
On Hybrid SAT Solving Using Tree Decompositions

and BDDs

Sathiamoorthy Subbarayan Lucas Bordeaux

Youssef Hamadi

March 2006

Technical Report

MSR-TR-2006-28

The goal of this paper is to study the benefits of hybridizing the
CNF SAT Solvers with BDDs. Towards this we define a metric
for the level of hybridization based on a tree decomposition of an
input CNF. We also present a new linear time algorithm on BDDs,
which is useful for efficient conflict analysis in any BDD-based hybrid
SAT solver. Experiments on an implementation of our hybrid solver
shows when to use such a hybridization.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

Our work is motivated by the fact that BDDs [1] and resolution-based CNF
solvers are different reasoning methods [2]. Some constraints are easy for BDD
representations while they are hard for CNF solvers and vice versa. The com-
plexity of solving a SAT instance can be expressed as exponential in the tree
width [3] of the instance. Hence, when the tree width of a SAT instance is
quite low, we can use this fact to guide a SAT solver. In this paper, we present
a hybrid SAT solver combining BDDs and CNF reasoning methods with tree
decomposition techniques. Although attempts have been made in the past to
combine some of the these techniques [4, 5], we are not aware of any previous
work mixing all the three techniques. Our work takes care of the problems in
the previous approaches, such as ad hoc methods to build BDDs [4], suffering
from high cost for obtaining tree decompositions [5].

The goal of this paper is to study the benefits of our hybridization. We first
create a tree decomposition of an input CNF instance of n variables. Then,
based on a parameter h ∈ [0,..,2n], we make a heuristic cut in the tree decom-
position. The cut will be such that for each subtree below the cut the clauses
K covered by the subtree can be represented by a BDD of size at most h*nLits,
where nLits is the number of literal occurrences in the clauses K. For each
subtree below the cut its BDD will be created and the corresponding clauses
in the input CNF will be replaced by the BDD. This results in a hybrid rep-
resentation. We then have a hybrid SAT solver of the form used in [4], which
has to do propagation and conflict analysis in this hybrid representation to de-
termine satisfiability. The contributions of this paper include a new linear-time
algorithm for finding minimal necessary assignments for implications by BDDs,
which will be used by the hybrid conflict learning process.

At h=0 (h=2n) the hybrid solver will be a pure CNF (BDD) solver. The
intermediate values of h result in a really hybrid solver.

An implementation of the above mentioned method is used in an experi-
mental study of the tradeoffs between BDD and CNF representations. In some
instances, we observe very low tree width which should naturally help in hybrid
SAT solving.

The rest of the paper is organized as follows. The necessary background
on tree-decomposition methods and BDDs are given in Section 2. The process
of creating the hybrid representation, the hybrid SAT solver and the new BDD
algorithm useful for conflict analysis are presented in Section 3. The subsequent
section presents the experimental results, which is followed by related work and
some concluding remarks.

1

2 Background

2.1 Tree Decomposition

Let (V ,C) be a CNF SAT problem, where V is the set of propositional variables
and C is the set of clauses in the CNF. Let the notation vars(c) denote the
set of variables occurring in the literals of a clause c ∈ C. Then, the tree
decomposition [3] of the SAT problem is a tree T=(N ,E), where N is the set
of nodes in the tree and E is the set of edges in the tree. Each node n ∈ N

will be associated to a set vars(n), where vars(n) ⊆ V . A node n is said to
contain the variables vars(n). Additionally, a tree decomposition has to satisfy
the following two conditions:

1. for any clause c ∈ C, there exists a node n ∈ N such that vars(c) ⊆ vars(n).
i.e., each clause needs to be covered by at least one node in the tree.

2. for any variable v ∈ V , the nodes in N containing the variable v form a
connected subtree in the tree T .

The size of a node in the tree decomposition is the number of variables in it.
The tree width of a tree decomposition ω’ is the size of the largest sized node of
the tree decomposition minus one. The tree width of a SAT instance ω is then the
smallest number among the tree widths of all possible tree decompositions of the
instance. It is well known that finding the tree width of a SAT instance is NP-
hard [3]. Hence, heuristics are employed to approximate the tree decomposition.

Given a tree decomposition of a SAT problem, the SAT instance can be
solved by a dynamic programming method [6] with complexity exponential in
the tree width of the given tree decomposition. This is the fact we can exploit
to improve the current SAT solvers. Since finding the best tree decomposition
is NP-hard, we can use one among the several available heuristics to obtain a
good tree decomposition and build a SAT solver to use the decomposition. For
a set of problem instances of same tree width and increasing instance sizes, the
performance of the tree width based SAT solvers depend only upon the ability
of the heuristic to find good decompositions. Exploiting tree width could be
useful in cases like bounded model checking [7], where with the increase in the
size of the bound, the tree width of the corresponding instances should not differ
a lot, as a similar circuit structure is repeated for each increase in bound.

2.1.1 The min-degree heuristic

We use minimum-degree (min-degree) [8] heuristic for obtaining tree decompo-
sitions. The min-degree heuristic uses a graph in which all the variables will
have a node. There will be an edge between two nodes if the corresponding
two variables occur together in an input CNF clause. Given such a graph, the
following steps will be repeated until all nodes are eliminated from the graph:

1. select a node n with minimum degree.

2

2. form a clique between the node n and all of its neighbors, by adding an
edge between two neighbors of n, if required.

