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One of the important image and video registration goals is the accurate motion and
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has been well known for a while that narrow field-of-view cameras have a hard time
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served phenomena, that for full360o omni-directional cameras there isno correlation

between rotation and translation parameters estimate.
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Figure 1: Cameras setup

1 Introduction

The simultaneous estimation of camera pose (ego-motion) and scene structure is one of the primary
applications of image and video registration. While the success of every mosaicing, panoramic
views generation and images based rendering applications relays on accurate motion estimation.

For a while now, it has been well known that narrow field-of-view cameras have a hard time
distinguishing between certain kinds of rotations and translations (5). (In the extreme case, for an

orthographic camera, neither one can be recovered unambiguously with only two frames.)
Several papers have shown that using omni-directional cameras can yield very good ego-motion

estimates (1, 4, 3). However, what is the exact relationshipbetween the field of view and the
amount of motion uncertainty? If we have a finite number of pixels (but a choice of optics), what

is the best way to distribute these pixels spatially to yieldthe best ego-motion estimates?
In this paper, we perform an analysis of the “classic” two-frame (non-instantaneous) structure-

from-motion problem. For our camera model, we use a spherical retina (3-D points are projected

onto the unit sphere) of a fixed field of viewΦ, since this allows us to vary continuously between
a traditional planar sensor with a small field of view all the way to omni-directional cameras.

We assume that the points are uniformly distributed over this field of view, and also assume some
distribution in depth over the points. We also assume that the camera moves a unit distance in some

direction that forms an angleα with the optic axis. For example,α = 0 indicates a pure looming
motion, whileα = 90◦ indicates a motion perpendicular to the optic axis. We also assume that all
the points visible in the first frame are visible in the second.

Given such a configuration (Figure 1), we ask the following questions:

• What is the resulting covariance matrix for the motion estimate, i.e., the uncertainty in both
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the rotation and the direction of motion?

• How do these uncertainties vary as a function of the field of view, assuming that we have
a fixed number of pixels (i.e., that the point density is inversely proportional to the total
angular area subtended by the sensor)?

• Are the motion parameters estimates strongly coupled to oneanother, or are they essentially

independent (i.e., is the covariance matrix diagonal)? Does this relationship change with the
field of view?

To answer the above questions, we derive an analytic formulafor the Fisher information matrix
of our motion estimation problem, and use it to compute the uncertainty (covariance matrix) as

a function of viewing angle, assuming a unite distribution of points over the filed of view. This
results in a formal proof to the previously observed fact, that for full 360o omni-cameras there is
no correlation between rotation and translation parameters estimate.

The rest of the paper is organized as follows. Section 2 formulates our problem. Section 3
derives the covariance matrix for the motion parameters estimation task analytically, and examines

its various properties. Finally section 4 concludes the paper and discuss future research directions.

2 Problem formulation

Let us start by defining our coordinate systems and notation.Without loss of generality, we can
place the first camera at the origin looking down thez-axis. The second camera is located a unit
distance away from the origin, and w.l.o.g. we can place it inthex-z plane. Since the angle between

the direction of view (thez axis) and the direction of motion isα, we place the second camera at
t̂ = (sin α, 0, cosα) or (sα, 0, cα) for short. Again, w.l.o.g. we can assume that the second camera

is pointing down thez-axis, since we are only interested in computing the uncertainty in the motion
estimates in the vicinity of the true solution. (If the camera were pointed in some other direction,

we could pre-rotate the spherical point measurement by the current rotation estimate to get back to
this canonical case.)

Let us also assume that we haven 3D points uniformly distributed over the field of viewΦ. If

we write each point in polar coordinates,

p = r(cos θ sin φ, sin θ sin φ, cos φ) = r(cθsφ, sθsφ, cφ), (1)

we see that the points vary over the rangeθ ∈ [−π, π] andφ ∈ [0, Φ/2]. How can we parameterize
the distribution over the distancesr? If we want to be able to easily accommodate points that lie at
infinity, it is convenient to replace the distancer with its inversedisparity d, i.e.,

p = d−1(cθsφ, sθsφ, cφ). (2)
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We can then letd be distributed over some range[dmin, dmax], with dmin = 0 allowing points to go
all the way out to infinity (which often occurs in outdoor situations).

