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Abstract. Algorithms for discrete energy minimization play a fundamental role
for low-level vision. Known techniques include graph cuts,belief propagation
(BP) and recently introduced tree-reweighted message passing (TRW). So far,
the standard benchmark for their comparison has been a 4-connected grid-graph
arising in pixel-labelling stereo. This minimization problem, however, has been
largely solved: recent work shows that for many scenes TRW finds the global
optimum. Furthermore, it is known that a 4-connected grid-graph is a poor stereo
model since it does not take occlusions into account.
We propose the problem of stereo with occlusions as a new testbed for mini-
mization algorithms. This is a more challenging graph sinceit has much larger
connectivity, and it also serves as a better stereo model. Anattractive feature of
this problem is that increased connectivity does not resultin increased complex-
ity of message passing algorithms. Indeed, one contribution of this paper is to
show that sophisticated implementations of BP and TRW have the same time and
memory complexity as that of 4-connected grid-graph stereo.
The main conclusion of our experimental study is that for ourproblem graph cut
outperforms both TRW and BP considerably. TRW achieves consistently a lower
energy than BP. However, as connectivity increases the speed of convergence
of TRW becomes slower. Unlike 4-connected grids, the difference between the
energy of the best optimization method and the lower bound ofTRW appears
significant. This shows the hardness of the problem and motivates future research.

1 Introduction

Many early vision problems can be naturally formulated in terms of energy minimiza-
tion where the energy function has the following form:

E(x) =
∑

p∈V

Dp(xp) +
∑

(p,q)∈E

Vpq(xp, xq) . (1)

SetV usually corresponds to pixels;xp denotes the label of pixelp which must belong to
some finite set. For motion or stereo, the labels are disparities, while for image restora-
tion they represent intensities. This energy is often derived in the context of Markov
Random Fields [1]: unary termsDp represent data likelihoods, and pairwise termsVpq

encode a prior over labellings. Energy minimization framework has been applied with
great success to many vision applications such as stereo [2–7], image restoration [2],
image segmentation [8], texture synthesis [9]. Algorithmsfor minimizing energyE are
therefore of fundamental importance in vision. In this paper we consider three different
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algorithms: Graph Cut, belief propagation (BP) and tree-reweighted message passing
(TRW). For the problem of stereo matching these methods are among the best perform-
ing optimization techniques [10]. A comparison of their advantages and disadvantages
is at the end of this section.

So far, comparison studies of these optimization methods have been rather limited
in the sense that they only consider energy functions with a particular graph struc-
ture [11–14]. The algorithms have been tested on the energy function arising in stereo
matching problem [2]. This energy is defined on a graph with a4-neighborhood sys-
tem, where nodes correspond to pixels in the left image. Occlusion are not modeled
since this gives a more complex and highly connected graph structure. The comparison
studies consistently concluded that the lowest energy is obtained by TRW, graph cuts
come second and BP comes third [11–14]. Very recently, it hasbeen shown [13] that
TRW even achieves the global optimum for standard benchmarkstereo pairs [10]. Con-
sequently, this problem, which was considered to be very challenging a decade ago, has
now largely been solved. The comparison studies also showedthat the proposed energy
gives large error statistics compared with state-of-the art methods, and consequently
progress in this field can only be achieved by improving the energy formulation itself,
as stated in [11, 13].

The main goal of this paper is to test how different optimization methods perform
on graphs with larger connectivity. Our study has two motivations. First, such energy
functions are becoming increasingly important in vision [3–7, 15]. They typically arise
when we need to match two images while imposing regularization on the deformation
field. Pixels (or features) in one image can potentially match to many pixels (features)
in the other image, which yields a highly connected graph structure.

Our second motivation is to understand better intrinsic properties of different al-
gorithms. One way to achieve this is to consider a very difficult problem: Algorithm’s
weaknesses then become more apparent, which may suggest ways of improving the
method. It is known that the presence of short cycles in the graph makes the problem
harder for message passing techniques. From this point of view, the problem that we are
considering is much more challenging than 4-connected gridgraphs. Another indicator
of the difficulty of our problem will be shown by our experiments.

