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Abstract. Algorithms for discrete energy minimization play a fundanta role
for low-level vision. Known techniques include graph cuisjief propagation
(BP) and recently introduced tree-reweighted messagenga6ERW). So far,
the standard benchmark for their comparison has been arkectad grid-graph
arising in pixel-labelling stereo. This minimization ptetn, however, has been
largely solved: recent work shows that for many scenes TRWsfthe global
optimum. Furthermore, it is known that a 4-connected graby is a poor stereo
model since it does not take occlusions into account.

We propose the problem of stereo with occlusions as a newbéssfor mini-
mization algorithms. This is a more challenging graph siibdes much larger
connectivity, and it also serves as a better stereo modeattactive feature of
this problem is that increased connectivity does not resuticreased complex-
ity of message passing algorithms. Indeed, one contribudfcathis paper is to
show that sophisticated implementations of BP and TRW Hawsame time and
memory complexity as that of 4-connected grid-graph stereo

The main conclusion of our experimental study is that formablem graph cut
outperforms both TRW and BP considerably. TRW achievesistargly a lower
energy than BP. However, as connectivity increases thedspeeonvergence
of TRW becomes slower. Unlike 4-connected grids, the difiee between the
energy of the best optimization method and the lower boun@R appears
significant. This shows the hardness of the problem and ates\future research.

1 Introduction

Many early vision problems can be naturally formulated it of energy minimiza-
tion where the energy function has the following form:

E(x) = Z Dy(zp) + Z Voa(p, 2q) - 1)

peEV (p,9)€€

Set) usually corresponds to pixels, denotes the label of pixglwhich must belong to
some finite set. For motion or stereo, the labels are disgsyrithile for image restora-
tion they represent intensities. This energy is often @efrim the context of Markov
Random Fields [1]: unary termi3, represent data likelihoods, and pairwise tefrps
encode a prior over labellings. Energy minimization fraragnhas been applied with
great success to many vision applications such as ster&9, [frage restoration [2],
image segmentation [8], texture synthesis [9]. AlgoritHoraninimizing energyl’ are
therefore of fundamental importance in vision. In this pape consider three different



algorithms: Graph Cut, belief propagation (BP) and treeeighted message passing
(TRW). For the problem of stereo matching these methodsraomg the best perform-
ing optimization techniques [10]. A comparison of their adtages and disadvantages
is at the end of this section.

So far, comparison studies of these optimization methods haen rather limited
in the sense that they only consider energy functions wittariqular graph struc-
ture [11-14]. The algorithms have been tested on the energtibn arising in stereo
matching problem [2]. This energy is defined on a graph withreighborhood sys-
tem, where nodes correspond to pixels in the left image. @awh are not modeled
since this gives a more complex and highly connected grapbtete. The comparison
studies consistently concluded that the lowest energyt@iedd by TRW, graph cuts
come second and BP comes third [11-14]. Very recently, itdess shown [13] that
TRW even achieves the global optimum for standard benchstar&o pairs [10]. Con-
sequently, this problem, which was considered to be verjjariging a decade ago, has
now largely been solved. The comparison studies also shtive¢the proposed energy
gives large error statistics compared with state-of-thierathods, and consequently
progress in this field can only be achieved by improving thergy formulation itself,
as stated in [11, 13].

The main goal of this paper is to test how different optim@amethods perform
on graphs with larger connectivity. Our study has two maidres. First, such energy
functions are becoming increasingly important in visiorq315]. They typically arise
when we need to match two images while imposing reguladrain the deformation
field. Pixels (or features) in one image can potentially matcmany pixels (features)
in the other image, which yields a highly connected grapicsaire.

Our second motivation is to understand better intrinsiqoprties of different al-
gorithms. One way to achieve this is to consider a very diffistoblem: Algorithm'’s
weaknesses then become more apparent, which may suggesoWagproving the
method. It is known that the presence of short cycles in thplymakes the problem
harder for message passing techniques. From this poine¢wf the problem that we are
considering is much more challenging than 4-connectedggeghs. Another indicator
of the difficulty of our problem will be shown by our experinten

We choose the energy function arising in the problem of steiiéh occlusions [4].
In this case there are nodes corresponding to pixels in thene right image, and
each node haK + 4 neighbors wheré( is the number of disparities. We propose this
problem as a new challenging test bed for minimization ailyors. Our experiments
also show that modeling occlusions gives a significantlyebetereo model, since the
energy of the ground truth is close to the energy of the bestngration method, and
the value of the energy correlates with the error statisteasved from ground truth.

