
 

Fast, Flexible Filtering with Phlat — Personal Search and 
Organization Made Easy 

Edward Cutrell, Daniel C. Robbins, Susan T. Dumais, Raman Sarin 
Microsoft Research 

1 Microsoft Way, Redmond, WA 98052, USA 
{cutrell, dcr, sdumais, ramans} @microsoft.com 

 
 

ABSTRACT 
Systems for fast search of personal information are rapidly 
becoming ubiquitous. Such systems promise to dramatically 
improve personal information management, yet most are 
modeled on Web search in which users know very little 
about the content that they are searching. We describe the 
design and deployment of a system called Phlat that 
optimizes search for personal information with an intuitive 
interface that merges search and browsing through a variety 
of associative and contextual cues. In addition, Phlat 
supports a unified tagging (labeling) scheme for organizing 
personal content across storage systems (files, email, etc.). 
The system has been deployed to hundreds of employees 
within our organization. We report on both quantitative and 
qualitative aspects of system use. Phlat is available as a free 
download at http://research.microsoft.com/adapt/phlat.  

Author Keywords 
Personal information management, user interfaces, 
interactive information retrieval, tagging. 

ACM Classification Keywords 
H5.2. Information interfaces and presentation (e.g., HCI). 

INTRODUCTION 
Search engines are a popular and ubiquitous tool for finding 
information, especially on the Web. With a few keystrokes, 
desired information appears as if by magic from billions of 
Web pages. Now, search tools are beginning to enjoy 
widespread use for finding personal information. Indeed, a 
number of systems for personal search are available on 
today’s PCs. Systems from Microsoft (desktop.msn.com), 
Yahoo! (desktop.yahoo.com, formerly X1), Google 
(desktop.google.com), Copernic (copernic.com) and others 
are all available as free downloads, and this search 

functionality is being built into the newest generation of 
operating systems for PCs (e.g., Apple’s Spotlight for Tiger 
OSX and Microsoft’s Vista OS). However, searching for 
personal information is different from searching on the Web 
in a number of ways. Perhaps the biggest difference is that 
personal information is, well, personal. People are familiar 
with a host of details and characteristics about their 
information, as well as the contexts surrounding their use of 
it. As a result, searching for personal information can be far 
richer than a simple keyword search of content. Search for 
personal information can leverage all kinds of details 
associated with the content. The challenge lies in creating a 
user interface that exploits the wide and varied details and 
connections between information sources that users may 
remember, while maintaining the simplicity of keyword 
search that makes Web search so powerful and easy. 

We created Phlat (see Figure 1) to explore this UI 
challenge. Phlat combines keyword and property-value 
search in a seamless and intuitive manner, allowing users to 
find information based on whatever they may remember, 
wherever that information may be stored. In addition, Phlat 
provides a facility for tagging content with user-created 
metadata to insure that users can return to their content. 

Personal desktop search systems available today are 
remarkably powerful. They unify a number of disparate 
silos of information (e.g., file system volumes, email, Web 
histories, etc.), such that a search from a single interface 
may span many locations and information types. In 

 

Figure 1. The Phlat interface. 

 
 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.  
CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.  
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.  



 

addition, these systems are able to index a range of 
structured metadata beyond the content of stored items, 
including dates, authors, bitrates, etc. Phlat was created to 
leverage these powerful features of search systems so that 
users can reliably and intuitively find their content. 

RELATED WORK 
Since Vannevar Bush first described the memex [2], “…a 
device in which an individual stores all his books, records, 
and communications, and which … may be consulted with 
exceeding speed and flexibility,” computer scientists and 
system designers have worked to make his vision manifest. 
We believe that the materials for Bush’s vision are 
available now, but there is still much to do. The volume of 
personal information is growing exponentially while our 
brains stay the same. Personal Information Management 
(PIM) is a rapidly growing area of research concerned with 
how people handle this avalanche of information [12].  

In 1983, Malone observed workers in offices organize 
paper material and then suggested how computer systems 
might support similar activities for electronic content [16]. 
Following this, Lansdale described many of the 
psychological challenges associated with PIM [14]. He 
characterized two key problems that any PIM tool must 
address: First, categorizing items is cognitively hard. Much 
of the difficulty associated with finding and managing 
personal information stems from interacting with filing 
systems and category structures. These problems occur first 
in setting up appropriate structures and deciding how to file 
the content; and then, when it’s time to retrieve 
information, deciding how it might have been categorized. 
Second, people remember far more about items than can be 
used by retrieval procedures. If the content in people’s 
memories could be used by retrieval systems, we would 
truly have an “external memory.”  

Most of the research in PIM has focused on the first of 
these issues: making categorization easier, more useful and 
less painful [5, 11, 13, 18, 20]. In contrast, there has been 
less effort applied to the second of Lansdale’s challenges: 
enabling retrieval systems to utilize whatever people 
remember about their content. Lifestreams [8] enables 
searching for personal content with a particular emphasis on 
time and the visual nature of electronic documents. 
Memory Landmarks [19] also focuses on time, but with 
special attention to personal and public events. MyLifeBits 
[9] and Stuff I’ve Seen (SIS) [7] both provide content 
search and filtering for various metadata properties, but 
these systems are focused more on the system infrastructure 
and functionality than the user interface. Although not 
focused on personal information, Flamenco [28] explores 
UI for flexible search on a variety of orthogonal properties 
(facets) to provide rapid exploration and query iteration 
based on the interests of the user. Finally, several of the 
commercial products noted earlier provide search and 
filtering on properties that go well beyond simple keyword 

search for content. However, we believe that much more 
can be done to truly meet Lansdale’s second challenge. 