We choose the energy function arising in the problem of stereo with occlusions [4].
In this case there are nodes corresponding to pixels in the left and right image, and
each node hasK + 4 neighbors whereK is the number of disparities. We propose this
problem as a new challenging test bed for minimization algorithms. Our experiments
also show that modeling occlusions gives a significantly better stereo model, since the
energy of the ground truth is close to the energy of the best optimization method, and
the value of the energy correlates with the error statisticsderived from ground truth.

When applying BP or TRW to this energy, we immediately run into efficiency
problems. There areK labels andO(NK) edges, so a straightforward implementa-
tion would takeO(NK2) memory and time for one iteration, even with the distance
transform technique in [16]. By exploiting a special structure of the energy we show
that both quantities can be reduced toO(NK). Thus, we get the same complexity as
that of message passing for the simple stereo problem without occlusions.
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We have tested the three different optimization methods on six standard benchmark
images [10]. The findings are different to the scenario of a 4-connected grid-graphs. For
our problem graph cut clearly outperforms message passing techniques, i.e. TRW and
BP, both in terms of lower energy and lower error rates wrt to ground truth.

It is worth mentioning that energy functions with similar graph structure were used
in other methods for stereo with occlusions [6, 7]. In both approaches each pixel is con-
nected toO(K) pixels in the other image. The former uses graph cuts as a minimization
algorithm, as the latter uses BP. However, [7] does not attempt to apply message passing
to the original function. Instead, an iterative technique is used where in each iteration
the energy function is approximated with a simpler one, and BP is then applying to a
graph with 4-neighborhood system.

Let us compare the three optimization methods.

Graph cuts were introduced into computer vision in the 90’s [17, 2] and showed a
major improvement over previously used simulated annealing [1]. The strength of graph
cuts is that for many applications it gives very accurate results, i.e. it finds a solution
with very low energy. In fact, in some cases it even finds aglobalminimum [17, 18]. A
major drawback of graph cuts, however, is that it can be applied only to a limited class
of energy functions. There are different graph cut-based methods: Expansion move [2],
swap move [2] or jump move [19]. Each has its own restrictionsthat come from the
fact that binary minimization problems used in the ”inner loop” must besubmodular.
Expansion move algorithm is perhaps the most powerful technique [14], but can be
applied to a smaller set of functions than swap move. Following [4], we use expansion
move version of the graph cut algorithm for the problem of stereo with occlusions.

The class of functions that graph cuts can handle covers manyuseful applications,
but in some cases the energy falls outside this class, for example, in the super-resolution
problem [20] This may also occur when parameters of the energy function are learned
from training data [21]. In this case one can either approximate a non-submodular func-
tion with a submodular one [15], or use more general algorithms. Two of such algo-
rithms are described below.

Belief propagation (BP).Max-product loopy belief propagation (BP) [22, 16] is a very
popular technique for approximate inference. Unlike graphcuts, BP can be applied to
any function of the form 1. Unfortunately, recent studies have shown that for a simple
stereo problem it finds considerably higher energy than graph cuts [11, 23, 12, 13].

Tree-reweighted message passing (TRW)was recently introduced by Wainwright et
al. [24]. Similar to BP it can be applied to any function of theform 1. However, there are
several important differences. First, on a simple stereo problem it finds slightly lower
energy than graph cuts [12]. Second, it maintains a lower bound on the energy that can
be used to measure how close we are to the energy of an optimal solution. Third, there is
a variant of TRW algorithm, called TRW-S, with certain convergence properties [12]. In
contrast, no convergence guarantees are known for BP algorithm. For our comparison
we use this variant of the TRW algorithm introduced in [12].
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2 Background

We begin by introducing our notation. LetG = (V , E) be an undirected graph with the
set of verticesV and the set of edgesE . We assume that for eachp ∈ V variablexp takes
values in some discrete setL = {0, . . . , K − 1} whereK is the number of labels3.

FunctionDp(·) in energy 1 is determined byK values. It is convenient to treat
Dp as a vector of sizeK × 1. Later we introduce other vectors of sizeK × 1 (in
particular, messagesm). NotationD′ = D + m denotes the usual sum of two vectors,
i.e.D′(k) = D(k) + m(k) for anyk ∈ L.

