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ABSTRACT
We describeTinker, a high-level design tool that aids the explo-
ration of the design space in sensor network applications. Tinker
is targeted at applications that require real-time assignment of se-
mantic meaning to data, rather than just data storage. Tinker lets
users write simple programs, as if they were manipulating indi-
vidual scalar values, and simulates those computations over con-
tinuous streams of sensor data. Tinker does not require (or allow)
users to specify details such as routing algorithms or retransmission
policies, freeing system designers to rapidly iterate among differ-
ent broad designs before fleshing out details of the one that looks
most promising. We demonstrate Tinker’s use in the design and
deployment ofElevatorNet, our distributed sensor application that
retrofits buildings with per-floor displays of an elevator’s position,
determined using barometric altimetry.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering—Design Tools and Tech-
niques

General Terms
Design, Experimentation

Keywords
Sensor networks, design tools

1. INTRODUCTION
There has been an explosion of interest in sensor networks, yet

there is still a relative shortage of sensor network applications that
use collected datain situ. In other words, the primary design goal
in many sensor networks is datatransport, not datainterpretation.
Systems designed to record data for later study are valuable, but
they seem to fall short of the vision held by many sensor networks
researchers: early position papers [2, 3] dreamed of systems that
were constantlyreacting to their environment, not just recording
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it. Data collection systems treat sensor data only as a packet pay-
load. Absent any requirement to assign semantic meaning to data
in situ, a sensor network is essentially a traditional ad-hoc wireless
network, albeit one with significant energy constraints and with a
high ratio of nodes to human maintainers.

Of course, interesting systems have been built that performin
situ data interpretation [13, 15, 1, 5]). Those that do physical ac-
tuation in response to stimuli are perhaps the best examples (e.g.,
[6, 18]). But, such applications seem (to us) in the minority. Our
interest is piqued by applications that close the loop of sensing, in-
terpretation, and actuation; we’d like to create tools that make those
applications easier to build.

In this paper, we describeTinker, a tool for exploring the design
space of sensor network applications that assign semantic mean-
ing to the data they collect. That is, given a trace of real sensor
inputs and a desired output, Tinker lets designers explore different
algorithms to find one that works best. “Best” has an application-
specific meaning, defined by the designer—perhaps the most re-
silient to outliers, the least degraded by missing data, or the fastest
to respond after a change.

Tinker is not a simulator in the sense of TOSSim [10], EmStar
[4], or Avrora [17]. Such simulators are crucial for working out
protocol details, finding implementation bugs, and so forth. Tin-
ker, in contrast, is a higher level design tool meant for usebefore
code-writing begins. It encourages designers think more abstractly
about the steps required to transform input into useful output, and
rapidly iterate through design alternatives without the burden of
working through the implementation details of each one. Real-
code simulators are commonly used to answer questions like “How
many packets were lost due to transient routing loops?” or “How
many collisions were avoided using this new MAC layer?”. Tin-
ker is meant to answer questions like “Is it better to transmit every
time-series value back and average it at the base station, or trans-
mit exponentially weighted moving averages computed locally on
the node?” Tinker is complementary to real-code simulators, not a
replacement.

The remainder of this paper is organized as follows. Section 2
describes Tinker and demonstrates some of its features through
simple examples. Section 3 describesElevatorNet, a real system
we built with the help of Tinker. ElevatorNet can report the posi-
tion of a building’s elevator in real-time using barometric altimetry.
Its design was non-obvious, and Tinker-based simulations were vi-
tal in finding the right algorithm to reliably convert the output of
pressure sensors to a floor number. In Section 4 we review related
work, and give our conclusions in Section 5.



