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One of the important image and video registration goals esatcurate motion and
structure estimation. On the other hand, a good motion atimis also an impor-
tant requirement for most mosaicing and novel view genamatchniques. While it
has been well known for a while that narrow field-of-view caasehave a hard time
distinguishing between certain kinds of rotations anddiations, it has been recently
observed that using omni-directional cameras signifigatetrease those ambiguities.
In this paper we study the relationship between field of vies the amount of mo-
tion uncertainty. To this goal, we derive an analytic forenfdr the Fisher information
matrix involved in the motion estimation task. We use thiextamine the coupling be-
tween the different motion parameters and the relation éetvthose uncertainties to
the camera filed of view. In particular, we provide a formaigfrto the previously ob-
served phenomena, that for fgli0° omni-directional cameras thereris correlation
between rotation and translation parameters estimate.
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Figure 1. Cameras setup

1 Introduction

The simultaneous estimation of camera pose (ego-motiah3e@ene structure is one of the primary
applications of image and video registration. While thecess of every mosaicing, panoramic
views generation and images based rendering applicatébagsron accurate motion estimation.
For a while now, it has been well known that narrow field-ad#wicameras have a hard time
distinguishing between certain kinds of rotations anddiations (5). (In the extreme case, for an
orthographic camera, neither one can be recovered unamistyuwith only two frames.)

Several papers have shown that using omni-directional @swan yield very good ego-motion
estimates (1, 4, 3). However, what is the exact relationbeigveen the field of view and the
amount of motion uncertainty? If we have a finite number okfExbut a choice of optics), what
is the best way to distribute these pixels spatially to ytbklbest ego-motion estimates?

In this paper, we perform an analysis of the “classic” twanfe (non-instantaneous) structure-
from-motion problem. For our camera model, we use a spHegtiaa (3-D points are projected
onto the unit sphere) of a fixed field of viely since this allows us to vary continuously between
a traditional planar sensor with a small field of view all thaywo omni-directional cameras.
We assume that the points are uniformly distributed overfibld of view, and also assume some
distribution in depth over the points. We also assume tleat#mera moves a unit distance in some
direction that forms an angle with the optic axis. For example, = 0 indicates a pure looming
motion, whilea = 90° indicates a motion perpendicular to the optic axis. We atsuiae that all
the points visible in the first frame are visible in the second

Given such a configuration (Figure 1), we ask the followingsjions:

e What is the resulting covariance matrix for the motion eatini.e., the uncertainty in both



the rotation and the direction of motion?

e How do these uncertainties vary as a function of the field efwiassuming that we have
a fixed number of pixels (i.e., that the point density is i@ty proportional to the total
angular area subtended by the sensor)?

¢ Are the motion parameters estimates strongly coupled t@onther, or are they essentially
independent (i.e., is the covariance matrix diagonal)?sDiois relationship change with the
field of view?

To answer the above questions, we derive an analytic forfoutae Fisher information matrix
of our motion estimation problem, and use it to compute theettainty (covariance matrix) as
a function of viewing angle, assuming a unite distributidrpoints over the filed of view. This
results in a formal proof to the previously observed facit flor full 360° omni-cameras there is
no correlation between rotation and translation pararaestimate.

The rest of the paper is organized as follows. Section 2 ftates our problem. Section 3
derives the covariance matrix for the motion parametersiasipn task analytically, and examines
its various properties. Finally section 4 concludes theepapd discuss future research directions.

2 Problem formulation

Let us start by defining our coordinate systems and notatfgithout loss of generality, we can
place the first camera at the origin looking down thaxis. The second camera is located a unit
distance away from the origin, and w.l.0.g. we can placeth&x-z plane. Since the angle between
the direction of view (the axis) and the direction of motion is, we place the second camera at
t = (sina, 0, cosa) Or (s4,0, ¢, ) for short. Again, w.l.0.g. we can assume that the second mame
is pointing down the-axis, since we are only interested in computing the uncgytan the motion
estimates in the vicinity of the true solution. (If the cam&rere pointed in some other direction,
we could pre-rotate the spherical point measurement byutrert rotation estimate to get back to
this canonical case.)

Let us also assume that we hav8&D points uniformly distributed over the field of vie® If
we write each point in polar coordinates,

p = r(cosfsin ¢, sin @ sin ¢, cos ¢) = r(cysSy, S54, Cs), (1)

we see that the points vary over the radge [, 7] and¢ € [0, ®/2]. How can we parameterize
the distribution over the distance® If we want to be able to easily accommodate points that lie at
infinity, it is convenient to replace the distancwiith its inversedisparity d, i.e.,

pP= d_1(008¢> S9S¢, C¢)~ (2)
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We can then letl be distributed over some ran@&.;,, diax], With dp,;, = 0 allowing points to go
all the way out to infinity (which often occurs in outdoor sitions).

Given the camera and point configuration, how do these ppijgct onto each of the two
spherical retinas? For the first camera (at the origin), we lize simple relationship

X =dp = (co54, 595, Cg)- 3)

For the second camera, we have

~

X' =N(p—-t)=N(d'x—t) = N(x —dt), 4)

whereN (x) = x/||x|| is thenormalize operator that converts a vector into its unit-norm diractio
(SinceN (sx) = N (x), we were able to shift thé next to thet in Equation (4).)