When applying BP or TRW to this energy, we immediately ruroiefficiency
problems. There ar& labels andO(N K') edges, so a straightforward implementa-
tion would takeO(N K?) memory and time for one iteration, even with the distance
transform technique in [16]. By exploiting a special sturetof the energy we show
that both quantities can be reduced2¢N K). Thus, we get the same complexity as
that of message passing for the simple stereo problem witmlusions.



We have tested the three different optimization methods»ostandard benchmark
images [10]. The findings are different to the scenario ott@dnected grid-graphs. For
our problem graph cut clearly outperforms message passaimigues, i.e. TRW and
BP, both in terms of lower energy and lower error rates wrirtugd truth.

It is worth mentioning that energy functions with similaagh structure were used
in other methods for stereo with occlusions [6, 7]. In botphrapaches each pixel is con-
nected taD (K) pixels in the other image. The former uses graph cuts as aniziaiion
algorithm, as the latter uses BP. However, [7] does not gttéorapply message passing
to the original function. Instead, an iterative technigai@sed where in each iteration
the energy function is approximated with a simpler one, aRd®Bthen applying to a
graph with 4-neighborhood system.

Let us compare the three optimization methods.

Graph cuts were introduced into computer vision in the 90’s [17, 2] ahdwed a
major improvement over previously used simulated anngélih The strength of graph
cuts is that for many applications it gives very accurateltssi.e. it finds a solution
with very low energy. In fact, in some cases it even findgadal minimum [17, 18]. A
major drawback of graph cuts, however, is that it can be agmnly to a limited class
of energy functions. There are different graph cut-basethaas: Expansion move [2],
swap move [2] or jump move [19]. Each has its own restrictithred come from the
fact that binary minimization problems used in the "innespd must besubmodular
Expansion move algorithm is perhaps the most powerful tigcten[14], but can be
applied to a smaller set of functions than swap move. Foligvj4], we use expansion
move version of the graph cut algorithm for the problem ofestavith occlusions.

The class of functions that graph cuts can handle covers msefyl applications,
but in some cases the energy falls outside this class, fongbeain the super-resolution
problem [20] This may also occur when parameters of the grfergction are learned
from training data [21]. In this case one can either appratéa non-submodular func-
tion with a submodular one [15], or use more general algarithTwo of such algo-
rithms are described below.

Belief propagation (BP).Max-product loopy belief propagation (BP) [22, 16] is a very
popular technique for approximate inference. Unlike grapts, BP can be applied to
any function of the form 1. Unfortunately, recent studiesehshown that for a simple
stereo problem it finds considerably higher energy thanhgeags [11, 23,12, 13].

Tree-reweighted message passing (TRWyas recently introduced by Wainwright et
al. [24]. Similar to BP it can be applied to any function of foem 1. However, there are
several important differences. First, on a simple stereblpm it finds slightly lower
energy than graph cuts [12]. Second, it maintains a lowendaun the energy that can
be used to measure how close we are to the energy of an optiaabs. Third, there is
a variant of TRW algorithm, called TRW-S, with certain corgence properties [12]. In
contrast, no convergence guarantees are known for BP gidgori-or our comparison
we use this variant of the TRW algorithm introduced in [12].
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2 Background

We begin by introducing our notation. Lét= (V, £) be an undirected graph with the
set of verticed’ and the set of edges We assume that for eaphc V variablex,, takes
values in some discrete sét= {0, ..., K — 1} whereK is the number of labets
FunctionD,(-) in energy 1 is determined b} values. It is convenient to treat
D, as a vector of sizé{ x 1. Later we introduce other vectors of sizeé x 1 (in
particular, messages). NotationD’ = D + m denotes the usual sum of two vectors,
i.e.D'(k) = D(k) + m(k) foranyk € L.
2.1 Overview of message passing algorithms

We now give an overview of BP and TRW algorithms. They bothntaan messages
myq for directed edgep — ¢, which are vectors of siz& x 1. The basic operation
of the algorithms ipassing a messageom nodep to its neighborg. The effect of
this operation is that message,, gets updated according to a certain rule (which is
different for BP and for TRW).

