
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006 1683

A High-Speed, Low-Resource ASR Back-End
Based on Custom Arithmetic
Xiao Li, Jonathan Malkin, and Jeff A. Bilmes, Member, IEEE

Abstract—With the skyrocketing popularity of mobile devices,
new processing methods tailored to a specific application have
become necessary for low-resource systems. This work presents a
high-speed, low-resource speech recognition system using custom
arithmetic units, where all system variables are represented by
integer indices and all arithmetic operations are replaced by
hardware-based table lookups. To this end, several reordering
and rescaling techniques, including two accumulation structures
for Gaussian evaluation and a novel method for the normalization
of Viterbi search scores, are proposed to ensure low entropy for
all variables. Furthermore, a discriminatively inspired distor-
tion measure is investigated for scalar quantization of forward
probabilities to maximize the recognition rate. Finally, heuristic
algorithms are explored to optimize system-wide resource alloca-
tion. Our best bit-width allocation scheme only requires 59 kB of
ROMs to hold the lookup tables, and its recognition performance
with various vocabulary sizes in both clean and noisy conditions is
nearly as good as that of a system using a 32-bit floating-point unit.
Simulations on various architectures show that, on most modern
processor designs, we can expect a cycle-count speedup of at least
three times over systems with floating-point units. Additionally,
the memory bandwidth is reduced by over 70% and the offline
storage for model parameters is reduced by 80%.

Index Terms—Alpha recursion, bit-width allocation, custom
arithmetic, discriminative distortion measure, forward probability
normalization and scaling, high speed, low resource, normaliza-
tion, quantization, speech recognition.

I. INTRODUCTION

THE burgeoning development of mobile devices has
brought about a great need for a more friendly and con-

venient user interface. Automatic speech recognition (ASR)
has unquestionable utility when used in environments without
a keyboard, or where hands are unavailable. To take full
advantage of the envisioned “smart home” of the future, in
which most appliances are online and connected, we will
want a fully functioning ASR system on a highly portable
device, such as a watch, necklace, or pendant. However, unlike
desktop applications with ample memory and a perpetual power
supply, portable devices suffer from limited computational and
memory resources and strict power consumption constraints.
Most state-of-the-art ASR systems running on desktops use
continuous-density HMMs (CHMM with floating-point arith-
metic). These systems are computationally expensive, posing

Manuscript received July 1, 2004; revised March 16, 2005. This work was
supported by the National Science Foundation under Grant Award-0086032.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Ananth Sankar.

The authors are with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA (e-mail: lixiao@ee.washington.edu;
jsm@ee.washington.edu; bilmes@ee.washington.edu).

Digital Object Identifier 10.1109/TSA.2005.858556

potential problems for real-time processing and battery life.
The development of a high-speed, low-resource ASR system,
therefore, becomes crucial to the prevalence of speech tech-
nologies on mobile devices.

In the literature, there are many techniques to speed up com-
putation at the algorithmic level, among which quantization
with table lookups has been extensively used. First, observa-
tion vectors or subvectors can be quantized and their state or
Gaussian mixture component likelihoods can be obtained effi-
ciently via precomputed tables. A discrete-density HMM, for
example, applies vector quantization (VQ) to the observations
and approximates the state likelihood computation by lookup
operations. As a further improvement, a discrete mixture HMM
assumes discrete distributions at the scalar or subvector level of
a mixture model, and applies scalar quantization or subvector
quantization to the observations [1], [2]. Even in a CHMM, the
computational load can be greatly reduced by restricting the
precise likelihood computation to the most relevant Gaussians
using VQ [3], [4]. Second, quantization techniques also con-
tribute to a compact representation of model parameters, which
not only saves memory but also reduces computational cost
[5]–[9].

The problem can also be approached from the hardware
side. A floating-point unit is power hungry and requires a
rather large chip area when implemented. Software imple-
mentation of floating-point arithmetic takes less power and
chip area, but has significantly higher latencies [10]. Addition-
ally, speech recognizers usually do not use the precision of a
floating-point representation efficiently. Fixed-point arithmetic
offers only a partial solution. Operations can be much faster
using a fixed-point implementation [11]–[13], but this method
often cuts the available dynamic range without having its
representational precision fully utilized. Additionally, some op-
erations can still take numerous processor cycles to complete.
Fixed-point arithmetic-logic units (ALUs), therefore, are often
combined with rescaling and table lookup techniques for better
performance.

With 32-bit computing having reached the embedded market
and after years of finding ways to make general purpose chips
more powerful, the use of custom logic might seem a rather
curious choice [14]. Many signal processing applications pro-
duce system variables (system inputs, outputs, and all interme-
diate values) with very low entropy. It would be beneficial to
“record” these computation results so that they may be reused
many times in the future, thereby amortizing the cost of com-
putation. [15] uses cache-like structures they call memo-tables
to store the outputs of particular instruction types. It performs
a table lookup in parallel with conventional computation which

1558-7916/$20.00 © 2006 IEEE

1684 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006

is halted if the lookup succeeds. The paper argues that the cycle
time of a memo-table lookup is comparable to that of a cache
lookup.

Generally speaking, quantization of a lower-entropy variable,
using a fixed number of bits, has a smaller expected quanti-
zation distortion. Motivated by empirically observed low en-
tropy of the variables within several speech recognition sys-
tems, we present a novel custom arithmetic architecture based
on high-speed lookup tables (LUTs). Therein, each system vari-
able is quantized to low precision and each arithmetic operation
is precomputed for each of its input and output codewords vec-
tors. The goal is appealing, considering the high speed and low
power consumption of a hardware-based lookup compared to
that of a complicated arithmetic function. On the other hand,
the objective also looks daunting, since an ASR system might
have dozens of variables and operations, leading to a prohibitive
amount of storage for tables. Therefore, to implement an ASR
system using custom arithmetic units, the first and foremost as-
sumption is that the value distributions of such a system have
entropy low enough for low-precision quantization. Second, the
quantization of a specific variable should ideally be consistent
with minimizing the degradation in recognition performance.
Finally, a bit-width allocation algorithm must be provided to
optimize the resource performance. While in [16] and [17], we
proposed a general design methodology for custom arithmetic
and reported preliminary results for system development, this
paper approaches the problem systematically, discusses the so-
lutions in great detail and presents new evaluation results with
different vocabulary sizes and in different noisy conditions.

