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ABSTRACT
Energy harvesting offers a promising alternative to solve the sus-
tainability limitations arising from battery size constraints in sensor
networks. Several considerations in using an environmental energy
source are fundamentally different from using batteries. Rather
than a limit on the total energy, harvesting transducers impose a
limit on the instantaneous power available. Further, environmen-
tal energy availability is often highly variable and a deterministic
metric such as residual battery capacity is not available to charac-
terize the energy source. The different nodes in a sensor network
may also have different energy harvesting opportunities. Since the
same end-user performance may be achieved using different work-
load allocations at multiple nodes, it is important to adapt the work-
load allocation to the spatio-temporal energy availability profile in
order to enable energy-neutral operation of the network. This pa-
per describes power management techniques for such energy har-
vesting sensor networks. Platform design considerations as well as
power scaling techniques at the node-level and network-level are
described.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems

Keywords
energy harvesting, power scaling, Heliomote

1. INTRODUCTION
Despite significant research effort, energy consumption contin-

ues to remain a key challenge during the design of battery-powered
electronic systems [8]. In emerging application domains such as
wireless sensor networks, the problem is particularly severe due to
extra-stringent constraints on cost, form factor, and desired system
lifetime.

While power management techniques optimize theconsumption
of energy by the system, a complementary approach is to augment
the energysupplyof the system by harvesting additional energy
from the environment at runtime. Due to their physically embed-
ded nature, sensor networks are especially well-suited to exploit
ambient energy sources often present in abundance. While nu-
merous harvesting modalities have been demonstrated (e.g., solar,
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vibrational, biochemical, motion based,etc.), which provide the
ability to extract energy from the environment, they must be effi-
ciently integrated into the design and operation of the sensor net-
work to translate the harvested energy into increased application
performance and system lifetime.

Compared to a battery-powered system, the power management
considerations for an energy harvesting sensor network change,
both at the node level and at the network level. First, due to the
inherent variability present in environmental energy sources, mod-
eling the energy availability itself is significantly more involved
than a simple description of the residual battery energy at all nodes.
Second, conventional energy optimization metrics no longer hold in
an energy harvesting scenario. For instance, a commonly used ob-
jective in battery-powered sensor networks is to maximize network
lifetime under a total energy constraint. Clearly, this is not applica-
ble if energy harvesting is allowed since the amount of energy avail-
able itself depends on the time duration for which the system op-
erates. Instead, a more relevant design objective might be to maxi-
mize the performance of the network while operating in an energy-
neutral manner to ensure near-perpetual lifetime. Achieving this
requires new harvesting-aware power management techniques that
balance the sensor network’s load by matching the spatio-temporal
energy consumption profile of the network to the corresponding
environmental energy availability profile.

1.1 Paper Overview
This paper addresses the issue of power management for energy

harvesting sensor networks. We first discuss hardware design con-
siderations for energy harvesting modules, including strategies for
efficiently extracting, storing, and using energy from harvesting
transducers as well as features required for supporting harvesting-
aware power management. Next, we describe a high-level model
for characterizing time-varying environmental energy sources and
use it to analyze the conditions under which energy-neutral oper-
ation of a node can be guaranteed. Based on this, we describe
harvesting-aware power management techniques for a single sensor
node that explicitly consider the temporal dynamics of the energy
source and the non-ideal characteristics of energy storage elements.
Finally, we discuss power management methods for a network of
harvesting enabled nodes. In addition to node-level issues, these
methods also account for the spatial variation in harvesting oppor-
tunity across nodes and the relationship between global network
performance and the energy consumed by individual nodes.

2. DESIGNING HARVESTING SYSTEMS
This section discusses the various considerations and tradeoffs

involved in the design of an energy harvesting module. While our
discussion is tailored towards solar harvesting, these design consid-
erations hold for other harvesting modalities as well.