3. remove (eliminate) the node n and all the edges connected to it from the
graph.

A tree decomposition can be obtained when all the nodes are being eliminated by
the above method. Each clique formed during the elimination process will have
a corresponding node in the tree decomposition. A tree node will contain all the
variables in its corresponding clique. The edges between the nodes in the tree
decomposition are obtained as follows. In the step-3 of the above elimination
process, when the node n with k neighbors is removed, the k neighbors will still
form a clique of size k in the remaining graph. All such k-cliques can be marked
and each one of them can be associated with the tree node formed during the
immediate previous step. When a new clique is formed in step-2, if it contains
any marked k-clique, then the tree node corresponding to the new clique will
have an edge with each one of the tree nodes associated with the contained
marked cliques.

Note that, in a tree decomposition, when the variables contained in a tree
node n1 form a subset of the variables contained in its adjacent node n2, then
the node n1 can be removed after adding an edge between n2 and each one of
the neighbors of n1.

Using the largest sized node in a tree decomposition obtained by min-degree
as the root node, we can arrange the nodes in the tree and mark the leaf nodes
accordingly. During a traversal along any path from a leaf node to the root
node, the structure of the min-degree heuristic decompositions are such that
the number of variables contained in a node in the path will keep increasing.
Due to elimination of the minimum degree nodes, the size of the cliques created
during the elimination process tend to increase with each node elimination. The
leaf nodes would have been created earlier in the elimination process and the
root node at the end.

2.2 Binary Decision Diagrams

A binary decision diagram (BDD) [1] is a rooted directed acyclic graph with
two terminal nodes marked with 0 and 1. The non-terminal nodes are associ-
ated with a propositional variable and each one of them will have two outgoing
edges, one solid and one dashed. The solid (dashed) edges are used when the
corresponding variables take true (false) value. Figure 1 shows a sample BDD.
The solid (dashed) edge is also mentioned as high (low) edge.

Given a BDD representing a propositional function, each path from the root
node to the 1-terminal node represents one or more solutions to the function.
A non-occurrence of a variable’s node in such a path would mean that the
variable is a don’t care variable and hence it can take both true and false values.
Similarly, paths from the root to the 0-terminal node represent the non-solutions
of the function. We are only interested in a special type of BDD called reduced
ordered binary decision diagram(ROBDD), in which the nodes in the BDD

3

01

a

b

b

cc

cc

dd

dd

e

Figure 1: A Binary Decision Diagram

01

a B

b B

b B

c F Bc F B

c F Bc F B

dd B

dd B

e

Figure 2: An example for the Minimal
Reason-Vars algorithm

obey a selected variable order in all paths in the BDD, and isomorphic nodes
are merged and represented by a single node. Hereafter, we simply mention
ROBDD as BDD.

The size of a BDD b, denoted by |b|, is the number of nodes in the BDD.
Given two BDDs, b1 and b2, representing two Boolean functions, the time and
space complexity of the conjoin (disjoin) operation between them is O(|b1|*|b2|) [9].
The time and space complexity of existential quantification of a variable from
a BDD of size |b| is O(|b|*|b|) [9]. Given a CNF clause, its equivalent BDD can
be obtained by disjoin operations between the BDDs representing the literals in
the clause.

Let the assignment of a propositional value val to a propositional variable
var be denoted by the pair (var,val). A path from a BDD node to one of
the terminal nodes is said to contain an assignment pair (var,val), if the path
contains an edge corresponding to the assignment pair or there is no var node
in the path. A path is said to violate an assignment pair (var,val) if the path
does not contain (var,val).

The nice property of BDDs is their ability to succinctly represent several
practical propositional functions, due to which they have been widely used in
the verification area. Hence, we use BDDs to represent the partial solution
spaces of tree nodes in our decomposition based SAT solver.

The size of the BDD representing a function can vary exponentially based
on the variable order used [9]. Since, a typical SAT instance will have a lot of
variables, in our work, we do not spend time on finding good variable order. We
just use the order in which the variables are numbered in a DIMACS-format
CNF instance.

4

3 The Hybrid SAT Solver

3.1 The Hybrid Representation

Given a tree decomposition of a SAT problem, the satisfiability of the problem
can be determined as follows:

1. For each leaf node in the tree, create a BDD of the node by conjoining the
BDDs representing the clauses covered by the leaf node.

2. A tree node is qualified for this step if the BDDs for each one of its child
nodes have been created. If there is any qualifying node n, create a BDD
by conjoining all the BDDs of the child nodes of n along with the BDDs
representing each one of the clauses covered by n. Then, existentially
quantify out any variable v from the so obtained BDD, if the variable v

only occurs in the subtree rooted at n. The resulting BDD is associated
with n.

3. Repeat the previous step if there is any qualifying tree node for the step.

At the end of the above procedure, if the BDD for the root node represents false
then the input problem is unsatisfiable, otherwise satisfiable.

Figure 3: The Tree Decomposition to the Hybrid Representation conversion

Although the BDDs can succinctly represent the solution spaces of small
SAT problems, for large problems the above procedure will typically fail due
to large memory requirements to store BDDs. Hence, we modify the above
procedure such that BDDs of restricted size only are created. Towards this we
parameterize the BDD creation process by h, where h is an integer in the range
[0,..,2n], n is the number of variables in the input SAT problem.