Human memory is highly dependent on the relationship 
between encoded content and the cues and context 
associated with that content [4, 25]. This means that users’ 
memory for information is highly dependent on lots of 
other information not directly associated with what they’re 
looking for. Czerwinski and Horvitz [3] showed that people 
forgot a great deal about their computing tasks after just one 
month. But when prompted by videos and photos of their 
work during that time, they remembered many details about 
what they had been doing. Task-centered management tools 
such as UMEA [13] and TaskMaster [1] address this to 
some degree by capturing the task context of content. But 
often the associative threads connecting pieces of 
information are impossible for a system to infer and 
probably only make sense to the user himself. Anything that 
makes these associations easier to explore will make 
information easier to find. 

We created Phlat with the desire to build and deploy an 
interface that would make finding personal information 
easy and intuitive no matter what users may remember 
about their content. We believe that personal search will be 
every bit as important in the evolution of PIM as internet 
search has been for the World Wide Web.  

DESIGN PRINCIPLES 
We approached the design of Phlat with several key 
principles. First and foremost we wanted to design an 
interface that stretched the idea of what “search” is. We 
believe that the dichotomy of search and browse is an 
artificial distinction [15]. In Phlat we wanted to facilitate all 
information seeking as free-text and/or structured property 
search. Rather than viewing search and browse as separate 
behaviors, Phlat treats them as two ends of a smooth 
continuum. In addition, while we believe that a good search 
system will dramatically reduce the need for organizational 
structures such as folders, there are clearly times when 
users need to apply external labels to their content. To 
support this need, we wanted to design a convenient and 
intuitive mechanism for assigning and filtering on user-
generated metadata (tags). We felt the following design 
points were critical to achieving these goals: 

1) Unify text entry and filtering. If nothing else, the 
enormous success of Web search has shown that people 
are very comfortable searching for a wide variety of 
information with just a few words of text. Phlat must 
encourage free text entry and iteration as a core part of 
the interface. But in addition, we want to make it clear 
that a filter is a query. Therefore a user should be able to 
initiate a query by applying a filter, typing text, or both, 
in any order and the query representation should reflect 
this unity of free-text and structured search. 

2) Current search criteria must be visible and salient at 
all times. At any moment, a user must be able to glance 



 

at the interface and know exactly what the current search 
criteria are, what filters are in place, what search terms 
have been entered and what the current sort order is.  

3) Provide rapid query iteration. When a user hits Enter, 
clicks a filter button or otherwise changes the current 
query, results must appear quickly and the change must 
be obvious. We take a cue from Shneiderman’s dynamic 
query interfaces, which provide continuous visual 
updates of the results set based on the manipulation of 
data attributes [21, 22]. Query previews [17] couple data 
counts with attributes to improve the chances that a query 
manipulation (e.g., a filter) will return a useful set of 
results—neither too huge nor too small. We want users to 
be able to explore their personal information in a natural 
and fluid manner. 

4) Allow iteration based on recognition. Because 
recognition memory is generally much more robust than 
recall, Phlat should exploit this fact to its users’ 
advantage. When a user views a set of results and 
properties, he may see something that points him to his 
information goal. Phlat should enable him to use 
whatever information he sees to further direct his search. 

5) Allow for abstraction across property values. Because 
Phlat is designed to search across a wide range of types 
and sources, it is important to support a number of 
property abstractions to match the cognitive models of 
our users. A user should not have to remember whether 
the image he’s looking for is a bmp, jpg, png, etc.. He 
need only click on the “Picture” filter and Phlat will 
query for all of them. 

6) Tag UI must support both tagging and filtering. Users 
do not want to have separate UI for application of tags 
and filtering. There should be a place that users go to 
interact with tags and this should support both filtering 
(to find things labeled with a tag) and applying tags to 
personal information. 

7) Integrate with common file system/mail operations. 
Because we expect users to employ Phlat to interact with 
their content across a variety of sources, users should be 
able to apply common operations such as cut, copy, paste, 
drag and drop, reply, etc. from within the interface. 

PHLAT 

General architecture 
The Phlat application was designed as a shell for interacting 
with personal information on the client machine. Phlat is 
written in Microsoft Visual C# and uses the Windows 
Desktop Search indexing and search engine. Windows DS 
is a free application associated with the MSN Toolbar. For 
details of the system architecture of Windows DS, see [27].  

Phlat provides access to content in the Windows DS index. 
By default, Windows DS indexes the user’s email and 
personal files including media. Other sources can be added, 
including the Web cache and shared network directories.  

In addition, Phlat allows users to add hierarchical user-
created metadata, or tags to displayed content. While 
applying tags following a search is clearly not the only (or 
best) time to provide this functionality, we felt it was a 
reasonable first step for exploring tagging UI.  

We considered two ways for implementing tags: we could 
either implement a separate database of tags or apply the 
tags directly to stored items. We chose the latter for several 
reasons: First, it allows a single tagging system to span 
multiple sources (email, appointments, files in different 
physical or logical locations). Second, Windows DS is able 
to directly index the tags, allowing Phlat to treat queries for 
tags just like any other property query. Third, because tags 
are directly associated with the files, the work of tagging is 
much safer. If something happens to the index, the metadata 
is still safely associated with the items. Fourth, items need 
only be tagged once: when I copy a file to another system, 
the tag travels with it. Phlat implements tagging by 
inserting information into a custom metadata property 
associated with the target item(s). For email items, this is a 
MAPI property and for files (and Web cache items), this is 
an NTFS property. A limitation implied by this architecture 
is that tagging for mail only works for email in Microsoft 
Outlook/Exchange that supports MAPI. Tagging for files 
only works on systems supporting the NTFS file system. 