The two primary design goals for any harvesting module are ex-
treme energy efficiency and high reliability. Constraints on form-



Figure 1: Measured I-V characteristics of the Solar World 4-
4.0-100 solar panel at two different times of the day.

factor and cost, as well as limitations in the underlying harvesting
technology (e.g.,low cost solar panels have a conversion efficiency
of around 5%), result in very little energy output from the trans-
ducer. In order to make as much of this energy available to the
load as possible, it is paramount for the harvesting module itself to
be ultra energy efficient. Reliability is crucial since we are design-
ing the power supply sub-system, which is the lifeline of the entire
embedded system. Any error or mis-configuration in the harvest-
ing module can cut off power to the load or worse, permanently
damage it, rendering the system completely unusable.

2.1 Maximizing energy conversion efficiency
Solar energy is harvested using transducers (commonly referred

to as solar cells) that operate based on the photovoltaic effect to
supply electrical power to an attached load. As a power source, so-
lar cells behave very differently from batteries. The measured I-V
curve of the 4-4.0-100 solar panel from Solar World [11] is shown
in Figure 2.1. It is clear that unlike batteries, solar panels behave as
voltage-limited current sources with the operating point (i.e., out-
put voltage and current) determined by the electrical impedance
imposed by the load. Also, as marked in the figure, there is an
operating point on the I-V curve where maximum instantaneous
power is delivered by the solar panel. To maximize the total energy
output over the course of the system’s lifetime, the panel should be
operatedas close as possible to this maximal power point (MPP)
for as long as possible. However, this is not simple to achieve since
the MPP depends on several time-varying parameters such as solar
irradiance, panel temperature,etc.

A commonly used technique to ensure MPP operation is to iso-
late the load (i.e.,sensor node) from the solar panel using a switch-
ing regulator. The switching characteristics of the regulator de-
termine the effective impedance seen by the panel and hence, the
operating point on the I-V curve. Since the regulator’s character-
istics can be software-controlled, the system can track the MPP as
it changes using a perturb-and-observe approach. However, the en-
ergy benefits of MPP tracking using this method might be offset by
the energy consumed by the extra tracking circuitry itself. An alter-
native approach used in the Heliomote [7] solar harvesting module
is to clamp the outputs of the panel to a secondary battery, which
fixes the panel’s operating point. The authors demonstrate that, by
carefully choosing the panel and battery,near-MPPoperation can
be obtained. Although sub-optimal from an MPP tracking point of
view, this approach is attractive since it is virtually overhead free.

2.2 Reducing wastage during energy storage
The energy harvested from the solar panel can be stored in either

batteries or electrochemical double layer capacitors (also known as
ultracapacitors). Batteries have a higher energy density and lower
leakage, while ultracapacitors have a higher round trip efficiency
and offer higher endurance in terms of charge-discharge cycles.
While an energy storage hierarchy using an ultracapacitor and a
battery is possible [2], the tradeoff is a decrease in efficiency due to
the increased complexity/overhead of energy storage management.

The choice of battery also involves several tradeoffs. Li+ based
batteries are more efficient than NiMH and have a lower self-discharge
rate. However, they also require a more complicated charging cir-
cuit. Another important consideration is battery cycle-life. For ex-
ample, NiMH batteries last for about 500 cycles when subjected
to repeated 100% discharge. However, battery endurance increases
exponentially as the depth of discharge (DoD) decreases. A battery
that is cycled at 10% DoD will last for over 5000 cycles before it
reaches end-of-life [6]. Therefore, the energy harvesting module
should try to enforce shallow charge-discharge cycles to preserve
battery endurance. Finally, since the amount of power generated
by the solar panel is very limited, the round trip efficiency of the
battery becomes crucial. System-level workload scheduling strate-
gies that eliminate the round trip to the battery by utilizing solar
energy directly from the panel significantly reduce energy wastage.
Several other battery-related factors, which play a crucial role due
to the nature of the target system/application are described in [7].

2.3 Measurement and control circuitry
The control circuitry in the harvesting module oversees the oper-

ation of the solar panels, manages energy storage, and routes power
to the sensor node. There are several requirements that this circuitry
should satisfy. First, the harvesting module should have inbuilt en-
ergy measurement capabilities to monitor the terminal voltage and
supply current of the solar panel as well as the battery. Further,
the sensor node should be able to query the harvesting module for
the instantaneous voltage and power values. This enables the sen-
sor node to learn the solar power availability pattern, and build and
train a power macro-model that provides information about future
power arrival. We will see in the next section how the sensor node
can use such models to drive its power management policies.

