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ABSTRACT 
Embedded computing devices that interact with humans 
and the real world hold great promise in making our lives 
more comfortable and convenient – perhaps allowing 
independence longer and later in life, or better understand 
the changes in our natural environment. 

The biggest difficulty in taking advantage of these 
computers is that they need too much assistance from us, 
starting with configuration, with adapting to new dynamic 
requirements, and ending in learning from our intent. The 
ubiquity of computers makes the situation only worse—
telling all the little computers what to do is easily harder 
than simply doing the task yourself. 

We claim that the only way to make ubiquitous computing 
a practicality is to enable the computers to figure out what 
to do on their own. Observe and learn, or perish. 

This paper proposes a framework for automatic configur-
ation and adaptation using learning and prediction based on 
observed context histories. A software architecture for 
describing, recording, analyzing, and reacting to physical or 
computational variables is substantiated with a case study 
that self-tunes distributed real-time tasks in an entertain-
ment scenario. The measured results are generalized, using 
stochastic or physical models, to apply to a large number of 
problems that allow ubiquitous computing to become a 
reality. 
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INTRODUCTION 
A key point to note when creating invisible computing 
systems is that the task of such systems is to provide an 
ongoing service, instead of transforming a single static 
input into an output. This feature makes the invisible 
computing systems inherently interactive in a computer 
theoretical sense, as defined by Wegner in [9], which in 
turn means that these systems can’t be modeled [2] or 
implemented using traditional algorithmic models. Rather 
new unconventional approaches are required to 
successfully realize such systems. One approach that has 
been suggested is context aware systems or systems that are 
able to exploit context histories. Context aware systems are 

very closely related to the fundamental interactive 
computing concepts, namely that the outcome of current 
computations (or the behavior of the system) is affected by 
the current inputs and the past operation and interactions of 
the system.  

The context information can be partitioned in two large 
sets: computing context and physical context. In the current 
approach the user context is viewed as being part of the 
physical context. In both categories exist numerous 
properties that can be collected and analyzed individually, 
each context property expressing the state of a computing 
or a physical phenomenon.  

The computing context contains properties that describe the 
features of the computing nodes in a system. Generally 
these properties are hidden from the user and the outside 
world, although in some cases the properties may be quite 
apparent – the existence of computing nodes in the vicinity 
of a node is generally observable. The computing 
properties are for example the run times of functions on 
different nodes, the availability of services from peer 
nodes, network delays, processor or memory utilization of 
specific nodes, etc. The information on the computational 
context is obtained by monitoring the behavior of 
computing systems and the interactions between the 
computing systems.  

The physical properties reflect the state of physical 
phenomena in the real world. The physical phenomena 
include both inanimate and animate (including humans) 
objects, which in some situations may become subjects. 
Generally the nodes obtain information on the physical 
context properties via sensors, but there may be other ways 
to attain such information, e.g. from a more powerful node 
that has a better and possibly more general view on the 
physical environment. 

The values of the properties in the two groups may be 
correlated in some cases which does not affect the overall 
partitioning of the properties. For example a physical event 
that reflects the change of some physical context parameter 
value may also affect the total network traffic in a network 
which in turn may result in increased network delays, 
thereby creating a correlation between the physical and 
computational context properties.  

Depending on the phenomenon that a context parameter 
describes the methods for utilizing the context history of 



the parameter for the prediction of future values of the 
context parameter may be different. We believe that 
relatively simple stochastic or statistical methods (when 
compared to formal mathematical analysis methods) similar 
to the methods of technical analysis used in economics [5] 
should suffice for most cases of context parameter 
prediction. The disclaimer that past performance does not 
guarantee future results, while true, is less relevant than in 
stock markets. The stock markets are inherently 
competitive and the participants try to outsmart each other 
(including predicting each others’ predictions), affecting 
the market itself and thereby changing the base on which 
the predictions are made. Instead embedded computing 
systems are typically collaborative and driven by physical 
observation. The situation would also be somewhat more 
complicated if all computing systems (including processors, 
memories and networks) would be highly adaptive. 

In the following section a general architecture is presented 
that makes provisions for utilizing context histories in an 
application specific way. The final sections of the paper 
present a case study and performance measurements of that 
experiment with some of the concepts of a prototype 
implementation of the presented architecture. 

