
Auto-adaptation Driven by Observed Context Histories

Jürgo Preden
Tallinn University of Technology

Ehitajate tee 5
19086 Tallinn, Estonia

+372-620-2109
jurgo.preden@ttu.ee

Johannes Helander
Microsoft Research

1 Microsoft Way
Redmond, WA 98052, USA

+1-425-882-8080
jvh@microsoft.com

ABSTRACT
Embedded computing devices that interact with humans
and the real world hold great promise in making our lives
more comfortable and convenient – perhaps allowing
independence longer and later in life, or better understand
the changes in our natural environment.

The biggest difficulty in taking advantage of these
computers is that they need too much assistance from us,
starting with configuration, with adapting to new dynamic
requirements, and ending in learning from our intent. The
ubiquity of computers makes the situation only worse—
telling all the little computers what to do is easily harder
than simply doing the task yourself.

We claim that the only way to make ubiquitous computing
a practicality is to enable the computers to figure out what
to do on their own. Observe and learn, or perish.

This paper proposes a framework for automatic configur-
ation and adaptation using learning and prediction based on
observed context histories. A software architecture for
describing, recording, analyzing, and reacting to physical or
computational variables is substantiated with a case study
that self-tunes distributed real-time tasks in an entertain-
ment scenario. The measured results are generalized, using
stochastic or physical models, to apply to a large number of
problems that allow ubiquitous computing to become a
reality.

Keywords
Invisible computing, distributed systems, context history

INTRODUCTION
A key point to note when creating invisible computing
systems is that the task of such systems is to provide an
ongoing service, instead of transforming a single static
input into an output. This feature makes the invisible
computing systems inherently interactive in a computer
theoretical sense, as defined by Wegner in [9], which in
turn means that these systems can’t be modeled [2] or
implemented using traditional algorithmic models. Rather
new unconventional approaches are required to
successfully realize such systems. One approach that has
been suggested is context aware systems or systems that are
able to exploit context histories. Context aware systems are

very closely related to the fundamental interactive
computing concepts, namely that the outcome of current
computations (or the behavior of the system) is affected by
the current inputs and the past operation and interactions of
the system.

The context information can be partitioned in two large
sets: computing context and physical context. In the current
approach the user context is viewed as being part of the
physical context. In both categories exist numerous
properties that can be collected and analyzed individually,
each context property expressing the state of a computing
or a physical phenomenon.

The computing context contains properties that describe the
features of the computing nodes in a system. Generally
these properties are hidden from the user and the outside
world, although in some cases the properties may be quite
apparent – the existence of computing nodes in the vicinity
of a node is generally observable. The computing
properties are for example the run times of functions on
different nodes, the availability of services from peer
nodes, network delays, processor or memory utilization of
specific nodes, etc. The information on the computational
context is obtained by monitoring the behavior of
computing systems and the interactions between the
computing systems.

The physical properties reflect the state of physical
phenomena in the real world. The physical phenomena
include both inanimate and animate (including humans)
objects, which in some situations may become subjects.
Generally the nodes obtain information on the physical
context properties via sensors, but there may be other ways
to attain such information, e.g. from a more powerful node
that has a better and possibly more general view on the
physical environment.

The values of the properties in the two groups may be
correlated in some cases which does not affect the overall
partitioning of the properties. For example a physical event
that reflects the change of some physical context parameter
value may also affect the total network traffic in a network
which in turn may result in increased network delays,
thereby creating a correlation between the physical and
computational context properties.

Depending on the phenomenon that a context parameter
describes the methods for utilizing the context history of

the parameter for the prediction of future values of the
context parameter may be different. We believe that
relatively simple stochastic or statistical methods (when
compared to formal mathematical analysis methods) similar
to the methods of technical analysis used in economics [5]
should suffice for most cases of context parameter
prediction. The disclaimer that past performance does not
guarantee future results, while true, is less relevant than in
stock markets. The stock markets are inherently
competitive and the participants try to outsmart each other
(including predicting each others’ predictions), affecting
the market itself and thereby changing the base on which
the predictions are made. Instead embedded computing
systems are typically collaborative and driven by physical
observation. The situation would also be somewhat more
complicated if all computing systems (including processors,
memories and networks) would be highly adaptive.