An important choice that we have to make is the schedule o&tipgl messages.
There are many possible approaches; for example, [11] wsedgd (or synchronous)
andacceleratedschedules, and [12] usesquentiabchedule. In this paper we use the
latter one. One advantage of this schedule is that it regjhiaéf as much memory com-
pared to other schedules. For TRW algorithm sequentialkdbealso has a theoretical
advantage described in the end of this section.

Sequential schedule is specified by some ordering of nogesp € V (which
can be chosen arbitrarily). During the forward pass, we ggeamodes in the order of
increasingi(p), and we send messages from ned® all its forward neighbors (i.e.
nodesg with i(q) > i(p)). After that we perform similar procedure in the reverse
direction (backward pass). A precise description of thesdtlgm is given in Fig. 1. Note
that the operation of computing the minimum in step 1(b) calcdmputed efficiently,
for many interaction potentialg, ,, in time O(k) using distance transforms [16].

0. Set all messages to zero.

1. For node® € V do the following operation in the order of increasiiig):

(a) Aggregation: computéA)p =D, + Z(q,p)es Mgp

(b) Propagation: for every edde, q) € £ with i(p) < i(g¢) update message:,, as
follows:
- ComputeDpg = Ypg Dy — map
- Setmypq () := ming, {Dpq(2p) + Vog(2p, 4)}

2. Reverse the ordering: sé€p) := [V| + 1 — i(p).

3. Check whether a stopping criterion is satisfied; if yesnirate, otherwise go to step 1|

Fig. 1. Sequential message passing algorithnfrunctioni : V — {1,2,...,|V|} gives the
ordering of nodes. Weighting coefficiepf, is 1 for BP and a value ir{0, 1] for TRW (see text).
Memory requirements. An important property of the sequential schedule is that for
each edgéq, r) it is enough to store message in only one direction. Namefjpsse

3 To simplify notation, we assumed that number of labels isstire of all nodes. Note that in
general this is not required.



thati(¢) < i(r) andp is the node being processed. Then we store messggef

i(q) < i(p), and message:,, otherwise. The reverse messages are not needed since
we update them before they are used. The same space in mesndsg ased for storing

one of the two messages. The exact moment whgngets replaced withn,,, is when
edge(p, q) is processed in step 1(b).

The fact that memory requirements of message passing catbeed by half was
first noted in [16] for a special case (bipartite graphs amtutation of parallel sched-
ule of updating messages). It was generalized to arbitreagtg and larger class of
schedules in [12].

Weighting coefficients.Both BP and TRW algorithms have the structure shown in
Fig. 1. The difference between the two is that they use diffee coefficients,,,. For

BP algorithm we sety,, = 1. Next we describe how to choose these coefficients for
TRW algorithm.

First we select sef” of trees in grapl§ such that each edge is covered by at least
one tree. We also select probability distribution o%eri.e. functionp : 7 — (0, 1]
such thad .., p(T) = 1. SetT and distributiorp define coefficients,, as follows:

Ypg = Ppq/ Pp Wherep, andp,, are the probabilities that trééchosen undes contains
nodep and edgé€p, q), respectively.

TRW and lower bound on the energy.As shown in [24], for any set of messages
m = {m,, | (p — ¢) € &} itis possible to compute a lower bound on the energy,
denoted asb,(m). In other words, for anyn and for any configuratiox we have
?,(m) < E(x). Function®,(m) serves as a motivation for TRW: the goal of updating
messages is to maximize,(m), i.e. to get the tightest bound on the energy.

In general, TRW algorithms in [24] do not always increase liband - function
$,(m) may go down (and the algorithm may not converge). In contsejuential
schedule proposed in [12] does have the property that thedonever decreases, as-
suming that the following condition holds: treesZnaremonotonicchains, i.e. chains
T = (p1,-..,pm) Such that sequendé(p; ), . .., i(pm)) is monotonic. The algorithm
in Fig. 1 with this selection of trees is referred tosagjuential tree-reweighted message
passing(TRW-S).