2. TINKER
Tinker is a collection of Python [11] modules that create an im-

perative language for simulating the computations to be performed
over values in a data stream as they arrive. It is also a library of
simple operators that are commonly used in sensor network data
processing: algebraic operators, tracking of minimum or maximum
values in a series, computed exponentially weighted moving aver-
ages, and so forth. For example, the following code tracks the dif-
ference between the most recent value and the historical maximum:

p = compute.ColumnName(dataset, "Pressure")
max = compute.Max(dataset, p);
diff = compute.Sub(dataset, p, max);

The code above reads like a computation on scalar values: we
first pull a value out of a dataset and assign it top, then call the
functionsMax andSub on the returned values. However, the values
being computed are not scalar; the code above actually describes a
series of computations executed each time new data arrives.p is not
a single pressure reading, but an array of them. Similarly, the local
variables created (e.g.,max anddiff) do not contain scalar values,
but automatically-generated references to an array that grows to
contain all the output values. (Since Tinker is a Python library, the
normal Python rules of syntax and scope apply. For example, the
local variablesmax anddiff are created implicitly when they are
used.)

An easy way to visualize the data flow is as a spreadsheet: both
the inputs (p) and the outputs (max, diff) are column names, and
each row represents a time step. Tinker requires each computa-
tional step to take one (or a few) scalar values as inputs, and gener-
ate a scalar value as output.

New Tinker operators are easy to write. For example, theMax
operator looks like this:

class Max(Computer):
def __init__(self, data, target):
self.max = None;
self.result=data.map_one_col(target, self);

def func(self, value):
if self.max == None or self.max < value:
self.max = value;

return self.max;

User-supplied operators likeMax are all derived from Tinker’s
baseComputer class. Each must supply an initialization function
init and the computation itself, in thefunc function. In this

example, the initialization function takes three arguments. The first
two (self anddata) are housekeeping variables common to all op-
erators.target is the operand—the name of the column of input
data over which a maximum should be computed. Operators can,
optionally, be stateful, as in the example above: the local variable
self.max is initialized toNone when the operatorMax is instan-
tiated, and referenced later when data values are issued. Tinker
operators can also take any number of parameters when they are
instantiated.

In Tinker, any operator’sfunc is called once for each row, with
that row’s value from thetarget column passed as an argument.
In the case of theMax operator, the function compares the most
recently issuedvalue with its internal stateself.max. If the max-
imum value is undefined (i.e., this is the first value in the column
to be seen), or if the current value is larger than the previous maxi-
mum, the maximum is updated. The Tinker framework saves each
intermediate value for analysis, described in more detail in Sec-
tion 2.1.

2.1 Input and Output
Tinker was written with a general application design strategy in

mind. The assignment of semantic meaning to data can not be done
before understanding the nature of both the sensors and their target
environment. To gain this understanding, designers are expected to
instrument that environment, collect representative data annotated
with ground truth, test an analysis technique using Tinker, then it-
eratively refine both their analysis and instrumentation strategies.
We will show an example of this cycle in Section 3.

Tinker does not address how data is collected. Users are expected
to collect data in whatever way is convenient given the nature of
their deployment. Tinker only assumes that data is written to text
files in a simple comma-separated-value (CSV) format, one time
step per line, and one datum per column. The first row is assumed to
be special, containing column titles that are later referenced within
Tinker. The following is a simple file that might be given to Tinker
as input:

time,seqno,temp,pres
200,1001,26.2,1000.04
400,1002,26.2,1000.09
600,1003,26.2,1000.05
800,1004,26.2,1000.18

This format is easy to generate and parse. Within Tinker, data
files are first read by instantiating the Data operator, taking the
name of a data file as a parameter. Subsequently, columns are ref-
erenced using theColumnName operator, which takes a string pa-
rameter that is expected to match one of the column header strings.
Finally, output is called to generate output, again using a filename
as a parameter.1 For example:

dataset = compute.Data("my_data_file.txt");
p = compute.ColumnName(dataset, "pres")
p_smooth = compute.EWMA(dataset, p, 30);
p_max = compute.Max(dataset, p_smooth);
dataset.output("processed_data.txt");

After all computation has been performed, Tinker emits a CSV-
formatted output file similar to the input file. The output contains
all of the original input data, plus extra columns that contain the in-
termediate state of each computational operator after each timestep.
The output data is also annotated with extra information that makes
it easy to visualize using GnuPlot and a Tinker helper script. Since
the output is a simple CSV-formatted text file, it can also be eas-
ily imported into tools such as Excel and Matlab for analysis or
visualization.