For a given h, the BDD for a tree node is created only if the size of the
BDD is at most h*nLits, where nLits is the number of literals in the clauses
covered by the subtree rooted at the tree node. Whenever a BDD is created in
step-1 or step-2 of the above procedure, the size restriction is checked. If it is
not violated, then the BDD will be accepted and the clauses covered by the tree
node will be removed from the CNF. Otherwise, the BDD will be discarded and
the corresponding node will be marked as unqualified for step-2.

After such parametrization, the above procedure results in a hybrid repre-
sentation of the SAT problem using some BDDs and some CNF clauses. Note

5

that when we accept a BDD created for a tree node, then the BDDs for all of
its child nodes can be discarded. Due to the properties of tree decomposition,
this is enough to determine satisfiability. When a satisfying solution is required
in case of a satisfiable input, we cannot discard the BDDs of the child nodes. In
this work we just focus on determining satisfiability, since extending our work
to find a satisfying solution is trivial.

When h=0, only BDDs of size zero will be accepted, i.e. either true or false.
This would be equivalent to a pure CNF representation. When h=2n, BDDs of
all sizes will be accepted, hence, given enough time and memory, the BDD of the
root node will be created. This is equivalent to a pure BDD SAT solver with
interleaved conjoins and quantifications. The intermediate values of h would
result in a real hybrid representation.

The choice for h makes a cut in the tree decomposition as shown in the
Figure 3. A triangle in the figure represents a BDD that replaces a subtree
below the cut. All the clauses covered by each subtree below the cut will be
replaced by a BDD in the hybrid representation.

3.2 The Solver

To build a zChaff [10] style SAT solver to work on this hybrid representation we
need to port the techniques like watching-based lazy propagation [11], conflict-
directed backtracking [12] and conflict clause learning [12, 10] from the pure
CNF representation to the hybrid representation.

We use the VSIDS [11] heuristic for making branching decisions in the hybrid
SAT solver. The two-literal watching based lazy propagation [12] is used in the
CNF part. The propagation in a BDD is done by a very naive procedure which
traverses the nodes in the BDD. During the traversal the procedure visits only
those nodes that can be reached by the assignments that have been made and
marks the possible assignments for any unassigned variable in the tree node
corresponding to the BDD. In case an unassigned variable has only one of its
possible Boolean choices marked during the process, it results in an implication
by the BDD. In case both the choices of an unassigned variable are unmarked
during the process then it results in a conflict. The complexity of this trivial
function is linear in the number of nodes in the BDD.

When conflicts occur in the search process, we use the 1-UIP [10] type con-
flict clause learning. Since the 1-UIP conflict learning procedure results in an
asserting clause [12, 10], the SAT solver backtracks to the asserting decision
level after learning a conflict clause.

In the 1-UIP learning scheme, when a variable implication at the latest
decision level is involved in a conflict, all the assignments prior to the implication
which are enough to make the implication need to be found. We call the set of
variables in the assignments which are enough for an implication reason-vars set
for the implication. Finding reason-vars is trivial for an implication by a CNF
clause, as all the variables in the clause, except the implied one, are reason-vars
for the implication.

6

In case of an implication made by a BDD, this process is non-trivial. All
the variables in the BDD that were assigned a value before the implication
would themselves constitute a reason-vars set. But such a set of reason-vars
is not useful as only a small subset among them might still be a reason-vars
set and using a smaller sized reason-vars set would result in smaller conflict
learnt clauses and hence better propagation. Hence, we would like to have a
reason-vars set whose size is minimum.

3.3 A Linear Time Algorithm for Minimal Reason-Vars

We are not aware of any BDD algorithm that can find a minimum or even
minimal reason-vars set in linear-time. We give an algorithm to this problem,
that can obtain a minimal reason-vars set. The complexity of the algorithm is
linear in the number of nodes in the BDD.

Given a set of assignments A={(vara1
,vala1

),..,(varak
,valak

)}, a BDD b and
an implication (vari,vali), where the assignments A result in the BDD to im-
ply (vari,vali). Our goal is to find a minimal subset of variables in A, whose
assignments are enough for the BDD to imply (vari,vali).

Let the m variables contained in the tree node corresponding to the BDD b

be {varc1
,..,varcm

}. Let the variable order used in the BDD be varcl
< varcl+1

.
In a BDD each path from the root node to the 1-terminal represents one or

more solutions. That the pair (vari,vali) was implied by the BDD b means that
there is no path in the BDD that contains (vari,¬vali), such that the path does
not violate any of the assignments of A.

Given any path from the root node of BDD to the 1-terminal that contains
(vari,¬vali), there will be at least one edge in the path that violates an assign-
ment in A. Among them we can pick the edge that is nearest to the 1-terminal
and label it as a frontier edge. If a node has one of its outgoing edges labeled as
a frontier edge, then the node could be labeled as a frontier node. Considering
all the paths in the BDD which contain (vari,¬vali), we can label all the fron-
tier nodes in the BDD. This can be done in linear time, as a BDD is a rooted
directed acyclic graph.

Given a node n from the BDD, the propositional term frontier(n) evaluates
to true if and only if n is labeled as a frontier node. In our algorithm for finding
minimal reason-vars, we will mark some nodes with the blue color. The term
blue(n) evaluates to true if and only if the node is marked with blue color. Let
var(n) denote the variable associated with the BDD node n.