A crucial aspect is the degree of control that the attached sensor
node has over the various settings of the harvesting module. Al-
lowing a sensor node to change the harvesting module’s settings
at run-time amounts to placing the sensor node in charge of its
own power supply subsystem, which is dangerous from a reliabil-
ity point of view. Instead, it is advisable to use dedicated hardware
to implement the control, which would make the harvesting mod-
ule operate autonomously without any support (or chance of mis-
configuration) from the sensor node and also more energy efficient.

The harvesting module should have good power supply filtering
especially if switching regulators are used for MPP tracking, since
these cause a significant amount of load ripple and may affect the
operation of the analog and radio frequency circuitry of the sensor
node. Finally, since the primary goal is efficiency, the harvesting
circuit should be made as application- and system- specific as pos-
sible. Building a general harvesting circuit that works with several
solar panels and charges multiple types of batteries is a poor design
decision because of the efficiency loss that inevitably accompanies
such a general purpose solution.

3. SINGLE NODE POWER MANAGEMENT
A key consideration that affects power management in an en-

ergy harvesting node is that instead of minimizing the energy con-
sumption, the lifetime may be maximized by operating in anenergy
neutralmode: consuming only as much energy as harvested. This



strategy can enable an indefinitely long lifetime, limited only by
the hardware longevity. Reducing the power consumption below
energy neutrality will not increase the lifetime further.

3.1 Harvesting Theory
We develop the following theory to develop a fundamental un-

derstanding of the energy neutral mode. LetPs(t) denote the har-
vested source power output at timet andPc(t) denote the power
consumption. To model the energy buffer, we consider the two pa-
rameters typically used for batteries: storage efficiency,η, and a
constant leakage currentρleak. The condition for energy neutrality
may be expressed as:

η

∫ T

0

[Ps(t) − Pc(t)]
+dt −

∫ T

0

[Pc(t) − Ps(t)]
+dt

−

∫ T

0

ρleakdt + B0 ≥ 0 ∀T ∈ [0,∞) (1)

whereB0 is the energy stored of the energy buffer at timet = 0 and
the function[x]+ = x if x > 0 and is zero otherwise. In modeling
loss due to battery inefficiency, we have considered the worst case
scenario: energy production times are completely non-overlapping
with the consumption times and this causes all the harvested energy
to be first stored in the buffer and then used. This explains the
multiplication byη for the times whenPs(t) > Pc(t).

The following general model for a energy harvesting source was
developed in our prior work [4]:

DEFINITION 3.1 ((ρ, σ1, σ2) FUNCTION:). A non-negative, con-
tinuous and bounded functionP (t) is said to be a(ρ, σ1, σ2) func-
tion if and only if for any value of positive and finite positive real
numbersτ andT , the following are satisfied:

∫ τ+T

τ

P (t)dt ≤ ρT + σ1 (2)

∫ τ+T

τ

P (t)dt ≥ ρT − σ2 (3)

For instance, usingt for time, if the harvested energy profilePs(t)
is a (ρ1, σ1, σ2) function, then the average rate at which energy
is available over long durations becomesρ1, and the burstiness is
bounded byσ1 andσ2. The consumption profile,Pc(t), may be
modeled as a(ρ2, σ3) function, where the parametersρ2 andσ3

are used in a constraint of the form (2) to place an upper bound on
consumption while no constraint is placed on the minimum con-
sumption.

The condition for energy neutrality, equation (1), leads to the
following theorem, based on the energy production, consumption,
and energy buffer models discussed above.

THEOREM 3.2 (ENERGY NEUTRAL OPERATION). Consider
a harvesting system in which the energy production profile is char-
acterized as a(ρ1, σ1, σ2) function, the load is characterized by a
(ρ2, σ3) function, and the energy buffer is characterized by param-
etersη for storage efficiency, andρleak for leakage. The following
conditions are sufficient for the system to achieve energy neutrality:

ρ2 ≤ ηρ1 − ρleak (4)

B ≥ ησ1 + ησ2 + σ3 (5)

B0 ≥ ησ2 + σ3 (6)

where B denotes the capacity of the energy buffer andB0 is the
initial energy stored in the buffer.

