

Thanks to the following lemma, the notion of semantic subclass turns out to be
useful for the modular verification of polymorphic code:

Lemma 3 (Modular Verification). Let 〈P,v〉 be an abstract domain, let g ∈
[O[P ] → P ] be a monotonic function and let f ∈ [C → P ] be defined as f =
λB. g(C̄JBK). Then, A CO[P ] B implies that f(A) v f(B).
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Let us consider a function “m(B b) { bodym }”. The best abstract semantics,[11],
of m w.r.t. a given abstract domain 〈P,v〉 is s̄JmK 4. By Galois connection prop-
erties, s̄JmK is a monotonic function. Let o ∈ O[P ]. We define g as the function
obtained from s̄JmK by replacing each occurrence of an invocation of a method
of b, e.g. b.n(...), inside bodym with the corresponding preconditions and post-
conditions of o [14]. We denote it with m[b 7→ o]. Hence, g = λo. s̄Jm[b 7→ o]K is
a monotonic function, and in particular s̄JmK v g(C̄JBK) as C̄JBK is an approx-
imation of the behavior of b in all the possible contexts. Then, we can apply
Lemma 3 so that for every class A, A CO[P ] B, we have that g(C̄JAK) v g(C̄JBK).
As a consequence, if we can prove that g(C̄JBK) v S̄ for a given specification S̄, by
transitivity, it follows that g(C̄JAK) v S̄, for every semantic subclass A CO[P ] B,
i.e., m is correct w.r.t. the specification S̄.

Example 6. Consider the function inv in Sect. 2. We want to prove the property
that inv never performs a division by zero. Let us instantiate P with the parity
abstract domain. By Ex. 1 we know that x = e. By an abstract evaluation of the
return expression, one obtains 1/(1 − e%2) = 1/d, that is always defined (as
obvisiously zero is not an odd number). As a consequence, when an instance of
Even is passed to inv, it does not throw any division-by-zero exception. Further-
more, for what said above, this is true for all the semantic subclasses of Even. ut

4.4 Relation between J and C

Consider two classes A and B such that A J B. By definition, this means that all
the names (fields or methods) defined in B are defined in A too. In general, such
a condition is too weak to state something “interesting” about the semantics of
A w.r.t. that of B: for what said in the previous sections, there exists a domain
of observables O such that A CO B, and in most cases such a domain is the most
abstract one, and by Lemma 2 this implies that C is a non-interesting relation.
Therefore, in order to obtain more interesting subclass relations, we have to
consider some hypotheses on the abstract semantics of the methods of the class.
If the constructor of a class A is compatible with that of B, and if the methods of
A do not violate the class invariant of B, then A is a semantic subclass of B. On
the other hand, semantic subclassing almost implies syntactic subclassing. This
is formalized by the following theorems [24]:

Theorem 3. Let A = 〈FA, initA, MA〉 and B = 〈FB, initB, MB〉 be two classes such
that A J B, and let 〈P,v〉 ∈ A(P(Σ)). If (i) IB is a class invariant for B, (ii)
M̄>JinitAK v M̄>JinitBK, (iii) ∀S̄ ∈ P. ∀m ∈ MA ∩ MB. M̄>JmK(S̄) v IB and (iv)
∀m ∈ MA. m 6∈ MB =⇒ M̄>JmK(S̄) v IB then A CO[P ] B.

Theorem 4. Let A, B ∈ C, such that A CO B. Then there exists a renaming
function φ such that φ(A) J B.

5 Meaning-preserving Manipulation of Class Hierarchies

In this Section, we exploit the results of the previous sections to introduce the
concept of admissible class hierarchy, and to define and prove correct some op-
erators on class hierarchies.
4 We consider the best abstract function in order to simplify the exposition. Neverthe-

less the paper’s results still hold when a generic upper-approximation is considered.
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5.1 Admissible Semantic Class Hierarchies
For basic definitions on trees, the reader may refer to [6]. If T is a tree, nodesOf(T )
denotes the elements of the tree, rootOf(T ) denotes the root of the tree, and if
n ∈ nodesOf(T ) then sonsOf(n) are the successors of the node n. In particular, if
sonsOf(n) = ∅ then n is a leaf. A tree with a root r and successors S is tree(r, S).

Here we only consider single inheritance so that class hierarchies are trees
of classes. An admissible hierarchy w.r.t. a transitive relation ρ on classes is a
tree such that all the nodes are classes, and given two nodes n and n′ such that
n′ ∈ sonsOf(n) then n′ is in the relation ρ with n. Formally:

Definition 5 (Admissible Class Hierarchy). Let H be a tree and ρ ⊆ C×C

be a transitive relation on classes. Then we say that H is a class hierarchy which
is admissible w.r.t. ρ, if (i) nodesOf(H) ⊆ C, and (ii) ∀n ∈ nodesOf(H). ∀n′ ∈
sonsOf(n).n′ρn.