The pseudo code of our algorithm for finding minimal reason-vars is shown
in Algorithm 1. Additional low-level details of the algorithm and arguments
on the correctness and complexity of the algorithm are in the appendix of this
paper.

An example for the minimal reason-vars algorithm is shown in Figure 2. In
the example, the set of variables in the tree node of the BDD is {a,b,c,d,e}.
The BDD in the example is the same as the one in Figure 1, but with frontier
labelings and blue marks. An entry ”F” (”B”) in a node of the BDD refers to
a frontier label (blue mark). In the example, the set A={(a,1),(c,1),(e,0)} and

7

Algorithm 1 An algorithm to find Minimal Reason-Vars

1: REASONVARS(A, b, (vari,vali))
2: Label all frontier nodes
3: Mark the root node as blue
4: for j = 1 to m do

5: BMN:={n|∃n ∈ b.blue(n)∧(var(n)=varcj
)}

6: if ∄n∈BMN.frontier(n) then

7: for all n ∈ BMN do

8: if i = cj then

9: Mark the ¬vali child node of n with blue
10: else

11: Mark both the child nodes of n with blue
12: end if

13: end for

14: else

15: for all n ∈ BMN do

16: Mark the valj child node of n with blue
17: end for

18: end if

19: end for

20: M:={var(n)|∃n ∈ b.blue(n)∧frontier(n)}
21: return M

(vari,vali)=(d,1). The set M returned by the algorithm is {c}. At the end of
the reason-vars algorithm, a node in the BDD will be marked with blue, if the
node can be reached from the root node without using an edge that violates
an assignment of the variables in M and also without using a (vari,vali) edge.
Note that, during a run of the reason-vars algorithm, a frontier node n will
not be marked blue, if there is an edge (varx,valx) in all the paths between
n and the root node, such that ∃k ∈ b.blue(k)∧frontier(k)∧(var(k)=varx) and
(varx,¬valx)∈ A.

4 Experiments

A prototype of the hybrid SAT solver was implemented in C++. The BDD part
of the solver was implemented using the BuDDy [13] package. Experiments were
done on six sets of benchmark instances. The barrel [14], longmult [14], cnt [15]
and w08 [15] instances are bounded model checking instances, while the x1 [15]
instances are xor-chain verification instances and the pipe k [16] instances are
microprocessor verification instances. All the longmult, barrel, x1 and pipe k
instances are unsatisfiable instances, while all the cnt instances are satisfiable.
In case of the w08 instances, the w08 10 instance is unsatisfiable, while the rest
are satisfiable.

The experiments were performed on an Intel Xeon 3.2GHz dual processor

8

machine, running linux and with 4GB RAM. For each experiment at most 3600
seconds was given for solving an instance. A ”TO” entry in the table mentions
a timeout.

The benchmark statistics are shown in Table 1. In the table, the first column
lists the instance name. The following three columns list the number of variables
(#vars), clauses (#cls) and literals (#lits) in the corresponding instance. The
next two columns list the number of decisions (#des) and time taken (in CPU
seconds) by the Minisat Solver (version 1.14) [17, 18] to solve the instances.
The next two columns list the time taken for obtaining a tree decomposition
using the min-degree heuristic and the width (ω’) of the decomposition. The
last column list the percentage of (ω’/#vars). From the table, we can infer that
in many cases the cost of finding the tree decompositions is quite affordable. In
some of the cases the tree decompositions have very small tree-width, especially
in case of the cnt instances. The rate at which ω’ increases within each family of
instances is quite small when compared with the rate of #vars increase. In some
of the families, with the increase in the instance size, there is a considerable
decrease in the (ω’/#vars) value. This is especially the case in the bounded
model checking instances.

The implementation of our hybrid solver is mainly intended for studying the
benefits due to different levels of hybridization. Since our implementation is not
optimized for speed, it cannot be compared with well-optimized SAT solvers
like Minisat. Also, our implementation does not have some of the techniques
like clause deletion [11], clause minimization [19] and random restarts [11].

We did the experiments on our six set of instances with six different values for
h (the hybridization parameter): {0,1,2,4,8,2n}. The results of the experiments
are listed in the Table 2. All the CPU time listings in the table include the time
taken for obtaining a min-degree decomposition for the corresponding instances.

When h=0, the hybrid solver behaves as a pure CNF solver, as BDDs of size
zero are alone allowed. At level h=2n, since the hybrid representation creation
process alone will determine satisfiability, there is no requirement for the #des
column. The ”MO” (memory out) entries in this column mean aborts of the
corresponding experiments due to the memory limitations. Except the case of
cnt and x1 instances, the h=2n experiments have to be aborted.

Since BDDs can provide higher level of consistency than the pure CNF
representations, we would expect fewer decisions when we allow larger BDDs.
But as we can infer from the tables, in most of the cases, with the increase in
the level of hybridization there is no effect on the number of decisions. The
exceptions are cnt and x1 instances. Hence, even if we can find a better way
of doing unit propagation in BDDs, it might not be useful, due to almost no
reduction in the number of decisions required in the hybrid solver.

