
Experimental Evaluation of

a Parametric Flow Algorithm

Maxim A. Babenko 1 Andrew V. Goldberg2

June 2006

Technical Report

MSR-TR-2006-77

We study a practical implementation of the parametric flow algorithm of Gallo, Grigoriadis,

and Tarjan. We describe an efficient implementation of the algorithm and compare it with a

simpler algorithm.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1Moscow State University, Moscow, Russia. Part of this work was done while the author was visiting
Microsoft Research. Email: mab@shade.msu.ru.

2Microsoft Research, 1065 La Avenida, Mountain View, CA 94062. Email: goldberg@microsoft.com;
URL: http://www.research.microsoft.com/~goldberg/.

1 Introduction

The parametric flow problem is an important combinatorial optimization problem with many

applications [1, 2, 4, 5, 7, 8, 11, 12, 13, 15, 17, 18, 16, 19, 21].

The best bound for the problem is achieved by an algorithm of Gallo, Grigoriadis, and Tar-

jan [6] (GGT). This algorithm uses a clever recursion to amortize a parametric flow computation

over a push-relabel maximum flow computation and matches the O(nm log(n2/m)) bound for the

latter [9]. Here n and m are the number of vertices and arcs in the input network, respectively.

As the algorithm is fairly sophisticated, some implementation issues are not explicitly discussed

in [6]. In this paper we discuss all implementation issues and present experimental results which

highlight trade-offs and bottlenecks of the algorithm. We also compare the algorithm with a

simple algorithm that does not use sophisticated amortization.

A very different algorithm has been proposed in [22, 23]. Although its running time bound is

worse than that of GGT, the authors claim that the algorithm has a good practical performance.

2 Definitions and Notation

In this paper we consider directed graphs. Given a graph G = (V, E), let n = |V | and m = |E|.

A capacity function is a function u from arcs to positive reals.

A cut is a partitioning of vertices S, S = V − S. A cut is nontrivial if both S and S are

nonempty. The capacity of the cut is defined by

u(S, S) =
∑

(v,w)∈E∩(S×S)

u(v, w).

An s-t cut is a partitioning of vertices (S, S) such that s ∈ S and t ∈ S.

Given two vertices s and t, an s-t flow is a real-valued function f on arcs that satisfies capacity

constraints: for all arcs a, 0 ≤ f(a) ≤ u(a) and conservation constraints for all vertices other that

s and t: the sum of flows over incoming arcs is equal to the sum over outgoing arcs.

In a parametric flow problem we consider, capacities of arcs adjacent to s and t are functions

of a parameter λ: Arcs (s, vi) have capacities ai + biλ and arcs (wj , t) have capacities aj − bjλ

for nonnegative real-valued a’s and b’s. Note that the former are nondecreasing, and the latter

non-increasing functions of λ. Arcs not adjacent to s and t have constant capacities. When talking

about a flow maximum flow of a minimum cut in a parametric network, we mean the flow or the

cut of a specific value of λ.

It is well-known that the maximum flow value in a parametric network is a continuous piece-

wise linear function of λ. Each linear segment of the function between two breakpoints, λ′ and

λ′′, corresponds to a cut that remains a minimum cut for λ′ ≤ λλ′′. The parametric flow problem

is to find the breakpoints and the corresponding cuts. Two important cases of the problem is to

find the minimum and the maximum breakpoint.

1

3 Push-Relabel Algorithm

The GGT algorithm is based on the push-relabel algorithm [10] for the maximum flow problem.

The push-relabel algorithm uses two basic operations, push and relabel, and maintains a flow

and integral distance labels on vertices. The important properties of the algorithm are that the

distance labels are monotonically increasing, the value of each distance label changes by O(n),

and the work of the algorithm is charged to the distance label increase. Using the dynamic tree

data structure [20], the algorithm can be implemented to run in O(nm log(n2/m)) time.

We assume that the reader is familiar with the push-relabel algorithm as discussed in [10] or

[6].

4 Largest Breakpoint

In this section we describe two algorithms for finding the largest breakpoint: a simple algorithm

and its GGT variant.

First consider the simple algorithm. We maintain two values, λ1 and λ3, such that λ1 ≤ λ3

and the desired breakpoint is between these values. See [6] for the initial values of λ1, λ3. We

repeatedly increase the value of λ1 until this value reaches the largest breakpoint.