2.1 Overview of message passing algorithms

We now give an overview of BP and TRW algorithms. They both maintain messages
mpq for directed edgesp → q, which are vectors of sizeK × 1. The basic operation
of the algorithms ispassing a messagefrom nodep to its neighborq. The effect of
this operation is that messagempq gets updated according to a certain rule (which is
different for BP and for TRW).

An important choice that we have to make is the schedule of updating messages.
There are many possible approaches; for example, [11] uses parallel (or synchronous)
andacceleratedschedules, and [12] usessequentialschedule. In this paper we use the
latter one. One advantage of this schedule is that it requires half as much memory com-
pared to other schedules. For TRW algorithm sequential schedule also has a theoretical
advantage described in the end of this section.

Sequential schedule is specified by some ordering of nodesi(p), p ∈ V (which
can be chosen arbitrarily). During the forward pass, we process nodes in the order of
increasingi(p), and we send messages from nodep to all its forward neighbors (i.e.
nodesq with i(q) > i(p)). After that we perform similar procedure in the reverse
direction (backward pass). A precise description of the algorithm is given in Fig. 1. Note
that the operation of computing the minimum in step 1(b) can be computed efficiently,
for many interaction potentialsVp,q, in time O(k) using distance transforms [16].

0. Set all messages to zero.
1. For nodesp ∈ V do the following operation in the order of increasingi(p):
(a) Aggregation: computebDp = Dp +

P
(q,p)∈E

mqp

(b) Propagation: for every edge(p, q) ∈ E with i(p) < i(q) update messagempq as
follows:
- ComputeDpq = γpq

bDp − mqp

- Setmpq(xq) := minxp{Dpq(xp) + Vpq(xp, xq)}
2. Reverse the ordering: seti(p) := |V| + 1 − i(p).
3. Check whether a stopping criterion is satisfied; if yes, terminate, otherwise go to step 1.

Fig. 1. Sequential message passing algorithm.Function i : V → {1, 2, . . . , |V|} gives the
ordering of nodes. Weighting coefficientγpq is 1 for BP and a value in(0, 1] for TRW (see text).
Memory requirements. An important property of the sequential schedule is that for
each edge(q, r) it is enough to store message in only one direction. Namely, suppose

3 To simplify notation, we assumed that number of labels is thesame of all nodes. Note that in
general this is not required.
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that i(q) < i(r) andp is the node being processed. Then we store messagemqr if
i(q) < i(p), and messagemrq otherwise. The reverse messages are not needed since
we update them before they are used. The same space in memory can be used for storing
one of the two messages. The exact moment whenmqp gets replaced withmpq is when
edge(p, q) is processed in step 1(b).

The fact that memory requirements of message passing can be reduced by half was
first noted in [16] for a special case (bipartite graphs and simulation of parallel sched-
ule of updating messages). It was generalized to arbitrary graphs and larger class of
schedules in [12].
Weighting coefficients.Both BP and TRW algorithms have the structure shown in
Fig. 1. The difference between the two is that they use difference coefficientsγpq. For
BP algorithm we setγpq = 1. Next we describe how to choose these coefficients for
TRW algorithm.

First we select setT of trees in graphG such that each edge is covered by at least
one tree. We also select probability distribution overT , i.e. functionρ : T → (0, 1]
such that

∑
T∈T ρ(T ) = 1. SetT and distributionρ define coefficientsγpq as follows:

γpq = ρpq/ρp whereρp andρpq are the probabilities that treeT chosen underρ contains
nodep and edge(p, q), respectively.
TRW and lower bound on the energy.As shown in [24], for any set of messages
m = {mpq | (p → q) ∈ E} it is possible to compute a lower bound on the energy,
denoted asΦρ(m). In other words, for anym and for any configurationx we have
Φρ(m) ≤ E(x). FunctionΦρ(m) serves as a motivation for TRW: the goal of updating
messages is to maximizeΦρ(m), i.e. to get the tightest bound on the energy.