In case of the cnt instances, the reason for the success of h=2n level should
be mainly due to the very low tree width. For example, the cnt10 instance has
20470 variables, but its tree width is just 38 and such a tree decomposition can
be obtained in just 3 seconds using min-degree. Interestingly, the rate at which
the tree width of the cnt instances increase is very small when compared with
the corresponding increase in the number of variables. For example cnt10 has

9

Instance Original Minisat MinDeg

#vars #cls #lits #des Time Time ω’ (ω’/#vars)%

barrel5 1407 5383 14814 25464 1 0.78 171 12.15

barrel6 2306 8931 24664 98669 4 3.41 289 12.53

barrel7 3523 13765 38112 214373 22 7.24 407 11.55

barrel8 5106 20083 55716 164743 78 21.96 585 11.46

barrel9 8903 36606 102370 3671194 164 72.42 874 9.82

longmult7 3319 10335 24957 15656 3 0.65 86 2.59

longmult8 3810 11877 28667 55962 17 0.71 102 2.68

longmult9 4321 13479 32517 93112 37 0.84 99 2.29

longmult10 4852 15141 36507 123972 55 0.93 104 2.14

longmult11 5403 16863 40637 144381 71 1.06 115 2.13

longmult12 5974 18645 44907 150683 79 1.30 107 1.79

longmult13 6565 20487 49317 161321 84 1.54 120 1.83

longmult14 7176 22389 53867 128639 82 1.55 120 1.67

longmult15 7807 24351 58557 95544 50 1.82 126 1.61

cnt05 316 1002 2738 673 0.01 0.02 14 4.43

cnt06 762 2469 6753 452 0.04 0.04 21 2.76

cnt07 1786 5856 16016 20840 0.3 0.10 23 1.29

cnt08 4089 13531 36991 79958 2 0.33 24 0.59

cnt09 9207 30678 83822 363761 24 1.14 32 0.35

cnt10 20470 68561 187229 1620603 228 3.31 38 0.19

x1 16 46 122 364 6068 0.3 0.00 10 21.74

xl 24 70 186 556 174806 1 0.00 17 24.29

xl 32 94 250 748 557869 3.3 0.01 22 23.40

xl 36 106 282 844 1934814 13 0.01 25 23.58

xl 40 118 314 940 11777704 106 0.00 25 21.19

xl 44 130 346 1036 67154414 719 0.01 28 21.54

xl 48 142 378 1132 12738588 112 0.00 26 18.31

xl 56 166 442 1324 TO 0.01 38 22.89

xl 64 190 506 1516 TO 0.02 34 17.89

xl 72 214 570 1708 TO 0.01 42 19.63

xl 80 238 634 1900 TO 0.01 47 19.75

x1 96 286 762 2284 TO 0.01 65 22.73

xl 128 382 1018 3052 TO 0.03 66 17.28

2pipe k 860 6693 18633 6566 0.1 2 114 13.26

3pipe k 2391 27405 78127 66110 3 30 273 11.42

4pipe k 5095 79489 229675 1363155 1160 208 483 9.48

5pipe k 9330 189109 551125 TO 1070 950 10.18

6pipe k 15346 408792 1199026 4858021 350 TO 1383 9.01

7pipe k 23909 751116 2211464 TO TO 1939 8.11

w08 10 71615 248504 604106 34694 18 177 1731 2.42

w08 14 120367 425316 1038230 245482 398 482 2476 2.06

w08 15 132555 469519 1146761 304040 569 535 2153 1.62

Table 1: Benchmark statistics

10

Instance h=0 h=1 h=2 h=4 h=8 h=2n

#des Time #des Time #des Time #des Time #des Time Time

barrel5 10181 2 6248 4 5971 5 5759 216 6493 32 MO

barrel6 29120 13 22241 18 26566 28 24018 258 25563 285 MO

barrel7 75471 84 54947 87 43701 45 46940 316 72380 609 MO

barrel8 86185 172 74935 115 66350 102 74517 961 107803 1701 MO

barrel9 345055 493 231851 530 426801 1186 478656 1718 TO MO

longmult7 23153 14 15456 27 14289 44 15688 870 17520 197 MO

longmult8 52817 59 42156 95 35198 124 40944 234 35307 511 MO

longmult9 84480 137 66481 181 74399 339 73674 461 81309 1195 MO

longmult10 113642 201 91055 282 118978 560 123713 787 113580 1369 MO

longmult11 127923 224 112036 422 127331 728 133042 1026 136856 2060 MO

longmult12 121660 197 159430 702 129012 785 131310 1193 132840 1625 MO

longmult13 114271 176 150467 706 182749 1248 133606 1277 126893 1993 MO

longmult14 145838 308 132870 636 153947 1239 142029 1602 131025 2632 MO

longmult15 117011 162 113217 519 113872 719 113408 1144 95167 1663 MO

cnt05 627 0.2 5 0.2 0 0.2 0 0.16 0 0.19 0.2

cnt06 3218 0.3 1465 0.4 0 0.3 0 0.22 0 0.22 0.3

cnt07 18055 0.8 11837 3 3224 2 68 0.39 0 0.36 0.5

cnt08 90636 11 44991 17 35507 22 7333 630 0 0.69 1

cnt09 354998 96 246166 184 143212 150 137478 269 113592 300 3

cnt10 1590226 2085 1076313 1859 726391 1410 634009 2291 TO 12

x1 16 1422 0.2 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 24 29074 2 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 32 471350 796 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 36 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 40 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 44 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 48 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 56 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 64 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 72 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 80 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

x1 96 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

xl 128 TO 0 0.5 0 0.5 0 0.5 0 0.5 0.5

2pipe k 12788 1 6856 4 7329 9 8203 18 7240 15 MO

3pipe k 148601 38 85927 153 55548 193 173175 1063 109413 1238 MO

4pipe k 788461 667 678733 2787 438606 3560 TO TO MO

5pipe k 1856324 2943 TO TO TO TO MO

6pipe k TO TO TO TO TO MO

7pipe k TO TO TO TO TO MO

w08 10 34536 58 24570 187 17925 262 17116 394 15528 625 MO

w08 14 300409 1148 203378 2456 TO TO TO MO

w08 15 294824 817 181341 1683 106069 1860 92761 2537 TO MO

Table 2: Experiments with different values of h

11

more than double the number of variables in cnt09, but the tree width of cnt10
is just 20% more than the tree width of cnt09.

