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Figure 1: A new matting algorithm combines matting and compositing into a single optimization process. Using the algorithm we enlarge the
foreground in (a) by 1.8 times and create a novel composition (b), or seamlessly compose the girl in (c) onto a new background image as shown
in (d), given only a small amount of user interaction.

Abstract

Recent work in matting, hole filling, and compositing allows image
elements to be mixed in a new composite image. Previous algo-
rithms for matting foreground elements have assumed that the new
background for compositing is unknown. We show that, if the new
background is known, the matting algorithm has more freedom to
create a successful matte by simultaneously optimizing the matting
and compositing operations.

This observation was motivated by the problem of recomposing
the elements within a single image or within a set of related images.
For example, many cameras are by default set for wide angle shots to
successfully capture landscapes. Foreground characters often appear
quite small relative to the image frame. This issue is exacerbated
when one wants to display the image on a small mobile devices.

We propose a new algorithm, that integrates matting and com-
positing into a single optimization process. The system is able to
compose foreground elements onto a new background more effi-
ciently and with less artifacts compared with previous approaches.
In our examples, we show how one can enlarge the foreground
while maintaining the wide angle view of the background. We
also demonstrate composing a foreground element on top of similar
backgrounds to help remove unwanted portions of the background
or to rescale or rearrange the composition. We compare and contrast
our method with Bayesian Matting, Iterative Matting, Photomon-
tage, and the Image Retargetting systems.

1 Introduction

Image matting refers to the problem of estimating an opacity (alpha
value) and a foreground color for the foreground element at each
pixel in the image. Although the main purpose of matting is to re-
compose the foreground onto a new background, previous matting
approaches treat matting and compositing as separate tasks by as-
suming the new background is unknown. We show that, by com-
bining matting and compositing into a single optimization process,
the matting algorithm can be more robust and efficient to create a
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successful composition. We dub this new matting algorithmcompo-
sitional matting.

Besides composing the foreground onto a new background as
shown in Figure 1c and d, we also explore the advantages of the pro-
posed algorithm for reorganizing and recomposing elements within
a single image. A common photograph we have all seen contains
a person standing in front a beautiful outdoor scene. Although
the background is nicely framed, the foreground person often looks
quite small since the focal length of the camera was set to capture
the wide angle scene. This problem becomes more obvious as the
image is resized to standard snapshot size or is displayed on a small
mobile device, as the foreground character may shrink to the point
of being unrecognizable. One could crop the foreground from the
original image, however the composition becomes less interesting
by losing the background scene.

Based on the compositional matting algorithm we allow the user
to set different display ratios for foreground and background objects.
As shown in Figure 1a and b, the user roughly indicates the fore-
ground by a few paint strokes, and our system is able to generate
a novel version of the photograph where the foreground is enlarged
while the background remains as is.

The same method allows composing foreground elements onto
new backgrounds. The advantage of compositional matting is most
obvious when the new background resembles the old one. When the
new background is quite different, the algorithm gracefully degrades
to behave like previous methods.

2 Related Work

2.1 Foreground Segmentation

The problem of extracting foreground objects from images has been
studied extensively over the last 20 years. The simplest solution is to
segment the image by selecting all pixels that match a user-specified
image feature such as color. Photoshop’s magic wand [INCORP.
2002] takes this approach. It lets users select pixels that match a
range of colors. However this approach requires a large amount of
user interaction.

Recently, many systems have been developed to accurately iden-
tify the foreground regions with minimal user guidance. Intelligent



paint [Reese and Barrett 2002] and the object-based image editing
system [Barrett and Cheney 2002] first oversegment the image and
then let the user select the regions that form the foreground object.
LazySnapping [Li et al. 2004] and GrabCut [Rother et al. 2004]
systems provide interactive graph-cut-based segmentation solutions.
The GrowCut system [Vezhnevets and Konouchine 2005] employs
cellular automation for interactive foreground extraction. In these
systems users coarsely indicate foreground and background regions
with a few paint strokes of the mouse and the system tries to deter-
mine the ideal boundary for segmenting the image.