In general, TRW algorithms in [24] do not always increase thebound - function
Φρ(m) may go down (and the algorithm may not converge). In contrast, sequential
schedule proposed in [12] does have the property that the bound never decreases, as-
suming that the following condition holds: trees inT aremonotonicchains, i.e. chains
T = (p1, . . . , pm) such that sequence(i(p1), . . . , i(pm)) is monotonic. The algorithm
in Fig. 1 with this selection of trees is referred to assequential tree-reweighted message
passing(TRW-S).
Choosing solution.An important question is how to choose solutionx given messages
m. The standard method is to choose labelxp for nodep that minimizesD̂p(xp) where
D̂p = Dp +

∑
mqp and the sum is over edges(q, p) ∈ E . However, it is often the case

thatD̂p(xp) has several minima. In the case of TRW algorithm this is not surprising: if
upon convergence all nodes had unique minimum, then it wouldgive theglobal min-
imum of the energy, as shown in [24]. Clearly, we cannot expect this in general since
otherwise we could solve arbitrary NP-hard problems.

To alleviate the problem of multiple minima, we use the same technique as in [12].
We assign variables to nodesp in the order given byi(p). We select labelxp that mini-
mizesDp(xp) +

∑
i(q)<i(p) Vqp(xq, xp) +

∑
i(q)>i(p) mqp(xp).

2.2 Stereo with occlusions
In this section we review the energy function used in [4], adopting it to our notation.
For simplicity we restrict our attention to the case of two rectified cameras.

The set of nodes contains pixelsVL in the left image and pixelsVR in the right
image, soV = VL ∪ VR. Labelxp for pixel p denotes its disparity. We assume that
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xp ∈ L = {0, . . . , K − 1} whereK is the number of disparities. Pixelp with label
k corresponds to some pixelq in the other image which we denote asq = F(p, k).
Formally, coordinates ofq are defined as follows:

(qx, qy) =

{
(px − k, py) if p ∈ VL

(px + k, py) if p ∈ VR

Note thatq = F(p, k) impliesp = F(q, k), and vice versa.
The energy function in [4] does not use unary data termsDp; instead, all information

is contained in pairwise termsVpq . In order to describe them, first we need to define the
set of edgesE . It contains edges of two types:coherenceedgesEC andstereoedgesES

discussed below.
Coherence edges.These edges encode the constraint that disparity maps in theleft
and right images should be spatially coherent. SetEC contains edges(p, q) wherep, q
are neighboring pixels in the same image defined, for example, using 4-neighborhood
system.

For the purpose of comparison of minimization algorithms weused Potts termsVpq:

Vpq(xp, xq) = λpq · [xp 6= xq]

where[·] is 1 if its argument is true, and 0 otherwise. This term prefers piecewise con-
stant disparity maps. To get better results, however, it might be advantageous to use
terms that allow smooth variations, especially when the number of disparities is large.
A good choice could be truncated linear term.
Stereo edges.Each pixelp (except for pixels at image boundary) hasK incident edges
connecting it to pixelsF(p, 0), . . . ,F(p, K − 1) in the other image. To simplify nota-
tion, we denote edge(p, q) with q = F(p, k)) as either(p, k) or (k, q).

TermsVpk combine data and visibility terms defined in [4]. They can be written as

Vpk(xp, xq) =






Mpk if xp = xq = k

∞
if xp = k, xq < k

or xq = k, xp < k

0 otherwise

(2)

whereq = F(p, k) (see Fig. 2). ConstantMpk is thematching scorebetween pixelsp
andq. The expansion move algorithm in [4] can only be applied if all scores are non-
positive. Therefore,Mpk can be defined, for example, asMpk = min{||Intensity(p)−
Intensity(q)||2 − C, 0} whereC is a positive constant.

3 Efficient message passing for stereo with occlusions

In this paper we apply sequential message passing algorithmin Fig. 1 to the energy
function defined in the previous section. However, a naive implementation is extremely
inefficient. Indeed, consider first the memory requirements. We haveO(NK) edges
whereN is the number of pixels. For each edge we need to store a message which is a
vector withK components. This results inO(NK2) memory requirements.
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0

k

K-1

0

k

K-1

Mpk

88

Fig. 2. Structure of term Vpk(·, ·) for stereo edge(p, q) with q = F(p, k). Left column rep-
resents pixelp, right column pixel q. CostsV (k′, k′′) are shown on links from labelk′ to k′′.
The dashed linkk− k has costMpk, solid links have infinite costs. Links that are not shown
have cost zero.

