
 1 

 

 

Clean Living: Eliminating Near-Duplicates in Lifetime Personal Storage 

 

 

 

 

Zhe Wang 

Princeton University 

 

 

Jim Gemmell 

Microsoft Research 

 

 

 

 September 2005 
 

Technical Report 

MSR-TR-2006-30 

 

 

 

Microsoft Research 

Microsoft Corporation 

One Microsoft Way 

Redmond, WA  98052 

 



 2 

Clean Living: Eliminating Near-Duplicates in Lifetime Personal Storage 
 

Zhe Wang 

Computer Science Dept, Princeton University 

Princeton, NJ, USA 

Jim Gemmell 

Microsoft Research 

Redmond, WA, USA 

Abstract 
As lifetime personal storage is becoming a reality, we find 

that it is becoming increasingly difficult to search and 

navigate the contents one accumulates. One of the most 

striking issues is the duplicates and near duplicates that 

clutter search and navigation. We investigated different 

technique to eliminate the duplicates and near duplicates 

objects in the MyLifeBits personal storage system. Our 

results show the effectiveness of near-duplicate detection 

on personal contents like emails, documents and web 

pages visited. In one experiment, duplicate and near-

duplicate detection reduced the number of documents a 

user must consider by 21% and the number of web pages 

by 43%.  

Categories and Subject Descriptors 

H.3.0 [Information Storage and Retrieval]: General 

H.5.4 [Information Interfaces and Presentation]: 

Hypertext/ Hypermedia – Architectures, Navigation, User 

issues    

General Terms 

Human Interfaces, Measurement, Experiment. 

Keywords 

Memex, duplicate, database. 

 

1. Introduction 
The MyLifeBits system [1,2,3] is a personal storage 

system to store and manage a lifetime’s worth of 

everything – at least everything that can be digitized.  As 

we accumulate more contents, it becomes increasingly 

difficult to search and navigate the data. One of the main 

problems is the duplicate and near duplicates in the 

presentation. A typical keyword search and/or time range 

search would usually return hundreds if not thousands of 

items. One would like to cluster the results together so 

that the near duplicate contents would be hidden from 

standard search result. 

Determining only exact duplicates would be very simple, 

but does not work well in our environment for a number 

of reasons: 

• Documents could have small revisions to the original 

one. 

• Web pages (even with same URL) often change 

slightly every time you visit. 

• The same document could be saved into different 

formats, eg: pdf, doc, etc. 

• Emails in a thread tend to be similar but not exact the 

same. 

Our goal is to be able to would reduce the clutter of the 

user interface. By grouping the duplicates and near 

duplicates into clusters, all the contents within the same 

cluster are hidden behind the single representative 

content. 

Near duplicate detection is commonly used by web search 

engines, who also do not want to overwhelm the user with 

many results that are deemed “practically the same.” 

Some of the existing techniques for determining near-

duplicate web pages include: 

• Approximate fingerprint: Create a collection of 

fingerprints for each document, and compare those 

fingerprints to detect similar documents. 

• Shingling: Reduce the document into a collection of 

shingles, and then use the shingle or super shingle 

match to detect near duplicates. 

• I-Match: Create a list of words in the document and 

filter out the words with low IDF value, create a 

single fingerprint of the content to identify near 

duplicates. 

We used the shingling technique as our basic algorithm to 

do near duplicate detection and applied them on our 

document collection. We also tried various filtering 

technique to see their impact on near duplicate detection. 

Finally, we used the traditional document edit distance 

measure to check our clustering result to make sure we do 

not have false positive on near duplicate clustering. 

It is impossible to cluster all documents people think are 

similar together due to the different ways people think. 

Even if agreed differences were to be used, many of these 

would be at a semantic level that we have not addressed. 

For example, people tend to think of a reply to an email as 

being similar to the original email, even if they do not 

share any common content. In this case, application 

specific heuristics would be needed to further cluster the 

documents. In our experiment, we considered only 

document content to determine similarity. 

In the remainder of the paper, we outline existing 

algorithms and explain our approach. Our experimental 

setup is described, and we present our experimental 

results. We conclude that through efficient near duplicate 



 3 

detection algorithm, we can significantly reduce “clutter”. 

We show that an IDF word filter, while very effective for 

web document collections [7], is not as effective on the 

personal document collections. 

2. Near-duplicate detection 
algorithm 

2.1 Existing algorithms 
The idea of using fingerprint and checksum to identify 

duplicates has been used in many contexts. Cryptography 

checksums like md5 or sha1 are widely used in file 

systems to make sure the files are not changed. In recent 

peer-to-peer system development, they have also been 

used to uniquely identify the contents being exchanged. 