We choose to apply custom arithmetic to the back-end but
not to the front-end for several reasons. The back-end accounts
for most of the computational load of an ASR system, but
it has fewer variables than the front-end since many of its
operations are repetitive. By contrast, the front-end has relatively
low computational cost but a large variety of variables and
operations which would quickly complicate the LUT design. In
addition, fixed-point arithmetic for feature extraction has been
well studied and can be implemented by DSPs very efficiently
[18]. Therefore, we envision a chip using a combination of both
standard fixed-point arithmetic for the front-end, and custom
arithmetic for the back-end.

The rest of the paper is organized as follows. Section II
discusses the general mechanism of custom arithmetic. Sec-
tions III and IV present our computation reordering technique for
Gaussian evaluation and our normalization method for Viterbi
search, respectively. Section V formulates a discriminatively
inspired distortion measure for quantizing forward probabil-
ities. Section VI investigates several heuristics for bit-width
allocation. Section VII describes our system organization, and
Section VIII reports our word error rate (WER) and cycle time
experiments and results, followed by concluding remarks.

II. GENERAL DESIGN METHODOLOGY

In this section, we present an ASR system driven by
custom arithmetic, where all floating-point calculations are
precomputed. In addition, we address several potential issues
associated with custom arithmetic design for an ASR system.

A. General Arithmetic Mechanism

A high-level programming language allows complex expres-
sions involving multiple operands. We split all such complex
expressions into sequences of two-operand operations by intro-
ducing intermediate variables. We can then express any opera-
tion on scalar variables and , with the result saved as ,
by a function, , where . The
function , , can be an arbitrary arithmetic
operation or sequence of operations, e.g., .

The first step of custom arithmetic design is to create a code-
book for each scalar variable. The codewords are the quantized
values of that variable, and the indices of those codewords are
consecutive integers. For a variable with value , the
closest codeword in the codebook is denoted as , and its
associated index is denoted as .

Second, a table is created to store all allowable values
for the function , as defined by the input and output code-
books. Each address in the table is determined by the indices
of the input operand codewords and the output is the index of
the result’s codeword. Equationally, for , we have

. If the output and the two inputs
have bit-widths of , , and , respectively, then the table
requires a total storage of bits.

The final step in designing this custom arithmetic system is to
replace all floating-point values with the corresponding integer
indices and approximate all two-operand arithmetic operations
with table lookups. Note that the output index is used as the input
of the next table lookup, so that all data flow and storage are
represented in integer form, and all complex operations become
a series of simple table accesses.

The physical device realization of the LUTs is beyond the
scope of this work. The implementation of custom arithmetic
units can be simplified using reconfigurable logic [19], [20], al-
though at the expense of increased power consumption.

B. Design Issues for ASR

In spite of the attractiveness of custom arithmetic, such a
system becomes unrealistic if the table size gets too large. This
poses several challenges to the custom arithmetic design for an
ASR system:

1) how to modify the decoding algorithm to ensure low en-
tropy for all system variables;

2) what the quantization methods consistent with recogni-
tion rate maximization are;

3) how to allocate bit-widths among system variables to op-
timize resource performance.

As stated in the introduction, the foremost assumption of a
custom arithmetic based system is the low entropy of all system
variables. Most variables in a state-of-the-art ASR back-end,
as will be seen in Section VIII, can be quantized to low pre-
cision without loss of recognition accuracy. However, there do
exist several variables with high entropy, which must be tackled
by algorithmic level modification. In the Mahalanobis distance
calculation of Gaussian evaluation, for example, the distance
is accumulated along the dimension of the features, resulting
in a relatively spread-out distribution covering all partial accu-
mulations. Additionally, the forward probability in decoding

LI et al.: HIGH-SPEED, LOW-RESOURCE ASR BACK-END 1685

possesses a potentially more fatal problem—the forward pass
computes over an arbitrarily long utterance in real applications,
making ’s value distribution unknown to the quantizer at the
codebook design stage. Consequently, the designed codebook
may not cover all values that may occur at decode time, leading
to poor recognition performance. Although certain normaliza-
tion techniques have been proposed in the literature, they cannot
essentially solve the problem for custom arithmetic design, as
we will see. Potential solutions to this first issue will be dis-
cussed in Sections III and IV.

The second issue is in fact a quantization problem. Since the
bit-width of each variable directly influences the table size, we
want each variable to be scalar quantized to as low precision as
possible without degradation in recognition rate. The distortion
measure should ideally be consistent with minimizing recogni-
tion degradation. In this work, we are particularly interested in
further compressing the forward probability , which has the
highest entropy even after rescaling, as will be shown in Sec-
tion VIII. Section V presents a discriminatively inspired distor-
tion measure to quantize this variable.

Finally, the last issue is a search problem for optimally allo-
cating memory resources among tables. Since the search space
could be quite large for an ASR system, we investigate several
heuristics in Section VI to find the best search scheme within
the existing computational capacity.

III. COMPUTATION REORDERING FOR GAUSSIAN

LIKELIHOOD EVALUATION

Gaussian evaluation can dominate the operational load by
taking up to 96% of the total computation for a typical small vo-
cabulary application [3], and 30% to 70% of the total computa-
tion for LVCSR tasks [4]. However, the nature of Gaussian eval-
uation makes this task particularly suited to our custom arith-
metic, as will be seen in this section. As a side note, the re-
quired memory footprint for these calculations can also be re-
duced through the use of LUTs, providing an added benefit.

A. Problem Formulation

Log arithmetic is widely used in practical ASR systems to
achieve numerical values with a very wide dynamic range. In
this paper, a variable with a bar denotes its log value. For ex-
ample, . Also, denotes log addition where

.1 The log state likelihood of the ob-
servation vector , given a certain state

, can be expressed as

(1)

where is the subset of diagonal Gaussians belonging to state
; the variables and are the mean and variance scalars

of a Gaussian, respectively; is the log value of the com-
ponent responsibility (or mixture weight); and is a constant,
both of which can be computed offline.

As mentioned earlier, many operations in Gaussian evaluation
are repetitive: to evaluate the observation probabilities for an

1Log addition in our system was implemented in a more efficient way.