Note that the trivial cut (V − {t}, {t}) is a minimum cut for λ3. Denote the capacity of this

cut, as a function of λ, as a3 + λb3.

We do the following step (i): Compute a minimum cut for λ1 and let the capacity of this cut

be a1 + λb1. If a1 = a3 and b1 = b3 stop and output λ3. Otherwise replace λ1 by the solution of

a1 + λb1 = a3 + λb3 (i.e., (a3 − a1)/(b3 − b1)) and repeat.

One can show that the algorithm terminates in O(n) iterations; see [6].

The GGT algorithm is a variant of the simple algorithm that uses the push-relabel algo-

rithm [10] and amortizes the work of multiple flow computations. This is possible because the

value of λ1 monotonically increases, and because of this the algorithm can be restarted from one

flow computation to another in O(m) time while keeping the previous label values. Thus the only

work not amortized over distance label increases is the time spend restarting the computations,

which is bounded by O(nm).

5 Computing All Breakpoints

A simple algorithm for computing all breakpoints works recursively. At each call, the algorithm

gets an interval (λ1, λ3) and cuts corresponding to λ1 and λ3, and outputs all breakpoints in the

interval. Initial values of λ1, λ3 which are less then and greater than all breakpoints, respectively,

are easy to find (see [6]).

Let a1 + λb1 and a3 + λb3 be parametric capacities of the two input cuts. Set λ2 = (a3 −

a1)/(b3 − b1) and compute the minimum cut corresponding to λ2. If the parametric capacity of

2

the cut is not equal to a1 + λb1 or a3 + λb3, then λ2 is not a breakpoint, and we recursively

find all breakpoints on (λ1, λ2) and on (λ2, λ3). Otherwise, it is a breakpoint, and we output

it. Then, if the capacity is equal to a1 + λb1, we recurse on the interval (λ2, λ3). In the other

case, we recurse on (λ1, λ2). When making a recursive call for the interval (λ1, λ2), we contract

the vertices on the sink side of the minimum cut corresponding to λ2. Similarly, when making

the other recursive call, we contract vertices on the source side. Each call of the algorithm is

dominated by a minimum cut computation, and one can show that the number of calls is O(n).

Next we describe the GGT algorithm. The algorithm uses amortization. One way to use

amortization in the context of the simple algorithm is to note that when recursing on (λ2, λ3),

one can use the distance labels (on the sink side of the computed cut) from the current flow

computation and amortize the cost of such recursive calls over one maximum flow computation.

Note that the distance labels on the source side of the cut are “infinite” so the other recursive

call cannot be amortized. To obtain the desired bound, the GGT algorithm makes sure that the

cost of the flow computation on the bigger graph is amortized.

To achieve this, the algorithm runs two flow computations in parallel; forward from the source

and backward from the sink. Assume that the forward computation finishes first; the other case

is symmetric. Then if the sink side of the resulting cut has at least as many vertices as the source

side, we disregard the result of the backward computation. Otherwise, we finish the backward

computation and keep the labels on the source side of the cut, which is at least as big as the sink

side. This way the GGT algorithm amortizes the cost of the bigger recursive call at each level,

leading to the desired time bound. See [6] for details.

6 Implementation Issues

Our code was written in C++ and compiled using the cygwin g++ compiler with -O4 optimization

option. The machine used in the experiments was HP Evo D530 with a 3.2 GHz Pentium 4 CPU

and 1 GB RAM, running Windows XP Service Pack 2.

AS the initial point of our parametric flow codes, we used an implementation of the push-

relabel algorithm described in [3]. In particular, we used the gap and the global update heuristics;

see [3].

We implemented two versions of the Gallo-Grigoriadis-Tarjan algorithm: the complete version

(GGT) that uses amortization and bidirectional flow computations and the simple version (SIMP),

that starts each maximum flow from scratch and uses the forward computation only. We also

implemented a variant GGT-M of the GGT algorithm that computed the maximum breakpoint

using amortization (but not bidirectional flow computations, which are unnecessary) and SIMP-

M that does not use amortization. The general algorithms use graph contraction and the “M”

variants do not.