The checksum works well to detect any changes made to 

the file as a whole, but lacks the flexibility to detect minor 

modifications. 

Udi Manber introduced an algorithm to produce 

approximate fingerprints to detect similar files within a 

large file system [4]. The algorithm calculates a Rabin 

fingerprint [5] value of a sliding window of 50 characters. 

It selects a fixed subset of fingerprints, and uses them as 

representatives to compare documents for similarity. This 

approach reduces the task of detecting similar documents 

to comparing the collection of fingerprints for each. This 

is much faster than actually comparing the documents, but 

in order to find clusters, the algorithm would still need to 

compare documents with each other and have a run time 

of O(n
2
). 

Andrei Broder’s super shingle algorithm [6] uses similar 

algorithm to convert the document into a set of 

fingerprints. Rather than depend on the set of fingerprints 

only, the introduction of min-wise independent 

permutation algorithm allows the estimation of the 

document based on the minimum fingerprint. And by 

creating a feature (super fingerprint) using several 

fingerprints, the algorithm can cluster the near-duplicates 

within O(nlogn) time. More descriptions of this algorithm 

will be given in the next section. 

The I-Match algorithm proposed by Abdur Chowdhury, et 

al, [7] does not rely on strict parsing, but instead uses the 

statistics of the entire document collection to determine 

which terms to include in the fingerprinting. The words 

with smaller IDF (Inverse Document Frequency) are 

filtered out since they often do not add to the semantic 

content to the document. After filtering, all the terms are 

sorted (removing duplicates) and only one fingerprint is 

generated for the document. Two documents would be 

treated as near duplicates if their fingerprint matches. The 

overall run time for I-Match algorithm would be O(nlogn) 

in the worst time when all documents are duplicates to 

each other and O(n) otherwise. 

2.2 Our method 
Our requirement is a fast and scalable solution to detect 

near duplicates in personal life storage. Any algorithm 

that has overall run time of O(n
2
) is not realistic for our 

real time application. We also need an algorithm that can 

support efficient dynamic addition of content since we 

keep adding new documents into the store in real time.  

We have chosen to use Broder’s super shingle algorithm 

to form our baseline algorithm since it can be 

implemented efficiently in term of dynamic content 

insertion. We did not use the I-Match algorithm because 

the addition of just one high IDF word would mean 

rejection as a near duplicate. While this may be 

acceptable in a web environment, it is not suitable for 

personal life storage, where the different versions of same 

document are very common, and often come about as 

documents are extended (and possibly extended by adding 

high IDF words). However, while we did not want high 

IDF words to carry such weight, we also did not want low 

IDF words to have undue influence. Therefore, we 

included an optional step for ignoring low IDF words. 

Here is a detailed description of our full algorithm: 

1. All documents are processed through Microsoft 

iFilter[8] interface wherever an iFilter is 

available for the document type. The output of 

the iFilter is a text-only document with all 

formatting and meta tags removed. So, for 

example, the .doc and .pdf versions of the same 

document should produce about the same output 

from their respective iFilters.
1
  

2. We reformat the text streams to clean up the 

spaces between words to create a standard word 

streams. This step is necessary since the 

document still contains tabs and extra spaces 

after iFilter. 

3. The text stream is then filtered through our own 

customized filters. We have designed three kinds 

of filters: number filter, stop-word filter, low-

IDF words filter. We also tried stemming in 

some experiments. 

4. We apply andrei’s algorithm, in which the  14 

smallest Rabin fingerprints are collected from 

each text stream, and combined using the sha-1 

algorithm to form one feature. 

5. Using six different rabin fingerprinting 

parameters, we create six features for each text 

stream. 

                                                           

1
 If the documents have complex formatting, the order of 

the text may differ. For example, a footnote (like this one) 

may be placed right after the footnote reference, or at the 

end of the document; there is no “correct” place for an 

iFilter to put it. This is another reason that near-duplicate 

detection is required. 



 4 

6. We also use the traditional fingerprinting method 

to create a sha-1 fingerprint for the whole 

document and use this sha-1 fingerprint to 

uniquely identify exact copies of the same 

documents. 

7. The database “fingerprints” table is populated 

with the document fingerprint and six features. 

When a new document is inserted, we would 

check to see if the new document shares at least 

two features with any existing document. If so, 

then we label the new document as the near 

duplicate of the existing document. The 

threshold of two features was selected so that we 

obtain less false positive with reasonable 

confidence on closeness of the two documents.  

Please refer to [6] for more details. 

8. The database “clusters” table is populated with 

the document item_id, document fingerprint and 

cluster_id. Different documents sharing the same 

cluster_id if they are near duplicates to each 

other. 

