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ABSTRACT

The paper presents the Position Specific Posterior Lat-
tice (PSPL), a novel lossy representation of automatic speech
recognition lattices that naturally lends itself to efficient in-
dexing and subsequent relevance ranking of spoken docu-
ments.

Two pruning techniques for generating word lattices are
explored in this framework, where experiments performed on
a collection of lecture recordings — MIT iCampus database
— show that the spoken document ranking accuracy was im-
proved by 20% — in the mean average precision sense — rel-
ative over the commonly used baseline of indexing the 1-best
output from an automatic speech recognizer (ASR).

1. INTRODUCTION

Ever increasing computing power and connectivity bandwidth
together with falling storage costs result in an overwhelming
amount of data of various types being produced, exchanged,
and stored. Consequently, search emerges as a key applica-
tion as more and more data is being saved [1]. Speech search
has not received much attention due to the fact that large col-
lections of untranscribed spoken material have not been avail-
able, mostly due to storage constraints. As storage becomes
cheaper, the availability and usefulness of large collections of
spoken documents is limited strictly by the lack of adequate
technology to exploit them. Manually transcribing speech is
expensive and sometimes outright impossible due to privacy
concerns. This leads us to exploring an automatic approach
to searching and navigating spoken document collections.

The main research effort aiming at spoken document re-
trieval (SDR) was centered around the SDR-TREC evalua-
tions [2], although there had been a large body of work in
this area prior to the SDR-TREC evaluations, most notable
being the contributions of [3] and [4]. In the TREC-SDR 8/9
evaluations, SDR systems indexed the ASR 1-best output and
their retrieval performance — measured in terms of MAP [5]
— was found to be flat with respect to ASR WER variations
in the range of 15%-30%. However there are shortcomings
to the SDR-TREC framework: the recognizers were heavily
tuned for the domain leading to very good ASR performance

— 10-15% WER, very close to that of the closed captioning
text used as reference for retrieval accuracy evaluations. The
effect of higher WER needs to be explored.

Position Specific Posterior Lattice (PSPL) was proposed
as a way to extend the key-word search paradigm from text
documents to spoken documents [6] in scenarios with high
WER. The approach calculates posterior probabilities of words
at a given integer position —soft indexing — as a way to
model the uncertainty of the spoken content, and significantly
reduce the size of the ASR lattice. The position information is
used for incorporating proximity in the scoring paradigm by
allowing the calculation of distance-k skip n-gram expected
counts strictly based on the inverted index.

A similar approach was presented by Saraclar et al [7]: it
indexes every arc in the ASR lattice (no compression), which
allows for exact calculation of n-gram expected counts but
more general proximity information (distance-k skip n-gram,
k > 0) is hard to calculate. Their evaluation is focused on
word-spotting rather than document retrieval performance.

In this paper, relative and absolute PSPL pruning tech-
niques are proposed for controlling and evaluating the infor-
mation transfer process from the ASR to the spoken docu-
ment retrieval framework. Those techniques were contrasted
in term of the precision-recall performance metrics as a func-
tion of pruning thresholds. It is shown that those techniques
provide flexibility to adjust the precision-recall metrics for
particular application and user needs. On the other hand, this
work corroborates that the PSPL framework outperforms the
1-best approach and can be consided a better way of modeling
the spoken content uncertainty, particularly relevant for high
WER scenarios.

2. POSITION SPECIFIC POSTERIOR LATTICES

Of essence to fast retrieval on static text document collections
of medium to large size is the use of an inverted index. The
inverted index stores a list of hits for each word in a given
vocabulary. The hits are grouped by document. For each doc-
ument, the list of hits for a given query term must include
position — needed to evaluate counts of proximity types —
as well as all the context information needed to calculate the
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relevance score of a given document. This is motivated by
the early Google approach [8] where context and proximity
issues were shown to be important factors for doing the rele-
vance ranking score [6].

If we want to extend this direction to spoken documents,
we are faced with a dilemma. On one hand, using 1-best ASR
output as the transcription to be indexed is suboptimal due to
the high WER, which is likely to lead to low precision-recall
metrics. On the other hand, ASR lattices do have much better
WER — in our case the 1-best WER was 55% whereas the
lattice WER was 30% — but the position information needed
for recording a given word hit is not readily available in ASR
lattices.

Let’s consider that a traditional text-document hit for given
word consists of just (document id, position). In this
context, the ASR lattices do contain the information needed to
evaluate proximity information, since on a given path through
the lattice we can easily assign a position index to each link/word
in the normal way. Each path occurs with a given posterior
probability, easily computable from the lattice, so in princi-
ple one could index soft-hits which specify (document id,

position,posterior probability) for each word in the
lattice.

Since it is possible that more than one path contains the
same word in the same position, one would need to sum over
all possible paths in a lattice that contain a given word at a
given position. A dynamic programming algorithm was pro-
posed for performing this computation [6]. The computation
for the backward pass stays unchanged, whereas during the
forward pass one needs to split the forward probability arriv-
ing at a given node n, αn, according to the length l — mea-
sured in number of links along the partial path that contain
a word; null (ε) links are not counted when calculating path
length — of the partial paths that start at the start node of the
lattice and end at node n:

αn[l] .=
∑

π:end(π)=n,length(π)=l

P (π)

The backward probability βn has the standard definition, where
the dynamic recursion for αn[l] is formally presented in [6].