In the following section a general architecture is presented
that makes provisions for utilizing context histories in an
application specific way. The final sections of the paper
present a case study and performance measurements of that
experiment with some of the concepts of a prototype
implementation of the presented architecture.

ARCHITECTURE
To be able to systematically monitor and predict the context
parameters of the two context groups as categorized above
we propose an architecture that relies on the usage of
metadata to describe (among other things) the set of
functions involved in a computing scenario, the interactions
between the nodes executing the functions and the
approaches used for monitoring the execution of these
functions. We introduce the concept of a computing
partiture – a collection of metadata about a computing
scenario – as the source of information for the nodes
executing the scenario. In addition to describing a
computing scenario the partiture also allows describing
how the context information required for a computing
scenario is collected and used.

The partiture does not contain details of the implementation
of the functions involved in the partiture – it only describes
the functions that are involved and the metadata relevant to
these functions. Neither does the partiture contain
information on the specific nodes that should execute the
partiture but it rather describes the functions that are
executed as part of the partiture. The functions described in
a partiture can run on one or more nodes depending on the

Figure 1. General architecture of the system

Node capability description
 -ws_discovery

-ws_metadata_exchange

Conductor

Instigator
-what (instigation params)

-how (partiture)
-when (start time)

Itself a worker function
Stochastic prediction
/ technical analysis

Worker
functions

Bookie

Task master

Jazz partiture
-messaging pattern

-repetitions / concurrency
-services and functions needed

-criticality
-slack
- jitter

-prediction parameters
-performance monitoring params (raw, cooked)

-rough description that may get more precise automatically
(learning from context history)

Remote
conductor

Performance monitoring

Market / OTC
Cost = intrinsic cost

(power, wear) +
reservation cost (market

priced, rule based)

Initial message

Overall system
monitoring

details of the partiture and the availability of resources at
the nodes in the given network. Each node contains a set of
application specific worker functions and a set of functions
for computing and predicting the various context
parameters.

The partiture describes the interactions (messaging
patterns) between the functions including the timing
constraints of the individual interactions – intervals of
execution, mean, slack and jitter. In addition the possible
repetitions and repetition intervals of the partiture are
described.

Collecting context information
In order to collect the computing context information the
partiture contains information on how the performance of
the execution of the individual functions should be
monitored at the nodes. The information describes how
execution time of the functions is monitored, which allows
each node to locally monitor the execution and later
provide the performance information on the execution of
functions. Based on the computing context history the
nodes can also make predictions on the future executions of
functions on a node and provide these estimations to the
nodes that they interact with.

As is the case with computing context parameters the
partiture also contains information what function should be
used for the calculation and prediction of physical context
parameters. As stated in the introduction we believe that
formal mathematical analysis methods are not required to
predict future values of context parameters with sufficient
accuracy. In addition to being computationally intensive the
generation of formal analysis methods requires good
information on the physical domain and the creation of
adaptive and context history exploiting systems is much
more complex using these methods. Instead stochastic,
heuristic, physical models or technical analysis tools are
used for predicting behavior.

As the nodes monitor the context, add to the context history
and make some decisions based on the context history they
can also update accordingly the partiture of the computing
scenario they are executing.

The architecture outlined above allows measuring different
phenomenon according to predefined patterns and
predicting the future values of context parameters based on
past measurements of phenomenon. The predicted values
are used either directly or indirectly in future computations
to improve the efficiency and (user-observable) quality of
the systems. According to some sources [7] that feature –
the ability to anticipate the evolution of its surrounding
environment is one characteristic of proactive systems,
which the invisible computing systems are expected to be.