Given a particular collection of points distributed over eiewing angle® and a particular
translation vectok, we can estimate the uncertainty (covariance matrix) ofroation estimate
using the Cramer-Rao lower bound (6, 4). To do this, we mutdompute the Fisher Information
matrix, which involves taking derivatives of our measuretsg (x;,x}),i = 1...n} with respect
to our unknowns.

But what exactly are our unknowns? The exact positions oBelDrpoints{p;} correspond to
the unknown structure part of the problem. We must somehanacterize the unknown motion,
even though we know for this synthetic problem what the iatenera rotation/() and translation
(t) should be.

To do this, we introduce sonerturbation parameters on the rotation and translation. We
replace the rotation matrix with

R = (Is + [w]x), (5)

wherew = (w,, wy, w,) represent infinitessimal rotations around g, andz axes andx]| . is the
skew-symmetric matrix form of the cross-product wath(An equivalent result can be obtained by
consideringw to be theexponential twist representation of the rotatidi and taking its first-order
Taylor series expansion (2).)

We represent the translation vector as a 3 parameters \mdtadd the constraint it has to be
a unit vector.

3 Uncertainty analysis

To get closer to an analytic solution, assume that the firaeca is noise-free, i.e., whatever feature
us observed in the first camera is matched in the second insgg a patch tracker. Then, we



havep = d~'x, and the only unknown structure parameter is the dispafity each sensed point.
Furthermore, assuming< 1, we can approximate the normalizing function of

~

X, = N(ps — ) = N(d % — §) = N(x, — dib), ©)

as

which is the first order Taylor approximation to the normatian function.
Given N pairs of corresponding image points, for a giV@nw, {d;}) estimate, the expected
measuremerst; after a small perturbatioAt, Ad; is

which results in an expected error

Ad;
AX; :wXXZ—dZAE—EAdZ = [_E7[xi]><7_d’i]3] w (9)
At
Let o
> ~
JS =22 =10,...,%,...,0 10
i 8d [7 ) Yy ) ] ( )

be the3 x N Jacobian matrix with respect to the structure (i.e., thpatiiesd = {dy,...,dn})

whosei’th column equalg and zeros elsewhere. Let
o0x!
JZ-M = = [[%‘]x,—dz‘fss] (11)
ow, t

be the3 x 6 Jacobian w.r.t. the motion parameters, and

Ji = [J2, JM] 12)

1) %

be the totaB x (N + 6) Jacobian.
The (N +6) x (N + 6) Fisher information matrixl’ can then be expressed as

A=02>JlU; (13)

wheres~?2 is the inverse variance associated with each feature nmevasutx). To avoid the
overall scale ambiguity. we constraitio be a unit norm vector, and augmehtith the derivative
of this constraint to obtairl = A’ + A\cj¢;

s
2 ot

Ct = [O(v+3)x1,t"]
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The complete Fisher information matrix has the structure

L| B C
A=o0"" ot p | (14)
Where
B = Iy, (15)
—ET[Xl] x dlfT
C = : , and (16)
—ET[XN]X dNET
x: 1T [x, S dIx]T
D= Zz [Xl] X [Xl] X Mg:z d; [Xz]; ) (17)
The ego-motion covariance matrix is then the kast 6 block of A1,
To computed—! we use the matrix inversion lemma,
_ B! - B-'CFT F :
A7l = P o with (18)
E=D-C'B'C and (19)
F=-B'CE™. (20)

Since we are interested in the l@isk 6 block of A~!, computingE and E~! is enough. In our
case,

E E
E = D-C'"B7'C=| 2w (21)
E; Ey
where
Epw = Z([xi]i[xz-]x — [t]xx] [t]x) (22)
Eyg = =Y dix]L(I;—tt") (23)
Ey = Mt"+> & (1 — tt") (24)



3.1 Analyticintegrals

To computeX’ analytically, we can replace the sums with integrals. H®uesince the same num-
ber of feature points (pixels) is now distributed over adargplid angle, we need to scale the inte-
grals by the inverse of the surface area subtended by theisphetina,S = 27 (1 — cos(®/2)).
Also, since the feature accuraeyis proportional to the angle subtended by each pixel, we have
o 2o S7L

Assuming the distributions on ray orientations and on paémths are independent, the analytic
expression fof involves only 1st and 2nd order momentsandd. Letd = [ dod, d2 = [ d*ed,
X = S [xpx, xxT = S7! [xxTex, [x]1[x], = S7! [[x]%[x]«¢x. (Note that the last two
terms involves integrating only 2nd order momentsgf

The Fisher information matrix (i.e., the inverse of the CestRao lower bound on the covari-
ance matrix,,) is therefore

¥, = Covi(w,t) =
oo | BT — Do) —d=IL (L — £7) (25)
—d(I3 — ttT)[X] « AtT + d2(I; — ttT)
Parameterizing as
X = (oS4, S954, Co), (26)

0 € [—m,m| and¢ € [0, P/2], we can see that
X =[0,0,m — 7mc3 5]" (27)

and
— T,
xx!' = 5dlag(2 — c¢/23é/2 —2¢p)9,2 — c<b/23é/2 —2¢p/9,2 — 205;/2). (28)

Examining Equation (25), we can make the following obseovet

1. For any translation direction, # = 27, X = 0 and thereforeZ}; is block diagonal (i.e. the
upper right and the lower left x 3 blocks are zero) The covariankg, is block diagonal as
well, which confirms our hypothesis th&i0° cameraave no correlation between rotation
and tranglation estimation. However, there is an inner correlation between the 3 mtati
parameters and the 3 translation parameters, evefdf°acamera.