ARCHITECTURE 
To be able to systematically monitor and predict the context 
parameters of the two context groups as categorized above 
we propose an architecture that relies on the usage of 
metadata to describe (among other things) the set of 
functions involved in a computing scenario, the interactions 
between the nodes executing the functions and the 
approaches used for monitoring the execution of these 
functions.  We introduce the concept of a computing 
partiture – a collection of metadata about a computing 
scenario – as the source of information for the nodes 
executing the scenario. In addition to describing a 
computing scenario the partiture also allows describing 
how the context information required for a computing 
scenario is collected and used.  

The partiture does not contain details of the implementation 
of the functions involved in the partiture – it only describes 
the functions that are involved and the metadata relevant to 
these functions. Neither does the partiture contain 
information on the specific nodes that should execute the 
partiture but it rather describes the functions that are 
executed as part of the partiture. The functions described in 
a partiture can run on one or more nodes depending on the 

Figure 1. General architecture of the system 
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details of the partiture and the availability of resources at 
the nodes in the given network. Each node contains a set of 
application specific worker functions and a set of functions 
for computing and predicting the various context 
parameters. 

The partiture describes the interactions (messaging 
patterns) between the functions including the timing 
constraints of the individual interactions – intervals of 
execution, mean, slack and jitter. In addition the possible 
repetitions and repetition intervals of the partiture are 
described. 

Collecting context information 
In order to collect the computing context information the 
partiture contains information on how the performance of 
the execution of the individual functions should be 
monitored at the nodes. The information describes how 
execution time of the functions is monitored, which allows 
each node to locally monitor the execution and later 
provide the performance information on the execution of 
functions. Based on the computing context history the 
nodes can also make predictions on the future executions of 
functions on a node and provide these estimations to the 
nodes that they interact with.  

As is the case with computing context parameters the 
partiture also contains information what function should be 
used for the calculation and prediction of physical context 
parameters. As stated in the introduction we believe that 
formal mathematical analysis methods are not required to 
predict future values of context parameters with sufficient 
accuracy. In addition to being computationally intensive the 
generation of formal analysis methods requires good 
information on the physical domain and the creation of 
adaptive and context history exploiting systems is much 
more complex using these methods. Instead stochastic, 
heuristic, physical models or technical analysis tools are 
used for predicting behavior. 

As the nodes monitor the context, add to the context history 
and make some decisions based on the context history they 
can also update accordingly the partiture of the computing 
scenario they are executing.  

The architecture outlined above allows measuring different 
phenomenon according to predefined patterns and 
predicting the future values of context parameters based on 
past measurements of phenomenon. The predicted values 
are used either directly or indirectly in future computations 
to improve the efficiency and (user-observable) quality of 
the systems. According to some sources [7] that feature – 
the ability to anticipate the evolution of its surrounding 
environment is one characteristic of proactive systems, 
which the invisible computing systems are expected to be. 

The conductor 
To execute the partiture every node contains a conductor 
that can execute a partiture. The conductor is responsible 
for selecting the nodes that are going to execute the 

functions described in the partiture and delivering the 
information required for the execution to the nodes. The 
conductor sends the relevant part of the instantiated 
partiture to each node participating in the execution of the 
partiture. The segment of the partiture sent to the 
participating node contains information on what functions 
or services should be executed, timing constraints of the 
functions, messaging patterns, context collection and 
analysis. A conductor is also responsible for making 
agreements with conductors on other nodes to perform their 
part of the partiture. 

Adaptation of the partiture 
As the conductor reads the partiture and monitors progress, 
the context history can also be used to update the partiture 
itself with additional details of the execution flow. Here is 
one possible algorithm for modifying the partiture: 1) The 
scheduler monitors when the application sleeps (e.g. blocks 
on a semaphore). 2) The scheduler logs a trace of 
application state transitions (start, sleep, restart, end) and 
their times. 3) The trace is sent to the prediction engine. 
4) The sleeps in multiple runs of the function are correlated 
and distinct sleeps are identified using pattern matching. 
5) Once a consistent sleep pattern has been identified and 
verified with the given confidence the scheduling pattern 
for the function is split at the sleep step. To deal with the 
additional complication of functions with multiple sleep 
stages where the identification is unclear, the stages are 
disambiguated by adding an identifier to each potential 
blocking point. Another method for modifying the partiture 
is fine-tuning messaging patterns by observing the actual 
message flow. 