The conductor
To execute the partiture every node contains a conductor
that can execute a partiture. The conductor is responsible
for selecting the nodes that are going to execute the

functions described in the partiture and delivering the
information required for the execution to the nodes. The
conductor sends the relevant part of the instantiated
partiture to each node participating in the execution of the
partiture. The segment of the partiture sent to the
participating node contains information on what functions
or services should be executed, timing constraints of the
functions, messaging patterns, context collection and
analysis. A conductor is also responsible for making
agreements with conductors on other nodes to perform their
part of the partiture.

Adaptation of the partiture
As the conductor reads the partiture and monitors progress,
the context history can also be used to update the partiture
itself with additional details of the execution flow. Here is
one possible algorithm for modifying the partiture: 1) The
scheduler monitors when the application sleeps (e.g. blocks
on a semaphore). 2) The scheduler logs a trace of
application state transitions (start, sleep, restart, end) and
their times. 3) The trace is sent to the prediction engine.
4) The sleeps in multiple runs of the function are correlated
and distinct sleeps are identified using pattern matching.
5) Once a consistent sleep pattern has been identified and
verified with the given confidence the scheduling pattern
for the function is split at the sleep step. To deal with the
additional complication of functions with multiple sleep
stages where the identification is unclear, the stages are
disambiguated by adding an identifier to each potential
blocking point. Another method for modifying the partiture
is fine-tuning messaging patterns by observing the actual
message flow.

The context history is thus used to evolve the problem
description, allowing the original human author to use
rough terms of intent and letting the system discover the
details. It seems fitting to call this type of a rough partiture
a Jazz partiture, given that the learning and specialization
process is akin to improvisation. The partiture only
describes what mechanisms should be used for adaptation;
the adaptation process is controlled by each node locally.

A CASE STUDY
The claim that even quite thin embedded nodes are able to
perform the predictions on context parameters is not
unsubstantial, since in [3] as well as in the case study
presented in this paper it is shown how even quite simple
mathematical models suffice to predict the future values of
context parameters, such as execution times of scheduled
functions, with quite good results.

The system in the case study described in the following
section follows a subset of the current architecture as it is a
previous iteration of our design. However the concept of
treating computation times as a stochastic process (and
based on that predicting the future execution times) is
strongly substantiated by the experiments.

Implementation
The concept of applying simple stochastic methods on
predicting context information was experimented on a test
platform equipped with a 25 MHz Arm7 microcontroller
with 256KB of ROM and 32KB of RAM. In the core of the
study was a stochastic planner that used the monitored
execution times of scheduled functions to make
adjustments to the scheduling pattern of the functions.

Figure 2. Scheme of the stochastic planner in action

It should be noted that the case study used an architecture
where there conductor was distinctly separated from the
nodes that executed the application specific functions.

Figure 3. Adaptation of function executions from application
supplied defaults to a near optimal steady state

Initially the planner uses an application supplied fixed
schedule for scheduling the jobs on the worker nodes. The
schedule is adjusted according to the information on the
actual execution times received from worker nodes.

PERFORMANCE MEASUREMENTS
The working of the stochastic planner was estimated
through sampling. A simple test method does 20000
multiplications. Starting with no context information the
planner uses an application provided guess.

Once the planner receives samples from the measured
execution times it uses the information with smoothing
between each step. The calculation times include
formatting and sending the reply message. The table below
contains the relevant numbers. The estimate is produced by
the live planner, while the mean and deviation have been
calculated offline for reference from the raw measurements.

Step
Estimate

95% conf
Measured

mean
Standard
deviation

Confidence

95% 99%

1 339 337 1.7% 1.0 1.4

2 341 337 1.6% 1.0 1.4

3 346 337 1.8% 1.0 1.4

Figure 4. Time measurement and prediction of a CPU
intensive task – times in milliseconds, 32 samples per iteration
on embedded microcontroller board. The confidence number
indicates the extra time allocated for jitter. Fixed point integer
arithmetic rounds the number up slightly.