Fig. 1. Linear accumulation versus tree-structure accumulation. Squares refer
to operands; circles refer to arithmetic operators to be implemented by table
lookup. Note that a separate LUT could be used for each circle, one large LUT
could be used for all circles, or some subset of circles could share from a set of
LUTs.

utterance with frames in a system with different Gaussian
components, the operation of the form will
be performed times, which easily could indicate
millions of floating-point multiplications. Similarly, the more
expensive log addition may be performed thousands of times.
Substituting in simple LUTs can provide substantial benefit.

A crucial problem inherent to Gaussian likelihood evaluation
is that there are two iterative operations suggested by (1). One
is , where ,
and the other is associated with the log addition. The accu-
mulations associated with these operations may produce high-
entropy variables, making codebook design difficult. For ex-
ample, in the above calculation, consider the distribution of the
partial accumulation at different points in the summation calcu-
lation. Using a temporary value to store the result of the partial
accumulation, we initially have . If we
assume that the values are identically distributed, then

at this point will have a dynamic range of twice that of
. At the next step, , will have

a dynamic range of three times that of , and so forth.
Before moving on, there is a subtle but important distinction

to make between the entropy and the dynamic range of a random
variable. These two concepts are related in accumulation. If all
inputvalues to be summed are identically distributed, an accumu-
lationwill seemanypartial accumulativevaluesat eachportionof
itsdynamicrange.Theresultingdistributionwillhaveprobability
for values in the dynamic ranges of all partial accumulations, and
so the larger dynamic range will imply high entropy.

B. Computation Reordering Strategies

There are two natural strategies for performing quantized ac-
cumulation: a linear accumulation and a binary tree. Each corre-
sponds to a data-flow diagram and consequently to a precedence
order for the operations. They are “natural” in that they closely
parallel common data structures used for dealing with an array
of values, and, in fact, represent the extremes of a large set of
possibilities. Linear accumulation is a straightforward accumu-
lative algorithm, where the next value of a variable equals the
current value plus an additional value as depicted on the left in
Fig. 1. In the case of , the accumulator needs to be initial-
ized to zero. is then consecutively per-
formed for . An alternative to linear accumulation
is to use a binary tree as depicted on the right in Fig. 1, where
the original inputs are combined separately and the outputs are
again combined separately.

1686 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006

Fig. 2. Adding adjacent elements versus re-ordering elements to add MFCCs and corresponding deltas; only the first level of the accumulation is shown, with
the array elements corresponding to the boxes of Fig. 1.

There are different ways of implementing these two schemes
with LUTs. First, a separate table could be used for each circle,
where each table would be customized to its particular distribu-
tion of input and output values. This would lead to small tables
since each table would be customized for the typical dynamic
range of its operands, but distinct tables would be needed.

At the other extreme, a single table could be used for all cir-
cles but it must account for enough values to adequately repre-
sent the value range produced by the operation. Therefore, the
table itself might be very large since the distributions of its in-
puts and output would have much higher entropy. Using a single
table, however, may work well in cases such as ,
where the log addition operator does not dramatically change
the value range between inputs and output at each iteration. Sim-
ilarly, if an operation is iterated only a small number of times, a
single table may also be sufficient.

Between these two extremes, fewer than tables can
account for all circles. There is a tradeoff between the
number of tables and table size—a smaller number of tables
requires larger but shared codebooks. One solution in the tree
case is to use a separate table for each tree level, leading to

tables. The potential advantage here is that each tree
level can expect to see input operands with a similar dynamic
range and output operand distributions with lower entropy. As a
result, the total table size may be minimized.

This work compares three strategies in computing .
First, we implemented the linear case using one shared oper-
ator (LUT). Second, we tried two different tree accumulation
patterns, both with operators as mentioned above. The
two tree strategies differ only at the top level. As shown on the
left in Fig. 2, the first case adds adjacent elements of the vector

, but at the next tree level half the inputs consist of
combined static features and the other half consist of combined
deltas. The second case, depicted on the right in Fig. 2, instead
combines the of each feature with its corresponding
delta. This idea is based on the empirical observation that the
dynamic range of is similar between the static features
after mean subtraction and variance normalization, and similar
also between the deltas. This will cause the outputs of the top
level to be more homogeneous, leading to better quantization
and representation. When dealing with an incomplete tree (
is not a power of 2), some values are allowed to pass over levels
and are added to lower levels of the tree, as shown on the right
in Fig. 1.

IV. NORMALIZATION OF VITERBI SEARCH

Viterbi search is another heavy load for an ASR engine. A
key goal of this work is for custom arithmetic to be applicable
to Viterbi search as well.

A. Problem Formulation

In decoding, the forward probability
is calculated as

(2)

or, using the Viterbi approximation to exact inference

(3)

with the final score approximated as
. Here, we let states 1 and denote

the beginning and ending non-emitting states, respectively.
As can be seen in (2) and (3), neither nor has a bounded dy-

namic range. Specifically, as increases these log Viterbi scores
willdecrease,causingsevereproblemsincodebookdesign.Since
the utterance length in real applications is unknown at the system
design stage, the (or) values at decode time might not lie in
the dynamic range of those values used for quantization at code-
book design time. Essentially, the distribution over has high
entropy since the values decrease unboundedly with . While
we could assume some upper bound on and quantize with
distributed accordingly, this would yield an exponentially larger
and wasteful codebook with many values seldom used by short
utterances. Therefore, we need a normalized version of the for-
ward probability, where inference is still valid but the dynamic
range is restricted regardless of utterance length.

B. Within-Word Normalization

In this section, we modify the notation by adding a subscript
to distinguish between values associated with different word

models , . Also, denotes the set of states in
word .

In the literature, has com-
monly served as a normalized forward probability to solve the
underflow problem that occurs in the Baum–Welch algorithm
using fixed-precision floating-point representation [21], [22].
This is equivalent to rescaling by , pro-
ducing a quantity with a representable numerical range. The
recursion then becomes

(4)

(5)

LI et al.: HIGH-SPEED, LOW-RESOURCE ASR BACK-END 1687

where is computed as

(6)

However, computing alone
is insufficient to obtain the final likelihood score
needed in decoding. Obtaining this score requires to
be stored during the forward pass and be summed up over at
the end, again giving an ever-growing dynamic range.