User Interface 
The Phlat user interface is composed of 3 main areas (see 
Figure 2). In the upper left corner is the Query Area, 
comprising query controls (e.g., Go, Back, Forward, Clear/ 
Stop) and a query box for entering and displaying queries. 
Below the query area is the Filter Area which comprises a 
set of buttons for several orthogonal properties. Finally, to 
the right of the Query and Filter Areas is the Results Area. 
Each of these areas is described in more detail below. 

Query Area 
The Query Area is the primary space for query control and 
status, reflecting the current query (text typed by the user 
and/or any filters) and the number of matching search 
results. The query box automatically expands downward as 
additional lines are needed for typed query terms or filters 
(see below). Typed query text is always kept at the top of 
the query box and filter tiles are added below this.   

Each time a property filter is selected, a tile representing 
that filter is added to the query box immediately below the 
typed text. Subsequent filter tiles are place above this. The 
only exception is that tiles for multiple values of a property 
are grouped (e.g., in Figure 2 additional Type filter tiles 
would be placed below the “Personal” Tag tile, but above 
“Mail/Calendar”). If there is no typed text, we reserve a 
single blank line at the top to invite further query text. 

Consistent with most commercial Web search engines, all 
typed query terms and filters are joined by an implicit AND 
(this can be overridden by query syntax). To reinforce this 
notion in the UI, each typed query word is entered as its 



 

own line just as each filter tile gets its own line in the query 
box. The only exception to this rule is when the query is a 
phrase in quotes (e.g., “information retrieval”). Then, the 
entire phrase is placed on a single line, wrapping with a 
slight indent if needed. So, for example if a user typed 
intuitive “information retrieval,” Phlat would render 
intuitive on one line and “information retrieval” on the 
second. This convention reinforces to the user that each line 
is an independent element in building the query. 

The integration of property filter tiles into the query box 
serves several functions. Rather than treat filters as a form 
of navigation orthogonal to typed query terms, filters are 
explicitly part of the query. Integration in the query box 
reinforces that filters are just a structured query with 
property restrictions.  

Second, by integrating filters into the query box, we are 
largely able to mitigate the “stuck filter” problem endemic 
to many search interfaces. This problem is illustrated by a 
user who searches for a document using a few keywords 
and a date filter. A bit later he returns to the search interface 
to find another document, enters new keywords and cannot 
find what he’s looking for because he’s forgotten that the 
date filter is still in place. This scenario is quite rare in Phlat 
because all filters are so closely associated with other query 
terms. It’s very hard not to notice that a filter is in place 
when you must type a new query adjacent to it! 

Finally, the query box is the central locus for query 
refinement. To remove or edit a filter, simply clicking the 

tile in the query box is sufficient. A right-click context 
menu is also available for changing the filter into an 
exclusion (e.g., the Calendar filter would change into NOT 
Calendar). The filter would then change from blue to red to 
reflect this change. 

Filter Area 
Currently, the filter area is made up of six buttons: Saved 
Queries, Date, Tags, Path, People, and Type. When a user 
clicks on a button, it opens, revealing a pane that expands to 
fill the available space below the Query Area. Each filter 
pane lists the values associated with the property that can be 
used to filter the current results (e.g., Tags in Figure 2). As 
more property panes are opened, they split the remaining 
space with the constraint that all buttons in the filter area 
must be visible and actionable at all times. 

When a property value within a filter pane is clicked, it is 
highlighted as a filter tile and a corresponding filter tile is 
added to the query box as described above (e.g., the 
“Personal” Tag filter in Figure 2). Clicking on a tile in 
either area will remove the filter from the query box and 
turn off the highlighting in the filter pane. This makes it 
very easy for users to iterate on a query regardless of 
whether their attention is located in the Filter Area or the 
Query Area. 

For most properties, the values displayed are only those 
which can filter the current results; if there are no 
multimedia files in the current result set, the Type filter will 

 
Figure 2. The Phlat interface with a query of a single keyword and two filters.  



 

not list any music or video file types because filtering on 
these would yield an empty result set. In addition, next to 
each property value is the number of matching results for 
that filter value. In Figure 3, when the user clicked on 
“Miles Davis,” 75 results were returned. This information 
helps users better predict whether a given filter will be 
useful in narrowing their results appropriately [17]. 

As noted earlier, a key design principle for Phlat was to 
provide multiple levels of abstraction for properties. 
Property filters may include different kinds of abstractions. 
People filters are an interesting example. While users can 
(and do) simply type the name of a person into the query 
box, this is often too general, because it will return all 
results which have that word anywhere in the content. If a 
user is looking for a mail thread with Bill, he would 
probably like to avoid all the documents about the Bill of 
Rights. However, he may not remember whether Bill was 
on the From: To: or Cc: line of the mail. The People filter 
accommodates this by querying across only the people 
fields in the index (e.g., MailTo, MailCc, Author, Artist, 
etc.). For Date, Phlat queries a special column in Windows 
DS called “PrimaryDate” which is an abstraction of user-
relevant dates for different file types. For email, the date 
received is used; for Web pages, the access time; for 
calendar items, the date of the event; and for photos, the 
time the photo was taken is used. Finally, the Type filters 
are arranged in a shallow hierarchy that includes a number 
of type abstractions such as Documents (which includes 
office docs, PDF, etc.), Music, Pictures, and Mail/Calendar. 