Our system employs a similar paint stroke interface for users to
roughly specify the foreground object. However, since we directly
optimize the final composition instead of extracted foreground, our
system does not require accurate foreground boundary identification
which can be extremely hard for images with complex foreground
and background patterns.

2.2 Foreground Matting

Pixels on the edge of a foreground object usually contain some per-
centage of the background. These “mixed pixels” can create visual
seams when composed onto a new background. Seamlessly compos-
ing a foreground object onto a new background requires estimating
an opacity (alpha) value for each pixel as well as the foreground
color. Ruzon and Tomasi [Ruzon and Tomasi 2000] show how to
estimate the alpha matte and foreground color using statistical meth-
ods. Chuang et al. [Chuang et al. 2001; Chuang et al. 2002] extend
this approach by using Bayesian statistics to accurately estimate al-
pha for partially transparent foreground objects in both images and
video. The GrabCut system [Rother et al. 2004] includes a simpler
technique called border matting which assumes a strong model for
the alpha profile to quickly estimate the alpha matte and produce a
smooth matte. This technique has been extended to video objects in
the video cutout system [Wang et al. 2005]. In the newly proposed
iterative matting system [Wang and Cohen 2005], the problems of
foreground segmentation and matting have been combined together
by an iterative optimization process. However, it only works for
images with distinct foreground and background color distributions
and cannot generate good mattes for most examples shown in this
paper.

Our system employs a similar iterative framework as the iterative
matting approach [Wang and Cohen 2005]. However, our compo-
sitional matting algorithm has unique optimization goals and addi-
tional inputs compared with all previous approaches.

2.3 Image Composition

Since our system composes the foreground object in a source image
onto a new background image, it belongs to the general framework
of “photomontage”. Agarwala et al. have proposed an interactive
framework [Agarwala et al. 2004] for this task by using graph-cut
optimization. However, their system only calculates hard segmenta-
tion of source images thus is not capable of handling partial fore-
ground coverage. The Poisson image editing system [Prez et al.
2003] uses generic interpolation machinery based on solving Pois-
son equations for composing a foreground region onto a destination
region. It works well when the destination region has a relatively
simple gradient field, but is insufficient to handle highly textured
regions which are common in many images and in our examples.

In contrast, our system seamlessly composes foreground and
background images by estimating a matte for the foreground region.
The matte is optimized in a sense that it will minimize the visual ar-
tifacts on the final composed image, although it may not be the true
matte for the foreground.

Figure 2: Our algorithm solves the composition in a front-
propagation fashion. (a). Dilating background regionBt

I (blue) to
create an unknown regionU t

I (yellow). (b). Finding the composition
for U t

I by solving a graph labeling problem using belief propagation.
(c). Regions are evolved for the next iteration.

2.4 Image Retargeting

Image retargeting refers to the problem of adapting images for dis-
play on devices different than originally intended. Liu and Gleicher
recently have proposed a retargeting algorithm [Liu and Gleicher
2005] by using non-linear fisheye-view warping to emphasize parts
of an image while shrinking others. Although this method can fit
a large image into a small screen, both the foreground and back-
ground are very distorted. Instead, we set different display ratios
for the foreground and background to achieve the retargetting goal,
and only alter a small region around the foreground to eliminate the
compositing seams without significant distortion as shown in Figure
7.

3 The Compositional Matting Algorithm

3.1 Basic Formulations

In the traditional matting problem, the observed imageIz (z =
(x, y)) is modeled as a linear combination of foreground imageF (z)
and background imageB(z) by an alpha map:

Iz = αzFz + (1 − αz)Bz (1)

whereαzs can be any value in[0, 1], which we call amatte. Fzs
andBzs are foreground and background colors, respectively. Note
thatαz, Fz andBz are all unknown, thus the problem is intrinsically
under-constrained.