We denote the set of all the class hierarchies admissible w.r.t. ρ as H[ρ]. It
is worth noting that our definition subsumes the definition of class hierarchies
of mainstream object-oriented languages. In fact, when ρ is instantiated with
J, we obtain class hierarchies in which all the subclasses have at least the same
methods as their superclass. A semantic class hierarchy is just the instantiation
of the Def. 5 with the relation C. The theorems and lemmata of the previous
sections can be easily lifted to class hierarchies:

Example 7. Consider the two hierarchies in Fig. 2. H1 is admissible w.r.t. CCon

and H2 is admissible w.r.t. CParities but not w.r.t. CCon. ut

In order to manipulate hierarchies we wish to preserve admissibility. This is
why we need the notion of a fair operator. A fair operator on class hierarchies
transforms a set of class hierarchies admissible w.r.t. a relation ρ into a class
hierarchy that is admissible w.r.t. a relation ρ′.

Definition 6 (Fair Operator). Let ρ and ρ′ be transitive relations. Then we
say that a function t is a fair operator w.r.t. ρ and ρ′ if t ∈ [P(H[ρ])→ H[ρ′]].

In the following, when not stated otherwise, we assume that ρ = ρ′ =C.

5.2 Class Insertion

The first fair operator we consider is the one for adding a class into an admis-
sible class hierarchy. The algorithm definition of such an operator is presented
in Fig. 6. It uses as sub-routine CSS, an algorithm for computing a common
semantic superclass of two given classes, that is depicted in Fig. 7 and discussed
in the next section.

The insertion algorithm takes as input an admissible class hierarchy H and
a class C. Four cases are distinguished. (i) if C already belongs to H then the
hierarchy keeps unchanged. (ii) If C is a superclass of the root of H, then a new
class hierarchy whose root is C is returned. (iii) If C is a subclass of the root of
H, then the insertion must preserve the admissibility of the hierarchy. If C is a
superclass of some of the successors, then it is inserted between the root of H and
such successors. Otherwise it checks whether some root class of the successors
is a superclass of C. If it is the case, then the algorithm is recursively applied,
otherwise C is added at this level of the hierarchy. (iv) If C and the root of H

are unrelated, the algorithm returns a new hierarchy whose root is a superclass
of both C and the root of H.
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H ] C , let R = rootOf(H), S = sonsOf(R)
let H< = {K ∈ S | rootOf(K) C C}
let H> = {K ∈ S | rootOf(K) B C}
if C ∈ nodesOf(H) then return H

if R CC then return tree(C, R)
if C CR then

if H< 6= ∅ then
return tree(R, (S-H<) ∪ tree(C, H<))

if H> 6= ∅ then select K ∈ S
return tree(R, (S-K) ∪ ( K ]C))

else return tree(R, S ∪ {C})
else select C> = CSS(R, C)

return tree(C>, {R, C})

Fig. 6. The algorithm for a fair class insertion

CSS(A, B) , let A = 〈FA, initA, MA〉,
B = 〈FB, initB, MB〉,
FC = ∅, initC = initA, MC = ∅

repeat
select f ∈ FA − FC

if B C〈FC ∪ {f}, τFC∪{f}(initA), τFC∪{f}(MC)〉
then FC = FC ∪ {f},

initC = τFC∪{f}(initA)
‖ select m ∈ MA − MC

if B C〈FC, initC, τFC(MC ∪ {m})〉
then MC = MC ∪ {m}

until no more fields of methods are added
return 〈FC, initC, τFC(MC)〉

Fig. 7. Algorithm for computing the CSS

The soundness of the algorithm follows from the observation that, if in the
input hierarchy there is an admissible path from a class B to a class A, then in
the extended hierarchy there still exists an admissible path from B to A.

Lemma 4 (Soundness of ], [24]). The operator ] defined in Fig. 6 is a fair
operator w.r.t. C, i.e., ] ∈ [H[C]× C→ H[C]].

Example 8. Consider the hierarchy H1 and the classes MultFour and MultTwenty
of Sect.2. (H1 ] MultFour) ] MultTwenty = H3 of Fig.4. ut

Because of Th. 1, the algorithm ] is effective as soon as the underlying
domain of observables is suitable for a static analysis, i.e. the abstract elements
are computer representable, the order on P is decidable, and a widening operator
to ensure the convergence of the fixpoint computation. The dual operator, i.e.,
the elimination of a class from a hierarchy, corresponds straightforwardly to the
algorithm for removing a node from an ordered tree [6].