In addition to querying on known property values, Phlat 
allows users to search for arbitrary values. Once a property 
filter pane is opened by clicking on it, the title for that pane 
is replaced with a small type-in box with the invitation text, 
“Filter by xx” where xx= the property for that pane (e.g., 

Type in Figure 3). When a user begins typing, a drop-down 
appears below the box containing all property value 
matches following each keystroke (after only 3 keystrokes, 
the set of matching values is often effectively reduced as in 
Figure 3). If a user selects a value from the dropdown, that 
value is highlighted in the property pane and added to the 
query box just as if they had clicked on the value. However, 
if the user simply hits Enter without selecting a specific 
value from the dropdown, a new filter tile with the typed 
text is added to the query pane and the current results are 
filtered accordingly (in Figure 3, a People filter for the 
word, “Mog.") 

This flexible level of specificity is useful in supporting 
different information needs. Let’s say that a user is looking 
for a document authored by “George” but he can’t 
remember the last name. If he types “George” in the People 
pane, Phlat will return all documents with the word 
“George” in a people property (Author, MailTo, etc.), 
including George Orwell, George Furnas, Emily George, 
etc. Combined with other things he knows about the 
document, he may then find Middlemarch by George Eliot 
in the results set. 

The Saved Queries pane is different from the other five 
filter panes in that its members are not actually filters. Any 
query (combination of keywords, filters and sort order) can 
be stored as a saved query. When a saved query is clicked, 
the current query is replaced by a query tile representing the 
saved query. Users are then free to iterate on the query 
however they choose. 

Tagging 
The design of the Tags pane posed a special challenge. We 
conducted several user studies on tagging and filtering 
designs, including a high-fidelity Flash prototype and a 
(different) pilot system. From these tests, we knew that 
users expected tag application and filtering to occur in the 
same place. This means that the same UI has to support 
both retrieval and organizational tasks. Filtering for tags 
needs to function like all other filters to provide a consistent 
search experience. However, users must also be able to 
easily apply these same tags to their documents. All this 
functionality can quickly clutter the UI. One solution for 
tagging is to support drag and drop (“drag-to-tag”). A user 
can tag an item in the results by either dragging and 
dropping a tag onto a result or dragging and dropping a 
result onto a tag. While this works quite well and is 
somewhat intuitive, it is not very discoverable and by itself 
provides little feedback that changes have been made. In 
addition to drag-to-tag, we also created a tag widget (see 
Figure 2). This UI element is a small checkbox widget at 
the right edge of the Tags pane. To reduce clutter, the tags 
widget remains hidden while users interact with the Query 
or Filter Areas, but the widgets appear whenever one or 
more items in the results pane are selected. At this point a 
user can quickly and easily apply a number of tags to the 
selected result(s) by checking all the appropriate tags. 

  

Figure 3.  Path, People and Type filter panels with a partial 
word in the type-in box for People with matching values in 

drop-down box. 



 

Similarly, by selecting a given result, a user can see what 
tags are associated with it at a glance (in Figure 2, the 
selected item has 3 tags). 

Results Area 
The Results Area displays the search results in a columnar 
list view. Property headers are listed across the top and the 
corresponding properties in the results appear in columns 
below this. A variety of fields other than those shown in 
Figure 2 are available for display through an options menu 
(e.g., Mail CC, Relevance Score, Index Date, Genre, etc.). 
Following the findings for the SIS system [7], the default 
sort order for search results is by date. Clicking on a 
column header sorts by that column, maintaining a stable 
sort (i.e., clicking on the Date followed by Author column 
headers would sort the search results first by Author then by 
Date). Search results are grouped by the primary sort 
column. If there are more than 10 results in a given group, 
additional search results for that group are collapsed and the 
next group is displayed beneath it (see Figure 2). The 
grouping functionality can be disabled by users.  

As with the filters, several property abstractions are used 
for displaying results. The default date displayed is 
PrimaryDate (described above as the relevant date for a 
given item type). Similarly, the value appearing in the Title 
column depends on the document type. For email, this is the 
Subject; for music, the song title; and for Web pages, we 
display the page title. Even though many file system 
documents (PDF, Word, PowerPoint, etc.) contain metadata 
fields for document title, we found that users prefer to see 
the filename rather than the document title. This is because 
document titles are often incorrect, misleading or simply 
empty for many files. Since users typically name their own 
files, it is the filename that they recognize rather than the 
document title.  

Below each search result, we optionally display a snippet of 
the first few words in the search result item, the folder path 
(mail, file system, shared folder, etc.), and any tags that 
may be associated with that item. Users can turn this 
additional information off to maximize the number of 
results displayed. 

Users can interact with results in much the same way they 
can in Windows Explorer or Outlook, e.g., drag and drop, 
open, delete, etc. In addition, a popular extension unique to 
the search environment is the capability to open the parent 
folder of a given result (also in OS X Spotlight). This al-
lows users to quickly navigate to a folder based on a single 
result item. For example, a user may be trying to locate a 
set of documents associated with a project. If they find any 
one of those documents in Phlat, they can easily get to the 
folder containing that item to find the required documents. 

The results can also be used to narrow or replace the current 
query. Right-clicking on any visible property in a result 
(e.g., the document title, “Pedal the Pinchot July 16ht” in 
Figure 2) brings up a context menu that allows the user to 

either add a filter for that property value to the current 
query, or replace the current query with a query restricted 
to that property value. For example, we could either add a 
filter for that document title to the current query, or clear 
the old query and issue a new one for all items in the index 
titled “Pedal the Pinchot July 16ht.” This allows users to 
“move sideways” in their searching, based on information 
they may recognize in the result set. 