The proof is presented in [3].

This theory has two important design implications. First, it spec-
ifies the size of the energy buffer required to achieve energy neu-
trality for given bustiness bounds on energy production and con-
sumption. This size can be directly used in designing the system.
Using a larger battery will not yield increase in sustainable perfor-
mance or lifetime, though it may help make up for errors in learning
the model parametersρ1, ρ2, σ1, σ2, andσ3. Second, the above
theorem characterizes the sustainable performance level that may
be supported in energy neutral mode. This is significant for sys-
tem design both in hardware and software. At the hardware level,
if the sustainable energy consumption supported is unacceptable,
changes may be made to increase the harvested energy. In soft-
ware, this level will help determine the appropriate power scaling
required based on the relationship of the energy consumption to
system performance.

The above theory used data regarding the energy production and
consumption profiles. The buffer size and stored energy levels were
also relevant information. Thus, the additional capabilities for en-
ergy tracking capabilities and the integrated storage methods dis-
cussed in section 2 are essential to power management in harvest-
ing systems.

3.2 Practical Power Scaling Method
We now discuss a power management method to achieve energy

neutral operation. This method has three objectives: learn the har-
vested energy profile, adapt the performance level to the learned
harvesting opportunity with tolerance for errors in learning, and
further optimize the performance scaling for battery characteris-
tics. The last objective is important because it helps minimize the
energy loss due to battery inefficiency.

In the above discussion,ρ2 referred to the sustained power con-
sumption at the node, with a busrtiness parameterσ3. A power
scaling method must be chosen to adapt the power consumption to
the sustainable level. We choose to use duty-cycling between active
and low power modes for the purpose of performance scaling. Most
current low power devices provide at least one low power mode in
which the node is practically inactive and power consumption is
negligible. Other performance scaling methods may of course be
considered when available.

3.2.1 Energy and Performance Model
Given that we use a duty cycling approach for power scaling, we

need to relate the duty cycle,D to the power consumption and to
the system performance. We view the system performance in terms
of system utility to the user. Suppose the utility,U(D), at a duty
cycleD is given as follows:

U(D) = 0, if D < Dmin (7)

U(D) = k1D + α if Dmin ≤ D ≤ Dmax (8)

U(D) = k2 if D > Dmax (9)

It is graphically represented in Figure 2. This is a fairly general
model and the specific values ofDmin andDmax may be deter-
mined as per application requirements. As an example consider a
sensor node designed to detect intruders crossing a periphery. The
fastest and the slowest speeds of the intruders may be known, lead-
ing to a minimum and maximum sensing delay tolerable, and these
result in the relevantDmin andDmax for the sensor node. The en-
ergy usage may be related toD as follows. Suppose the time axis
is discretized into slots of duration∆T , and the duty cycle adapta-
tion calculation is carried out over a window ofNw slots. Define
discretized versions of the energy profile variables, with the index
i ranging over{1, .., Nw}: Ps(i) – the power input from the har-
vested source in sloti, Pc – the power consumption of the load,
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Figure 2: Duty cycle and application utility relationship.

when in active mode1, D(i) – the duty cycle used in sloti, and
B(i) – the residual battery energy at the beginning of sloti. Figure
3 shows two possible cases forPs(i) in a time slot - it may either
be lower than or higher thanPc, as shown on the left and right re-
spectively. WhenPs(i) is lower thanPc, some of the energy used
comes from the battery, while whenPs(i) is higher thanPc, all
the energy used is supplied directly from the harvested source. The
crosshatched area shows the energy that is available for storage into
the battery while the hashed area shows the energy drawn from the
battery. When energy is stored into the battery, some of it is lost
due to storage inefficiency.
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Figure 3: Energy calculation for direct use and with storage.

3.2.2 Performance Maximization Objective
The performance objective is: maximize the average utility over

the time windowNw, subject to a minimum duty cycle,Dmin,
desired in any slot and the energy neutrality constraint.