Using these forward-backward variables the posterior prob-
ability of a given word w occurring at a given position l in the
lattice can be easily calculated using:

P (w, l|LAT ) =∑
n s.t. αn[l]·βn>0

αn[l]·βn

βstart
· δ(w,word(n))

Finally, the Position Specific Posterior Lattice (PSPL) is a
representation of the P (w, l|LAT ) distribution: for each po-
sition bin l store the words w along with their posterior prob-
ability P (w, l|LAT ).

3. SPOKEN DOCUMENT INDEXING AND SEARCH
USING PSPL

In our case the speech content of a typical spoken document
was approximately 1 hr long; it is customary to segment a
given speech file in shorter segments. A spoken document
thus consists of an ordered list of segments. For each segment
we generate a corresponding PSPL lattice.

Consider a given query Q = q1 . . . qi . . . qQ and a spo-
ken document D represented as a PSPL. The possible word
sequences in the document D clearly belong to the ASR vo-
cabulary V whereas the words in the query may be out-of-
vocabulary (OOV). We assume that the words in the query are
all contained in V; OOV words are mapped to UNK and cannot
be matched in any document D. For all query terms, a 1-gram
score is calculated by summing the PSPL posterior probabil-
ity across all segments s and positions k. This is equivalent
to calculating the expected count of a given query term qi ac-
cording to the PSPL probability distribution P (wk(s)|D) for
each segment s of document D. The results are aggregated in
a common value S1−gram(D,Q):

S(D, qi) = log

[
1 +

∑
s

∑
k

P (wk(s) = qi|D)

]

S1−gram(D,Q) =
Q∑

i=1

S(D, qi) (1)

where similar to [8], the logarithmic tapering off is used for
discounting the effect of large counts in a given document.

Our current ranking scheme takes into account proxim-
ity in the form of matching N -grams present in the query. We
calculate an expected tapered-count for each N-gram qi . . . qi+N−1

in the query and then aggregate the results in a common value
SN−gram(D,Q) for each order N :

S(D, qi . . . qi+N−1) = (2)

log
[
1 +

∑
s

∑
k

∏N−1
l=0 P (wk+l(s) = qi+l|D)

]

SN−gram(D,Q) =
Q−N+1∑

i=1

S(D, qi . . . qi+N−1)

The different proximity types, one for each N -gram order
are combined by taking the inner product with a vector of
weights.

S(D,Q) =
Q∑

N=1

wN · SN−gram(D,Q) (3)

Only documents containing all the terms in the query are re-
turned. In the current implementation the weights increase
linearly with the N-gram order.

4. PRUNING TECHNIQUES

The performance of the PSPL framework is evaluated apply-
ing a relative and absolute pruning techniques, respectively.
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The idea is to explore how the PSPL ranking performance be-
haves as a function of the level of uncertainty transfered from
the ASR part. For doing that, the idea is to prune the PSPL
probability distribution before the generation of the N-gram
expected counts.

4.1. Relative Pruning

For a given PSPL position bin k, the relative pruning first
finds the most likely entry given by:

w∗
k = arg max

w∈V
P (wk(s) = w|D)

and then it retains the set of PSPL entries associated to the
same bin position, Wk, whose log-probability is greater than
the most likely minus a predefined threshold τr, Eq.(4).

Wk =
{

w ∈ V : log
P (wk(s) = w∗

k|D)
P (wk(s) = w|D)

≤ τr

}
(4)

where τr can take values in [0,∞).
The remaining entries are renormalized to make it a proper

probability mass function and used to calculate the expected
N-gram counts, Eq.(1) and (2).

This approach reduces the support of the PSPL bin dis-
tribution {P (wk(s) = q|D)}q∈V , concentrating the probabil-
ity mass on the more likely bin entries. Note that when the
threshold tends to zero we reduce to the PSPL 1-best, which
is marginally different from the 1-best of the original word
lattice, see Table 1.

4.2. Absolute Pruning

In this case, the PSPL framework considers the PSPL entries
whose log-probability is higher than an absolute threshold.
More precisely, for a given position k a truncated posterior
“distribution”1 P̄ (wk(s) = q|D) is used in the process of
computing N-gram expected counts, Eq.(1) and (2), where
P̄ (wk(s) = q|D) is given by:

P̄ (wk(s) = q|D) =
P (wk(s) = q|D) · 1{log P (wk(s)=q|D)≥τabs} (5)

τabs represents the absolute confidence threshold taking val-
ues in (−∞, 0].

The threshold is absolute and consequently when τabs is
relatively close to zero, the PSPL contains only the bin entries
that have high level of confidence, and some position bins
become empty.