There are two ways to name the columns that contain the out-
put and side-effect of computations. The first option is an “auto-
generated” column name. Operators can be given optionalname
callback functions that generate new output column names based
on the input column names and parameters. For example, Tinker’s
EWMA (Exponentially Weighted Moving Average) operator con-
tains the following function:

def name(self, target):
return "ewma%d(%s)" % (self.max_w, target);

Output columns are given automatic names by passing the input
column name to the operator’sname function. For example, in the
Tinker program shown earlier in this section, the output datafile will
have two extra columns appended—one for the call to EWMA, and
one for the call to Max. The EWMA output column will have an

1Omitting the filenames causes Tinker to usestdin or stdout.



automatically generated default nameewma30(pres). This name
is the result of Tinker passing thepres column name to EWMA
operator instance created with a maxw=30 parameter.

Automatically generated names are useful, but can become cum-
bersome after several chained computations. Tinker also provides
theSetName function for giving a specific name to an output col-
umn. This is useful for giving a semantic title to a result, rather
than explicitly describing the series of operators that were applied
to compute it. For example, we can add one extra line to the Tinker
program above:

p_max.SetName("HighestPressure");

The call toSetName replaces the automatically generated name
Max(ewma30(pres)) with HighestPressure.

2.2 Energy Conservation and Data Loss
An important class of Tinker operator is itslossoperators. These

operators are used to study the effects of missing or incomplete
data. There are two principal reasons that incomplete datasets are
common in sensor networks. First, packet loss is frequent in low-
power wireless networks. In some applications, retransmission is
costly, so it is impractical to sweep packet loss under a retrans-
mission rug. Second, packet “loss” is sometimes intentional. That
is, to conserve bandwidth, various forms of filtering (e.g., thresh-
olding, event detection) can be used at the sensor to suppress the
transmission of uninteresting data.

In both cases, the effect is similar: the final result, when com-
puted over incomplete input, may be different than the result with
all input available. The magnitude of the difference, of course,
is heavily application dependent. Some algorithms are sensitive to
loss, while others are resilient—using techniques such as averaging
over multiple samples, waiting for consensus before taking action,
and so forth. Tinker is useful precisely in that it can help designers
understand howtheir applications respond to loss, and tinker with
various algorithms to see which is the most resilient.

For example, consider a sensor that is producing a continuous
stream of pressure data, and the user wants a display that shows the
best estimate of pressure, averaged over the past minute. There are
at least three possible algorithms, with various trade-offs:

1. Transmit every sample back to the base station. The base
station computes the average.

2. Transmit a sample back to the base station every time it varies
from the previous sample by more thanx units. The base
station assumes all the missing data has the value of the most-
recently-heard sample.

3. The sensor keeps a running average computed locally; every
sampling period, it transmits the new average.

None of these algorithms is the best in every situation—they
have advantages and disadvantages along axes such as response
time, total bandwidth utilization, and sensitivity to loss.

Tinker makes it easy to analyze each of these hypothetical situa-
tions. Consider the followingThreshold operator:

class Threshold(compute.Computer):
def __init__(self, data, target, thresh)
self.last_value = None;
self.thresh = thresh;
self.rx = self.tx = 0;
self.result=data.map_one_col(target, self);
sys.stderr.write("Duty cycle: %.4f" % \

(100.0*self.tx/self.rx));

def func(self, value):
self.rx += 1;

if self.last_value==None or self.thresh <=
abs(self.last_value - float(value)):

self.tx += 1;
self.last_value = value;

return self.last_value;

This operator simulates Algorithm 2, with a configurable thresh-
old passed as an argument to the operator. After Tinker runs, the op-
erator reports how many packets it transmitted. The base station’s
view of the data at each time step is recorded in the output column
generated by the operator. Using other operators, the missing-input
view of the output can be easily compared to the full-input version,
allowing designers to quickly gauge the effect of various filtering
policies on the output as seen by the user. We will see a concrete
example of this in Section 3.4.