We now show how this number can be reduced toO(NK). Consider messagempk

from pixel p to pixel q = F(p, k). It is obtained as the result of applying distance
transform to vectorDpk via edge termVpk (step 1(b) of the algorithm). Inspecting the
structure ofVpk we conclude that

mpk(k′) =






Apk = min{Ãpk, C̃pk} if k′ < k

Bpk = min{B̃pk + Mpk, C̃pk} if k′ = k

Cpk = min{Ãpk, B̃pk, C̃pk} if k′ > k

where

Ãpk = min
0≤k′<k

Dpk(k′) ; Bpk = Dpk(k) ; C̃pk = min
k<k′<K

Dpk(k′) (3)

Therefore, althoughmpk is a vector withK components, it can be stored using only
three numbers -Apk, Bpk andCpk. (In fact, even two numbers are sufficient. The mes-
sages are defined only up to an additive constant. Thus, it is enough to storeApk −Cpk

andBpk − Cpk, for example.)
To summarize, messages can be stored using4NK numbers, ignoring effects at

image boundaries (2NK numbers for coherence edges and2NK numbers for stereo
edges4). We also needNK numbers to store matching scoresMpk.

Now let us consider the complexity of one iteration. If we arenot careful, we may
getO(NK2) running time even with the trick described above. Next we show how to
implement the algorithm so that we getO(NK) complexity for one iteration.
Aggregation.Let us consider the aggregation step for pixelp. We need to sumK + 4
vectors of sizeK corresponding toK stereo edges and 4 coherence edges. A naive
implementation would takeO(K2) time. However, it is possible to reduce it toO(K)
using ideas from dynamic programming.

Summing messages in coherence edges is not a problem since their number is con-
stant. Thus, we focus on summing messages corresponding to stereo edges, i.e. com-
putingD =

∑K−1
k=0 mkp. Suppose that messagemkp is described by numbersAk, Bk,

4 Recall that in the sequential message passing algorithm foreach edge we need to store a
message only in one direction.
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Ck (we drop subscriptp for brevity). We can write

D =




B0

C0

. . .
C0

C0




+




A1

B1

. . .
C1

C1




+ . . . +




AK−2

AK−2

. . .
BK−2

CK−2




+




AK−1

AK−1

. . .
AK−1

BK−1




To compute D, we first compute sums̄Ak =
∑K−1

k′=k+1 Ak′ andC̄k =
∑k−1

k′=0 Ck′ for
k = 0, 1, . . . , K − 1 (by definition,ĀK−1 = C̄0 = 0). This can be done inO(K) time
using recursions

Āk−1 = Āk + Ak , C̄k+1 = C̄k + Ck .

Now computingD is easy:D(k) = Āk + Bk + C̄k.
Propagation.Now consider the propagation step 2(b) for pixelp. Updating messages
in coherence edges can be done inO(K) time using distance transform techniques
in [16]. We focus on updating messagesmpk in stereo edges for disparitiesk ∈ L
with i(F(p, k)) > i(p). In order to update messagempk, we need to compute num-
bersÃpk = min0≤k′<k Dpk(k′) andC̃pk = mink<k′<K Dpk(k′) (eq. 3). Direct cal-
culation of these minima would takeO(K) time, resulting inO(K2) complexity for
O(K) stereo edges. To improve the running time, we do the following precalcula-
tion. For vectorD̂p obtained after aggregation step 2(a), we compute valuesÂpk =

min0≤k′<k D̂p(k
′) andĈpk = mink<k′<K D̂p(k

′) (by definition,Âp0 = Ĉp,K−1 =
∞). This can be done inO(K) time using recursions

Âp,k+1 = min{Âpk, D̂p(k)}, Ĉp,k−1 = min{Ĉpk, D̂p(k)}.

Now valuesÃpk, B̃pk, C̃pk can be computed in constant time as follows:

Ãpk = γpkÂpk − Akp ; B̃pk = γpkD̂p(k) − Bkp ; C̃pk = γpkĈpk − Ckp (4)

whereAkp, Bkp, Ckp describe messagemkp in the reverse direction.