2. For a translation along one of the three axes, there ismey icorrelation between the three
rotation parameters and similarly between the translggamameters. This is true regardless
of the viewing angle.

3. Pless (4) showed numerically that if the covariance isamed ovet, whent is distributed
uniformly such thaf|t|| < 1, there is no inner correlation between the rotation pararset
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and there is no inner correlation between the translatioarpeters. This result can be
derived analytically from our analysis. However, it's uget that a specific case behaves
anywhere similar to this average.

To get a more detailed understanding of the structure of thigom covariance matrix, we need to
evaluate these integrals for a variety of disparity disttitns and fields of view.

3.2 Numerical integrals

To generate plots of the various non-zero entries in ther@vee matrix, we assume that the points
depths vary uniformly in the rangé, 100]. We then evaluate the covariance matiy entries as
a function of® using numerical integration. The evaluation was carrigdanthree representative
motion directions, i.e., a unit translation along thaxis, a unit translation along theaxis ©00°),
and a45° motion, which ist = [1,0, 1]/+/2. Note that these results were independently verified
using a numerical Monte-Carlo simulation.

For these three cases, we obtain the following structumeth&covariance matrices:

o2, 0 0 —0’3%% 0 ]
0 o2, 0 fwh 0 0
g0 = 0 0 o2 0 0 0 (29)
0 fwh 0 o 0 0
—af}y’tI 0 0 0 op 0
.0 0 0 0 0 or |
[ o2, 0 02 0 0 ng,ty 0
0 o2, 0 Gt 0 =0l 4
S = U?%WZ 0 032 0 U?mty 0 (30)
0-37/ 7t{X) 0 O‘E’IJ O O-t2‘X) 7tZ ’
az}z £y 0 Oiarty 0 J?y 0
L O _Ugy,tz 0 Utzz,tz 0 Oty
[ o2, 0 0 O Uim,ty 0 ]
0 Uiy 0 O 0 0
0 0 o2 0 0 0
Yoy = Wz 31
% 0 0 0 o2 0 0 D)
crimty 0 0 O afy 0
L0 0 0 O 0 o}

)
Figures 2-4 plot the non zero elements of the above covariaratrices as a function of the
viewing angled. (In these examples, we set= 1, although in practicel — oo should be used so
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Figure 2: variance values as a function of viewing angle, assuming forward motion

that the translational uncertainty along the direction otion goes to zero.) For the off-diagonal
elements the correlation coefficient

Pij = % (32)
is presented as well.

Let us look at the results of the forward motian+£ 0°) case first (Figure 2). When normalized
by the surface area of the sensor, the relative varianceeipah/tilt rotation estimate$~'o?_is
relatively constant as a function of field of view, with a sligncrease for hemi-spherical sensors.
The absolute variance of the in-plane (optic axis) rotagistimates?_ is again fairly constant, with
a slight increase for wider angles. The relative variandbdéperpendicular translation estimates
S~'o7 is similarly constant, with a slight decrease for wider @sgIThe most interesting plot is
for the correlation coefficient,, ;, between the rotation and translation components. As eggect
the correlation is very large for small fields of view, and dases to zero for a full hemispherical
sensor. It is interesting that the correlation does not sbadtrop off significantly until the sensor

exceeds a&0° field of view.



4 Discussion and conclusions

In this paper we have addressed the ego motion estimatigrtantty issue and studied how does
it vary as a function of the field of view. We have formally dexdl an analytic formula for the
estimation covariance, and used it to formally prove probperobserved by others, like the fact
that ego-motion estimation becomes more accurate anddegsed as the filed of view incases.

One advantage of the presented analysis is that the Jaaddp@mds only on first image mea-
surements. Assuming all measurement noise is in the seatemgk, the derived formula is inde-
pendent of a specific noise model . An alternative approacisitoy the matrix inversion lemma,
is to eliminate3 D measurement from the estimation, by deriving the covaeah@ctly from the
epipolar constraints. This might result in a simpler formmuHowever, since the epipolar con-
straints include second image measurements, the exaatawsa formula will strongly depend
on a specific noise model.

Another question to be analyzed is how close does a “linesstRtial matrix technique come
to the true estimate compared to a full bundle adjustment.
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Figure 3: variance values as a function of viewing angle, assuming 45° motion
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Figure 4: variance values as a function of viewing angle, assuming 90° motion
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