In case of the x1 instances, which are known to be very hard for DPLL
solvers, pure CNF is not able to scale as high as the BDD hybrids. By observing
the (ω’/#vars) column, the tree width for these instances does not seem to be
very low. Hence, the BDD representation should have been the main reason for
the scalability of the hybrid solver in the x1 instances.

5 Related Work

In [4], the authors converted each one of the clauses in an input CNF SAT
problem into a BDD. Then a heuristic was used to conjoin the obtained BDDs.
During the conjoining process, a variable will be existentially quantified out
if it occurs in only one BDD. The conjoining process was restricted such that
BDDs of size at most 100 nodes were only created. Then a hybrid SAT solver
was implemented to decide satisfiability, in which the conflict learnt clauses
will be in CNF form. In [4], we can observe that the restriction of creating
BDDs of size at most 100 is ad hoc. We have defined an improved measure
h*nLits, which is willing to create a BDD of size larger than 100 if the BDD
replaces enough literals. This is more reasonable than a constant size limit.
Also, most of the interesting instances used in the experiments of [4] are non-
publicly available industrial instances. This makes it hard to infer conclusions
from their experiments. All the instances we use and the descriptions of their
origin are publicly available. Unlike [4], we use a tree decomposition to guide
the BDDs creation process. This results in conversion of some parts of an input
CNF into BDDs, while the rest remains in CNF form.

In [5], the authors used tree decomposition techniques to guide a CNF SAT
solver, such that conflict learning creates clauses of size bounded by the width
of a tree decomposition. The authors of [5] evaluated two heuristics to obtain
tree decompositions: MINCE [20] and min-degree. Upon a preliminary evalu-
ation the authors found out that the tree width of the tree decomposition by
MINCE is generally smaller than that by the min-degree heuristic. Although
the authors had also observed that min-degree heuristic is very fast than the
MINCE, they dumped min-degree in favor of MINCE, mentioning the impor-
tance of smaller tree width. But the problem with MINCE, as observed in [5], is
that the cost of obtaining MINCE tree decompositions of a SAT instance very
often exceeds the actual cost of solving the instance using the state-of-the-art
SAT solving techniques. Hence, we use min-degree heuristic in our work. Al-
though min-degree might give poorer decompositions compared to the MINCE
heuristic, when compared to the number of variables in an instance, the width
of a decomposition obtained by min-degree is still very small (see Table 1).

In [4], the authors did not give the details of their method for generat-
ing minimal reason-vars set, and the complexity of their method was also not
mentioned. Recently in [21], the authors have given a method for finding mini-
mal reason-vars set, but the complexity of their method is quite high, as their

12

method uses several existential quantification operations. Also, their method
creates new BDD nodes, which should preferably be avoided. In our case, we
use existential quantifications and new BDD node creations only while creating
the hybrid representation. After that, during hybrid SAT solving, the BDDs
remain static.

6 Conclusion

We have presented an evaluation of a hybrid SAT solver. From the experiments
on the different levels of hybridization, we can fairly conclude that there are two
cases where the hybridization certainly helps: the first case when the instances
have very low tree width; the second case when the properties of instances make
them hard for DPLL and easy for BDD based solvers. In all other cases, even
allowing very small BDDs does not help. This is mainly due to the high cost of
unit propagation in BDDs and no significant reduction in the number of required
decisions. Therefore, even if one can find a better way of doing unit propagation
in BDDs, as it will not reduce the decisions required, it might not improve the
overall efficiency.

A nice future work topic is to study the effect of our hybrid solver using
tree decompositions and BDDs on finding all solutions. Indeed, by storing the
BDDs created for each node in the tree decompositions, we can have an implicit
representation of all solutions. In ideal cases like the satisfiable cnt instances,
we are able to build the BDDs up to the root node.

Overall, we hope that our investigations would have clarified the relative
interest of CNF and BDD representations.