3

Dealing with precision The above discussion assumes unlimited precision arithmetic. Because

of the multiplicative factors in parametric capacities, one may need high precision to distinguish

between adjacent breakpoints. However, using high-precision arithmetic is expensive, and in

some applications one may not need to distinguish between breakpoint values which are close to-

gether. Our approach is to use 64-bit integer arithmetic and distinguish only between breakpoints

which are far enough apart. Our implementation can miss some breakpoints, but for each missed

breakpoint we find a value that is close. Note that using (even double precision) floating point

arithmetic does not avoid numerical issues and may lead to correctness and termination problems.

Our implementation starts by selecting an integer multiplier M and multiplying all capacities

by M . The value of M is selected so that for the highest value of λ the total capacity of arcs

from the source is less than 262, and for the lowest value of λ the same holds for the arcs into the

sink. This choice of M guarantees that flow excesses do not exceed 262, overflow errors will be

detected, and our correctness checker, which needs an extra bit of precision, can be implemented.

During the algorithm initialization, when calculating the initial range, we round λ1 down and

λ3 up to the nearest integer. During the algorithm execution, we round the value of λ2 down.

Note that because of the rounding, a value x we output may not be a breakpoint. However,

the following properties hold.

1. If we output a value x, then there is a breakpoint within in the interval [x− 1/M, x+1/M].

2. For every breakpoint y, we output a value in [y − 1/M, y + 1/M].

3. For every two distinct x1 and x2 we output, there are corresponding minimum cuts (X1, X1),

(X2, X2) such that parametric capacities of the two cuts are different.

Note that if we restrict the precision of values we output, then this is the best we can do.

In addition to outputting the approximate breakpoint parameter values, we build a data

structure containing the corresponding cuts. Since the cuts are nested, the data structure is an

ordered list of vertices, with a pointer to the last vertex of the source-side set for each cut. Note

that if all distinct breakpoints are at least 2/M apart, the cuts correspond to the true breakpoint

values, and can be used to compute the exact breakpoint values.

7 Experimental Results

7.1 Problem Families

We used problem generators and problem families from the First DIMACS Network Flow Chal-

lenge [14]. The problem families we use are ac-dense, rmf-long, rmf-wide, wash-line,

wash-rlg-long, wash-rlg-wide. We make the problems parametric as follows.

For all problems except ac-dense (complete acyclic graphs), we randomly partition interior

vertices into two groups and add arcs from s to the first group and from the second group to

4

4 + λ

8 1

8 1

8 1

8 1

8

8

8

8

8

8

8

8

8

8

8

8

s t

Figure 1: Asymmetric graph with x = 4. For non-parametric version, take λ = x

t. Then, for all problems, we parameterize the source and the sink arcs by choosing a and b

coefficients independently at random from the range [0, 10, 000].

Since the number of breakpoints is bounded by the number of parameterized arcs, adding such

arcs introduces potential for many breakpoints. Note that if the number of breakpoints is very

small, theoretical advantages of the GGT algorithm are small as well.

Finally, we use the following asym problem generator that produces asymmetric problems

which are more difficult for the forward push-relabel algorithm implementation than for the reverse

one. The non-parametric version of the asym problem with parameter x, illustrated on Figure 1,

has a source s with the only arc (s, v) of capacity 2x. The vertex v is the origin of x disjoint

paths, each of length x, with arcs of capacity 2x. The end vertex of each path is connected to t

by an arc of capacity 1.

Intuitively, the forward push-relabel algorithm moves a large flow excess along one of the

paths, saturates the arc to the sink, returns the rest of the excess to v, and takes the next path.

The reverse algorithm moves a unit of flow along each path all way to the source. Without

heuristics, the forward algorithm runs in Θ(x3) time and the reverse algorithm in O(x2) (linear)

time. Things are a little more complicated because of the heuristics used by the implementation,

but the forward algorithm is significantly slower than the reverse algorithm.

The asym generator produces a parametric version of the problem by making the (s, v) arc

capacity equal to x + λ.