9. At the query processing time, we typically have a 

query result table as a result of some user issued 

query. By left joining the query result table with 

the clusters table, we will be able to identify all 

the duplicates within the result set quickly and 

present them to user properly by hiding the 

duplicates in the result set. 

3. Experiment setup 

3.1 Verification of cluster result 
Since the goal of our clustering is to detect near duplicates 

and remove the clutter from the presentation, we need to 

be very careful about not generating false positives: we 

should not cluster two documents together if they are 

significantly different, because this could effectively hide 

the clustered documents from user’s search. On the other 

hand, we are not too concerned with a few false negatives, 

as the impact is a little more clutter to the user, but at they 

can still find what they are looking for. 

In order to verify that we do not have false positive, we 

use the word edit distance (also known as the 

“Levenshtein distance”) to determine how much 

difference there is between a pair of documents in the 

same cluster. Traditionally, the edit distance between two 

strings is defined as the minimum number of operations 

needed to transform one string into the other, where the 

operations could be character insertion, deletion or 

substitution. And the typical dynamic algorithm to solve 

edit distance has the running time of O(mn) where m and 

n are the lengths of the two strings involved. We extend 

this definition for string edit distance a little bit by 

treating the word as individual component. By calculating 

the “word edit distance”, we speed up the calculation and 

reduce the memory space requirement. The calculation of 

word edit distances of every pair of documents in our 

collection (~100,000) would be prohibitively expensive. 

However, it would only be necessary if we were very 

concerned with false negative, which, as explained above 

we are not. In order to discover false positives, it suffices 

to calculate the edit distances only for pairs of documents 

within the same cluster, and this is what we have done. 

3.2 Clustering method 
Once we have a set of features to help identify the near 

duplicates, it is easy to detect whether two documents are 

near duplicates or not by checking to see if they share 

more than two features or not. This check gives us a way 

to detect the pair-wise near duplicate relationship. 

 

Figure 1 Clustering by full transitivity 

Beginning, with pair-wise near duplicates, a number of 

different approaches make be taken to form the 

documents into larger clusters. As shown in figure 1, it is 

possible for the documents to share different features with 

each other and form a cluster naturally if we add a line for 

any two pair of near duplicate documents. The cluster is 

also independent of the order of document insertion. But 

the problem would arise when the cluster is too big and 

form long stretch of links between documents (Eg:  

document A and G are four links away and could 

potentially be not very similar to each other).  

We used the word edit distance to check one set of real 

documents, and found that it did indeed cause such 

problem (Fig 2): there are some documents within the 

same cluster having word edit distance greater than 50%. 

A 

B 

C 

D 

E 

F 

G 



 5 

 

Figure 2 “Word Edit Distance” on fully transitive 

cluster 

Since it is critical to avoid false positive, we decided to 

use a very simple but conservative method to do 

clustering: We would only cluster documents together 

when they are near duplicates to a “cluster 

representative.” For Figure 3, let’s assume the document 

insertion order is from A to G. When document B is 

inserted, it would be treated as the same cluster as A (A is 

inserted earlier and will act as the cluster representative), 

and it would be removed from consideration in the future. 

In our example, we formed three clusters where document 

A, C and G would be the cluster representatives. 

 

Figure 3 Conservative clustering  

 

Figure 4 Word Edit Distance on conservative 

clustering 

Figure 4 shows that using conservative clustering, the 

largest “word edit distance” between two documents 

within the cluster is smaller than 30%. Table 1 showed 

that with this simple clustering algorithm, we are still able 

to capture most of the clusters. It is possible to use more 

complicated algorithm to form clusters, but for our real 

time application, we would like to adopt a simple yet 

effective algorithm. Since these two clustering algorithms 

are the two extremes in term of aggressiveness of 

clustering, other clustering algorithm would most likely 

have total clusters between 3770 and 3886. So we believe 

the simple approach is good enough for our purpose. 

 Fully 

transitive 

Conservative 

clustering 

Total objects 8358 8358 

Total unique objects 4756 4756 

Total clusters 3886 3770 

Table 1 Comparison of two clustering methods 

4. Experiment results 
We have run our near duplicate detection application on 

Gordon Bell’s document collection [2]. The collection at 

the time of our experiment contained about 14000 

documents, 90000 emails and 39000 visited web pages. 

Bell has experienced so much frustration with clutter that 

he has sometimes performed deletion to removed near-

duplicates, even though his goal was to keep everything 

and to perform as little manual maintenance as possible. 

Table 2 shows the result from the experiment. Each row 

corresponding to different document type and last row is 

the sum of all three types. For the columns: 

• Exact duplicates: Exact duplicates found by 

fingerprinting the whole document. 