References

[1] Bryant, R.E.: Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers 8 (1986) 677–691

[2] Groote, J.F., Zantema, H.: Resolution and binary decision diagrams can-
not simulate each other polynomially. Discrete Applied Mathematics 130

(2003) 157–171

[3] Bodlaender, H.L.: Discovering treewidth. In: Proceedings of SOFSEM.
(2005) 1–16

[4] Damiano, R.F., Kukula, J.H.: Checking satisfiability of a conjunction of
BDDs. In: Proceedings of DAC. (2003) 818–823

[5] Bjesse, P., Kukula, J., Damiano, R., Stanion, T., Zhu, Y.: Guiding SAT
diagnosis with tree decompositions. In: Proceedings of Theory and Appli-
cations of Satisfiability Testing: 6th International Conference, SAT 2003,
Selected Revised Papers, Springer LNCS (2004) 315–329

13

[6] Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)

[7] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking
without BDDs. In: Proceedings of TACAS. (1999) 193–207

[8] Heggernes, P., Eisenstat, S., Kumfert, G., Pothen, A.: The computational
complexity of the minimum degree algorithm. In: Proceedings of NIK 2001
- 14th Norwegian Computer Science Conference. (2001) 98 – 109

[9] Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys 24 (1992) 293–318

[10] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict
driven learning in boolean satisfiability solver. In: Proceedings of ICCAD.
(2001) 279–285

[11] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an efficient SAT solver. In: Proceedings of the 38th Design
Automation Conference (DAC’01). (2001)

[12] Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48 (1999) 506–521

[13] Lind-Nielsen, J.: BuDDy - A Binary Decision Diagram Package.
http://sourceforge.net/projects/buddy (online)

[14] CMU-BMC instances. http://www.cs.cmu.edu/~modelcheck/bmc.html

(online)

[15] SAT 2002 competition instances. http://www.satlib.org (online)

[16] Microprocessor Benchmarks. www.ece.cmu.edu/~mvelev/sat_benchmarks.html
(online)

[17] Een, N., Sorensson, N.: An extensible SAT-solver. In: Proceedings of SAT.
(2003) 502–518

[18] Minisat SAT Solver. http://www.cs.chalmers.se/Cs/Research/FormalMethods/
MiniSat/Main.html (online)

[19] Een, N., Sorensson, N.: Minisat a SAT solver with conflict-clause mini-
mization. In: Posters of SAT. (2005)

[20] Aloul, F., Markov, I., Sakallah, K.A.: MINCE: A static global variable-
ordering heuristic for sat search and bdd manipulation. Journal of Universal
Computer Science 10 (2004) 1562–1596

[21] Hawkins, P., Stuckey, P.J.: A hybrid BDD and SAT finite domain con-
straint solver. In: Proceedings of PADL. (2006) 103–117

APPENDIX

14

A The Linear Time Algorithm for Minimal Reason-

Vars

Given a set of assignments A={(vara1
,vala1

),..,(varak
,valak

)}, a BDD and an
implication (vari,vali), where the assignments A results in the BDD to im-
ply (vari,vali). Our goal is to find a minimal subset of variables in A, whose
assignments are enough for the BDD to imply (vari,vali).

In a BDD each path from the root node to the 1-terminal represents one or
more solutions. The pair (vari,vali) was implied by the BDD means that there
is no path in the BDD that contains (vari,¬vali), such that the path does not
violate any of the assignments of A.

Given any path from the root node of BDD to the 1-terminal that contains
(vari,¬vali), there will be at least one edge in the path, that violates an assign-
ment in A. Among them we can pick the edge that is nearest to the 1-terminal
and label it as a frontier edge. If a node has one of its outgoing edges labeled
as a frontier edge, then the node could be labeled as a frontier node.

Considering all the paths in the BDD which contain (vari,¬vali), we can
label all the frontier nodes in the BDD. This can be done in linear time, as a
BDD is a rooted directed acyclic graph. Now mark the root node of the BDD.
Then, in the sequence of the variable order used in the BDD, look at the marked
nodes of each variable v in the BDD. If v=vari, then mark the child nodes of
the marked nodes of v, which can only be reached using the ¬vali edge. This is
because, when we find the minimal reason-vars set we can ignore the solutions
paths not containing (vari,¬vali). If the variable v is not vari, and none of
the marked nodes of v is a frontier node, then mark both the child nodes of
each one of the marked nodes of v. If any of the marked nodes of the variable
v is a frontier node, then for each node n of those marked nodes, mark the
child node of n, which can only be reached using the outgoing edge of n that
contains the assignment for v. Note that the 1-terminal cannot be marked, as
we ignore all the solution paths not containing (vari,¬vali), and in the rest of
the paths there will be at least one marked frontier node. Now, let M be the
set of variables, such that for each v ∈ M, there is at least one node of v in the
BDD, which is a marked frontier node. The set M is a minimal reason-vars set.
The following low-level descriptions can be used in checking the correctness and
the linear-time complexity of the whole algorithm.

The algorithm we call GetReasonVars is shown in Figure 4. In the figure
(vari,vali) is denoted by (impliedVar,impliedValue).

The GetReasonVars procedure requires five variables to be associated with
each node in a BDD. The five variables are: highcolor, lowcolor, color, color-
Marked and isFrontier. The first three variables can be assigned a value from the
set {GREEN,RED,BLUE}, while the last two variables are Boolean variables.
Apart from these variables, each node will also have a variable varId denoting
the variable of the node. The notation ”b.highNode” refers to the BDD node
at the end of the high edge of the BDD node b.