Lossy channels can be similarly evaluated. Of course, because
Tinker is a high-level simulator, there is no channel model. Tinker
is the wrong tool, for example, to evaluate a new media access con-
trol protocol. Tinkeris well suited for quickly trying out different
data processing strategies to learn which is most resilient to loss.

2.3 Tinker as a Design Tool
We said in Section 1 that our goal was to focus on sensor net-

works that assign semantic meaning to data instead of just storing
it. We think Tinker helps with these applications for several rea-
sons.

First, Tinker encourages a design cycle where the first consid-
eration is on thedata. When building a new sensor application,
it is easy to get sucked into systems details too early: retransmis-
sion protocols, routing algorithms, and so forth. The data is an
afterthought—just a packet payload!

Second, Tinker’s programming model “enforces” (strongly en-
courages) data processing inreal time. Tinker does not give oper-
ators reference to entire input arrays. Instead, it issues input data
to operators one datum at a time, and forces operators to issue their
corresponding output after every time step. This makes it impossi-
ble, for example, to smooth data using a sliding window centered
at the current time step: the operator can’t see into the future. Yet,
under this programming model, the exponentially weighted moving
average is easy to write. The distinction is subtle, but important: a
sliding-window average can’t be used in a “live” system, but only
for post-factoanalysis. Tinker’s programming model encourages
designers to stay in the live-analysis mindset.

Finally, Tinker encourages designers to think about the data flow
of their system at a high level, before implementation starts. Many
researchers (including this paper’s authors) have advocated real-
code simulators because they ease the transition from simulation to
deployment. Unfortunately, this had the unintended consequence
of making code-writing start too soon. Designers should play in
the design space before working out every detail of one design.
This argument is similar to Lamport’s strong endorsement of for-
mal specification [7]. Of course, Tinker is not a formal specifica-
tion language, but, like TLA+, it does take a step toward divorcing
design from implementation.

To make Tinker’s use as a design tool more concrete, we now de-
scribe a real application built with the help of Tinker:ElevatorNet.



3. ELEVATORNET
We first developed and tested Tinker in the context of an appli-

cation we callElevatorNet. ElevatorNet started as an easy way to
fix a pet peeve. Our seven-floor building has three elevators. Most
floors do not have displays that show where the elevators are. This
can be frustrating to people waiting. It also causes delays: without
knowing which of the independently-signaled elevators is closer,
riders push both “call” buttons and take the first elevator to arrive.
To add floor displays in the traditional way, our building’s manage-
ment quoted a labor and materials cost of about $50,000 ($2,300
per elevator per floor).

Our goal was to create a simple, non-invasive system that would
be cheaper and easier to install, but have the same functionality. A
wireless sensor network seemed a good match to this problem. Our
office has a wireless network infrastructure (802.11), but Elevator-
Net could not use it: base-stations are not reachable from the three
parking garage levels, or from inside the elevator when the doors
are closed. 802.11-based devices would also have a shorter lifetime
since they require more power (at least, in this low-data-rate appli-
cation, where the economy of scale of 802.11 is not realized). Line
power is not easily available inside our elevators.

We decided instead to build a prototype using an ad-hoc network
of motes, both inside the elevator to sense its position, and on each
floor to for peer-to-peer relaying of position data throughout the
building. The entire system is installable in 30 minutes with no
tools other than Velcro.

Perhaps the most important unknown in our initial design was
the method for sensing elevator position. We considered various
techniques, such as sensing motion with accelerometers or using
radio signal strength, and finally decided to prototype a system us-
ing barometric altimeters. A barometric altimeter determines its
height from a reference plane by measuring air pressure. Many
common altimeters (such as those found in some GPS devices, or
in general aviation aircraft) can sense vertical motions of about 5
to 10 feet. However, the relationship between pressure and true
altitude changes along with environmental conditions, such as tem-
perature and ambient air pressure. Temperature and pressure are
driven by local weather; indicated altitude at a fixed point will vary
by 20 to 30 feet (two or three floors) over the course of a typical
day.