7.2 Results

Tables 1 – 7 contain experimental data. For each problem family, we give running times (top) and

the number of relabel operations (bottom) for algorithms GGT and SIMP that find all breakpoints,

algorithms GGT-M and SIMP-M that find the maximum breakpoint, and the algorithm MF that

5

n m # bp MF GGT SIMP GGT-M SIMP-M

15488 205298 7334 0.153 4.951 2.478 0.339 0.330
29143 345424 396200 46441 70742

30589 409056 9129 0.267 9.215 4.654 0.812 0.815
58245 1371254 1339468 183420 266585

65536 884196 6788 0.512 23.289 11.642 3.376 3.557
127601 7869499 6625234 1335628 1858846

130682 1773774 3573 1.117 61.901 30.332 12.391 12.395
362427 29581882 23292892 5785413 7300493

270848 3696578 1063 10.418 161.004 75.728 36.154 33.607
7281712 90397185 65670911 17918257 20825991

527796 7231274 713 56.456 358.037 159.192 80.703 73.261
41753770 193141563 136617222 39847861 44305014

Table 1: Results for rmf-long family. Running time in seconds (top), # of relabel operations
(bottom).

finds a maximum flow given the maximum breakpoint capacities. We average running times and

operation counts over 10 runs for each problem size; for randomized generators, the runs use

different seeds.

We use operation counts as a machine-independent measure of performance. In our exper-

iments, the operation counts are strongly correlated with the running times, showing that our

implementations are efficient.

First we discuss all problem families except asym. Problem families ac-dense, rmf-wide,

wash-line have a small number of breakpoints. The wash-rlg-long and wash-rlg-wide

families have a relatively large number of breakpoints, about 10% or more of the number of

vertices. The only exception is the largest problem in the latter family, which has somewhat

fewer breakpoints, about 6.5%. For the rmf-long family, the number of breakpoints is relatively

large for smaller problem sizes and decreases to moderate (compared to the number of vertices)

for larger sizes.

We make the following observations:

• Usually GGT is slower than SIMP, but by less than a factor of two. The cost per operation

is higher for GGT, but not by much.

• Usually GGT-M and SIMP-M have comparable running times. While the former usually

performs fewer operations, the cost per operation is somewhat higher.

• While on some problem families MF is not that much faster than GGT-M and SIMP-M, on

others it is significantly faster; e.g., wash-rlg-long, on which the performance gap seems

to increase with the problem size.

6

n m # bp MF GGT SIMP GGT-M SIMP-M

8214 110454 6 0.139 1.342 0.640 0.378 0.409
71100 385043 271531 109967 168155

16807 227724 6 0.315 3.276 1.760 1.134 1.182
129233 834678 726784 337661 484712

32768 446436 8 0.757 7.254 4.273 2.587 3.004
297633 2026043 1691530 789100 1149462

65025 889752 9 0.1829 19.001 11.237 7.146 7.381
665122 5763333 4487802 2107138 2660582

123210 1691390 9 4.670 38.229 26.445 12.497 17.090
1490775 12103598 10420263 3541627 6307795

295788 4076634 7 22.653 133.271 89.614 36.998 61.690
6096589 38929374 26750363 9165453 19658993

Table 2: Results for rmf-wide family. Running time in seconds (top), # of relabel operations
(bottom).

• Usually GGT (SIMP) is not too much slower than GGT-M (SIMP-M). The biggest difference

is about an order of magnitude, for the smallest rmf-long problems, where the number of

breakpoints is large. Usually there is less of a difference. For the wash-rlg-wide family,

where the number of breakpoints grows linearly with n, the ratio between GGT and GGT-M

stays at around a factor of 6.

• Comparing GGT to SIMP, we see that operation counts show that the additional overhead

of GGT amortization is not too big – the ratio between running times and operation counts

for GGT and SIMP are relatively close.

The asym generator is somewhat artificial, designed to show that GGT can be much faster

than SIMP. Note that GGT is faster than MF. This is due to the fact that MF solves the input

problem in the “hard” direction, where as GGT uses the bidirectional approach. Also note that

GGT-M is a unidirectional algorithm, and it looses to GGT.

The asym family brings up an interesting point: the push-relabel algorithm is not symmetric

in a sense that its running time may be very different from that for running the algorithm on the

reversed graph. It would be interesting to get an efficient natural algorithm for which the two

running times are similar. (Here we exclude running the forward and the reverse algorithms in

parallel.)