Choosing solution.An important question is how to choose solutiogiven messages
m. The standard method is to choose labgefor nodep that minimizesD,,(x,,) where
D, = D, + Y m,, and the sum is over edgég p) € £. However, it is often the case
thatf)p(:z:p) has several minima. In the case of TRW algorithm this is ngirgsing: if
upon convergence all nodes had unique minimum, then it woiviel theglobal min-
imum of the energy, as shown in [24]. Clearly, we cannot ekfigs in general since
otherwise we could solve arbitrary NP-hard problems.

To alleviate the problem of multiple minima, we use the sagehnique as in [12].
We assign variables to nodeén the order given by(p). We select labet,, that mini-

mizesDy(zp) + Zi(q)<i(p) Vap(@q, 2p) + Zi(q)>i(p) Map(Tp)-

2.2 Stereo with occlusions

In this section we review the energy function used in [4], @t it to our notation.
For simplicity we restrict our attention to the case of twotifeed cameras.

The set of nodes contains pixel¥ in the left image and pixel¥* in the right
image, soV = VI U VE. Labelz, for pixel p denotes its disparity. We assume that



zp € L =H0,...,K — 1} whereK is the number of disparities. Pixglwith label
k corresponds to some pixelin the other image which we denote @as= F(p, k).
Formally, coordinates af are defined as follows:

. — k, if pe V-
(Qz7Qy) — (p py) . p "
(pz +k,py) fpeV

Note thaty = F(p, k) impliesp = F(q, k), and vice versa.

The energy function in [4] does not use unary data tebjsnstead, all information
is contained in pairwise termg,,. In order to describe them, first we need to define the
set of edges. It contains edges of two typesoherencedgesc® andsterecedgest®
discussed below.
Coherence edgesThese edges encode the constraint that disparity maps iefthe
and right images should be spatially coherent.&etontains edge§, q) wherep, ¢
are neighboring pixels in the same image defined, for exaraplag 4-neighborhood
system.

For the purpose of comparison of minimization algorithmaused Potts termi,,:

Vg (Tp, Tq) = Apq - [Tp # T4

where[-] is 1 if its argument is true, and O otherwise. This term piefeéecewise con-
stant disparity maps. To get better results, however, ithinigg advantageous to use
terms that allow smooth variations, especially when the lmemof disparities is large.
A good choice could be truncated linear term.
Stereo edgeskEach pixelp (except for pixels at image boundary) Wasincident edges
connecting it to pixelsF(p,0), ..., F(p, K — 1) in the other image. To simplify nota-
tion, we denote edg@, q) with ¢ = F(p, k)) as eithel(p, k) or (k, q).

TermsV,;, combine data and visibility terms defined in [4]. They can biten as

My, it zp=2,=%k
if 2, =k,zx, <k
Vor(2p, ) = 4 20 Orxp*k xq<k @
q =R, Tp

0 otherwise

whereq = F(p, k) (see Fig. 2). Constarit/, is thematching scordetween pixel®
andgq. The expansion move algorithm in [4] can only be appliedliEabres are non-
positive. Thereforel/,;, can be defined, for example, &6, = min{||Intensity(p)—
Intensity(q)||? — C,0} whereC is a positive constant.

3 Efficient message passing for stereo with occlusions

In this paper we apply sequential message passing algonithfig. 1 to the energy
function defined in the previous section. However, a naiy@@mentation is extremely
inefficient. Indeed, consider first the memory requiremewits haveO(N K) edges
whereN is the number of pixels. For each edge we need to store a neessgach is a
vector with K components. This results (N K?) memory requirements.
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Fig. 2. Structure of term V. (-, -) for stereo edge(p, ¢) with ¢ = F(p, k). Left column rep-
resents pixelp, right column pixel g. CostsV (k’, k") are shown on links from labelk’ to k.
The dashed linkk — &k has costM,,x, solid links have infinite costs. Links that are not shown
have cost zero.