Given the camera and point configuration, how do these pointsproject onto each of the two
spherical retinas? For the first camera (at the origin), we have the simple relationship

x = d p = (cθsφ, sθsφ, cφ). (3)

For the second camera, we have

x′ = N (p− t̂) = N (d−1x − t̂) = N (x− dt̂), (4)

whereN (x) = x/‖x‖ is thenormalize operator that converts a vector into its unit-norm direction.

(SinceN (sx) = N (x), we were able to shift thed next to thêt in Equation (4).)
Given a particular collection of points distributed over our viewing angleΦ and a particular

translation vector̂t, we can estimate the uncertainty (covariance matrix) of ourmotion estimate
using the Cramer-Rao lower bound (6, 4). To do this, we must first compute the Fisher Information

matrix, which involves taking derivatives of our measurements{(xi,x
′

i), i = 1 . . . n} with respect
to our unknowns.

But what exactly are our unknowns? The exact positions of our3-D points{pi} correspond to

the unknown structure part of the problem. We must somehow characterize the unknown motion,
even though we know for this synthetic problem what the inter-camera rotation (I) and translation

(t̂) should be.
To do this, we introduce someperturbation parameters on the rotation and translation. We

replace the rotation matrix with
R = (I3 + [ω]×), (5)

whereω = (ωx, ωy, ωz) represent infinitessimal rotations around thex, y, andz axes and[x]× is the

skew-symmetric matrix form of the cross-product withx. (An equivalent result can be obtained by
consideringω to be theexponential twist representation of the rotationR and taking its first-order

Taylor series expansion (2).)
We represent the translation vector as a 3 parameters vectorbut add the constraint it has to be

a unit vector.

3 Uncertainty analysis

To get closer to an analytic solution, assume that the first camera is noise-free, i.e., whatever feature

us observed in the first camera is matched in the second image using a patch tracker. Then, we
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havep = d−1x, and the only unknown structure parameter is the disparityd for each sensed point.
Furthermore, assumingd � 1, we can approximate the normalizing function of

x′

i = N (pi − t̂) = N (d−1
i xi − t̂) = N (xi − dit̂), (6)

as
x′

i = N (xi − dit̂) ≈ xi − dit̂, (7)

which is the first order Taylor approximation to the normalization function.
GivenN pairs of corresponding image points, for a given(t̂, ω, {di}) estimate, the expected

measurement̂x′

i after a small perturbation∆t, ∆di is

x̂′

i = (I + [ω]×)xi − dit̂− di∆t̂ − t̂∆di , (8)

which results in an expected error

∆x′

i = ω × xi − di∆t̂ − t̂∆di = [−t̂, [xi]×,−diI3]









∆di

ω

∆t̂









(9)

Let

JS
i =

∂x′

i

∂d
= [0, . . . , t̂, . . . , 0] (10)

be the3 × N Jacobian matrix with respect to the structure (i.e., the disparitiesd = {d1, . . . , dN})
whosei’th column equalŝt and zeros elsewhere. Let

JM
i =

∂x′

i

∂ω, t̂
= [[xi]×,−diI3] (11)

be the3 × 6 Jacobian w.r.t. the motion parameters, and

Ji = [JS
i , JM

i ] (12)

be the total3 × (N + 6) Jacobian.
The(N + 6) × (N + 6) Fisher information matrixA′ can then be expressed as

A′ = σ−2
∑

i

JT
i Ji (13)

whereσ−2 is the inverse variance associated with each feature measurementx′

i. To avoid the

overall scale ambiguity. we constraint̂ to be a unit norm vector, and augmentA with the derivative
of this constraint to obtainA = A′ + λc′tct

ct =
1

2

∂‖t̂‖2

∂t̂
= [0(N+3)×1, t̂

T ]
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The complete Fisher information matrix has the structure

A = σ−2





B C

CT D



 , (14)

Where
B = IN , (15)

C =











−t̂T [x1]× d1t̂
T

...