In this work we assume the new background imageI ′, which the
extracted foreground will be composed onto, is known. The final
composed image thus can be calculated as

I∗z = αzFz + (1 − αz)I
′
z (2)

By combining Equation 1 and 2 we have

I∗z = Iz + (1 − αz)(I
′
z − Bz) (3)

The above equation demonstrates that by combining matting and
compositing together, we can calculate final compositing image by
only estimating two unknownsαz andBz. This is one of the major
advantages of having the new background known a priori.

Another advantage a known background provides is that if the
new background has very similar regions to the original one, instead
of extracting the true foreground mattes in these regions which can
be erroneous, we can find a good transition between the old back-
ground and new background for a good composition. In other words,
our matte can be conservative and thus some of the original back-
ground is carried into the composed image with the foreground.



3.2 Front Propagation for Matte Estimation

Inspired by the advantages of combining matting and compositing
together, we create a new iterative matting system calledcomposi-
tional matting.

The user first roughly indicates the foreground object on imageI
by specifying a bounding boxRI around it, and a few paint strokes
on it, as shown in Figure 1a. We treat the region outsideRI as the
initial background regionBI , the region under paint strokes as the
initial foreground regionFI , and all other pixels uncovered as the
initial unknown regionUI . The goal of the algorithm is to estimate
a matteMI for UI which allows the foreground to be seamlessly
composed onto the new background imageI ′.

The matteMI is estimated iteratively. In each iterationBI is di-
lated to create a narrow band regionU t

I and update the matte in this
region. In early iterations many pixels inU t

I will have estimated
alpha value of 0 since they are very likely to be background pixels.
We then expandBI based on the updated matte and dilate it again to
create a new unknown regionU t+1

I for the next iteration. The algo-
rithm stops whenU t+1

I = U t
I . One can imagine that the unknown

region is shrinking until becoming stable, as illustrated in Figure 2.
The advantage of this front propagation algorithm is that in each

iteration, the unknown regionU t
I is close to the known background

regionBI , thus for a pixelz insideUt, we can sample background
pixels in its local neighborhood area to get an accurate estimation
of background colorBz in Equation 3. This allows us to accurately
predict the final compositing colors for different possible alpha val-
ues. Also, the front propagation can stop immediately whenever it
finds a good composition that avoids visual artifacts resulting from
inaccurate alpha values and foreground colors for real foreground
pixels.

3.3 Solving for the Matte

To seamlessly compose the foreground regionI ′F onto the new back-
groundI ′, our a priori expectation for the matteMF is two-fold.
First, we want the foreground object to be as accurate as possible in
the final composition, which we call thesemantic constraint. Sec-
ondly, we expect the final composed image to be “natural” and con-
tain no sudden visual discontinuities, which we call theseam con-
straint. In our approach, these two constraints are explicitly treated
as optimization objectives. We define adata energyfor a pixel inU t

I

to respect the semantic constraint, and aneighborhood energyfor a
pixel pair to satisfy the seam constraint.

3.3.1 The Data Energy

We discretize the possible alpha value to 15 levels between 0 and 1,
denoted asαk, k = 1, ..., 15. We calculate an energy for each alpha
level measuring how well the alpha level fits with the true alpha
value at the current pixel.

Similar to previous matting approaches, we first seek for each
pixel z in U t

I a local estimation of the foreground and background
color. Given the nature of the front propagation algorithm, we can
sample a group of known background colors from the neighborhood
of z, and use them to estimate a Gaussian distributionG(Bz, ΣB

z ).
Since the user marked foreground pixels are usually far away, we use
the global sampling method proposed in [Wang and Cohen 2005] to
gather a group of foreground colors forz, and estimate a Gaussian
distribution on them asG(Fz, ΣF

z ). An estimated alpha valueαs
z is

calculated as

αs
z =

d(Iz, Bz, ΣB
z )

d(Iz, Fz, ΣF
z ) + d(Iz, Bz, ΣB

z )
(4)

whered(I, C, Σ) is the Manhattan distance from colorI to a Gaus-
sianG(C, Σ). Note that although the foreground color estimation

may not be very accurate, it is not directly used in our system for
computing the final composition.