PHLAT USAGE AND EVALUATION 
We report quantitative and qualitative data from 225 people 
who used Phlat during an 8 month period from January 25, 
2005, through August 31, 2005. Phlat was installed by a 
large number of employee volunteers in our organization as 
a prototype search application. Our users spanned a wide 
variety of jobs, including program management, develop-
ment, sales, administration, managers, and executives. 

It is extremely difficult to study systems for personal 
information retrieval in the laboratory for a variety of 
reasons. Because these systems are specifically designed to 
leverage a user’s memory and knowledge of his own 
content, any test must employ that content. This makes task 
creation very difficult because each task must be tailored to 
each individual user and is associated with a variety of 
privacy problems. We have done some work in the lab 
studying specific UI designs for Phlat particularly using eye 
tracking techniques (forthcoming). In this paper we 
summarize our observations of how Phlat is used in the 
“wild” as people incorporate it into their daily lives.  

Here we describe analyses of detailed usage logs and 
spontaneous feedback by our users. Research using query 
logs for Web search has yielded important information 
about how users interact with such systems [23, 24]. Log 
analyses have also proven very useful for understanding 
other systems for personal search [7].  

Analysis of Usage Logs 
Phlat was instrumented to capture many user interactions 
with the interface. Example data included query text, filter 
usage and tagging activity. In addition, we gathered 
information about items opened through Phlat, such as age, 
type and storage location. For privacy reasons, we did not 
log any information about the content of search results or 
users’ indices. 

The size of the personal indices of this sample of users 
varied by almost 2 orders of magnitude, ranging from 5733 
items to more than 472000 items. The median index size 
was 36182 items. 

Sessions 
To better understand our data, we divided the usage logs 
into sessions. A session comprises a series of related 
queries by a single user over a small period of time. This is 
meant to capture a given user’s attempt to fill a single 
information need. We assume that queries for a given 
information need should come clustered in time and should 



 

be semantically related. Following Silverstein [23], we 
defined a session as all queries with an inter-query interval 
of less than 5 minutes. When the inter-query interval was 
longer than 5 minutes we checked the semantic content of 
the subsequent query by comparing the query terms. If it 
was different, that query started a new session.  

During the time period studied, users issued more than 
18500 queries in 5144 sessions, for a mean of 3.61 queries 
per session (Figure 4).This is almost twice the 2.02 queries 
per session reported by Silverstein for the Web. This is 
probably due to the very easy query iteration Phlat makes 
possible; users cast a wide net and then narrow their results. 

Query Characteristics 
Queries were generally very short, averaging 1.60 words 
(stddev=1.31). This is somewhat shorter than the 2.35 
reported for the Web [23], but almost exactly the same as 
the 1.59 words reported for the SIS system [7]. As in SIS, 
short queries are quite effective because it is very easy to 
quickly iterate by filtering and personal stores are smaller 
and more familiar to users than the Web. Explicit Boolean 
operators (AND, OR, NOT, +, -) and phrase restrictions 
were very rare (<1%). Interestingly, even with the very easy 
filtering offered by the Phlat UI, typed filters in the query 
box (e.g., from:Bill) occurred in 6.4% of all queries.  

The Phlat interface was designed to encourage the easy use 
of filters (i.e., field restrictions) through the use of the 
dedicated filter widgets. The user logs suggest the design 
was successful. Forty-seven percent of all queries involved 
some kind of filter. The most common filter employed was 
for People, followed closely by file Type (see Table 1). The 
very strong usage of people filters is also consistent with 
the report by Dumais et al. that 25% of all free-text queries 
in the SIS interface included people’s names[7]. 

Filter Type Number of Queries 
 Tag        1297 (7.0%) 
 Path        1354 (7.3%) 
 Date        1425 (7.7%) 
 Type        3101 (16.7%) 
 People        3401 (18.3%) 

Table 1.  Frequency of filter usage in the Phlat interface. 

When users employed filters, they often combined several 
together. Indeed, more than a third of all queries with filters 
had more than one filter, and it was not uncommon to see 

more than 5 in a query. Interestingly, users often issued 
queries using only filters (i.e., 17% of all queries comprised 
a filter with no query text in place). For instance, a user 
might click the Today filter followed by a People filter to 
find all the interactions with a given person that day. 

Finally, because of the wide range in the size of users’ 
indices, the relatively short queries and the tendency to 
iterate, return sets of search results varied widely from 0 to 
more than 225000 hits, with an average of 478 results 
(stddev=3184). 

Search Results 
The true measure of the usefulness of a search UI is 
whether it gets you useful results so you can carry on your 
tasks! In the more than 5000 sessions analyzed, almost 
13000 search results were invoked in some fashion. That is, 
the items were opened, copied, dragged, deleted or 
otherwise used in some way. 

On average, 2.5 items were invoked per session 
(stddev=5.24). However, in about 25% of all sessions, no 
search result was invoked. These sessions may represent 
failed searches, but it is also possible that users employed 
the search results in other ways. For example, the 
information they needed may have been in the snippet or 
other metadata displayed in the search results so there was 
no need to actually invoke the item. A good example is a 
search for a phone number in an email. If the number is in 
the snippet, there is no reason to bother opening the item. 