ElevatorNet was also interesting to us because it required real-
time assignment of semantic meaning to a stream of data. Our goal
was not to store altimeter readings in a database, but to keep an
elevator floor display updated in real-time. We used Tinker to tin-
ker with an algorithm until we found one that was responsive and
robust.

3.1 Sensor Analysis
The first stage of our project was a feasibility study: can a cheap

electronic altimeter sense altitude with enough precision to differ-
entiate floors of a building, without being confounded by environ-
mental variations? To answer this question, we had to characterize
both the sensors and the environment they’d be sensing.

ElevatorNet used the Intersema MS5534, a piezoresistive pres-
sure sensor with a built-in analog-to-digital converter and a simple
3-wire interface. We used Moteiv’s “Tmote Sky” wireless sensors
(descendants of the Berkeley Telos B mote). Moteiv also provided
an interface board between the MS5534 and their Tmote Sky.

The sensors have a specified pressure resolution of 0.1 millibars,
which translates to about 2.7 feet of altitude near sea level. Af-
ter applying the calibration data provided by the factory with each
sensor, we found the typical precision of an individual, stationary
sensor at a constant temperature to be about±0.1mbar, as speci-

fied. However, the absolute accuracy of the sensors is considerably
worse:±1.5mbar, or about 40 feet (four building floors). We then
analyzed 48 hours of observations made by pairs of sensors in close
proximity. This revealed that while each sensor has a large bias, the
bias seemed to be constant with respect to both time and absolute
pressure.

These observations led us to try a simple (but, as we will see,
flawed) algorithm for floor detection. First, we subtracted the baro-
metric pressure inside the elevator from the pressure measured at
a fixed point inside the building. We expected this would give us
an altitude output independent of weather conditions. To make the
system easier to install, we tried using an auto-calibration algorithm
to deduce the sensor biases rather than calibrating them manually.
Our auto-calibration method started out simple: the system tracked
the minimum and maximum altitudes seen (after the correction for
ambient pressure changes), and assumed each floor of the building
was 1/6th of that span.

3.2 Using Tinker to Test our Hypothesis
At this point in our project, we were not yet concerned with the

implementation details: the choice of routing algorithm, for exam-
ple. We still needed to test and refine our basic understanding of
the application space. How accurate was our floor-detection algo-
rithm? How robust was it to data loss and environmental variations?
How responsive was it?

To answer these questions, we used the general procedure: 1,
collect data; 2, try various algorithms, using Tinker; 3, redesign the
system and return to Step 1.

Data collection. We collected pressure data from inside the
moving elevator while manually annotating it with ground truth
data about the elevator’s actual location. For annotation, we wrote a
simple program that allows single-keystroke entry of the elevator’s
position, and time-synchronized it with the pressure data. (The hard
part was explaining why a researcher was sitting alone in an eleva-
tor for two hours.) We concurrently collected pressure data from a
fixed point in the building: an office about 100 feet from the eleva-
tor lobby.

Tinkering. We used Tinker to test many variations on process-
ing the pressure data into a floor number, and its GnuPlot helper
script to visualize the results. This process was crucial: it let us
iterate through many variations of the algorithm and test them on
a substantial (two-hour) dataset annotated with ground truth. Tin-
ker’s goal of letting us think abstractly about the problem before
starting to write code to deal with the implementation details saved
substantial time. Furthermore, it enabled us to focus on the data
rather than the system. A typical analysis is shown in Figure 1.

Redesign.Not all variations on the system can be explored us-
ing simulation alone, of course. For example, after our first round
of tinkering, we discovered the origin of many errors: the long-
term environmental variations in the elevator did not seem to match
those in the office where our fixed-position pressure reference point
was located. We collected a second annotated data set, this time
with two pressure references: one at the top-floor elevator lobby,
and one at the bottom. We hypothesized that these locations would
be better coupled to the elevator than the office, which was further
away.

After several iterations, we arrived at the final algorithm, de-
scribed in the next section.