Despite estimating alpha values from color samples, we also ex-
amine the color difference betweenI ′z andIz, and calculate a second
estimated alpha value as

αd
z = exp

(
−

(
I ′z − Iz

)T
ΣB−1

z

(
I ′z − Iz

))
(5)

The idea is that if the color difference betweenI ′z andIz is small,
this is a good place to transition fromI ′ to I. We then set high alpha
values forpz to force the front propagation to stop here. The final
estimated target alpha value is calculated asαE

z = max{αs
z, αd

z}.
Once the estimated alpha value is determined, the energy for each

alpha levelαk is calculated as

Ed(αk
z) =

∣∣αk − αE
z

∣∣2 /σ2
α (6)

whereσα is the covariance which we set to be0.2 in our system.

3.3.2 The Neighborhood Energy

The neighborhood energy encourages the final compositing image to
be locally smooth. For two neighboring pixelsz andv, given their
alpha levelsαk

z andαj
v and their sampled background colors, we can

estimate their final composed colorI∗z andI∗v by Equation 3. The
neighborhood energy is calculated as

Es(α
k
z , αj

v) = |I∗z − I∗v |
2
/σ2

s (7)

whereσ2
s is calculated as(tr(ΣB

z ) + tr(ΣB
v ))/6 (tr() is the trace

operation) to respect the local image characteristics. If the local re-
gion wherez andv lies is highly textured, thenσ2

s will be large thus
loosening the requirement for the color matching betweenI∗(z) and
I∗(v) since the transition made in textured regions will be less no-
ticeable.

Some previous image matting and compositing approaches also
have defined neighborhood energies. The iterative matting approach
[Wang and Cohen 2005] defines them based on the difference of al-
pha levels to encourage alpha values vary smoothly, but there is no
guarantee that the final composition will not contain artifacts. In
contrast, our neighborhood energy directly minimizes the disconti-
nuities in the final composition. The photomontage approach [Agar-
wala et al. 2004] also defines a neighborhood term based on color
differences between pixels of the composed image, however it only
allows the alpha values to be 0 or 1 thus is not capable of handling
partial foreground coverage.

3.3.3 Energy Minimization

The total energy is defined as a combination of the data and neigh-
borhood energy:

E =
∑

z

Ed(αk
z) + w ·

∑
z,v

Es(α
k
z , αj

v) (8)

wherew is the weight balancing the data and neighborhood energy.
We setw to be lower when the foreground and background colors
are similar where the data cost is less reliable, and set it to be higher
when the foreground and background have distinct color distribu-
tions. By defining the total energy we transfer the matting problem
into a graph labeling problem, and the total energy is minimized by
choosing the proper alpha levelαk

z for pixel z.
Similar energy minimization formulations have been proposed in

previous segmentation, matting and composition approaches, and
optimization algorithms such as min-cut [Boykov et al. 2001] and
loopy belief propagation [Weiss and Freeman 2001] have been ex-
tensively used to find approximate solutions to them. In our system



Figure 3: (a). The original imageI(top) and the new backgroundI ′(bottom). (b). User input: a trimap for Bayesian matting (top) and paint
strokes for photomontage, iterative matting and our system (bottom). (c). Matte and composition created by Bayesian matting. (d). Matte and
composition created by photomontage. (e). Matte and composition created by iterative matting. (f). Matte and composition created by our
system. (g). The ground truth matte and composition.

since the energy defined in Equation 7 does not necessarily satisfy
the energy constraints for min-cut algorithm [Kolmogorov and Zabih
2004]. We thus chose to use loopy belief propagation to approxi-
mately minimize the energy.