5.3 Common Semantic Superclass

From the previous section we were left to define (and prove correct) the algorithm
that returns the common semantic superclass (CSS) of two given classes. First
we recall the definition of meaning-preserving transformation τ [12]:
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Definition 7 (Program Transformation). Let A = 〈F, init, M〉 and 〈α, γ〉 a
Galois connection satisfying (2). A meaning-preserving program transformation
τ ∈ [F→ M→ M] is such that ∀f ∈ F. ∀m ∈ M: (i) τf(m) does not contain the field
f and (ii) ∀d̄ ∈ P. α(M>JmK(γ(d̄)) v α(M>Jτf(m)K(γ(d̄))).

Intuitively, τf(m) projects out the field f from the source of m preserving the
semantics up to an observation (i.e., α).

The algorithm CSS is presented in Fig. 7. It is parameterized by the un-
derlying abstract domain of observables and a meaning preserving map τ . The
algorithm starts with a superclass for A (i.e., 〈∅, initA, ∅〉). Then, it iterates by
non-deterministically adding, at at each step, a field or a method of A: if such an
addition produces a superclass for B then it is retained, otherwise it is discarded.
When no more methods or fields can be added, the algorithm returns a semantic
superclass for A and B, as guaranteed by the following theorem:

Theorem 5 (Soundness of CSS). Let A and B be two classes. Then CSS(A,B)
is such that A C CSS(A,B) and B C CSS(A,B).

It is worth noting that in general, CSS(A,B) 6= CSS(B,A). Furthermore, by
Th. 1, it follows that if C is decidable, then the algorithm is effective. This is
the case when the underlying abstract domain of observables corresponds to one
used for a static analysis [20].

Example 9. Consider the classes MultEight and MultTwelve and MultFour de-
fined as in Sect. 2. When using the abstract domain of linear congruences,
CSS(MultEight,MultTwelve) = MultFour. ut

5.4 Merging of Hierarchies

The last refactoring operation on hierarchies we consider is about merging. The
algorithm ] can be used as a basis for the algorithm to merge two admissible
class hierarchies:

H1 dH2 , let H = H1, N = nodesOf(H2)
while N 6= ∅ do

select C ∈ N
H = H ]C, N = N − C

return H.

Lemma 5. dis a fair operator w.r.t. C, i.e., d ∈ [H[C]→ H[C]].

It is worth mentioning that the modularity and modulability of the operators
described in this section are the crucial keys that allow to apply them also to
“real world” hierarchy management issues [33].

6 Related Work

In their seminal work on Simula [13], Dahl and Nygaard justified the concept
of inheritance on syntactic bases, namely as textual concatenation of program
blocks. A first semantic approach is [15] an (informal) operational approach to
the semantics of inheritance is introduced. In particular the problem of specifying
the semantics of message dispatch is reduced to that of method lookup. In [5]
a denotational characterization of inheritance is introduced and proved correct
w.r.t. an operational semantics based on the method lookup algorithm of [15].
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An unifying view of the different forms of inheritance provided by programming
languages is presented in [1]. In the objects as records model [2], the semantics
of an object is abstracted with its type: inheritance is identified with subtyping.
Such an approach is not fully satisfactory as shown in [4]. The notion of subtyping
has been generalized in [18] where inheritance is seen as property preservation:
the behavioral type of a class is a human-provided formula, which specifies the
behavior of the class, and subclassing boils down to formula implication. The
main difference between our concept of observable and that of behavioral type
is that observables are systematically obtained as an abstraction of the class
semantics instead of being provided by the programmer.

As for class hierarchies refactoring, [32] presents a semantics-preserving ap-
proach to class composition. Such an approach preserves the behavior of the
composing hierarchies when they do not interfere. If they do interfere, a static
analysis determines which components (classes, methods, etc.) of the hierarchies
may interfere, given a set of programs that use such hierarchies. Such an ap-
proach is the base of the [33], which exploits static and dynamic information
for class refactoring. The main difference between these works and ours is that
we exploit the notion of observable, which is a property valid for all the instan-
tiation contexts of a class. As a consequence we do not need to rely on a set
of test programs for inferring hierarchy properties. Furthermore, as a soundness
requirement, we ask that a refactoring operator on a class hierarchy preserve the
observable, i.e., an abstraction of the concrete semantics. As a consequence we
are in a more general setting, and the traditional one is recovered as soon as we
consider the domain of observables to be the concrete one.

7 Conclusions and Future Work

We introduced a framework for the definition and the manipulation of class
hierarchies based on semantics abstraction. The main novelty of this approach is
twofold: it provides a logic-based solid foundation of class refactoring operations
that are safe by construction, and allows us to tune it according to a given
”observable”.

Our next goal is the development of a tool for the semi-automatic refactor-
ing of class hierarchies, based on [19, 21], and the design of abstract domains
capturing properties expressible in JML [17].
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