4 Experimental results

We tested the methods on four benchmark stereo images, whichwere used in the stereo
survey paper [10] and also two ground truth data sets with large disparity range [25]. All
data sets are available online5. Fig. 3-4 show left disparity maps produced by different
methods. More disparity maps can be found in [26]. Visually BP performed worse than
graph cut and TRW, and also the results of BP were always less smooth. Numerical re-
sults for all six data sets are summarized in table 1. All experiments give a concise and
clear message: Graph cut consistently outperforms TRW and BP, both in terms of lower
energy and smaller error rate wrt ground truth (BŌ andBD). For smaller number of la-
bels (K < 30) TRW clearly outperforms BP, otherwise TRW performs only marginally
better. For all examples the quality of the results is correlated with the obtained energy,

5 http://cat.middlebury.edu/stereo/
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Image Graph Cut TRW BP Ground Truth
BŌ BD E BŌ BD E BŌ BD E E (violation)

Tsukuba (K=16)1.84 6.50 -1536 2.62 7.15 -1534 7.52 16.10 -1495 not available
Sawtooth (K=19)0.56 6.26 -2071 0.65 7.12 -2065 3.43 10.39 -2020 -2027 (0.16%)

Venus (K=21) 1.20 6.11 -2118 1.55 8.12 -2109 10.31 14.88 -2021-2069 (0.47%)
Map (K=29) 0.38 5.32 -3460 0.58 7.20 -3407 1.21 9.64 -3374 -3410 (0.40%)

Teddy (K=54) 13.14 23.35 -1027314.88 26.95 -988915.25 27.63 -9834not available
Cones (K=56) 5.16 11.99 -139366.04 14.16 -136489.25 15.14 -13455not available

Table 1. Comparison table for six benchmark stereo pairs applied to the optimization meth-
ods: Graph cut, TRW and BP. Both TRW and BP were run for10.000 iterations, and graph
cut until convergence. The values forBŌ andBD correspond to the percentage of pixels in non-
occluded (BŌ) and textureless (BD) areas with a disparity error greater than1 wrt ground truth.
These are standard error measurements as proposed in [10]. Note that all energiesE are scaled
by10−3. The last column gives the energy of the ground truth. Note that a very small percentage
of pixels in the ground truth image violate the visibility constrained, which are ignored for the
computation of the ground truth energy. Furthermore, the energy of the ground truth can only be
computed for three data sets since for Tsukuba only one ground truth disparity map is available
and Teddy and Cones have undefined areas in the disparity map.(see text for discussion).

i.e. low energy corresponds to a low error statistics (BŌ andBD). Also, the energy of
the ground truth (last column table 1) lies within the range of the energy computed by
graph cut and TRW. For stereo without occlusions these two observations could not be
established: The energy of the ground truth is considerablylarger than graph cut and
BP, and low energy did not necessarily correspond to a good result [11, 13]. Therefore,
we can conclude that modeling occlusions gives a better stereo model. The fact that
the ground truth energy is larger than the best method does not contradict to this: The
problem is inherently ambiguous, which means that it is impossible to design an energy
function whose global minimum always gives a correct solution.

Plots of energy vs. runtime are shown in Fig. 5. For instance,one iteration of TRW
takes about3.26 sec. for teddy (image size450 × 375 andK = 54) on a Pentium IV
3.2 GHz processor. For all examples the discrete curve for graph cut is always below
the curve of TRW and BP. An interesting observation is that the relative performance
of TRW and BP depends on the number of labels: Larger connectivity makes TRW
algorithm much slower, while the speed of BP is affected lesssignificantly. Note, how-
ever, that when TRW is run long enough, it always outperformed BP (see table 1). It
is worth noting that neither TRW nor BP converged. BP gets into a loop after typically
50 − 200 iterations. In case of TRW the lower bound never decreases with time. Since
it is bounded from above, the lower bound must converge to a fixed number. In our
experiments, however, the lower bound of TRW continued increasing slowly even after
50000 iterations (for Tsukuba), which means that the algorithm still did not converge.