We can write the energy used from the battery in any sloti as:

B(i) − B(i + 1) = ∆TD(i)[Pc − Ps(i)]
+ −

η∆TPs(i){1 − D(i)} − η∆TD(i)[Ps(i) − Pc]
+

In the above equation, the first term on the right hand side mea-
sures the energy drawn from the battery whenPs(i) < Pc, the next
term measures the energy stored into the battery when the node
is in sleep mode, and the last term measures the energy stored in
active mode ifPs(i) > Pc. For energy neutral operation, we re-
quire the battery at the end of the window ofNw slots to be greater
than or equal to the starting battery. Clearly, battery level will go
down when the harvested energy is not available and the system
is operated from stored energy. However, the windowNw is judi-
ciously chosen such that over that duration, we expect the system
to be energy neutral. For instance, in the case of solar energy har-
vesting,Nw could be chosen to be a twenty-four hour duration,
corresponding to the diurnal cycle in the harvested energy. This is
an approximation since an ideal choice of the window size would
be infinite, but a finite size must be used for analytical tractability.
Further, the battery level cannot be negative at any time.

Stating the above constraints quantitatively, we can express the
calculation of the optimal duty cycles as an optimization problem:

max
D(1)...D(Nw)

[

1

Nw

Nw
∑

i=1

D(i)

]

(10)

1Most low power systems have a sleep mode power consumption
several orders of magnitude lower than the active mode and hence
a zero sleep mode power is assumed.

B(i) − B(i + 1) = ∆TD(i)[Pc − Ps(i)]
+ (11)

−η∆TPs(i){1 − D(i)}

−η∆TD(i)[Ps(i) − Pc]
+ ∀i

B(1) = B0 (12)

B(Nw + 1) ≥ B0 (13)

D(i) ≥ Dmin ∀i

whereB0 is the starting residual battery energy andi ∈ {1, ..., Nw}.
This is a linear optimization problem and while it can be solved us-
ing any standard linear programming toolbox, we exploit the struc-
ture in the problem to develop a computationally tractable solution
for embedded implementation in [1].

3.2.3 Performance Scaling Algorithm
The above optimization uses the harvested power levels in all

time slots of the adaptation window. Clearly, these are not known in
advance when adapting the duty cycle and hence must be predicted
by the power scaling algorithm. Further, the prediction process
may have errors and the algorithm must adjust its power scaling
decisions to the real time energy measurements.

We use a prediction model based on an Exponentially Weighted
Moving-Average (EWMA) filter. The method is designed to ex-
ploit the diurnal cycle in solar energy but at the same time adapt to
weather and seasonal variations. A historical summary of the en-
ergy generation profile is maintained. While the storage data size
is limited to a vector length ofNw values in order to minimize the
memory overheads of the power management algorithm, the win-
dow size is effectively infinite as each value in the history window
depends on all the observed data up to that instant. A window size
duration is chosen to be 24 hours and each slot is taken to be 30
minutes as the variation in generated power level is assumed to be
small within a 30 minute duration. This yieldsNw = 48. On a
typical day, we expect the energy generation to be similar to the
energy generation at the same time on the previous days. The value
of energy generated in a particular slot is maintained as a weighted
average of the energy received in the time-slot at that time of the
day during all observed days. The weights are exponential, result-
ing in decaying weights for older data. Letx(i) denote the value of
energy generated in sloti as observed at the end of that slot. Then,
the historical average maintained for each slot is given by:

x̄(i) = αx̄(i − 1) + (1 − α)x(i) (14)

whereα is a weighting factor, and̄x(i) is the historical average
value maintained for sloti. Sinceα is less than 1, the contribu-
tion of older values ofx(i) becomes progressively smaller. This is
referred to as an EWMA filter. Other prediction methods may be
employed to suit the energy generation profile. The average value
derived for a slot is treated as an estimate of predicted energy value
for the slot corresponding to the same slot of the previous day.

The predicted values at the start of a day are used to choose the
duty cyclesD(i)’s for the entire day by solving the optimization
problem considered in section 3.2.2. However, since the predicted
energy values may deviate significantly from the true energy gen-
eration profile on a given day, the duty cycles are adapted in real
time to the measured energy values for ensuring energy neutrality.