3.3 Performance of the Final Algorithm
After tinkering with various alternatives, the final algorithm we

used was somewhat complicated:

• Each elevator has a single pressure sensor sampling at 5Hz.
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Figure 2: A histogram of the Virtual Position values seen during a
75-minute calibration test of ElevatorNet. The clear peaksin the his-
togram correspond to each of the 7 floors of the building, withlarger
peaks corresponding to floors more commonly visited. The center peak
is the building lobby; peaks to the left are parking garage levels, while
peaks to the right are office levels.

Pressure data was also collected at 5Hz from two reference
points, one each at the top- and bottom-floor elevator lobbies.

• TheBottom Offsetis computed at each time step. In essence,
this is the difference of two sensors’ calibration biases: the
elevator sensor and the bottom-floor fixed sensor. It is com-
puted as the minimum difference seen between those two
sensors, after their outputs are smoothed using slow-response
(10-second) exponentially weighted moving averages. It pro-
duces a correct bias estimate after the elevator first visits the
bottom floor of the building. An analogous procedure is used
to compute theTop Offset, which becomes correct after the
elevator’s first visit to the top floor.

• The Top and Bottom Offsets, respectively, are added to the
most recent value of the top and bottom sensors. A fast-
response (1-second) EWMA is applied. The resulting val-
ues are theVirtual BaseandVirtual Ceiling of the elevator
shaft—the expected value of the elevator’s sensor when it’s
at the top or bottom of the shaft.

• TheVirtual Positionof the elevator is computed as a fraction
of the distance from the Virtual Base to Virtual Ceiling. This
is a number from 0 to 1. 0 is the current estimated pressure at
the bottom of the shaft; 1 is the estimate at the top. The Vir-
tual Position is valuable because it is a position measurement
that is highly resilient to changes in ambient barometric pres-
sure and the (considerable) individual biases of the pressure
sensors. Figure 1 shows an example of the elevator’s Virtual
Position captured from the real system.

• When the system is first set up and activated, the installer
takes the elevator to each floor of the building for 30 seconds.

Filter Display Rel. Duty Error Duration (msec)
Threshold Accuracy Cycle Average Longest

0 99.57 1.000 336 2000
1 99.57 0.577 368 2000
2 98.77 0.169 862 8200
3 94.34 0.046 1492 16200
4 84.90 0.018 2386 26800
5 76.48 0.012 3540 64600

Figure 3: Elevator floor detection accuracy vs. radio utilization for
various thresholding values, described in Sections 3.3 and3.4.

A histogram of the Virtual Positions visited during this setup
phase shows each floor clearly, as seen in Figure 2. A Virtual
Position Table is constructed which maps the center value of
each peak to a floor name. (This was done manually in the
prototype; automatic peak-finding is planned.)

• After this labeling step, the system becomes active. As the
elevator moves, its Virtual Position is compared to the entries
in the histogram-derived Virtual Position Table; the label of
closest match is displayed.

This algorithm was not obvious, or our first attempt. It was the
result of several weeks’ iterative tinkering and data collection. Our
first (incorrect) algorithm divided the Virtual Position space evenly
into equally-spaced floors. Tinkering revealed that our building’s
floors are not exactly the same height, and the nonlinearity between
altitude and pressure was unexpectedly observable even over our
building’s short (70-foot) height. The histogram approach proved
quite robust once we found the right set of environmental correc-
tions that would ensure the values seen during calibration would
match the values seen later, during system operation.

We evaluated ElevatorNet’s performance using a pressure dataset
that was manually annotated with ground truth. We define the
accuracy as the percentage of the time that ElevatorNet’s display
matches the real position of the elevator as recorded by our manual
annotations. Our results exclude the timesteps where our ground
truth indicated the elevator was in a transition between floors. We
also excluded the initial calibration phase (i.e., when the elevator
had not yet visited every floor). The remaining data span 66.3 min-
utes during which the elevator moved 114 times. ElevatorNet com-
puted the floor correctly 99.57% of the time—a cumulative error of
17 seconds.