The procedure takes three arguments. The first one ”tn” denotes the tree

15

GetReasonVars(TreeNode tn, BddNode b, int[] isRequired)

1 MarkReasonColor(b)

2 b.color=BLUE

3 forall varId contained in tn /* loop in the BDD variable order */

4 blueMarkedNodes=GetBlueMarkedNodes(varId,b)

5 forall node in blueMarkedNodes

6 if(node.isFrontier)

7 isRequired[varId]=TRUE

8 if(isRequired[varId]==FALSE)

9 forall node in blueMarkedNodes

10 if(varId!=impliedVar || impliedValue!=TRUE)

11 node.highNode.color=BLUE

12 if(varId!=impliedVar || impliedValue!=FALSE)

13 node.lowNode.color=BLUE

14 else

15 forall node in blueMarkedNodes

16 if(value[varId]==TRUE)

17 node.highNode.color=BLUE

18 else

19 node.lowNode.color=BLUE

Figure 4: The GetReasonVars algorithm.

node whose BDD made the implication. The second one ”b” denotes the root
node of the BDD. The last one ”isRequired” is an array of Boolean values in-
dexed by variables. Before calling the procedure, the isFrontier and colorMarked
variables in all the nodes of the BDD needs to be initialized to FALSE. All the
entries in the isRequired array needs to be FALSE as well. When the procedure
returns, the variables contained in the tree node ”tn”, whose isRequired value
is set to TRUE will be a minimal reason-vars set.

The procedure calls another procedure called MarkReasonColor shown in
Figure 5. The MarkReasonColor algorithm is a recursive procedure which takes
a BDD Node ”b” as input. When the procedure returns, the ”b.color” will
be set to GREEN if there is a path from b to the 1-terminal not containing
(vari,vali), and the path does not violate any of the assignments in A. The
MarkReasonColor procedure assigns TRUE value to the isFrontier variable of
a node, only if there exists a path from the node to the 1-terminal node by
violating the assignment of the varId of the node, without violating any other
assignment in A and the path does not contain (vari,vali). We label a node
whose isFrontier is set to TRUE as a frontier node. When the call made to the
MarkReasonColor from the GetReasonVars procedure returns, the color of the
root node of the BDD will have been set a RED value, otherwise there would
not have been an implication of (vari,vali).

At the line 2 of the GetReasonVars procedure, the color of the root node

16

of the input BDD is set to BLUE. At the end of the procedure, the BLUE
marked nodes are those that can be reached from the root node without using
any frontier edge. The line 3 starts a loop on the list of variables contained
in the tree node ”tn”, where the variables in the list are ordered based on the
variable ordering used in the BDD. The procedure GetBlueMarkedNode(varId,b)
would return a list of all the varId variable nodes in ”b”, which are marked with
BLUE color. Note that, in a loop for a variable varId, isRequired[varId] is set
to TRUE, only if there exists at least one frontier node of varId, which node can
be reached by a path from the root node of the input BDD, with the path not
containing an another frontier node with its isRequired value set to FALSE.

When the GetReasonVars procedure returns, all the variable contained in
the ”tn” tree node, whose isRequired value is set to TRUE will form a minimal
reason-vars set.

MarkReasonColor(BddNode b)

1 if(b==1-terminal) b.color=GREEN; b.colorMarked=TRUE; return

2 if(b==0-terminal) b.color=RED; b.colorMarked=TRUE; return

3 if(b.highNode.colorMarked==FALSE) MarkReasonColor(b.highNode)

4 if(b.lowNode.colorMarked==FALSE) MarkReasonColor(b.lowNode)

5 b.highColor=b.highNode.color; b.lowColor=b.lowNode.color

6 if(b.varId==impliedVar)

7 if(impliedValue==TRUE)

8 b.highColor=RED

9 else

10 b.lowColor=RED

11 else

12 if(value[b.varId]==FALSE)

13 if(b.highColor==GREEN)

14 b.highColor=RED; b.isFrontier=TRUE

15 else if(value[b.varId]==TRUE)

16 if(b.lowColor==GREEN)

17 b.lowColor=RED; b.isFrontier=TRUE

18 if(b.highColor==GREEN || b.lowColor==GREEN)

19 b.color=GREEN

20 else

21 b.color=RED

22 b.colorMarked=TRUE; return

Figure 5: The MarkReasonColor algorithm.

A.0.1 The correctness of GetReasonVars

The correctness of GetReasonVars procedure can be observed from the facts:

1. any of the paths from the root node of the BDD to the 1-terminal, that

17

contains the assignment (vari,¬vali) violate at least one among the as-
signments of the variables in the reason-vars set obtained by using Ge-
tReasonVars procedure. This shows that the reason-vars set is enough for
the implication.

2. removing any variable from the obtained reason-vars set will result in a
path from a BLUE marked frontier node to the 1-terminal node without vi-
olating the assignment to the other variables in the reason-vars set. Since,
this implies that the assignment pair (vari,vali) is not an implication, the
reason-vars set obtained by GetReasonVars is minimal.

A.0.2 The complexity of GetReasonVars

The initialization of isRequired to FALSE values needs to be done only once,
when the hybrid SAT solver is started. After each call to GetReasonVars, only
the isRequired entries of the variables in the corresponding tree node needs to
be reset to FALSE. The initialization of isFrontier and colorMarked values of
the BDD nodes could be done in a traversal of the BDD nodes in linear-time.
The total number of calls to MarkReasonVars is linear as the function is invoked
at most once for a node. An implementation of the GetBlueMarkedNodes will
also need only linear time; we can maintain a list of BLUE marked nodes for
each varId, a node is entered into the list at most once and the list of BLUE
marked nodes for a variable is read at most once. Since, each line inside the
loop at line 3 of GetReasonVars is used at most once for each node in the BDD,
the complexity of the GetReasonVars procedure is linear in the number of nodes
in the BDD.

18