C. Cross-Word Normalization

The essential problem with within-word normalization is that
the scaling factor is different for different word models at each
frame. The final scores, therefore, are not comparable to each
other. One standard approach [21] to circumvent this problem is
to use the same scaling factor at each frame for all word models.
Formally, we introduce with a recursion

(7)

where

(8)

This scaling factor in ’s recursion is independent of , and
it naturally obtains the score for at the end of the corre-
sponding forward pass

(9)

There are potential difficulties, however, with implementing
this recursion. As can be seen in (7) and (8), computing the
scaling factor involves significant additional operations. When
implemented with custom arithmetic, there is the additional
problem that the total table size might still be large since extra
LUTs are needed for the scaling operation.

D. Time-Invariant Normalization

Under modest assumptions, we show that the dynamic range
of is bounded by linear functions of time. Equation (3) sug-
gests that

(10)

Equation (10) can be written recursively for all frames and
summed up on both sides, leading to

(11)

Assuming is a mean ergodic process, namely
, and similarly for the

min case, we have

(12)

where and
.

Motivated by (12), we propose a normalized forward proba-
bility , where is a positive constant. The final
Viterbi score consequently becomes

(13)

First, (13) is a valid scoring criterion because the offset
stays the same for all word candidates and, hence, has no im-
pact on the final decision. This allows us to choose the that
best normalizes the forward probability. Second, dynamic pro-
gramming still applies to the inference

(14)

As shown in Section VII, this normalization does not require
extra table lookup operations. Finally, the dynamic range of the
normalized log forward probability is controlled by , since
by (12)

(15)

To choose , we compute the scores of all utterances from the
training set evaluated on their own generative word models, and
let , in an attempt to
normalize to zero the correct model’s log likelihood score with
zero word error. It still might be true that when evaluating utter-
ances on the test set with respect to a wrong word model, or if the
right model happens to currently be in error, the score decreases
as increases. When this happens, however, it will be for those
words with lower partial likelihoods, and which are (hopefully)
in error. The scheme may act to prune away unpromising par-
tial hypotheses by encoding their likelihoods with a very few
number of bits.

V. DISCRIMINATIVELY INSPIRED DISTORTION MEASURE

Lacking an analytically well-defined distortion measure
to maximize recognition rate, conventional discrete-density
HMM-based ASR systems often use Euclidean or Mahalanobis
distance for VQ [21]. Here, we present a new metric customized
to minimize the degradation in recognition accuracy.

1688 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006

As will be shown in Section VIII, the forward probability
requires the highest bit-width among all system variables. We
are, therefore, particularly interested in further compressing this
variable. Forward probabilities are in fact just likelihoods. The
correct answer will typically have a high likelihood, whereas
very wrong answers will typically have low likelihoods and are
likely to be pruned away. A standard data-driven quantization
scheme, however, tends to allocate more bits to a value range
based only on its probability mass. Since low likelihoods are
more probable (there is only one correct answer and many
wrong ones), more bits will be allocated to these low scores
at quantization time, thereby giving them excessively high
resolution.

Therefore, we propose a discriminatively inspired distortion
measure to penalize low-valued forward probabilities. We de-
fine the distortion between a sample and its quantized
value as

(16)

where is strictly positive. In choosing , it is desired
that as increases, the distance between and will in-
crease, which will cause more bits to be allocated for higher like-
lihood scores. is such a function, where
controls the degree of discrimination with smaller implying
higher discrimination. In this work, was determined empiri-
cally from training data.

VI. OPTIMIZATION OF BIT-WIDTH ALLOCATION

So far, we have discussed table construction, but have not ad-
dressed how to determine the size of each table. The goal is to
come up with a system-wide optimization algorithm to allocate
resources among all variables. We aim to find the bit-width al-
location scheme which minimizes the cost of resources while
maintaining baseline recognition performance.

The algorithms will be presented for a system with vari-
ables . We now define the following:

bit-width of an unquantized
floating-point value; typically,

;
bit-width of . can take
any integer value below ;
when , is unquan-
tized;
bit-width allocation scheme;
an increment of 1 bit for vari-
able , where

;
WER evaluated at ;
total cost of resources evaluated
at .

Note that the cost function can be arbitrarily defined de-
pending on the specific goals of the allocation. In this paper,
we use the total storage of the tables as the cost. Additionally,
we define the gradient as the ratio of the decrease in WER

to the increase in cost evaluated in a certain axis direction, for
example

(17)

reflects the rate of improvement along the joint direction of
and . For a single-dimensional increment, we set :

.
We define a baseline WER

, with a tolerance for
increased error due to quantization. Our goal can be interpreted
as

(18)

This search space is highly discrete and, due to the effects of
quantization noise, only approximately smooth. An exhaustive
search for , evaluating and at every pos-
sible , is clearly exponential in . Even constraining the bit-
width of each variable to a restricted range of possible values
gives a very large search space. In Section VI-A–C, we present
two heuristics that work well experimentally. The basic idea is
that we start with a low-cost with low enough a WER that
gradients are not meaningless (they provide no information if
bit-widths are too low) and greedily increase the bit-widths of
one or a small group of variables until we find an acceptable
solution. This is similar to the method used in [23] to optimize
floating-point bit-widths.

A. Single-Variable Quantization

Finding a reasonable starting point is an important part of
these algorithms. In general, it is expected that the noise intro-
duced into the system by quantizing an additional variable will
produce a result that is not better than without the extra variable
quantized. For that reason, we take the starting point to be the
minimum number of bits needed to quantize a single variable to
produce baseline WER results. We call that result , the min-
imum bit-width of variable . We determine an upper bound

by inspection. Specific methods for quantizing individual
variables have been introduced in the previous sections.

Once we determine the boundaries for each single variable,
we have constrained our search to the hypercube bounded
by , . We then start each of
the following algorithms at

. In all cases, it is assumed that
since the algorithms are designed

to stop when they find a with a WER as low as the target
rate.

B. Single-Dimensional Increment

This algorithm allows only single-dimensional increments.
It uses the gradient as a measure of improvement. The
algorithm is described as follows.

1) Evaluate the gradients , , for the current
according to (17), where tests are needed to obtain the

WERs. If , return .

LI et al.: HIGH-SPEED, LOW-RESOURCE ASR BACK-END 1689

2) Choose the direction , and set

.
3) If , return ; otherwise repeat

steps 1) and 2).
For speech recognition, online evaluation for a test takes a

significant amount of time. As this takes place during the design
stage, this is not a problem. Note that there might exist the case
that no improvement exists along each of the directions, but
that one does exist with joint increments along multiple dimen-
sions. With this algorithm, the search can easily become stuck
in a local optimum.