• No IDF filter: Near duplicates found by near 

duplicate detection without any IDF filter. 

A 

B 

C 

D 

E 

F 

G 

A 

B 

C 

D 

E 

F 

G 

B 

D 

E 

F 



 6 

• IDF-4.0 filter: Near duplicates found by filtering 

each document through the high pass filter where 

any term with IDF value less than 4.0 is 

removed. 

• IDF-5.0 filter: Near duplicates found by filtering 

out terms with IDF value less than 5.0. 

Near-duplicates Type Exact 

duplicates No IDF 

filter 

IDF 4.0 

filter 

IDF 5.0 

filter 

Document 10% 9% 10% 4% 

Email 3% 9% 8% 8% 

Web page 37% 9% 8% 7% 

Total 13% 9% 8% 7% 

Table 2: Duplicate and near-duplicate detection on 

Bell’s corpus. 

As we can see, in this experiment, exact duplicates 

account for about 13% of all the documents while near 

duplicates detected by our system account for about 9% 

of all the unique documents. It is interesting to see that 

near duplicates account for similar percentage for all three 

types, while most of the exact duplicates come from web 

pages. We exclude the exact duplicates when counting for 

the near duplicates. If we count both the exact duplicates 

and near duplicates we find, we can effectively reduce 

21% of all documents and 43% of web pages from the 

viewer to reduce clutter of the user interface. 

We found that adding an IDF filter was not very helpful. 

Only in the case of IDF-4.0 applied to documents did it 

discover more near-duplicates. In all other cases, it 

actually reduced near-duplicate detections. We believe the 

reason is that after IDF filtering, short documents may be 

reduced to the point of being too small to be fingerprinted 

by our algorithm.  

5. Conclusion 
In our experiment with near duplicate detection for life 

long personal data, we found that the technique used in 

web page near duplicates detection can be adopted 

efficiently in personal data as well. Our method of using 

ifilter to retrieve the real text content and then use feature 

to detect near duplicates can eliminate about 10% of near 

duplicate documents in additional to 13% exact 

duplicates. Adding an IDF filter (inspired by the i-Match 

algorithm) did not provide any benefit. 

In this work, we have considered only text similarity. 

Web pages duplicates were a major concern for us, and 

we did not want a new banner ad cause our system to 

consider the page to be the different. This may not always 

be desirable, for instance, if one is actually looking for a 

banner ad. It also may be undesirable for user-created 

documents. We plan to extend our research into audio and 

image similarity in the future. 

Acknowledgements 
Gordon Bell has been a key collaborator on the 

MyLifeBits effort and he has given us generous support 

on experimenting with his personal data. Roger Lueder 

and Jim Gray provided many helpful suggestions. 

References 
[1] Gemmell, Jim, Bell, Gordon, Lueder, Roger, 

Drucker, Steven, and Wong, Curtis, MyLifeBits: 

Fulfilling the Memex Vision, Proceedings of ACM 

Multimedia '02, December 1-6, 2002, Juan-les-Pins, 

France, pp. 235-238. 

[2] Gemmell, Jim, Bell, Gordon and Lueder, Roger, 

MyLifeBits: a Personal Database for Everything, 

Communications of the ACM, vol. 49, Issue 1 (Jan 

2006), pp. 88-95. 

[3] Gemmell, Jim, Williams, Lyndsay, Wood, Ken, 

Lueder, Roger, and Bell, Gordon, Passive Capture 

and Ensuing Issues for a Personal Lifetime Store, 

First ACM Workshop on Continuous Archival and 

Retrieval of Personal Experiences (CARPE04). 

[4] Manber, Udi, Finding Similar Files in a Large File 

System, USENIX Winter Technical conference, 

January, 1994, CA. 

[5] Andrei Z., Broder, Some applications of Rabin’s 

fingerprinting method. In R. Capocelli, A. De Santis 

and U. Vaccaro, editors, Sequences II: Methods in 

Communications, Security, and Computer Science, 

Springer Verlag, 1993. 

[6] Andrei Z., Broder,  Identifying and Filtering Near-

Duplicate Documents, COM '00: Proceedings of the 

11th Annual Symposium on Combinatorial Pattern 

Matching. pages 1-10, Springer-Verlag, 2000. 

[7] Abdur Chowdhury, O.Frieder et al. Collection 

statistics for fast duplicate document detection." ACM 

Transaction on Information Systems 20(2): 171-191 

2002 

[8] Ifilter interface. Microsoft documentation. 

http://msdn.microsoft.com/library/en-

us/indexsrv/html/ixrefint_9sfm.asp 

 