−t̂T [xN ]× dN t̂T











, and (16)

D =





∑

i [xi]
T
×
[xi]× −∑

i di[xi]
T
×

−∑

i di[xi]× λt̂t̂T +
∑

i d
2
i I3



 . (17)

The ego-motion covariance matrix is then the last6 × 6 block ofA−1.
To computeA−1 we use the matrix inversion lemma,

A−1 =





B−1 − B−1CF T F

F T E−1



 with (18)

E = D − CT B−1C and (19)

F = −B−1CE−1. (20)

Since we are interested in the last6 × 6 block of A−1, computingE andE−1 is enough. In our
case,

E = D − CT B−1C =





Eωω Eωt̂

ET
ωt̂

E
t̂t̂



 (21)

where

Eωω =
∑

i

([xi]
T
×
[xi]× − [t̂]T

×
xix

T
i [t̂]×) (22)

Eωt̂
= −

∑

i

di[xi]
T
×
(I3 − t̂t̂T ) (23)

E
t̂t̂

= λt̂t̂T +
∑

i

d2
i (I3 − t̂t̂T ) (24)
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3.1 Analytic integrals

To computeE analytically, we can replace the sums with integrals. However, since the same num-

ber of feature points (pixels) is now distributed over a larger solid angle, we need to scale the inte-
grals by the inverse of the surface area subtended by the spherical retina,S = 2π (1 − cos(Φ/2)).

Also, since the feature accuracyσ is proportional to the angle subtended by each pixel, we have
σ−2 ∝ S−1.

Assuming the distributions on ray orientations and on pointdepths are independent, the analytic
expression forE involves only 1st and 2nd order moments ofx andd. Letd =

∫

dϕd, d2 =
∫

d2ϕd,

x = S−1
∫

xϕx, xxT = S−1
∫

xxT ϕx, [x]T
×
[x]× = S−1

∫

[x]T
×
[x]×ϕx. (Note that the last two

terms involves integrating only 2nd order moments ofx.)
The Fisher information matrix (i.e., the inverse of the Cramer-Rao lower bound on the covari-

ance matrixΣM ) is therefore

Σ−1
M = Cov−1(ω, t̂) =

S−2





[x]T
×
[x]× − [t̂]T

×
xxT [t̂]× −d[x]T

×
(I3 − t̂t̂T )

−d(I3 − t̂t̂T )[x]× λt̂t̂T + d2(I3 − t̂t̂T )





(25)

Parameterizingx as
x = (cθsφ, sθsφ, cφ), (26)

θ ∈ [−π, π] andφ ∈ [0, Φ/2], we can see that

x = [0, 0, π − πc2
Φ/2]

T (27)

and
xx

T =
π

3
diag(2 − cΦ/2s

2
Φ/2 − 2cΦ/2, 2 − cΦ/2s

2
Φ/2 − 2cΦ/2, 2 − 2c3

Φ/2). (28)

Examining Equation (25), we can make the following observations:

1. For any translation direction, ifΦ = 2π, x = 0 and thereforeΣ−1
M is block diagonal (i.e. the

upper right and the lower left3× 3 blocks are zero) The covarianceΣM is block diagonal as
well, which confirms our hypothesis that360◦ camerashave nocorrelation between rotation

and translation estimation. However, there is an inner correlation between the 3 rotation
parameters and the 3 translation parameters, even in a360◦ camera.

2. For a translation along one of the three axes, there is no inner correlation between the three
rotation parameters and similarly between the translationparameters. This is true regardless

of the viewing angle.

3. Pless (4) showed numerically that if the covariance is averaged over̂t, whent̂ is distributed
uniformly such that‖t̂‖ ≤ 1, there is no inner correlation between the rotation parameters
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and there is no inner correlation between the translation parameters. This result can be
derived analytically from our analysis. However, it’s unclear that a specific case behaves

anywhere similar to this average.

To get a more detailed understanding of the structure of the motion covariance matrix, we need to
evaluate these integrals for a variety of disparity distributions and fields of view.