Denoted the initial duty cycle assignments for each time sloti
computed using the predicted energy values asD(i) = {1, ..., Nw}.
First we compute the difference between predicted power levelPs(i)
and actual power level observed,P ′

s(i) in every sloti. Then, the ex-



cess energy in sloti, denoted byX, can be obtained as follows:

X =

{

∆P if P ′

s(i) > Pc

∆P − D(i)∆P
(

1 − 1
η

)

if P ′

s(i) ≤ Pc

where∆P = Ps(i)−P ′

s(i). If X < 0, we want to reduce the duty
cycles used in the future slots to make up for this energy shortfall.
We reduce the duty cycles for time slots whose energy usage is
most inefficient,i.e., slots whose harvested energy is the least and
most energy comes from the battery. This is accomplished by iter-
atively reducing the duty cycle toDmin in future slots with lowest
harvested energy, until the total reduction equalsX. If, X ≥ 0,
we iteratively increase duty cycles toDmax in slots which have the
most efficiency use of harvested energy.

3.2.4 Evaluation
We evaluated our adaptive duty cycling algorithm based on en-

ergy data gathered in a residential area in Los Angeles for a period
of 72 days. Based on this data, we compared the performance of our
adaptive power management strategy against the optimal approach
and a näıve approach in term of their harvested energy utilization.
For the optimal approach, we use future energy profile to compute
the exact duty cycles that maximize utility, and this gives us a upper
bound on the optimal performance. For the naı̈ve approach, duty
cycle is kept constant within each window ofNw slots and is com-
puted by taking the ratio of energy stored and active mode energy
consumption over a window ofNw slots:

D =
η

NwPc

Nw
∑

i=1

Ps(i)

We compare the performance of our dynamic duty cycle adaptation
algorithm to the two extremes with varying battery efficiency. Fig-
ure 4 shows the fraction of solar energy utilized by each of three
methods, usingDmax = 0.8 andDmin = 0.3. The figure shows
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Figure 4: Performance with varying battery efficiency.
that our proposed adaptive algorithm achieves near optimal perfor-
mance and has significant advantage over a fixed duty cycle ap-
proach that does not try to maximize the use of energy in the slots
when it is harvested.

4. NETWORK POWER MANAGEMENT
We now consider a distributed network in which some or all the

nodes have a harvesting opportunity. The performance potential
from an energy environment depends on the spatio-temporal varia-
tion in the energy availability across the network. The distribution
of this energy in space and time significantly affects the network
performance. For instance, if large amounts of energy are available
but concentrated only in a small region of the network, the nodes
in regions without energy supply will limit the total useful lifetime
of the network, beyond which any available energy in other regions
may not be useful.

Clearly, each node in the network must achieve energy neutral
operation for the entire network to be energy neutral. However,
multiple workload allocations among the nodes may yield the same
system utility. Hence, it is important to choose a workload alloca-
tion that is aligned with the spatio-temporal characteristics of en-
ergy harvesting opportunity. For instance, the utility to the user
may depend on the amount of data delivered but not on the spe-
cific routes used to deliver that data. A harvesting aware power
management strategy will use routes which allow maximum data
throughput while maintaining energy neutrality.

The performance itself is characterized using application specific
metrics. Theoretical abstractions to model energy neutral operation
in a network were considered in [3]. Below, we consider the routing
application as an example and present a harvesting aware routing
scheme which attempts to align the allocation of routing energy
consumption with the harvested energy profiles across the network.

4.1 Harvesting Aware Routing
Routing in wireless ad-hoc networks relying on battery power

typically uses battery energy based routing cost metrics [10, 9].
The objective is to choose routes in such a way so as not to de-
plete batteries at certain centrally located nodes which happen to
lie along many shortest-hop paths but distribute the routing load
uniformly across the network to leverage the total battery resource
for maximizing lifetime.

In an energy harvesting network, battery awareness is not suffi-
cient to select the best routes. For instance consider a solar energy
harvesting network. Suppose one of the network nodes, nodeA
say, happens to be located under shade at all times and has no solar
harvesting opportunity, while a nodeB has a higher harvesting op-
portunity. On a given day, if nodeA has higher battery reserve than
B, a battery aware strategy will choose to route through nodeA
while an environment aware strategy may know that the battery at
nodeB has been used more since it has higher harvesting potential
and can be used to save energy at nodeA even when it has a lower
battery reserve because nodeB will likely get replenished.