Specifically, as shown in Figure 2, pixels inU t
I (shown in yellow)

and boundary pixels inU t
B are included in the graph. By using belief

propagation, each pixel in the graph sends messages to its neighbors,
and finally at each pixel the alpha decision is made based on the
property of the current pixel and all the messages it receives from it
neighbors. A good practical introduction to loopy belief propagation
can be found in [Sun et al. 2005].

3.4 Automatic Refinement

Up to this point, composing the foreground onto a new background
has relied on the user to set the exact size and position of the fore-
ground object on the new background. The composition result can
be further improved by allowing the system slightly alter the scale
and position of the foreground to find a better composition based on
the user’s rough specification.

We find a better size and position by first creating an approximate
foreground segmentation. We then vary the size and position exam-
ining the difference between a small shell around the foreground and
the new background. We choose a size and position that minimizes
this difference, and then run the compositional matting.

This process is illustrated in Figure 10. In Figure 10b, after the
foreground region is specified by the user, we first apply a graph-cut
based binary segmentation [Li et al. 2004] in the foreground bound-
ing box. A dilation of the foreground segment creates a boundary
region, as shown as the yellow region in Figure 10b. The average
pixel difference between the foreground image and the new back-
ground in the boundary region is used as the indicator for the fit of
the current size and location. We sample the scale and translation
in a small range around the user specified values (the purple rectan-
gle in Figure 10b), and record the scale and position that minimizes
the pixel difference (shown as the red rectangle in Figure 10b). The
expectation is that when the pixel difference is small in the bound-
ary region, the old background and new background will result in
a good match, thus our algorithm better take advantage of the new
background.

3.5 Comparisons

We first compare the proposed algorithm with previous matting and
compositing approaches on a synthetic data set shown in Figure 3.
More comparisons on real images will be shown later. Figure 3a
shows the original imageI where the foreground textured is com-
posed onto a background texture using a pre-defined matte. Below
this is the new background imageI ′ where the bottom half is similar
but the top has changed.

Figure 3b-e shows that previous approaches have difficulties deal-
ing with this data set. Bayesian matting [Chuang et al. 2001] cannot
generate a good matte for the bottom half of the foreground since the
foreground and background patterns are complex, thus in the final
composition the foreground edges are destroyed. The photomon-
tage system [Agarwala et al. 2004] is not able to deal with partial
coverage thus the composition contains visual discontinuities. The
iterative matting approach [Wang and Cohen 2005] also cannot gen-
erate a good matte for this complex image thus the final composition
are erroneous.

Figure 3f shows the composition generated by our system, which
has significantly higher visual quality than compositions created by
other approaches. Our algorithm achieves this by implicitly treating
different regions in different ways. For the bottom half of the image
where old and new backgrounds are similar, the front propagation
stops earlier when it finds a good composition, thus the hard prob-
lem of finding an accurate matte in this region is avoided. For the
upper half of the image where the old and new backgrounds are dif-
ferent, our algorithm works in a similar fashion as previous matting
algorithms to extract a good matte for the foreground. Figure 3g
shows the ground truth which is quite similar to our result.

4 Foreground Zooming

We apply the compositional matting algorithm to the task of recom-
posing a single image by varying the size ratio between the fore-
ground and background within a single image. In general, we set
a higher display ratio for the foreground relative to the background
to emphasize the foreground. In this case, both the imageI and
the new backgroundI ′ are differently scaled versions of the original
photograph. This result is similar to virtually pulling the foreground
towards the camera.

Using previous methods, one could achieve this by first extract-
ing a high-quality matte for the foreground object. Then hole fill-
ing methods would be needed to repair the background. One could



Figure 4: (a). The user specified trimap for example in Figure 1a. (b). Extracted matte by Bayesian matting. (c). Composition with matte b.
(d). Composition with matte b after hole filling. (e). The input to our system. (f). The matte extracted by our system to create the composition
in Figure 1b.