Since the low-level RTOS scheduler did not produce much
jitter, the test was also executed on a PC running
Windows XP with the XML communications middleware
stack on top. Running without an underlying real-time
scheduler introduces more uncertainty but the planner still
deals with it correctly and produces a larger confidence
allocation to cope with the increased jitter. As the CPU is
faster a million multiplications is done each time. From a
steady state the number of calculations is dropped to half.
The table below shows how the planner adapts to the drop.
The planner adapts to the larger jitter by padding the
estimates.

Step
Estimate

99% conf
Measured

mean
Standard
deviation

Confidence
95% 99%

1 126 123 6.4% 1.9 2.5

2 124 120 14% 4.2 5.5

3 69 55 2.1% 2.8 3.7

4 58 55 2.9% 3.9 5.2

Figure 5, Time measurement on PC in milliseconds. After the
steady state at step 2, the workload is cut in half and the
estimate adapts to the new load.

CONCLUSION
Exploiting context histories is an increasingly important
topic in the pervasive computing realm. There exists no
obvious and widely accepted solution to this matter. In this
paper we presented a general architecture which, by
providing a description of computing scenarios used in a
pervasive computing system, allows exploiting the
observed context histories to improve the performance and
optimization of the system, driven by context derived
predictions of future behavior. In the case study we show
that this approach is usable and provides benefits in a
realistic embedded solution.

k·t0 k·t2 k·t1

1

Period k Fixed deadline

Planner

Producer

Consumer

Audio data

Scheduling

Scheduling

Sampling

Steady State

REFERENCES
1. Anagnostopoulos C., Mpougiouris P., Hadjiefthymiades

S., Context awareness: Prediction intelligence in
context-aware applications, Proceedings of the 6th
international conference on Mobile data management
MDM '05

2. Goldin D., Keil D., Wegner P.: An Interactive
Viewpoint on the Role of UML, Ch. 15 in Unified
Modeling Language: Systems Analysis, Design, and
Development Issues, K. Siau and T. Halpin (Eds).,
Hershey, PA: Idea Group Publishing, 2001, 250 – 264

3. Helander J., Sigurdsson S., Self-Tuning Planned
Actions: Time to Make Real-Time SOAP Real,
Proceedings of the Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC'05) - Volume 00

4. Helander J., Deeply embedded XML communication:
towards an interoperable and seamless world,
Proceedings of the 5th ACM international conference
on Embedded software, September 18-22, 2005, Jersey
City, NJ, USA

5. Mamaysky H., Lo A. W. and Wang J. Foundations of
technical analysis: Computational algorithms, statistical
inference, and empirical implementation. Journal of
Finance, 40(4), August 2000.

6. Meriste M., Helekivi J., Kelder T., Marandi A., Mõtus
L., and Preden J.: Location Awareness of Information
Agents, Springer Lecture Notes in Computer Science,
Volume 3631 / 2005, p199 – 208

7. Motus L., Meriste K. and Dosch W., Time-awareness
and Proactivity in Models of Interactive Computation,
Electronic Notes in Theoretical Computer Science,
Volume 141, Issue 5, 22 December 2005, Pages 69-95

8. Wegner P.: Interaction as a Basis for Empirical
Computer Science, ACM Computer Surveys, 27, No. 5
(1995), 80 – 91

9. Wegner P.: Why Interaction is More Powerful than
Algorithms, Comm. of ASM, 40, No 5, 80 – 91

10. Schlit B., Norman A., Want R. Context-Aware
Computing Applications. In Proceedings of IEEE
Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, December 1994

11. Tran M., Hirsbrunner B., Courant M., A context-aware
middleware for multimodal dialogue applications with
context tracing, Proceedings of the 3rd international
workshop on Middleware for pervasive and ad-hoc
computing MPAC '05