We thus propose a harvesting energy based cost metric for rout-
ing in such networks. Suppose a an environment learning algorithm
is available at each node that yields the expected rate of energy har-
vesting,ρi, at nodei. Assume a total ofN nodes in the network.
However, it must be noted that considering harvested energy alone
is not enough since certain nodes may not have any harvesting op-
portunity and hence the battery would have to be depleted at those
nodes. Also, it is possible that the network is not operating in an
energy neutral mode and the performance desired require more en-
ergy to be consumed that harvested from the environment: making
the harvested energy a supplement to the battery supply rather than
a complete replacement. Additionally, the battery level also helps
model the variability in consumption loads among nodes with sim-
ilar harvesting potential. Thus, we also include the residual battery
level Bi at nodei in the routing cost metric. Combining these pa-
rameters, define an energy potential,Ei, at nodei as follows:

Ei = w ∗ ρi + (1 − w) ∗ Bi (15)

wherew is a weight parameter,0 ≤ w ≤ 1 and is typically set
close to 1. A low value ofw may be relevant in networks powered
predominantly by batteries with a small harvesting opportunity. We
use the inverse of the energy potential at a node as the communi-
cation cost for all links into that node. In other words, in the di-
rected graph representing each node as vertex,vi and each possible
wireless hop between any pair of nodesi andj as an edgeeij , we
associate the following cost for each edge into nodei:

cki(eki) = 1/Ei ∀k ∈ {k|eki ∈ Ecomm} (16)



whereEcomm represents the set of edges across which radio com-
munication is feasible for the deployed network topology and the
radio hardware used. Thus, we have a graph representation of the
wireless network with each link represented as a weighted directed
edge. Several algorithms are available to find the lowest cost routes
for given source destination pairs over such a graph, and distributed
versions of such algorithms have also been developed. In our prior
work, [5], we use a distributed Bellman-Ford method for finding
the lowest cost routes. The precise network protocol to learn the
harvesting opportunity and exchange the relevant information for
finding the environment aware routes is presented in [5]. The fun-
damental motivation for using such a routing strategy is to align
the routing workload allocation with the harvesting opportunity at
different nodes.

4.1.1 Evaluation
To evaluate the performance of the proposed routing protocol,

light intensity data was collected over a region with vegetation in a
forest reserve. Parts of this region are affected by shadows which
move with the time of day providing a spatio-temporally varying
energy environment for our evaluation. A network ofN = 100
nodes with equal starting battery reserves was simulated as de-
ployed in this environment with nodes placed randomly such that
50% of them are in regions severely affected by shade and the
remaining in sunlit regions for most of the day. Random source
destination pairs are generated for the simulation of our proposed
routing strategy and a battery aware routing strategy. The time for
node deaths is recorded as a performance metric. Figure 5 shows
the node death times for the two methods. Clearly, the harvesting
aware method increases the useful longevity of the network.
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Figure 5: Evaluation of harvesting aware routing strategy.

5. CONCLUSIONS
The emergence of energy harvesting technologies is enabling a

viable supplement to battery power in several applications. There
are however several issues in efficiently using the harvested en-
ergy and providing performance guarantees under highly variable
harvested energy output. We developed theoretical abstractions to
help model the dynamics of harvested energy in a computationally
tractable framework. Our models provided fundamental insights
into harvesting system design such as the battery size requirements
and sustainable performance levels. We also developed practical
power management methods for harvesting systems and showed
how these methods can be applied specifically to solar energy. We
discussed these methods both for a single device and for a network
of harvesting devices.

While energy harvesting has been previously used to supplement
battery power, systematic performance guarantees based on a quan-

titative characterization of the energy source have not been pro-
vided. Our work provides tools to exploit the multitude of emerg-
ing harvesting technologies in a performance aware manner. Future
research involves applications of our harvesting theory to more so-
phisticated power scaling methods both for individual nodes and for
networks. Interesting research problems also exist in determining
appropriate prediction methods for various harvesting modalities
other than solar energy and modeling the energy consumption for
various applications.
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