C. Multidimensional Increment

To reduce the chance of becoming stuck in local optima, the
bit-widths of multiple variables could be increased in parallel.
Considering the computational complexity, we only allow
one-dimensional (1-D) or two-dimensional (2-D) increments,

leading to possible candidates. We could extend this

to include triplet increments, but it would take an intolerably
long time to finish. Only steps 1) and 2) differ from the above
algorithm, becoming the following.

1) Evaluate the gradients and , ,

on current where tests are needed to

obtain the WERs. Return if all these gradients are
negative.

2) Choose the direction or a pair of directions where
or is the maximum among all the single-dimen-

sional and pair-wise increments. Increase the bit-width of or
those of by one if no one exceeds its upper bound.

This algorithm is superior to the first one in the sense that it
explores many more candidate points in the search space. It con-
siders only one additional direction and may still fall into a local
optimum, but is less likely to do so than in the previous case.
The downside is that this algorithm takes substantially longer to
complete.

VII. SYSTEM ORGANIZATION

A. Baseline System Configuration

The database used for system evaluation is NYNEX Phone-
Book [24], a phonetically-rich speech database designed for
isolated-word recognition tasks. It consists of isolated-word
utterances recorded via telephone channels with an 8000-Hz
sampling rate. Each sample is encoded into 8 bits according to

-Law. We set aside 79 778 utterances for training, 6598 for
development and 7191 for evaluation.2 The development set is
comprised of 8 different subsets, each with a different 75-word
vocabulary. For a comprehensive testing, the evaluation set is
divided in four ways: a) eight subsets each with a 75-word
vocabulary; b) four subsets each with a 150-word vocabulary;
c) two subsets each with a 300-word vocabulary; and d) one

2Specifically, the training set consisted of subsets aa, ab, ah, ai, am, an, aq, at,
au, ax, ba, bb, bh, bi, bm, bn, bq, bt, bu, bx, ca, cb, ch, ci, cm, cn, cq, ct, cu, cx,
da, db, dh, di, dm, dn, dq, dt, du, dx, ea, and eb. The development set included
subsets ad, ar, bd, br, cd, cr, dd and dr. Finally, the evaluation set was comprised
of subsets ao, ay, bo, by, co, cc, do, dy.

set with a 600-word vocabulary. Besides the experiments in
clean conditions, artificial white Gaussian noise is added to the
evaluation set generating utterances with SNRs of 30, 20, and
10 dB.

The acoustic features are the standard MFCCs plus the log
energy and their deltas, yielding 26-dimensional vectors. Each
vector has mean subtraction and variance normalization applied
to both static and dynamic features in an attempt to make the
system robust to noise.

The acoustic models are a set of phone-based CHMMs. This
enables a customizable vocabulary, a desirable goal for an em-
bedded device. Our system has 42 phone models, each com-
posed of four emitting states except for the silence model which
has one emitting state. The state probability distribution is a
mixture of 12 diagonal Gaussians.

The front-end and the back-end are two main components of
the recognizer, where the back-end has been discussed in pre-
vious sections. Our front-end consists of active speech detection
and feature extraction. It expands each -law encoded sample
into linear 16-bit PCM, and then creates a frame every 10 ms
(80 samples), each with a length of 25 ms (200 samples). The
speech detector used is one of the simplest; it detects speech
when the energy level of the speech signal rises above a cer-
tain threshold. This design uses minimal extra resources while
still accurately detecting speech when noise conditions are sta-
tionary. Feature extraction is triggered immediately when active
speech is detected. It follows a standard procedure described
in [25]. We then add the first-order dynamic features followed
by mean subtraction and variance normalization. The feature
vectors obtained are fed into the back-end, where the pattern
matching takes place. Since we propose applying our custom
arithmetic to the back-end but not to the front-end, an interface
is necessary. At the interface, the floating-point value of a fea-
ture element is converted into its integer index in the associated
codebook by a binary search. This is in fact the only place in the
system where a software codebook search is needed, and is the
biggest overhead introduced by custom arithmetic. This over-
head is taken into account in our CPU time simulations.

B. Codebook and Table Definition

Based on the analysis in the previous sections, we defined 13
variables to be quantized which are listed in Table I. The variable

is the output feature element of the front-end, , , , , and
are the acoustic model parameters precomputed, and , , ,
, , , and are other intermediate variables in the back-end

system.
There are eight functions and, hence, eight potential LUTs

associated with these variables

and involve floating-point multiplication and di-
vision, respectively, and these operations would be performed
millions of times for an ordinary isolated word recognition task.

1690 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006

TABLE I
SYSTEM VARIABLES AND THEIR CORRESPONDING EXPRESSIONS

would be executed thousands of times with even more ex-
pensive log computation. We expect the simple hardware-based
lookup operations will dramatically save cycles as well as power
on these functions.

Note that the comparison operations implicit in (14) are easily
implemented, since they can be achieved using low bit-width
integer comparison operations, so no extra tables are required.

VIII. EXPERIMENTS AND RESULTS

Before reporting our experiments and results, we would like
to clarify two points. First, the recognition program used in all
our simulations does not utilize purely algorithmic methodology
such as Gaussian selection, beam pruning or algorithmic-level
VQ techniques; incorporating these procedures may indeed
affect (and likely improve) our speedup factors, but, in this
work, we concentrate solely on architectural customization and
enhancement. Second, we must acknowledge that an alternative
architectural strategy is to utilize a “hybrid” system consisting
of a mix between floating- and fixed-point arithmetic operations.
Our contention, however, is that when the greatest possible
power savings must be obtained, custom designed arithmetic
operations (as we employ in this work) will yield the best tradeoff
between ASR accuracy and power consumption reduction.

This section first reports the results of system development.
The LBG [26] algorithm was used in all single variable quanti-
zation experiments. These experiments were performed on the
8 development subsets mentioned in the previous section. The
WERs reported were an average over these subsets. We also
tried 150-, 300-, and 600-word vocabulary cases on the develop-
ment set and observed similar trends. Based on the single-vari-
able quantization experiments, we applied our search algorithms
for resource allocation, where the WERs were again evaluated
on the development set. Next, we evaluated the recognition ac-
curacy of the best allocation scheme in both clean and noisy con-
ditions on our evaluation set. Finally, we estimated its memory
usage and simulated its speed performance.