The context history is thus used to evolve the problem 
description, allowing the original human author to use 
rough terms of intent and letting the system discover the 
details. It seems fitting to call this type of a rough partiture 
a Jazz partiture, given that the learning and specialization 
process is akin to improvisation. The partiture only 
describes what mechanisms should be used for adaptation; 
the adaptation process is controlled by each node locally. 

A CASE STUDY  
The claim that even quite thin embedded nodes are able to 
perform the predictions on context parameters is not 
unsubstantial, since in [3] as well as in the case study 
presented in this paper it is shown how even quite simple 
mathematical models suffice to predict the future values of 
context parameters, such as execution times of scheduled 
functions, with quite good results.  

The system in the case study described in the following 
section follows a subset of the current architecture as it is a 
previous iteration of our design. However the concept of 
treating computation times as a stochastic process (and 
based on that predicting the future execution times) is 
strongly substantiated by the experiments.  

 



Implementation 
The concept of applying simple stochastic methods on 
predicting context information was experimented on a test 
platform equipped with a 25 MHz Arm7 microcontroller 
with 256KB of ROM and 32KB of RAM. In the core of the 
study was a stochastic planner that used the monitored 
execution times of scheduled functions to make 
adjustments to the scheduling pattern of the functions.  

 

Figure 2. Scheme of the stochastic planner in action 

It should be noted that the case study used an architecture 
where there conductor was distinctly separated from the 
nodes that executed the application specific functions.  

 

Figure 3. Adaptation of function executions from application 
supplied defaults to a near optimal steady state 

Initially the planner uses an application supplied fixed 
schedule for scheduling the jobs on the worker nodes. The 
schedule is adjusted according to the information on the 
actual execution times received from worker nodes.  

PERFORMANCE MEASUREMENTS 
The working of the stochastic planner was estimated 
through sampling. A simple test method does 20000 
multiplications. Starting with no context information the 
planner uses an application provided guess. 

Once the planner receives samples from the measured 
execution times it uses the information with smoothing 
between each step. The calculation times include 
formatting and sending the reply message. The table below 
contains the relevant numbers. The estimate is produced by 
the live planner, while the mean and deviation have been 
calculated offline for reference from the raw measurements. 

Step 
Estimate 

95% conf 
Measured 

mean 
Standard 
deviation 

Confidence 

95%  99% 

1 339 337 1.7% 1.0 1.4 

2 341 337 1.6% 1.0 1.4 

3 346 337 1.8% 1.0 1.4 

Figure 4. Time measurement and prediction of a CPU 
intensive task – times in milliseconds, 32 samples per iteration 
on embedded microcontroller board. The confidence number 
indicates the extra time allocated for jitter. Fixed point integer 
arithmetic rounds the number up slightly. 

Since the low-level RTOS scheduler did not produce much 
jitter, the test was also executed on a PC running 
Windows XP with the XML communications middleware 
stack on top. Running without an underlying real-time 
scheduler introduces more uncertainty but the planner still 
deals with it correctly and produces a larger confidence 
allocation to cope with the increased jitter. As the CPU is 
faster a million multiplications is done each time. From a 
steady state the number of calculations is dropped to half. 
The table below shows how the planner adapts to the drop. 
The planner adapts to the larger jitter by padding the 
estimates. 

Step 
Estimate 

99% conf 
Measured 

mean 
Standard 
deviation 

Confidence 
95%  99% 

1 126 123 6.4% 1.9 2.5 

2 124 120 14% 4.2 5.5 

3 69 55 2.1% 2.8 3.7 

4 58 55 2.9% 3.9 5.2 

Figure 5, Time measurement on PC in milliseconds.  After the 
steady state at step 2, the workload is cut in half and the 
estimate adapts to the new load. 

CONCLUSION 
Exploiting context histories is an increasingly important 
topic in the pervasive computing realm. There exists no 
obvious and widely accepted solution to this matter. In this 
paper we presented a general architecture which, by 
providing a description of computing scenarios used in a 
pervasive computing system, allows exploiting the 
observed context histories to improve the performance and 
optimization of the system, driven by context derived 
predictions of future behavior. In the case study we show 
that this approach is usable and provides benefits in a 
realistic embedded solution.  
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