For each invoked item, we recorded the type, date, and rank 
position in the result set. Similar to the SIS results and 
reflecting the work habits of enterprise users, email and 
appointments in Microsoft Outlook were by far the most 
common type opened (80%) followed by Microsoft Word 
(6%), Microsoft Powerpoint (3%), and various media types 
including pictures and music (4%). One interesting finding 
was the large number of email attachments that were 
invoked using Phlat. Over 6% of all items were file 
attachments of various sorts (Word files, spreadsheets, PDF 
files, etc.). This echoes the observations of Ducheneaut and 
Bellotti [6] that email is widely used as a file repository and 
organizational tool. Indeed, many users treated Phlat 
primarily as a tool for searching their email archives.  

We also looked at the rank position of each invoked item. 
Figure 5 shows the frequency of invoked items as a 
function of rank position in the Phlat result list. It is 
interesting to compare and contrast these results to similar 
data for Web search. Unlike Web search which is almost 
always sorted by a relevance score, Phlat search results are 
usually sorted by metadata that is very meaningful to users 
(by default, Phlat sorts by Date, but Author, MailTo, Size, 
and others are commonly used). As a result, one might 
expect the rank position of results in Phlat to be less 
important because the relative ordering of the metadata 
provides sufficient orientation to get to desired information. 
In addition, Web search usually returns about 10 results per 

1 2 3 4 5 6 7 8 9 10+
0

10

20

30

40

50
S

es
si

on
 F

re
q.

 (%
)

Number of Queries in Session  
Figure 4.  Distribution of session frequency and the number of 

queries per session. 



 

page and more results require additional page views. In 
Web search, the top 3 positions account for more than 70% 
of all items opened [10]. As we expected, this is less true 
for personal search using Phlat. In Phlat, only 30% of all 
invoked items are in the top 3 positions, and there is an 
extremely long tail (see Figure 5a). So for example, if a 
user is looking for a very old item, he has a good idea as to 
relative position of the target in the current result set. 
Rather than re-query to bring the item closer to the top (and 
run the risk of over-specifying his query), he can quickly 
scroll to the end of the result set to find the information. 

In Figure 5b we plot the access position on a log-log scale. 
The linear fit is excellent (r2 = 0.94, p<<0.0001). This 
figure suggests that most users do select items that are 
ranked near the top, regardless of how they are sorted, but 
are willing to scroll well into the set if needed. Since results 
are sorted by a metadata property that users understand, the 
navigation to target information is straightforward. 

Finally, we make special note of the extensive use of 
filtering on tags (15% of all queries using filters). This 
number is quite impressive, given that users had to tag their 
content themselves, and the only facility for doing this was 
in Phlat. About a third of our users experimented with 
tagging at some point, and of these, 12 users (including 
technical, executive & sales persons) consistently used tags 
for the duration of the study.  For these users, tagging 
seems to be central to their use of Phlat.  

User Feedback and Usage Observation 
When we deployed Phlat we created a feedback mailing 
alias in which users could seek help, report bugs and make 
comments on their experience using the prototype. We 
explicitly solicited user feedback so that we could better 
understand how our design was meeting, and just as 
importantly failing to meet, the needs of our users.  

We have received hundreds of emails from our users 
concerning Phlat. Communications can generally be 
classified as bug reports, functionality requests, complaints, 
and complements. Below, we focus on the strengths of 

Phlat, our most common functionality requests, and finally 
problems with our implementation. 

Raves 
People appreciate the simple but expressive query model 
and quickly begin to issue what in other interfaces would be 
very complex queries. Our users are particularly 
enthusiastic about the idea of cross-source searching and 
tagging. We repeatedly heard users delight that they didn’t 
need to worry about where an item was stored, and many 
loved the idea of creating a single organizational structure 
(tags) that spanned email and files (though, as noted above, 
only a small number of users regularly employed tags). 

Another feature that was particularly lauded by users was 
the ability to modify their queries based on information in 
the search results (i.e., right-clicking on a value in the 
results to modify or replace the query). Although this 
feature was not very discoverable, once users knew about it, 
they appreciated the ability to search laterally based on their 
current results. 

Perhaps the best evidence that our users appreciate Phlat is 
their continued use. Because Phlat is simply a shell running 
on top of Windows Desktop Search, much of the base 
utility of personal search is available without our tool. The 
fact that our users continue to employ Phlat in their daily 
work indicates that they are receiving additional benefits 
from using Phlat. 

Desires 
Our users supplied us with many and varied functionality 
requests. Some we were able to quickly implement, but 
many we were just not able to accommodate. 

One of the single most requested features was for a preview 
viewer for search results and the display of fast thumbnail 
views for search items. Indeed, the preview viewer 
associated with Windows DS was probably the single most 
common reason for users to stop using Phlat in favor of the 
default interface for Windows DS.  

Another common request was for increased integration of 
Phlat functionality within Microsoft Outlook and the 
Windows OS shell. Users wanted to be able to launch 
searches from within any application with a simple context 
menu. In addition, users wanted tagging integrated into 
other applications; they wanted to be able to tag items from 
within Outlook, Windows, and other apps. Microsoft 
Outlook already provides tagging of keywords and flagging 
functionality; a number of users wanted to be able to unify 
this existing functionality with Phlat. Along with some 
issues noted below, this was a major barrier to the 
continued usage of tags. 

Finally, a third major request was related more to the 
underlying index than Phlat per se, but we report it here 
because it speaks to the kinds of information needs users try 
to satisfy in personal search. A number of users complained 
that Phlat would often return the correct file for their 

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

lo
g(

Fr
eq

ue
nc

y 
+1

)

log(Rank Position of Item)

y = -0.7672x + 3.3755

0
1000
2000
3000
4000
5000

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Fr
eq

ue
nc

y

Rank Position of Item

r2 = 0.9379

a

b

 
Figure 5.  Frequency of invocation of results in Phlat. 