A. System Development

In the single-variable quantization experiments, we quantize
each variable individually, leaving all other variables at full pre-
cision. The baseline WER of the development set is 2.07%.

Table II shows the minimum bit-width to which a variable can
be quantized without any increase in WER on the development
set. Here, we report all system variables except for the accu-
mulated Mahalanobis distance and the forward probability
which will be discussed separately later. Note that we let and

TABLE II
MINIMUM BIT-WIDTH TO WHICH EACH VARIABLE CAN BE INDIVIDUALLY

QUANTIZED WITHOUT INCREASE IN WER

share the same codebook because their value ranges have much
overlap.

Section III presented two approaches to quantize variable . In
our case, the operation is repeated 26 times to get the
final value of . Using linear accumulation, it involves only two
variables and and only one table . Alternatively,
we can use tree-structure accumulation with multiple variables
and different tables each of relatively small size.
For simplicity, the variables in each level of the tree structure are
quantized with the same bit-width. Fig. 3 summarizes the results
in terms of WER versus bit-width of each codebook. Tree-struc-
ture 1 denotes the method where adjacent pairs in the vector
are added at all levels to form the next-level codebook, whereas
in tree-structure 2, MFCCs are added to their corresponding
deltas at the first level. It can be seen that in order to achieve
the baseline recognition rate, linear accumulation needs 7 bits
and tree-structure schemes need 6 bits for each codebook. The
total table size, however, is a different story since the tree-struc-
ture schemes require five separate LUTs. To compute the total
table size, we only consider the two functions in which is
involved.3Assuming , and according to
Table II, 6 kBytes of LUTs are needed to realize the operations in-
volving using linear accumulation, whereas the required space
goes up to almost 10 kBytes for the tree-structure schemes to
achieve the same goal. It is worth noting that the feature di-
mension is fixed at 26 and is relatively low, and the addition
operation only changes the dynamic range of the output at a
linear scale. This yields only a mild increase in the entropy of

, thereby making the linear accumulation an effective approach.
Nevertheless, the tree structure may show advantages for other
types of operations such as a long sequence of multiplications.

Section IV proposed a time-invariant normalization to the
forward probability to reduce its entropy without affecting the
recognition decision. To show the advantage of the normalization
on quantization, we extracted forward probability samples with
andwithoutnormalizationonthesamesubsetof trainingdata,and
generated codebooks based on the Euclidean distance distortion
measure for each case. We additionally applied quantization of
the normalized forward probabilities using our discriminatively
inspired distortion measure. As shown in Fig. 4, the normalized
Viterbi search obviously outperforms the unnormalized case by
saving 1 bit while keeping the baseline recognition rate (thus,
nearly halving the total table size). In fact, we believe the benefits
of normalization would be more pronounced on a task with
longer utterances, such as connected-digit or continuous speech
recognition. In addition, the discriminative distortion measure
works slightly better than the normal one.

We, therefore, chose linear accumulation in quantizing
and normalized Viterbi search using our distortion measure in

3With e, d, c, and p quantized to n , n , n , and n bits, respectively,
all related tables total n 2 + n 2 bits.

LI et al.: HIGH-SPEED, LOW-RESOURCE ASR BACK-END 1691

Fig. 3. Single-variable quantization for accumulative variable e.

TABLE III
COMPARISON OF TWO BIT-WIDTH OPTIMIZATION ALGORITHMS

quantizing the forward probability. Together with other variable
quantization results, codebooks with different resolution were
generated for all system variables, to which an optimization
search was applied to find the best bit-width allocation scheme.
The results of running both allocation algorithms appear in
Table III. Recall that the baseline WER of the development set
is 2.07%.

The 1-D (single-dimensional increment) algorithm tested a
total of 52 configurations before it reached a local optimum. It
managed to find a fairly small ROM size but the WER was not
very satisfactory. The 2-D algorithm found a much better WER
than 1-D, even if its total table size was larger.

The final bit-width allocation scheme of the last algorithm is
shown in Table IV, where the first row indicates the variable and
the second row shows the corresponding bit-width. As shown
in the table, all the variables can be compressed to less than
10 bits, which substantially reduces the memory band-width.
This scheme takes only 59 kBytes of memory for table storage,
an amount affordable for most modern chips. It is also inter-
esting to see that the responsibility , transition probability ,
mean scalar , variance scalar and constant can each be
quantized to less than 8 bits, leading to an 80% reduction of
model parameter storage as opposed to 32-bit floating-point rep-
resentation. In addition, the feature scalar and the state likeli-
hood can be quantized to 7 and 5 bits, respectively, resulting
in an additional saving in online memory usage.

For some computer architectures, 8 or 16 bit is the bit-width
that can be most effectively used. For example, the design of a
lookup instruction would be easier if its operands are uniformly
8 bits (those smaller can be filled with zeros at the beginning).
For this reason, we additionally conducted an optimization ex-
periment with the constraint that all variables were quantized to
no more than 8 bits. Note that to minimize the table size, vari-
ables with fewer than 8 bits were not expanded to 8 bits. The

Fig. 4. Single-variable quantization for forward probability.

TABLE IV
OPTIMAL BIT-WIDTH ALLOCATION SCHEME

TABLE V
%WERS ON EVAL SET USING THE SCHEME IN TABLE IV

resulting bit-width allocation scheme uses 68.5 kB to achieve a
WER of 3.22%. We would also like to mention that for custom
chips and reconfigurable logic chips, 8 or 16 bit is not always
necessary since buses and registers can have smaller bit-widths.

B. Final System Evaluation

We tested the recognition performance of the scheme in
Table IV on our evaluation set for all 75-, 150-, 300-, and
600-word vocabulary cases as defined in Section VII. The
experiments were done in both clean and noisy conditions. We
did not apply any noise-robustness techniques except for mean
subtraction and variance normalization to the MFCC and delta
features.

As shown in Table V, for recognition in relatively clean condi-
tions (clean and dB cases), the system using custom
arithmetic units has slight degradation in recognition rate com-
pared to the baseline system using a floating point unit. The
maximum degradation, an absolute 1.7% increase in WER, hap-
pens in the 600-word and 30-dB case. This is graceful consid-
ering the potential speedup that custom arithmetic brings, which
is discussed in Section VIII-C. It is interesting to see that in more
noisy conditions (dB and dB cases),
custom arithmetic does not deteriorate the recognition perfor-
mance any more, but on the contrary, slightly enhances it. One
explanation is that the quantization noise introduced may, to
some extent, compensate for the more continuous additive noise

1692 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006

Fig. 5. Speedup (in cycles) versus cycles per lookup.

in the speech. Quantization then acts as a regularizer—the deci-
sion boundaries are probably slightly less susceptible to minor
perturbations when variables are so coarsely quantized in the
custom arithmetic case.