In order to understand how difficult our problem is, we lookedat how close the
energyEmin of the best method is to the lower boundEbound given by TRW. Since
absolute numbers are not very meaningful, we can consider the ratio Emin−Ebound

Ebound
.

If all energy values are non-negative, then this ratio givesan upper bound on the ap-
proximation factor. In our case, however, the energy can be negative due to numbers
Mpq ≤ 0. To solve this problem, we added constantNC to the energy whereN is the
number of pixels andC is defined in section 2.2. Since there are at mostN termsMpq
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Graph Cut (a) TRW (b) BP (c)

Fig. 3. Tsukuba image.The left disparity map produced by (a) graph cuts, (b) TRW, and (c) BP,
which is clearly the worst result.

Graph Cut (a) TRW (b) BP (c)

Fig. 4. Teddy image.The left disparity map produced by (a) graph cuts, which has the lowest
error statistics, (b) TRW, and (c) BP.

in the energy andMpq ≥ −C, this ensures that energy is always non-negative. Fur-
thermore, absolute energy values of the two models: stereo with and without occlusions
are related, if we use same matching costs and similar smoothness parameters. This is
confirmed by our experiments:Emin differ by about 3 times for the two models and
Tsukuba data set, i.e. they are of the same order of magnitude. For stereo without oc-
clusions ratiosEmin−Ebound

Ebound
were as follows [12]: Tsukuba (0.0037%), Map (0.055%),

Sawtooth (0.096%), and Venus(0.014%). For our model the corresponding values are:
Tsukuba (3.09%), Map (3.28%), Sawtooth (1.27%), and Venus(2.26%). These values
are in average two to three orders of magnitude larger for ourmodel. Consequently, we
may conclude that our problem is considerably harder than stereo without occlusions.

4.1 Settings for TRW

In order to implement TRW-S algorithm we need to make severalchoices. First, we
need to select the ordering of nodesi(p). In our implementation we used row-major
order for both left and right images, and nodes of the left images had smaller ordering
than nodes of the right image. Next, we need to choose the set of treesT . As described
in sec. 2, these trees must be chains that are monotonic with respect to orderingi(p).
We selected each horizonal and vertical line in the two images as a single chain; we
call themcoherence chains6. In addition, every stereo edge was declared to be a chain.

6 There are2(W + H) such chains whereW is the width of the image andH is the height.
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Fig. 5. Comparison of energies and lower bound with respect to runtime. (discussion in text).

It can be seen that with this choice every edge in the graph is covered by exactly one
tree. Finally, we need to select probability distributionρT over treesT ∈ T . As our
experiments show, this distribution affects the results ofthe algorithm significantly.

Intuitively, coherence and stereo chains are quite different, therefore they should be
assigned different probabilities. The difference betweencoherence and stereo chains,
however, is not the only source of asymmetry. Indeed, consider some nodep and an
incident stereo edge(p, q) whereq = F(p, k). TermVpk for this edge has a very special
structure; in particular, there is one preferred label, namely labelk. Recall that if labels
of pixels p and q arek then this edge contributes matching costMpq to the energy
function, otherwise the penalty is either 0 or∞. Thus, it could be beneficial to select
probabilities that would favor labelk over other labelsk′ ∈ L − {k} for the chain
corresponding to edge(p, q), and we will show that this improves the performance
of TRW. Since the scheme described in sec. 2 does not allow this (each tree has a
single probability which does not depend on labels), we now extend the tree-reweighted
algorithm to allow probabilities that depend on labels. Consider the case when each
edge is covered by exactly one chain. Let us define a probability distribution over trees
for each nodep ∈ V and labelk ∈ L. We denote it asρ(T ; p, k). We require that∑

T∈T ρ(T ; p, k) = 1 for all p, k. In addition,ρ(T ; p, k) must be positive if treeT
contains nodep, and zero otherwise. Using these probabilities, we define coefficients
γpq(k) as follows:γpq(k) = ρ(T ; p, k) whereT is the tree containing edge(p, q). The
algorithm in Fig. 1 is then modified as follows: In step 1(b) vectorDpq is computed as
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Dpq(k) = γpq(k)D̂p(k) − mqp(k) for all k ∈ L. We claim that the modified algorithm
has the same properties properties as the sequential tree-reweighted message passing
method in [12]. In particular, the lower bound is guaranteednot to decrease, and there
exists a limit point satisfying the weak tree agreement condition [26].