We also characterized the typical duration of an error. The gran-
ularity of our output is 200msec (the sampling rate). Most er-
rors were transient—an incorrect result visible for 200msec and
replaced by the correct result at the next timestep. The average du-
ration of an error was 336msec. The longest single error event was
2000msec.
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3.4 Energy Savings with Tinker
While ElevatorNet’s first prototype worked well, it did not at-

tempt to conserve energy: every sample was transmitted to every
display. The elevator is usually stationary, so many samples are re-
dundant. Ideally, we would like local thresholding at each sensor,
only issue a new reading when the elevator moves.

Unfortunately, “redundant” data is not completely redundant. El-
evatorNet uses pressure sensors on the edge of their intended res-
olution. They are noisy; the output wanders over several feet per
second. Our floor detection algorithm only worked after several
layers of smoothing were applied. The environment is also noisy,
on several timescales; much of the noise can not be filtered out un-
til the elevator pressure is merged with the fixed-point reference
pressure.

Using Tinker and our annotated dataset, it is easy to see the ef-
fect of various thresholding values on both the accuracy and the
number of packets transmitted. We used a simple Threshold oper-
ator similar to the one shown in Section 2.2. Our filter suppresses
transmission until the current data differs from the one most re-
cently sent by a configurable threshold. We tried thresholds from
1 to 5, each unit being a single increment of the analog-to-digital
converter’s output (equivalent to 0.1mbar).

We evaluated each threshold using the same metrics we described
in the previous section. The results are shown in Figure 3. A thresh-
old of 0 indicates no filtering. As seen in the table, using a thresh-
old of 1 reduces eliminates half the transmissions, but its accuracy
impact is minor. A threshold of 2 seems to be the best choice: it
reduces transmission by 83%, but accuracy remains high at 98.8%.

3.5 Deployment
The first working prototype of ElevatorNet is depicted in Fig-

ure 4. Our seven-floor, three-elevator building was outfitted with
ten motes. Five of these motes had altimeters—one in each eleva-
tor, one near the top of the elevator shaft, and one near the bottom.
Additional motes, without altimeters, were mounted near the eleva-
tor shaft on each of the other floors. The altimeter-equipped motes
recorded the current pressure every 200msec, and reported the most

recent 10 samples every 2 seconds. All motes served as relays for
data generated by the altimeter-equipped motes.

We chose a simple flooding algorithm for routing for a number
of reasons. First, our goal was to have an elevator display on every
floor. This would require broadcast of altimeter data from each ele-
vator and calibration siteto every floor for display. In addition, the
mobility of the elevators meant that data could potentially be gen-
eratedfrom every floor in the network (that is, the elevator might
be near a relay on any of the floors when it generates data). We
would therefore need to build an any-to-all broadcast tree. Flood-
ing allows trivial any-to-all broadcast without state maintenance,
but is usually inefficient. However, flooding is reasonably efficient
given our mostly linear topology. In a topology that isstrictly lin-
ear (i.e., nodes can see only one neighbor on each side), flooding
is an optimal broadcast algorithm. Our topology is “almost” linear;
packets occasionally leak to more than one floor above or below
the transmitter.

In our first prototype, the user interface was a laptop with a mote
attached as a network interface. The display software listens for
both elevator altimetry updates and calibration data, and computes
the elevator’s position according to the algorithm described in Sec-
tion 3.3. A large numeric floor number is shown, along with re-
altime plots of pressure for those interested. We plan to use only
a simple 7-segment LED as the display for the final system. Our
estimated cost is about $200 per elevator per floor in the final sys-
tem, assuming that installation takes one day—a savings of more
than 90% over the wired version. (This number does not count the
recurring cost of battery replacement.)

There are two major hurdles that remain before a permanent de-
ployment. The first is energy. There is no easy or safe way for
the motes in the elevators to receive line power. Our first prototype
lasted about 10 days using Tmote’s standard pair of alkaline AA
batteries. We have studied power saving strategies (Section 3.4),
but have not yet gathered enough data to estimate their impact on
system lifetime.