We now show how this number can be reduce@{d K'). Consider message,
from pixel p to pixel ¢ = F(p, k). It is obtained as the result of applying distance
transform to vectoD,;, via edge terni/,;, (step 1(b) of the algorithm). Inspecting the
structure ofl/,;, we conclude that

Apy = min{ Ay, Cpr} if k' <k
mpk(k’) = Bpk = min{Bpk + Mpk, Cpk} if k' =
Cpk = min{Apk, Bpk, Cpk} if &' >k

where

Apr = Og}j,ngpk(k’) : By = Dpu(k) 5 Cpr = min Dy (k') (3)
Therefore, although,, is a vector with/K' components, it can be stored using only
three numbers A, By, andCyy. (In fact, even two numbers are sufficient. The mes-
sages are defined only up to an additive constant. Thus,nbisgh to stored,, — Cpi
andBy, — Cpy, for example.)

To summarize, messages can be stored u$id numbers, ignoring effects at
image boundarie(VK numbers for coherence edges @&idK numbers for stereo
edge$). We also needv K numbers to store matching scores.

Now let us consider the complexity of one iteration. If we aod careful, we may
getO(N K?) running time even with the trick described above. Next wexshow to
implement the algorithm so that we ge{/V K') complexity for one iteration.
Aggregation.Let us consider the aggregation step for pixeiWe need to sunk’ + 4
vectors of sizeK corresponding td< stereo edges and 4 coherence edges. A naive
implementation would tak&(K?) time. However, it is possible to reduce it @ K)
using ideas from dynamic programming.

Summing messages in coherence edges is not a problem saiceuber is con-
stant. Thus, we focus on summing messages corresponditgrém £dges, i.e. com-
puting D = 1" my,. Suppose that messags,, is described by numbers;,, By,

“ Recall that in the sequential message passing algorithnedoh edge we need to store a
message only in one direction.



Cj, (we drop subscripp for brevity). We can write

By Ay Y Ar_1
Co By A 2 Ag_1
D=|...1+]|..-|+...+ +
Co Cy By _» Ar_1
Co Cq Cr_2 Br 1

To compute D, we first compute sums, = Z k+1 Ay andCy, = Zk, Cy for
k=0,1,...,K — 1 (by definition,Ax_, = Cy = 0). This can be done |(j)( ) time
using recursions

A1 =A+Ar, Cri1=Cr+Cr .

Now computingD is easy:D(k) = Ay, + By, + Cy.

Propagation. Now consider the propagation step 2(b) for pixelUpdating messages
in coherence edges can be donel(K) time using distance transform techniques
in [16]. We focus on updating messages,, in stereo edges for disparitids € L
with ¢(F(p, k)) > i(p). In order to update message,,, we need to compute num-
bersﬁpk = minogk/<k Dpk(k/) andépk = mink<k/<K Dpk(k/) (eq 3) Direct cal-
culation of these minima would tak@(K) time, resulting inO(K?) complexity for
O(K) stereo edges To improve the running time, we do the follgwirecalcula-
tion. For vectorD obtained after aggregatlon step 2(a), we compute vaA;,es_
m1n0<k/<kD (k ) andek = mlnk<k/<KD (k ) (by definition Apo = Cp,K 1 =
00). This can be done i®(K) time using recursions

fz[p,k-%l = min{gpk,ﬁp(k)}, CAVch—l = min{apkvﬁp(k)}-
Now vaIuesApk, pk, Cpk can be computed in constant time as follows:

A’Z{pk - 'kafzipk - Akp ) Epk - 'kaﬁp(k) - ka 5 apk - 'kaépk - Ckp (4)
whereAy,, Bip, Ckp describe messagey,, in the reverse direction.
4 Experimental results

We tested the methods on four benchmark stereo images, wiichused in the stereo
survey paper [10] and also two ground truth data sets wigeldisparity range [25]. All
data sets are available onlth@&ig. 3-6 show left disparity maps produced by different
methods. Visually BP performed worse than graph cut and Ta&\¥,also the results of
BP were always less smooth. Numerical results for all sia dats are summarized in
table 1. All experiments give a concise and clear messagghCeut consistently out-
performs TRW and BP, both in terms of lower energy and smatier rate wrt ground
truth (B andBp). For smaller number of labelg{ < 30) TRW clearly outperforms
BP, otherwise TRW performs only marginally better. For aihmples the quality of
the results is correlated with the obtained energy, i.e.doergy corresponds to a low