8 Conclusions

We described an efficient implementation of the GGT algorithm. Although the parametric maxi-

mum flow problem is more general, and sometimes requires significantly more time to solve than

7

n m # bp MF GGT SIMP GGT-M SIMP-M

16386 163456 1668 0.082 3.639 2.074 0.528 0.451
30564 1043884 1106323 252708 257422

32770 327296 3179 0.157 8.282 4.956 1.418 1.139
61462 2881401 3048085 762869 742890

65538 654976 6162 0.340 19.976 12.899 3.636 2.988
123011 7988775 8797262 2051302 2059408

131074 1310336 12164 0.675 51.340 31.951 9.137 7.403
245986 23481775 23271570 5181809 5225486

262146 2621056 23666 1.376 131.171 80.803 23.390 19.001
491132 67041926 61556732 13594976 13542167

Table 3: Results for wash-rlg-long family. Running time in seconds (top), # of relabel opera-
tions (bottom).

n m # bp MF GGT SIMP GGT-M SIMP-M

65538 649216 8333 0.484 18.698 13.267 4.392 4.238
120678 2856875 3343559 1217765 1431843

131074 1298432 16697 1.089 44.320 31.079 9.462 10.226
240888 6850661 8013778 2381789 3420479

262146 2596864 31577 2.301 95.948 68.007 24.151 23.574
481708 14874371 16831065 6528741 7847399

524290 5193728 34054 4.660 204.623 138.809 52.890 55.922
964572 32471877 36889676 14044047 19571322

Table 4: Results for wash-rlg-wide family. Running time in seconds (top), # of relabel opera-
tions (bottom).

the maximum flow problem, the GGT algorithm is able to solve problems with millions of arcs

and thousands of breakpoints in minutes.

We constructed the asym problem family on which GGT is much faster than SIMP. It would

be interesting to construct a family with the same property which, in addition, is more robust

and natural. Also, it would be nice to construct a problem family where GGT-M will be much

faster than SIMP-M, something that the asym family does not achieve.

Our experiments suggest that on many problem types, the additional amortization of GGT

is not necessary, as the SIMP implementation is competitive or faster. On the other hand, the

amortization hurts GGT only by a factor of two in memory usage and usually by less than a factor

of two in running time. It is unclear, and probably application-specific, if the extra robustness

of the theoretically superior algorithm is sufficient to recommend GGT over SIMP for real-life

applications.

The result of [6] can be interpreted as saying that in the worst case, the complexity of the

8

n m # bp MF GGT SIMP GGT-M SIMP-M

4098 146417 8 0.101 0.756 0.424 0.202 0.215
19401 57031 49915 17380 24161

8194 407448 7 0.351 1.889 1.170 0.600 0.619
51219 83080 98445 39433 52940

16386 1109979 6 1.048 4.735 3.012 2.046 2.126
99308 127886 154890 89669 121346

32770 3072052 6 3.472 14.936 10.585 6.867 7.864
213810 167297 362233 207524 304405

65538 8634321 6 14.803 51.934 33.814 22.970 26.909
630820 613118 803636 489045 740314

Table 5: Results for wash-line family. Running time in seconds (top), # of relabel operations
(bottom).

parametric flow problem is not much worse than that of the maximum flow problem. Our results

can be interpreted as saying that in practice, one will see a noticeable difference in performance

if the number of breakpoints is large, but the performance ratio will be much smaller than the

number of breakpoints.

Acknowledgments

We would like to thank Bob Tarjan for helpful discussions.

References

[1] J. R. Brown. The Sharing Probkem. Oper. Res., 27:324–340, 1979.

[2] P. Chaillou, P. Hansen, and Y. Manieu. Best Netwotk Flow Bounds for Quadratic Knapack Problem.
In Proc. NETFLO 83, Piza, Italy, 1983.

[3] B. V. Cherkassky and A. V. Goldberg. On Implementing Push-Relabel Method for the Maximum
Flow Problem. Algorithmica, 19:390–410, 1997.

[4] W. H. Cunningham. Optimal Attack and Reinforcement of a Network. J. Assoc. Comput. Mach.,
32:549–561, 1985.

[5] M. J. Eisner and D. C. Severance. Mathematical Techniques for Efficient Record Segmentation in
Large Shared Database. J. Assoc. Comput. Mach., 23:619–635, 1976.

[6] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A Fast Parametric Maximum Flow Algorithm and
Applications. SIAM J. Comput., 18:30–55, 1989.

[7] G. Gallo, P. Hammer, and B. Simeone. Quadratic Knapsack Problem. Math. Prog., 12:132–149, 1980.