C. CPU Time Simulation

We utilized SimpleScalar [27], an architecture-level execu-
tion-driven simulator, for CPU time simulation. All tables were
precalculated by SimpleScalar at runtime. We extended the in-
struction set and modified the assembler to support our new
lookup instructions.

The simulation was targeted for a variety of architectures.
Without a detailed manufacturer-supplied simulator, an in-depth
analysis of any specific architecture is impossible, but by using
a range of simulated architectures we can still discover mean-
ingful trends in performance. The first is the SimpleScalar de-
fault configuration, roughly akin to a third generation Alpha,
an out-of-order superscalar processor. The second represents a
more modern desktop machine; cache sizes and latencies have
been updated from the defaults, several years old, to reflect more
current values. Our third configuration attempts to represent a
typical high-end DSP chip. Since most DSP chips are Very Long
Instruction Word (VLIW) architectures, a feature not replicable
with SimpleScalar, we chose instead to force in-order execu-
tion with high parallelism as a very rough approximation of
VLIW. Finally, we simulated a very simple processor with a
single pipeline and no cache. This last case is similar to what
could be expected of a low-power processor designed to run on
an extremely portable device, the expected target platform for
custom arithmetic. In each case, we allowed multiple tables to
be accessed in parallel, although a specific table could be used
by only one instruction at a time.

We simulated each of the target machines for a range of table
lookup speeds. This is independent of WER since, assuming the
table is not too large, the precision of the output of a lookup
has little to do with the speed of the lookup. Fig. 5 shows the
speedup obtained versus the number of cycles required for each
lookup. The speedup ranges from just under 2.5 to nearly 4
when lookups take only one cycle, and falls off as they be-
come more expensive. If the ROM tables are small enough to
fit on the processor chip, which is the case using the 59-kB

results from Table IV, a one-cycle lookup is quite realistic for
a state-of-the-art system. To be more explicit, we assume that
the ROMs will be on-die and implemented using either recon-
figurable logic or a custom die for embedded applications. Al-
though this may seem to require a large chip area, there is sub-
stantial savings in the on-chip cache size resulting from the
reduction in the bit-widths of all variables. As shown in the
figure, using a single pipeline and no cache (simple processor),
meaning essentially a cache miss every time, does reduce the
speedup but still provides a significant gain in speed. Much
benefit actually comes from replacing sequences of instructions
with a single lookup, as the dynamic instruction count falls
nearly as much as execution time. Note that because we did not
try to implement a low-power front-end, a feature that would be
necessary for a final realization of this system, we used precal-
culated MFCCs in floating-point values and included the time
for MFCC quantization when calculating speedups.

IX. SUMMARY AND CONCLUSION

This paper presented a methodology for the design of high-
speed, low-resource systems using custom arithmetic units. We
focused our attention on the scalar quantization of system vari-
ables with high entropy, involving reordering and rescaling of
the decoding algorithms, and a discriminatively inspired distor-
tion measure. We also demonstrated several resource allocation
search heuristics suitable for finding acceptable points in an oth-
erwise intractable search space. Our findings were then applied
to a CHMM based ASR system, where a fully-functioning ASR
back-end was achieved by LUTs without floating-point arith-
metic units. The 59 kB of tables is small enough that it can be
added to any chip with an access time of one cycle. When im-
plementing this design on a modern processor, we show that the
expected speedup is at least 3, and possibly larger. Furthermore,
the memory required for parameter storage and online computa-
tion can be greatly reduced. In addition, we are looking forward
to hardware support for our custom arithmetic; the amount of
savings in cycles and power also depends on the physical re-
alization of the LUTs and the ISA designed to support lookup
operations.

ACKNOWLEDGMENT

The authors would like to thank C. Ebeling for useful advice.

REFERENCES

[1] S. Takahashi, K. Aikawa, and S. Sagayama, “Discrete mixture HMM,”
in Proc. Int. Conf. Acousitics, Speech, and Signal Processing, vol. 2,
1997, pp. 971–974.

[2] V. Digalakis, S. Tsakalidis, C. Harizakis, and L. Neumeyer, “Efficient
speech recognition using subvector quantization and discrete-mixture
HMMs,” Comput. Speech Lang., vol. 14, pp. 33–46, 2000.

[3] E. Bocchieri, “Vector quantization for the efficient computation of con-
tinuous density likelihoods,” in Proc. Int. Conf. Acousitics, Speech, and
Signal Processing, vol. 2, 1993, pp. 692–695.

[4] M. J. F. Gales, K. M. Knill, and S. J. Young, “State based Gaussian selec-
tion in large vocabulary continuous speech recognition using HMMs,”
IEEE Trans. Speech Audio Process., vol. 7, no. 2, pp. 152–161, Mar.
1999.

[5] M. Ravishankar, R. Bisiani, and E. Thayer, “Sub-vector clustering to
improve memory and speed performance of acoustic likelihood compu-
tation,” in Proc. Eurospeech, 1997, pp. 151–154.

LI et al.: HIGH-SPEED, LOW-RESOURCE ASR BACK-END 1693

[6] M. Vasilache, “Speech recognition using HMMs with quantized param-
eters,” presented at the Int. Conf. Acousitics, Speech, and Signal Pro-
cessing, 1999.

[7] E. Bocchieri and B. K. Mak, “Subspace distribution clustering hidden
Markov model,” IEEE Trans Speech and Audio Process., vol. 9, no. 3,
pp. 264–275, May 2001.

[8] K. Filali, X. Li, and J. Bilmes, “Data-driven vector clustering for low-
memory footprint asr,” presented at the Int. Conf. Spoken Language Pro-
cessing, 2002.

[9] , “Algorithms for data-driven ASR parameter quantization,”
Comput., Speech, Lang., to be published.

[10] C. Iordache and P. T. P. Tang, “An overview of floating-point support
and math library on the Intel XScale architecture,” presented at the 16th
IEEE Symp. Computer Arithmetic, Jun. 2003.