The second major hurdle is theft. In the month our prototype was
installed, six motes were stolen from elevators. (The privacy of an
elevator must create opportunistic thieves: none of the motes placed
in lobbies were stolen.) This was surprising, as our building is not
open to the public and is primarily staffed with other researchers.
We tinkered with different ideas: transparent vs. opaque packaging,
obviousness vs. concealment, notes containing descriptions of the
experiment and asking people not to steal. The most recent note
even offered a free mote to anyone stopping by our lab. The thefts
have continued. We consider this to be the most significant obstacle
to ElevatorNet’s permanent deployment.

4. RELATED WORK
Tinker draws inspiration from a long history of other systems

that help the designers of complex systems decompose a problem
into at varying levels of abstraction, allowing them to solve prob-
lems abstractly before delving into details. This idea is perhaps best
exemplified in the mature field of hardware design: VHDL [16],
the hardware description language, allows specification first at the
behavioral level, then the dataflow level, and finally the structural
level. In the area of software, similar design methodologies have
been proposed, such as in Lamport’s TLA+ [7].

Although Tinker is an imperative language, it is probably most
similar to declarative query and data flow languages. In the sen-
sor network space, examples include TAG [12], Cougar [19], and
Region Streams [14]. These systems, for the most part, are meant
to facilitate fast programming in a well-known set of application
spaces, using an set of operators that have efficient distributed im-



plementations. We believe such tools are less well suited for the
early stages of exploration and discovery when designers are first
trying to understand which application space they’rein.

As mentioned earlier, Tinker also overlaps with sensor network
simulators, including TOSSim [10], EmStar [4], and Avrora [17].
As we argued in Section 1, the feature that these simulators allow
simulation of real code can also be a burden: they force all the
implementation details to be worked out for every candidate design.
Tinker is not a replacement, but a complement to such tools; it
allows a designer to rapidly iterate through abstract designs before
working through the details of one that looks promising.

Our work’s focus is on the design methodology and toolkit more
than the end result. Tinker is more general than determining the
problem of elevator position. However, past projects have used net-
worked sensors in elevators. Lease and Eddo’s SmartElevator [8]
similarly addresses the retrofit of a building that has elevators with-
out position displays. Their motivation was similar to ours: when
the elevators are under high load, riders grow impatient and call
both elevators, exacerbating the delay. SmartElevator used light
sensors attached to the elevator position indicators on the first floor
lobby. Lesteret al. [9] describe a system which infers user activity
from observations made by small, wearable sensor package. They
use a barometric altimeter for classifying activities such as riding
up or down an elevator, or using stairs. However, they do not speak
to the long-term calibration required to maintain an accurate posi-
tion estimate over long time periods—a more difficult problem than
recognizing instantaneous relative motion.

5. CONCLUSIONS AND FUTURE WORK
We have presentedTinker, a high-level design tool that aids the

exploration of the design space in sensor network applications. Tin-
ker is targeted at applications that require real-time assignment of
semantic meaning to data, rather than just data storage. Tinker lets
designers explore the application space before working through the
details of the algorithm that seems most promising. Complemen-
tary to real-code simulators, which require every detail of an imple-
mentation to be specified before giving any intuition of the result,
Tinker is a more abstract tool meant for usebeforecode-writing
begins.

In this paper, we have also describedElevatorNet, an application
that exemplifies the need for meaningful data interpretation, rather
than just data transport and storage. ElevatorNet senses an eleva-
tor’s position using barometric altimetry; we achieved 99.57% ac-
curacy using an algorithm that was carefully and iteratively refined
using Tinker’s simulation and visualization features. As expected,
the actual implementation required new code to be written, but re-
quired no further tuning of the algorithm.

In the future, we would like to extend Tinker, adding features that
make it easier to (gradually) understand the effects of various real-
world implementation problems: lack of time synchronization, for
example. The process of moving our first application from a Tin-
ker simulation to an implementation was instructive in highlighting
such areas that Tinker let us ignore for too long. There is a delicate
balance between deferring implementation details for later and al-
lowing a crucial detail to be overlooked.

Our future-work aspirations are also to continue to design and
build compelling sensor network applications that treat data as data,
rather than as a payload. It’s all about the data!
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