[8] A. V. Goldberg. Finding a Maximum Density Subgraph. Technical Report UCB/CSD/84/171, Com-
puter Science Division, U.C. Berkeley, 1984.

[9] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc.
Comput. Mach., 35:921–940, 1988.

9

n m # bp MF GGT SIMP GGT-M SIMP-M

512 261630 6 0.228 1.739 0.904 0.490 0.547
3419 8167 8018 3178 4891

722 520560 7 0.464 3.863 2.049 1.034 1.136
75328 12679 14258 5272 7642

1024 1047550 6 1.139 7.957 4.325 2.304 2.676
8956 18568 18846 7317 11619

1444 2083690 7 2.742 20.020 10.893 5.338 6.012
14866 32382 34858 11993 18504

2048 4192254 7 7.157 47.740 26.782 12.932 14.504
23306 44208 49730 17673 25934

2888 8337654 8 17.943 115.609 65.968 32.660 37.231
34151 67481 73396 27889 39821

Table 6: Results for ac-dense family. Running time in seconds (top), # of relabel operations
(bottom).

[10] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Canceling Negative Cycles.
In Proc. 20th Annual ACM Symposium on Theory of Computing, pages 388–397, 1988.

[11] D. Gusfield. On scheduling transmissions in a network. Technical Report YALEU DCS TR 481,
Department of Computer Science, Yale University, 1986.

[12] T. Ichimori, H. Ishii, and T. Nishida. Optimal Sharing. Math. Prog., 23:341–348, 1982.

[13] A. Itai and M. Rodeh. Sceduling transmissions in a network. J. Algorithms, 6:409–429, 1985.

[14] D. S. Johnson and C. C. McGeoch. Network Flows and Matching: First DIMACS Implementation
Challenge. AMS, 1993. Proceedings of the 1-st DIMACS Implementation Challenge.

[15] N. Megiddo. Optimal Flows in Networks with Multiple Sources and Sinks. Math. Prog., 7:97–107,
1974.

[16] J. C. Picard and H. D. Ratliff. Minimum Cuts and Related Problems. Networks, 5:357–370, 1975.

[17] J.C. Pickard and M. Queyranne. A Network Flow Solution to Some Nonlinear 0-1 Programming
Porblems, with Applications to Graph Theory. Networks, 12:141–159, 1982.

[18] J.C. Pickard and M. Queyranne. Selected Applications of Minimum Cuts in Networks. INFOR,
20:394–422, 1982.

[19] J.B. Sidney. Decomposition Algorithm for Single-Machine Sequencing with Presedence Relations and
Defferal Costs. Oper. Res., 23:283–298, 1975.

[20] D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. J. Comput. System Sci.,
26:362–391, 1983.

[21] H.S. Stone. Critical load factors in two-processor distributed systems. IEEE Trans. Soft Eng., 4:254–
258, 1978.

[22] B. Zhang, J. Ward, and Q. Feng. A Simultaneous Parametric Maximum-Flow Algorithm for Finding
the Complete Chain of Solutions. Technical Report HPL-2004-1101, HP Labs, Palo Alto, CA, 2004.

[23] B. Zhang, J. Ward, and Q. Feng. Simultaneous Parametric Maximum-Flow Algorithm for with Vertex
Balancing. Technical Report HPL-2005-121, HP Labs, Palo Alto, CA, 2005.

10

n m # bp MF GGT SIMP GGT-M SIMP-M

19884 119290 1 0.476 0.293 0.620 0.806 1.081
407901 29846 422836 631808 885508

40003 240004 1 1.356 0.590 1.656 2.265 3.314
1131037 60033 1161071 1791513 2692093

79527 477148 1 3.526 1.140 4.109 5.751 8.378
3078210 119330 3137899 4808728 7135863

160003 960004 1 11.694 2.584 13.093 18.896 28.171
9323077 240061 9443142 14604877 22047238

319228 1915354 1 29.562 4.860 31.976 47.459 66.375
25227626 478924 25467134 40314573 55640790

640003 3840004 1 109.042 12.284 115.454 176.031 113.656
72658042 960121 73138169 116345221 73429121

Table 7: Results for asym family. Running time in seconds (top), # of relabel operations (bot-
tom).

11