5 http://cat.middlebury.edu/stereo/



Image Graph Cut TRW BP Ground Truth
B Bp E |Bs Bp FE |Bs Bp E E (violation)
Tsukuba (K=16)1.84 6.50 -1536|2.62 7.15 -1534|7.52 16.10 -1495/not available
Sawtooth (K=19)0.56 6.26 -2071|0.65 7.12 -2065(3.43 10.39 -2020/-2027 (0.16%)

Venus (K=21) |[1.20 6.11 -2118/1.55 8.12 -2109|10.31 14.88 -2021-2069 (0.47%)

Map (K=29) |0.38 5.32 -3460|0.58 7.20 -3407|1.21 9.64 -3374|-3410 (0.40%)

Teddy (K=54) |13.14 23.35 -102734.88 26.95 -988915.25 27.63 -9834 not available

Cones (K=56) |5.16 11.99 -1393%.04 14.16 -13648.25 15.14 -1345/iot available
Table 1. Comparison table for six benchmark stereo pairs aplied to the optimization meth-
ods: Graph cut, TRW and BP. Both TRW and BP were run fd0.000 iterations, and graph
cut until convergence. The values B and Bp correspond to the percentage of pixels in non-
occluded By) and texturelessRBp) areas with a disparity error greater thahwrt ground truth.
These are standard error measurements as proposed in [X@§ tat all energies are scaled
by 10~3. The last column gives the energy of the ground truth. Natealvery small percentage
of pixels in the ground truth image violate the visibilitynstrained, which are ignored for the
computation of the ground truth energy. Furthermore, thergy of the ground truth can only be
computed for three data sets since for Tsukuba only one grouth disparity map is available
and Teddy and Cones have undefined areas in the disparity (setext for discussion).

error statistics B; and Bp). Also, the energy of the ground truth (last column table 1)
lies within the range of the energy computed by graph cut &/ TFor stereo without
occlusions these two observations could not be establigierienergy of the ground
truth is considerably larger than graph cut and BP, and losvg@ndid not necessarily
correspond to a good result [11, 13]. Therefore, we can colecthat modeling occlu-
sions gives a better stereo model. The fact that the grouttdénergy is larger than the
best method does not contradict to this: The problem is ettgr ambiguous, which
means that it is impossible to design an energy function @lgtabal minimum always
gives a correct solution.

Plots of energy vs. runtime are shown in Fig. 7. For instaone,iteration of TRW
takes abou8.26 sec. for teddy (image siz50 x 375 and K = 54) on a Pentium IV
3.2 GHz processor. For all examples the discrete curve fplgcut is always below
the curve of TRW and BP. An interesting observation is thatridative performance
of TRW and BP depends on the number of labels: Larger corvitgcthakes TRW
algorithm much slower, while the speed of BP is affected $&gsificantly. Note, how-
ever, that when TRW is run long enough, it always outperfaf@® (see table 1). It
is worth noting that neither TRW nor BP converged. BP gets ltoop after typically
50 — 200 iterations. In case of TRW the lower bound never decreaststivie. Since
it is bounded from above, the lower bound must converge toea fiumber. In our
experiments, however, the lower bound of TRW continuedsgasing slowly even after
50000 iterations (for Tsukuba), which means that the algorithithditl not converge.

In order to understand how difficult our problem is, we looletchow close the
energyF,.;, of the best method is to the lower bouh),...q given by TRW. Since
absolute numbers are not very meaningful, we can considerattio Zxia—Eround,

If all energy values are non-negative, then this ratio gaesipper bound on the ap-
proximation factor. In our case, however, the energy candmative due to numbers
M, < 0. To solve this problem, we added constant’ to the energy wher#y/ is the
number of pixels and’ is defined in section 2.2. Since there are at nidgermsi/,,
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Ground truth (a) Graph Cut (b)
TRW (c) BP (d)

Fig. 3. Tsukubaimage.(a) Ground truth disparity for the left image (black pixelg ainknown),
(b) disparity map produced by graph cuts, (c) TRW, and (dvBfch is clearly the worst resullt.

in the energy and/{,, > —C, this ensures that energy is always non-negative. Fur-
thermore, absolute energy values of the two models: steitaawd without occlusions
are related, if we use same matching costs and similar smesstparameters. This is
confirmed by our experimentg,,;, differ by about 3 times for the two models and
Tsukuba data set, i.e. they are of the same order of magnifadestereo without oc-
clusions ratiog®=ia—Freund were as follows [12]: Tsukuba (0.0037%), Map (0.055%),
Sawtooth (0. 096%) "and Venus(0.014%). For our model theesponding values are:
Tsukuba (3.09%), Map (3.28%), Sawtooth (1.27%), and Veh@6fs). These values
are in average two to three orders of magnitude larger fonmdel. Consequently, we
may conclude that our problem is considerably harder thenestwithout occlusions.