5. EXPERIMENTS

All our experiments were conducted on the iCampus corpus
[9] prepared by MIT CSAIL. It consists of about 169 hours of
lecture material recorded in the classroom. The corpus con-
tains 90 Lectures (78.5 hours) and 79 Assorted MIT World

1No longer a proper probability distribution

Fig. 1. Recall vs Precision for the relative and absolute
threshold techniques; 1-best result is highest Precision on the
relative pruning curve.

seminars (89.9 hours). The speech style is in between planned
and spontaneous. The speech is recorded at a sampling rate
of 16kHz (wide-band) using a lapel microphone.

The 3-gram language model used for decoding is trained
on a large amount of text data, primarily newswire text. The
vocabulary of the ASR system consisted of 110k words, se-
lected based on frequency in the training data. The acoustic
model is trained on a variety of wide-band speech and it is a
standard clustered tri-phone, 3-states-per-phone model. Nei-
ther model has been tuned in any way to the iCampus sce-
nario. On the first lecture set, Introduction to Computer Pro-
gramming Lectures (21.7 hours), the WER of the ASR system
was 44.7%; the OOV rate was 3.3%. We generated 3-gram
lattices and PSPL lattices using the above ASR system.

For the queries we have asked a few colleagues to is-
sue queries against a demo shell using the index built from
the manual transcription. We have collected 116 queries in
this manner. The query out-of-vocabulary rate (Q-OOV) was
5.2% and the average query length was 1.97 words. Since
our approach so far does not index sub-word units, we can-
not deal with OOV query words. We have thus removed the
queries which contained OOV words — resulting in a set of
96 queries. The results on both the 1-best and the lattice in-
dexes are equally favored by this, so the relative performance
of one over the other is likely to be same after dealing prop-
erly with the OOV query words.

Finally as a reference for evaluation we have taken the
output of a standard retrieval engine working according to one
of the TF-IDF flavors [10]. The engine indexes the manual
transcription using an unlimited vocabulary. All retrieval re-
sults presented in this section have used the standard trec eval
package used by the TREC evaluations.

5.1. Pruning analysis

Figure 1 presents the precision-recall graphs using the rela-
tive and absolute pruning techniques presented in Section 4.
A wide range of threshold magnitudes were used to explore
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MAP R-precision τr Pruning Thresh

0.529 0.538 0

0.540 0.549 0.1

0.582 0.578 1.0

0.612 0.591 2.0

0.622 0.596 3.0

0.623 0.577 5.0

0.620 0.573 100.0

Table 1. Retrieval performance using relative threshold. Zero
threshold represents the result for the 1-best approach.

a representative range of precision-recall points in these two
pruning settings.

In both scenarios the PSPL bin density increases with the
absolute magnitude of the threshold, inducing the following
trade-off in precision and recall: on one hand, we have more
chances that the unknown document transcription is part of
the set of PSPL bin entries for that document, which has a
positive impact in recall. On the other hand, we increase
the number of non-valid PSPL entries for a document (entries
whose word index is not part of the document transcription),
which in average has a negative effect in precision. This be-
havior explains in part the precision - recall evolution pre-
sented in Figure 1 for both techniques. It is important to
note that the right-most point on the relative pruning curve
—relative threshold equal to 0— represents the 1-best results.

As expected, both pruning techniques provide an extra de-
gree of freedom allowing, relative to the 1-best approach, to
explore different recall-precision performances points. Their
performance is similar in the range of [0.3, 0.7] -precision.
However, the absolute pruning provides a wider range of pre-
cision - recall trade-offs. The absolute pruning allows the
ranking framework be based on PSPL entries that have arbi-
trary high level of confidence. In that process, this approach
provides the flexibility to reach very high precision, indepen-
dent of the ASR performance. When using the 1-best PSPL
entries — low relative pruning threshold values— those en-
tries may not have the level of confidence necessary to reach
high precision values, as can be seen in Figure 1. It is impor-
tant to mention that this extra flexibility comes at no cost in
performance at higher recall values.

Finally, Tables 1 and 2 show the mean average precision
(MAP) and R-precision as a function of different threshold
magnitudes. The PSPL ranking using both threshold settings
shows scenarios with 20% relative improvement with respect
to the 1-best approach — obtained for a 0 value of the relative
pruning threshold, Table 1. In this context, there is no signif-
icant difference between the best possible scenario of either
technique.

6. CONCLUSION

The PSPL framework provides an alternative way of dealing
with the document’s content uncertainty for spoken document

MAP R-precision τabs Confidence Thresh

0.119 0.109 -0.1

0.241 0.240 -0.5

0.454 0.467 -1.0

0.596 0.598 -2.0

0.626 0.582 -5.0

0.620 0.572 -1000.0

Table 2. Retrieval performance using absolute threshold

retrieval. This technique explicitly takes into consideration
the content uncertainty by means of using N-gram expected
counts (soft-hits) and at the same time introducing proximity
issues in the score formulation.

The proposed pruning techniques provide ways of con-
trolling the number of possible entries in the PSPL, based on
their log-probability. In particular, the absolute pruning pro-
vides a way of deciding the level of confidence that the ASR
information needs to have for generating the relevant ranking
score. This is useful to adjust precision-recall performance
metrics to the user needs.
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