Let us apply this scheme to the problem of stereo with occlusions. Consider node
p ∈ V and labelk ∈ L. This node is contained inK + 2 trees (unless it is a pixel
near the image boundary): vertical coherence chain, horizontal coherence chain andK
stereo chains. We set probabilitiesρ(T ; p, k) as follows:

ρ(T ; p, k) =





ρC if T is a coherence edge

ρS1 if T = (p,F(p, k))

ρS2 if T = (p,F(p, k′)) for k′ 6= k

.

Note that there must hold2ρC + ρS1 + (K − 1)ρS2 = 1. Due to this constraint we
are left with two degrees of freedom for the choice of the treeprobabilities:ρC andβS

= ρS1/ρS2. Note that in the TRW algorithm theγpk in eqn. 4 has to be replaced by:
γpk = ρS1 for B̃pk andγpk = ρS2 for Ãpk andC̃pk.

We examined different settings ofρC andβS for three data sets. We discovered that
the settings depend on the number of labels. For a thorough investigation we re-scaled
the teddy image with a factor of1.5 and3 (”Teddy Small”), which correspond to a
maximum disparity of36 and18 respectively. Fig. 6 shows the energy of TRW for a
large range of values forρC andβS , where TRW was run for a fixed amount of700
iterations. An obvious observation is that for extreme settings, e.g.βS very close to1 or
below0.4, the results are worse. The first conclusion we can draw is that the energy is
more sensitive to parameters settings for larger disparities. For ”Teddy Small” the range
of comparable low energies forρC is [0.4, 0.9] whereas for teddy it is[0.7, 0.8]. The
second observation is that parameters which give the lowestenergy differ, depending
on the number of disparities. The optimal setting ofρC is 0.76 (K = 54) and0.9
(K = 36 and18). The optimal probability for different stereo edgesβS is less sensitive
to the number of disparities. For these three examples a value of βS = 3.0 gives low
energy. Taking this into account we chose the settings as follows:ρC = 0.9(K < 40);
otherwise0.78; andβS = 3.0. We do not claim that this is the optimal setting for TRW
for this type of energy, however, we believe that it is sufficient for a comparison to
other methods. We believe that further testing of these probabilities might improve the
performance of TRW only marginal. A more significant improvement might come from
changing the structure of the trees, e.g. choosing longer stereo chains.

5 Conclusions

We have presented an experimental comparison of three optimization techniques: Graph
cut, BP and TRW for highly connected graphs. We have chosen the energy of the stereo
with occlusions problem. Despite high connectivity of the graph, we have shown that
message passing techniques can still be applied efficiently.

In the past comparisons have only been carried out for relatively simple 4-connected
grid-graphs, in particular for stereo without occlusions.Our findings are different to 4-
connected graphs where TRW outperforms graph cut, and even achieves the global
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Fig. 6. Testing TRW settingsfor the teddy data set with54 (left column) and18 (right column)
disparities. (discussion in text).

optimum for some problems. For highly connected graphs, graph cut clearly outper-
forms TRW and BP, both in terms of lower energy and lower errorrates with respect to
ground truth. We found that for all examples TRW is capable ofobtaining lower energy
than BP. However, as the connectivity increases, the speed of convergence for TRW
becomes slower and slower, while the speed of BP is affected less significantly. This
suggests that a future direction of research is to try improving the speed of TRW, like
by choosing trees in a different way or using a different schedule of updating messages.
We believe that if the speed is improved then TRW may still outperform graph cuts.

The experiments show that modeling occlusions gives a better stereo model. An-
other finding is that the difference between the lower bound of TRW and the minimum
energy of the best method is significant compared to 4-connected graphs. This indicates
the hardness of the problem, at least for algorithms based onsolving LP relaxation
(such as TRW). Consequently we propose this energy as new test bed for optimization
techniques and hope that it will motivate future research inthis area. Furthermore, we
also plan to analyse other vision problems with highly connected graphs such as [15].
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