 

information need, but the granularity was too broad to help 
them. This commonly occurred for two main file types: 
Microsoft PowerPoint and Microsoft OneNote. The issue 
here is that both PowerPoint and OneNote files are 
monolithic files comprising a number of smaller units. 
However, the granularity of the indexing system is at the 
file level rather than at the slide or notebook page level. As 
a result, a user may open a file only to be confronted with 
yet another search within the document itself. This could be 
addressed with either a different level of indexing or with 
an improved ability to navigate within large documents. 

Problems with Phlat 
While Phlat has been very successful on a number of fronts, 
there remain several real problems to be confronted. Here 
we discuss three areas for improvement. 

First, there are several problems associated with the fact 
that Phlat runs on top of a search engine that is independent 
of the file and mail systems on a client machine. Changes to 
objects take some finite amount of time to propagate to the 
index, so new email or files may not be immediately 
available for searching. This time can be fairly substantial 
following changes to a large number of items, and can lead 
to inconsistent search results. For instance, it may take 
minutes to update the index following the trivial act of 
moving a folder from “Work” to “Done.” In the mean time, 
these items will not be accessible because the path has 
changed. Since to Phlat, “Path” is just another piece of 
metadata, the same problem exists for any metadata change, 
including tagging changes. Until the index is updated, 
filtering on the new metadata will not give any results! 

Another problem in Phlat concerns mapping the many 
representations of people onto one underlying “person” 
construct. This is a serious problem for many different 
systems, but is very noticeable in Phlat. Because Phlat 
simply iterates through the different “people fields,” it is 
not unusual to see a single person represented as several 
different filters. E.g., Puffy Combs, Puff Daddy, P Diddy, 
Sean Combs, puffy@hotmail.com, etc. are treated as 
different people filters. This can be quite confusing for 
users because it is then incumbent upon them to figure out 
which version of the person they need to use to find the 
object they are looking for. 

Finally, there are two major problems with the current 
implementation of tagging. The first is a limitation 
associated with how we apply the metadata associated with 
tags. Because tags are applied as custom metadata 
properties in MAPI (for mail) and NTFS (for files), there 
are a variety of ways in which they can be lost. For 
instance, tags do not travel with forwarded or replied mail, 
so subsequent messages will not inherit the tag. Tags are 
also lost if a user drags a mail message onto their desktop. 
For files, if a user copies a file onto any non-NTFS file 
system (such as a CD, DVD, or USB flash memory unit), 
all tags are removed. This is clearly a serious hurdle. 
Classification and tagging require serious cognitive effort 

[11, 14], and if the metadata of tags is too fragile, users will 
stop spending the time and energy to use them! 

The second problem with tagging in Phlat is that tagging is 
only available through Phlat. This means that the only time 
that a user is able to apply tags to content is at retrieval 
time. However, much of the benefit of tagging is to aid 
retrieval in the first place! Currently Phlat supports “spring 
cleaning,” that is, when users are going through their 
content en mass and organizing a number of items at the 
same time. Phlat also supports incidental tagging for future 
use (e.g., a user finds some information after a search and 
wants to make sure they can easily find it in the future). 
While tagging in Phlat is useful for a core group of users, 
its utility would be vastly increased if users were able to tag 
their content any time they interacted with it. In particular, 
there are certain key “inflection points” that are critical. For 
mail, this is during “mail triage” [26] and for files it is 
during the “Save dialog” when users are thinking about 
how the document will be recovered later. And for all 
documents and web pages, the system must support tagging 
during work flow as users encounter new things and 
incorporate them into their daily tasks. 

CONCLUSIONS AND NEXT STEPS 
We designed and deployed a system for quickly and 
intuitively searching for and organizing personal 
information. Feedback and usage information suggests that 
we succeeded in building a system that assists users in 
finding their personal information by allowing them to 
search on a wide variety of features based on contextual 
information and associative cues in their content. In 
addition, our experience with tagging points to several 
important insights in design and functionality. Despite its 
many limitations, our tagging system is used quite 
extensively by a subset of users. Clearly, our users find the 
idea of universal tagging compelling. 

Our experiences with tagging have strong implications for 
the development of future systems. As operating systems 
move to incorporate fast search as a core functionality, 
user-generated metadata will become increasingly critical to 
how users organize their content. Filing will become less 
important and will be replaced by more general tagging 
systems. However, if these systems are not supported 
throughout users’ workflow, we may find that users are not 
much better off than they are today. 

A future with ubiquitous personal tagging raises a plethora 
of issues relating to sharing and privacy. Web-based 
systems such as Flickr (flickr.com) and del.icio.us hint at 
the power of tagging in shared scenarios, but these are 
mainly public systems. How do we extend this power to 
accommodate personal information? A second question for 
further investigation concerns the use of hierarchy vs. flat 
organization of tags. Flat systems are easy to understand 
and lend themselves particularly well to shared scenarios 
(such as the Web systems above). However, they do not 
scale very well; searching a list of even a few hundred tags 



 

can be an onerous task. In contrast, hierarchical systems 
offer a great deal of organizational power, but are very hard 
to use in shared-author settings. Root-leaf relationships are 
simply not always obvious or consistent and may change 
depending on the context of use! 

Finally, we continue to explore the domain of rich search 
interfaces, an important question to be answered is whether 
these designs can be extended to include “non-personal” 
content. For instance we would like to see whether we can 
include information sources of interest that users aren’t 
familiar with (news, intranet, etc.). How well does this type 
of UI support search when there is little or no contextual 
and associational memory for the information needed? 