4.1 Settings for TRW

In order to implement TRW-S algorithm we need to make sewhalces. First, we
need to select the ordering of nod€s). In our implementation we used row-major
order for both left and right images, and nodes of the leftgeshad smaller ordering
than nodes of the rightimage. Next, we need to choose thd sees7 . As described

in sec. 2, these trees must be chains that are monotonic egtlect to ordering(p).

We selected each horizonal and vertical line in the two irsa@ga single chain; we
call themcoherence chaifsIn addition, every stereo edge was declared to be a chain.

® There ar@(W + H) such chains wher® is the width of the image and is the height.
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Ground truth (a) Graph Cut (b)

TRW (c)

Fig. 4. Venus image(a) Ground truth disparity for the left image, (b) disparityap produced by
graph cuts, which has the lowest error statistics, (c) TR, @) BP.

It can be seen that with this choice every edge in the grapbvsred by exactly one
tree. Finally, we need to select probability distributioh over trees” € 7. As our
experiments show, this distribution affects the resultthefalgorithm significantly.
Intuitively, coherence and stereo chains are quite diffgtberefore they should be
assigned different probabilities. The difference betweeherence and stereo chains,
however, is not the only source of asymmetry. Indeed, censdme node and an
incident stereo edg®, ¢) whereq = F(p, k). TermV,,;, for this edge has a very special
structure; in particular, there is one preferred label, elgrtabel k. Recall that if labels
of pixels p andgq are k then this edge contributes matching cast, to the energy
function, otherwise the penalty is either Oar. Thus, it could be beneficial to select
probabilities that would favor labe! over other labels:’ € £ — {k} for the chain
corresponding to edgé, ¢), and we will show that this improves the performance
of TRW. Since the scheme described in sec. 2 does not allav(#aich tree has a
single probability which does not depend on labels), we ndered the tree-reweighted
algorithm to allow probabilities that depend on labels. §ldar the case when each
edge is covered by exactly one chain. Let us define a probadigitribution over trees
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Ground truth (a) Graph Cut (b)

TRW (c) BP (d)
Fig.5. Teddy image.(a) Ground truth disparity for the left image (black pixel®ainknown),

(b) disparity map produced by graph cuts, which has the Ibewmsr statistics, (c) TRW, and (d)
BP.

for each nodev € V and labelk € L. We denote it a(T’; p, k). We require that
Y orer p(T;p, k) = 1 forall p, k. In addition, p(T’; p, k) must be positive if tred”
contains node, and zero otherwise. Using these probabilities, we defirdficeents
~pq(k) as follows:v,, (k) = p(T; p, k) whereT is the tree containing edde, ¢). The
algorithm in Fig. 1 is then modified as follows: In step 1(bytee D, is computed as

~

Dypq(k) = vpg(k)Dp(k) — mgp(k) for all £ € L. We claim that the modified algorithm
has the same properties properties as the sequentiakinegghted message passing
method in [12]. In particular, the lower bound is guaranteetito decrease, and there
exists a limit point satisfying the weak tree agreement ¢@rd(see appendix A).

Let us apply this scheme to the problem of stereo with ocohssiConsider node
p € V and labelk € L. This node is contained i + 2 trees (unless it is a pixel
near the image boundary): vertical coherence chain, hatdgtcoherence chain arid
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Ground truth (a) Graph Cut (b)

TRW (c) 7 | BI; (d)

Fig. 6. Cones image(a) Ground truth disparity for the leftimage (black pixelgainknown), (b)
disparity map produced by graph cuts, which has the lowest statistics, (c) TRW, and (d) BP.

stereo chains. We set probabilitied’; p, k) as follows:

p¢ if Tis a coherence edge
p(Tsp,k) = p*t it T = (p,Fp,k))
p> i T = (p,F(p,K)) for k' # k

Note that there must hol2p® + p°! + (K — 1)p52 = 1. Due to this constraint we
are left with two degrees of freedom for the choice of the mexbabilities;p¢ and*

= p°1/p92. Note that in the TRW algorithm the,; in eqn. 4 has to be replaced by:
Yok = pSL for B,y andy,, = p52 for A,y andCy..