Figure 5: (a). Scaled original image. (b). Composition created by Bayesian matting with provided trimap and extracted matte. (c). Composition
created by the photomontage system with input strokes and extracted matte. (d). Composition created by our system with input strokes and
extracted matte. Yellow arrows highlight artifacts.

then compose a scaled up version of the foreground matte onto the
background. However, extracting a perfect matte for the foreground
object is difficult for general images, as is hole filling, and the com-
posed image may contain visual artifacts.

For example, we attempt to use Bayesian matting to enlarge the
foreground shown in Figure 1a, the user needs to specify a good
trimap as shown in Figure 4a. Based on this trimap Bayesian mat-
ting approach generates the matte in Figure 4b, resulting in a com-
position in Figure 4c. We can see “ghost” artifacts since the enlarged
foreground does not fully cover the original foreground. We then use
the image inpainting technique proposed in [Yamauchi et al. 2003]
to fill the holes on the background, resulting in a better composition
in Figure 4d. However, as shown in the highlighted region, the errors
in the matte estimation still cause noticeable visual artifacts.

In constrast, our compositional matting algorithm utilizes the ad-
vantages the new background provides to generate a good compo-
sition in one pass, as shown in Figure 1e. The user input and the
extracted matte are shown in Figure 4e and f, respectively. Note that
our system requires much less user input than Bayesian matting to
generate a better composition. More results and comparisons are
demonstrated in Section 5.

One thing that should be mentioned is that instead of using image
inpainting techniques to fill in the holes, we simply modify one step
of our algorithm to avoid introducing holes as shown in Figure 4c.
Once we calculate the estimated alpha value in Equation 4 for pixel

z, we find its corresponding locationz′ on the new backgroundI ′.
The correspondence is naturally built in the image lattice since both
I andI ′ are differently scaled versions of the same photograph. If
αs

z′ is smaller thanαs
z, we then letαs

z′ equals toαs
z. In other words,

we assign high initial alpha values to pixels insides the holes to en-
courage them to be occluded in the final composition. In this way
our system achieves hole filling, foreground matting and composit-
ing in a single optimization procedure.

5 Results

Figure 5 shows another example of enlarging the foreground. The
compositions generated by Bayesian matting and photomontage
both contain significant visual artifacts on the foreground object
since accurately segmenting the foreground is difficult for this im-
age. Our system cannot extract an accurate matte either, however
it still finds a good matte to create a successful composition. Note
how our system capture the soft shadow on the ground to make the
composition more realistic.

Figure 6 shows another example where we want to create a more
impressive waterfall from the original one. To do this we stretch the
waterfall in the horizontal direction and recompose it onto the origi-
nal image. Using previous matting approaches to achieve this is par-
ticularly hard since the foreground object is semi-transparent thus



Figure 8: Comparisons on the example shown in Figure 1c. (a). Input trimap, extracted matte and composition of Bayesian matting. (b). Input
strokes, extracted matte and composition of photomontage. (c). Input strokes, extracted matte and composition of iterative matting. (d). Input
strokes, extracted matte and composition of our system. Yellow arrows highlight artifacts.

Figure 6: (a). Scaled original image with the user’s input to ex-
pand the waterfall. (b). Composition generated by our system. (c).
Composition generated by photomontage system. (d). Details of
compositions.

creating a trimap for matting is erroneous. Instead, we compare our
system with the photomontage system. Since photomontage cannot
deal with partial coverage, the composition generated from it con-

Figure 7: (a). Scaled original Image. (b). Simulated fish-eye image
used by the image retargeting system. (c). A normal fish-eye image.
(d). Enlarging foreground by 1.9 times using our system.

tains more visual artifacts than the one generated from our system.
Figure 7 compares our system with the image retargeting system

[Liu and Gleicher 2005]. In the zoomed out fish-eye image created
by the image retargeting system the mountain behind the person is
unacceptably distorted. As shown in Figure 7c, a true fish-eye image
is even worse since the foreground character is also unacceptably
distorted. In contrast, our system is able to enlarge the foreground
while keeping both the foreground and the background in as original
a state as possible.