3.2 Numerical integrals

To generate plots of the various non-zero entries in the covariance matrix, we assume that the points

depths vary uniformly in the range[1, 100]. We then evaluate the covariance matrixΣM entries as
a function ofΦ using numerical integration. The evaluation was carried out for three representative

motion directions, i.e., a unit translation along thez axis, a unit translation along thex axis (90o),
and a45o motion, which ist = [1, 0, 1]/

√
2. Note that these results were independently verified

using a numerical Monte-Carlo simulation.

For these three cases, we obtain the following structures for the covariance matrices:

Σ0◦ =

























σ2
ωx

0 0 0 −σ2
ωy ,tx 0

0 σ2
ωx

0 σ2
ωy ,tx 0 0

0 0 σ2
ωz

0 0 0

0 σ2
ωy ,tx 0 σ2

tx 0 0

−σ2
ωy ,tx 0 0 0 σ2

tx 0

0 0 0 0 0 σ2
tz

























, (29)

Σ45 =























σ
2
ωx

0 σ
2
ωx,ωz

0 σ
2
ωx,ty 0

0 σ
2
ωy

0 σ
2
ωy,tx 0 −σ

2
ωy,tx

σ
2
ωx,ωz

0 σ
2
ωz

0 σ
2
ωz,ty 0

σ
2
ωy,tx 0 σ

2
tx 0 σ

2
tx,tz

σ
2
ωx,ty 0 σ

2
ωx,ty 0 σ

2
ty 0

0 −σ
2
ωy,tx 0 σ

2
tx,tz 0 σ

2
tx























, (30)

Σ90 =

























σ2
ωx

0 0 0 σ2
ωx,ty 0

0 σ2
ωy

0 0 0 0

0 0 σ2
ωz

0 0 0

0 0 0 σ2
tx 0 0

σ2
ωx,ty 0 0 0 σ2

ty 0

0 0 0 0 0 σ2
ty

























(31)

Figures 2-4 plot the non zero elements of the above covariance matrices as a function of the
viewing angleΦ. (In these examples, we setλ = 1, although in practice,λ → ∞ should be used so
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Figure 2: variance values as a function of viewing angle, assuming forward motion

that the translational uncertainty along the direction of motion goes to zero.) For the off-diagonal

elements the correlation coefficient
ρij =

σij

σiiσjj

(32)

is presented as well.
Let us look at the results of the forward motion (α = 0◦) case first (Figure 2). When normalized

by the surface area of the sensor, the relative variance in the pan/tilt rotation estimatesS−1σ2
ωx

is
relatively constant as a function of field of view, with a slight increase for hemi-spherical sensors.
The absolute variance of the in-plane (optic axis) rotationestimateσ2

ωz
is again fairly constant, with

a slight increase for wider angles. The relative variance inthe perpendicular translation estimates
S−1σ2

tx is similarly constant, with a slight decrease for wider angles. The most interesting plot is

for the correlation coefficientρωy ,tx between the rotation and translation components. As expected,
the correlation is very large for small fields of view, and decreases to zero for a full hemispherical

sensor. It is interesting that the correlation does not start to drop off significantly until the sensor
exceeds a180◦ field of view.
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4 Discussion and conclusions

In this paper we have addressed the ego motion estimation uncertainty issue and studied how does

it vary as a function of the field of view. We have formally derived an analytic formula for the
estimation covariance, and used it to formally prove properties observed by others, like the fact

that ego-motion estimation becomes more accurate and less coupled as the filed of view incases.
One advantage of the presented analysis is that the Jacobiandepends only on first image mea-

surements. Assuming all measurement noise is in the second image, the derived formula is inde-
pendent of a specific noise model . An alternative approach tousing the matrix inversion lemma,
is to eliminate3D measurement from the estimation, by deriving the covariance directly from the

epipolar constraints. This might result in a simpler formula. However, since the epipolar con-
straints include second image measurements, the exact covariance formula will strongly depend

on a specific noise model.
Another question to be analyzed is how close does a “linear” Essential matrix technique come

to the true estimate compared to a full bundle adjustment.
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Figure 3: variance values as a function of viewing angle, assuming 45o motion
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Figure 4: variance values as a function of viewing angle, assuming 90o motion
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