ACKNOWLEDGMENTS 
The authors thank Eric Horvitz, Ken Hinckley & Gina 
Venolia for great discussions on Phlat’s design and 
feedback on this manuscript. We also thank all our patient 
and articulate users! 

REFERENCES 
1. Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I. 

(2003). Taking email to task: the design and evaluation of a 
task management centered email tool. In Proc. SIGCHI 
2003, 5, 1, 345-352. 

2. Bush,V. (1945). As We May Think. The Atlantic Monthly, 
176, 101-108. 

3. Czerwinski, M., and Horvitz, E. (2002). An investigation of 
memory for daily computing events. Proc. of HCI 2002, 
230-245. 

4. Davies, G. and Thomson, D., eds. (1988). Memory in 
Context: Context in Memory. Wiley: England. 

5. Dourish, P., Edwards, W. K., LaMarca, A. and Salisbury, 
M. (1999). Presto: An experimental architecture for fluid 
interactive document spaces. ACM Trans on Computer-
Human Interaction, 6(2), 133-161. 

6. Ducheneaut, N.; Bellotti, V. (2001). Email as habitat: An 
exploration of embedded personal information 
management. ACM Interactions. Sept.-Oct.; 30-38.  

7. Dumais, S.T., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R. 
and Robbins, D.C. (2003). Stuff I've Seen: A system for 
personal information retrieval and re-use. In Proc. SIGIR 
2003, 72-79. 

8. Fertig, S., Freeman, E. and Gelernter, D. (1996). 
Lifestreams: An alternative to the desktop metaphor. Proc. 
SIGCHI 1996, 410-411. 

9. Gemmell, J., Bell, G., Lueder, R., Drucker, S. and Wong, 
C. (2002). MyLifeBits: Fulfilling the Memex vision. Proc. 
of ACM Multimedia’02, 235-238. 

10. Joachims, T., Granka, L., Pang, B., Hembrooke, H. and 
Gay, G. (2005). Accurately interpreting clickthrough data 
as implicit feedback. In Proc. SIGIR 2005, 154-161. 

11. Jones, W., Bruce, H., Foxley, A., Munat, C.F. (2005). The 
Universal Labeler: Plan the project and let your 
information follow, Proc. of ASIST 2005, November. 

12. Jones, W. (In Press). Personal information management. 
Ann. Rev. Info. Science and Tech., in press. 

13. Kaptelinin, V. (2003). UMEA: translating interaction 
histories into project contexts. In Proc. SIGCHI 2003, 5 
353-360. 

14. Lansdale, M. (1988). The psychology of personal 
information management. Applied. Ergonomics, 19, 55-66. 

15. Mackinlay, J.D., and Zellweger, P.T. (1995). Browsing vs. 
search: Can we find a synergy? (panel session) In Proc. 
SIGCHI 1995, 179-180. 

16. Malone, T. (1983). How do people organize their desks? 
Implications for the design of office information systems. 
ACM Trans. Office Info. Sys. 1, 1, 99-112. 

17. Plaisant, C, Shneiderman B, Doan, K., and Bruns, T. 
(1999). Interface and data architecture for query previews 
in networked information systems. ACM Trans. Info Sys., 
17(3):320-341. 

18. Quan, D., Bakshi, K., Huynh, D. and Karger, D.R. (2003). 
User interfaces for supporting multiple categorization. In 
Interact 2003—9th  IFIP TC13 Intl. Conf. on HCI, 228-235. 

19. Ringel, M., Cutrell, E., Dumais, S., and Horvitz, E. (2003). 
Milestones in time: The value of landmarks in retrieving 
information from personal stores. In Interact 2003—9th  
IFIP TC13 Intl. Conf. on HCI, 184-191. 

20. Rose, D.E., Mander, R., Oren, T., Poncéleon, D.B. 
Salomon, B. and Won, Y.Y. (1993). Content awareness in a 
file system interface: implementing the “pile” metaphor for 
organizing information. In Proc. SIGIR 1993, 260-269. 

21. Shneiderman, B., Byrd, D., Croft, B.W. (1998). Sorting out 
searching: a user-interface framework for text searches. 
Communications of the ACM, 41(4):95-98. 

22. Shneiderman, B. (1994). Dynamic queries for visual 
information seeking. IEEE Softw. 11, 6, 70-77. 

23. Silverstein, C., Henzinger, M., Marais, H. and Moricz, M. 
(1998). Analysis of a very large AltaVista query log. SRC 
Technical note #1998-14. On-line at http://gatekeeper. 
dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-
1998-014.html . 

24. Spink, A., Wolfram, D., Jansen, B. J., and Saracevic, T. 
(2001). Searching the Web: The public and their queries. J. 
Amer. Soc. Info. Science and Tech., 52(3), 226-234. 

25. Tulving, E. and Thomson, D. (1973). Encoding specificity 
and retrieval processes in episodic memory. Psychological 
Review 80, 352-373. 

26. Venolia, G.D., Dabbish, L., Cadiz, J.J. and Gupta, A. 
(2001). Supporting email workflow. Microsoft Research 
Tech. Report MSR-TR-2001-88. On-line at 
http://research.microsoft.com/research/pubs/view.aspx?msr
_tr_id=MSR-TR-2001-88.  

27.  Windows Desktop Search Extensibility for Partners (Beta). 
http://addins.msn.com/devguide.aspx 

28. Yee, K.P., Swearingen, K., Li, K., and Hearst, M. (2003). 
Faceted metadata for image search and browsing. Proc. 
SIGCHI 2003, 401-408.  