Figure 8 compares different approaches on extracting the fore-
ground shown in Figure 1c and composing it onto the new back-



Figure 10: (a). Top: Original image. Bottom: new background. (b). Top: user input and graph-cut segmentation result. The yellow region Is
used to deteremine the best position and scale for the foreground. Bottom: user specified initial composition position (purple rectangle) and
automatically refined position (red rectangle). (c). Final composition. The purple patch is from the composition without local stitch, and the
red patch is from the one with local stitch. Artifacts are highlighted by yellow arrows.

Figure 9: The matte and composition generated by our system when
the new background is provided as a solid blue.

ground. It clearly demonstrates that our system is able to create
a more satisfying composition than previous approaches. Addition-
ally, Figure 9 shows that if we use a totally different new background
such as a solid blue, our system will try to extract an accurate matte
since no useful new background information can be used in this case.
This demonstrates that our system will work just as a normal matting
algorithm when the new background is different from the original
one instead of generating unpredictable results.

Figure 10a shows a photograph of a girl standing before a beauti-
ful landscape however the white fence is quite distracting. Using our
system the user can take another picture without the fence and easily
compose the foreground to the new background. We also demon-
strate the local foreground stitching algorithm as a pre-processing
step to improve the final composition.

5.1 Limitations

Although our system works well on most of the examples we have
tested, it does not always give satisfying compositions. When the
new background differs significantly from the original background,
the compositional matting has few advantages over older methods.
Difficult and successful examples are shown in Figures 12 and 11.
In the original image, Figure 11a, the foreground is so similar to the

background that extracting an accurate matte is almost impossible.
However, if the new background is similar to the original one, our
system is able to create a good composition as shown in 11d. If
unfortunately, the new background is substantially different from the
original one, our system along with previous approaches all fail to
give good compositions, as shown in Figure 12.

6 Timings

The compositional matting algorithm we proposed runs in roughly
20 seconds for a foreground object of around 200 by 300 pixels in
size. The processing time will increase linearly as the foreground
increases in size. To place the method in context, it is slower than
Bayesian matting and Photomontage, and is faster than the iterative
matting approach. The local foreground stitching can improve the
composition results, but itself is computational expensive and will
add additional processing time to our system if turned on.

However, in our tests we found that our system is quite efficient
in terms of total time compared with other approaches. As shown
in our examples our system takes the minimum user input to gen-
erate a satisfying result, thus our system has advantages in terms
of user time to other matting approaches which require an accurate
trimap to generate a good result. Also, when recomposing an en-
larged foreground onto the original background, our system com-
bines hole filling, foreground matting and composition into a single
process. Other techniques require additional hole filling operations,
which substantially slow the overall process.

7 Conclusion

A key lesson to take from our work is that such image processing
methods should take advantage of all information known in a real
application. Matting in the absence of the knowledge of the new
background may not describe the full task.

In this paper we have demonstrated a compositional matting al-
gorithm by taking the advantage of knowing the new background
image which the foreground is to be composed on to. Experimen-
tal results show that our algorithm outperforms previous proposed
matting and composition algorithms when the new background has



Figure 11: (a). Original image. Extracting a good matte for the foreground is very hard in this case. (b). Matte extracted by Beyesian matting.
(c). Composition created by Bayesian matting. (d). Composition created by our algorithm.

Figure 12: A failure example. From left to right: composing the
foreground in Figure 11a onto a substantially different background
using our system; matte extracted by our system; composition cre-
ated by Bayesian matting.

similar regions with the old one. Based on the new matting algo-
rithm we show how to recompose images by displaying foreground
and background with different scales.

In the future we hope to consider how one might take temporal
coherence into account for recomposing video objects. One could
create a similar unified optimization framework, but computational
considerations would certainly need to be addressed.
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