We examined different settings pf and3” for three data sets. We discovered that
the settings depend on the number of labels. For a thorowglstigation we re-scaled
the teddy image with a factor df.5 and3 ("Teddy Small”), which correspond to a
maximum disparity 086 and18 respectively. Fig. 8 shows the energy of TRW for a
large range of values fgr“ and 3, where TRW was run for a fixed amount B0
iterations. An obvious observation is that for extremeiisgst, .g,3° very close tal or
below0.4, the results are worse. The first conclusion we can draw tshleaenergy is
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Fig. 7. Comparison of energies and lower bound with respecbtruntime. (discussion in text).

more sensitive to parameters settings for larger disparikor "Teddy Small” the range
of comparable low energies faf is [0.4,0.9] whereas for teddy it i$0.7,0.8]. The
second observation is that parameters which give the logrestgy differ, depending
on the number of disparities. The optimal settingpdf is 0.76 (K = 54) and0.9
(K = 36 and18). The optimal probability for different stereo edggsis less sensitive
to the number of disparities. For these three examples &\ lG® = 3.0 gives low
energy. Taking this into account we chose the settings &safsi p¢ = 0.9(K < 40);
otherwise).78; and3° = 3.0. We do not claim that this is the optimal setting for TRW
for this type of energy, however, we believe that it is sudfitifor a comparison to
other methods. We believe that further testing of thesegiitiies might improve the
performance of TRW only marginal. A more significant imprment might come from
changing the structure of the trees, e.g. choosing longez@thains.

5 Conclusions

We have presented an experimental comparison of threeiaption techniques: Graph
cut, BP and TRW for highly connected graphs. We have choseertargy of the stereo
with occlusions problem. Despite high connectivity of thhaggh, we have shown that
message passing techniques can still be applied efficiently

In the past comparisons have only been carried out for velgtsimple 4-connected
grid-graphs, in particular for stereo without occlusio@sr findings are different to 4-
connected graphs where TRW outperforms graph cut, and esteavas the global
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Fig. 8. Testing TRW settingsfor the teddy data set wits (left column) andl8 (right column)
disparities. (discussion in text).

optimum for some problems. For highly connected graphtgraut clearly outper-
forms TRW and BP, both in terms of lower energy and lower emites with respect to
ground truth. We found that for all examples TRW is capableld&ining lower energy
than BP. However, as the connectivity increases, the spkeednwergence for TRW
becomes slower and slower, while the speed of BP is affeetidignificantly. This
suggests that a future direction of research is to try imipgpthe speed of TRW, like
by choosing trees in a different way or using a different sicte of updating messages.
We believe that if the speed is improved then TRW may stilpediorm graph cuts.
The experiments show that modeling occlusions gives arbstiteeo model. An-
other finding is that the difference between the lower bodntRwW and the minimum
energy of the best method is significant compared to 4-cdadegaphs. This indicates
the hardness of the problem, at least for algorithms basesbtuing LP relaxation
(such as TRW). Consequently we propose this energy as nebetg$or optimization
techniques and hope that it will motivate future researdhis area. Furthermore, we
also plan to analyse other vision problems with highly cate& graphs such as [15].

A Guarantee on lower bound

Let § be the parameter vector of the original energy function,f,¢k) = D,(k),
Opq(k, k') = Vpe(k, k). Messagesn define parameter vectéf for treeT € 7T as
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follows:

05 (k) = p(Tip ) p(k) + 2 gy (k)

9,5,(/% k') = épq(ka k') — mpq(k/) — mgp(k)

The message passing algorithm described above is thenadentivo the sequential
algorithm in [12] where the “node averaging” operation isfpamed as follows:

1. Computel, = Y rer 07 -
2. Setd]' (k) = p(T; p, k)0, (k).

The proof that the bounl" . (67') never decreases and there exists a limit point sat-
isfying WTA condition now proceeds in exactly the same waind42].
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