[11] Y. Gong and U. H. Kao, “Implementing a high accuracy speaker-in-
dependent continuous speech recognizer on a fixed DSP,” in Proc. Int.
Conf. Acousitics, Speech, and Signal Processing, 2000, pp. 3686–3689.

[12] E. Cornu, N. Destrez, A. Dufaux, H. Sheikhzadeh, and R. Brennan, “An
ultra low power, ultra miniature voice command system based on hidden
Markov models,” in Proc. Int. Conf. Acousitics, Speech, and Signal Pro-
cessing, vol. 4, 2002, pp. 3800–3803.

[13] I. Varga et al., “ASR in mobile phones—An industrial approach,” IEEE
Trans. Speech Audio Process., vol. 10, no. 8, pp. 562–569, Aug. 2002.

[14] B. Mathew, A. Davis, and Z. Fang, “A low-power accelerator for the
SPHINX 3 speech recognition system,” presented at the Int. Conf. Com-
pilers, Architectures, and Synthesis for Embedded Systems, 2003.

[15] D. Citron, D. Feitelson, and L. Rudolph, “Accelerating multi-media pro-
cessing by implementing memoing in multiplication and division units,”
in Proc. Int. Conf. Architectural Support for Programming Languages
and Operating Systems, 1998, pp. 252–261.

[16] X. Li, J. Malkin, and J. Bilmes, “Codebook design for ASR systems
using custom arithmetic units,” presented at the Int. Conf. Acousitics,
Speech, and Signal Processing, May 2004.

[17] J. Malkin, X. Li, and J. Bilmes, “Custom arithmetic for high-speed, low-
resource ASR systems,” presented at the Int. Conf. Acousitics, Speech,
and Signal Processing, May 2004.

[18] B. Delaney, N. Jayant, M. Hans, T. Simunic, and A. Acquaviva, “A low-
power, fixed-point, front-end feature extraction for a distributed speech
recognition system,” in Proc. Int. Conf. Acousitics, Speech, and Signal
Processing, vol. 1, 2002, pp. 793–796.

[19] S. J. Melnikoff, P. B. James-Roxby, S. F. Quigley, and M. J. Russel, “Re-
configurable computing for speech recognition: Preliminary findings,”
in Proc. Int. Conf. Field Programmable Logic and Applications, 2000,
pp. 495–504.

[20] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The chimaera recon-
figurable functional unit,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 12, no. 2, pp. 206–217, Feb. 2004.

[21] K. -F. Lee, Automatic Speech Recognition: The Development of the
SPHINX System. Norwell, MA: Kluwer, 1989.

[22] J. R. Deller, J. H. Hansen, and J. G. Proakis, Discrete-Time Processing
of Speech Signals. New York: Wiley, 1993.

[23] F. Fang, T. Chen, and R. A. Rutenbar, “Floating-point bit-width opti-
mization for low-power signal processing applications,” in Proc. Int.
Conf. Acousitics, Speech, and Signal Processing, 2002, pp. 3208–3211.

[24] J. F. Pitrelli, C. Fong, and H. C. Leung, “Phonebook: A phonetically-rich
isolated-word telephone-speech database,” presented at the Int. Conf.
Acousitics, Speech, and Signal Processing, 1995.

[25] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland, The HTK Book (for HTK Version
3.1). Cambridge, U.K.: Cambridge Univ., 2001.

[26] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84–95, Jan.
1980.

[27] D. Burger, T. M. Austin, and S. Bennett, “Evaluating Future Micropro-
cessors: The Simplescalar Tool Set,” Dept. Comput. Sci., Univ. Wis-
consin, Madison, Tech. Rep. CS-TR-1996-1308, 1996.

[28] P. Beyerlein and M. Ullrich, “Hamming distance approximation for a fast
log-likelihood computation for mixture densities,” in Proc. Eur. Conf.
Speech Communication Technology, vol. 2, 1995, pp. 1083–1086.

[29] J. R. Bellegarda and D. Nahamoo, “Tied mixture continuous param-
eter modeling for speech recognition,” IEEE Trans. Acoustics, Speech,
Signal Process., vol. 38, no. 6, pp. 2033–2045, Dec. 1990.

[30] J. A. Bilmes, “Buried Markov models for speech recognition,” presented
at the Int. Conf. Acousitics, Speech and Signal Processing, 1999.

Xiao Li received the B.S.E.E. degree from Tsinghua
University, Beijing, China, in 2001, and the M.S.E.E.
degree from the University of Washington, Seattle,
in 2003. She is currently pursuing the Ph.D. degree
in electrical engineering at the University of Wash-
ington, working on learning and adaptation in voice
driven human-computer interaction.

Her research interests include statistical learning,
acoustic and speech processing, and low-resource
speech recognition for embedded systems.

Ms. Li is a 2005 recipient of the Microsoft research
fellowship.

Jonathan Malkin received the B.S. degree in elec-
trical engineering and computer science from Yale
University, New Haven, CT, and the M.S. degree in
electrical engineering from the University of Wash-
ington, Seattle, in 2002 and 2005, respectively. He is
currently pursuing the Ph.D. degree at the University
of Washington, Seattle, focusing on vocal parameters
and human factors for voice-based human-computer
interaction.

His research interests include pattern recognition,
low-resource computation for real-time systems,

speech and audio processing, and recognition and human-computer interaction.

Jeff A. Bilmes (M’99) received the M.S. degree
from the Massachusetts Institute of Technology
and the Ph.D. degree in computer science from the
University of California, Berkeley.

He is an Associate Professor (adjunct in linguistics
and also in computer science and engineering) with
the Department of Electrical Engineering, Univer-
sity of Washington, Seattle, where he co-founded
the Signal, Speech, and Language Interpretation
Laboratory. He has done extensive research on both
structure learning of and fast probabilistic inference

in dynamic graphical models. His main research lies in statistical graphical
models, speech, language, and time series, human-computer interaction,
machine learning, and high-performance computing.

Dr. Bilmes is a member of the ACM and ACL. He was a general Co-Chair for
IEEE Automatic Speech Recognition and Understanding Conference in 2003,
is a 2001 CRA Digital-Government Research Fellow, and a 2001 recipient of
the NSF CAREER award.

	toc
	A High-Speed, Low-Resource ASR Back-End Based on Custom Arithmet
	Xiao Li, Jonathan Malkin, and Jeff A. Bilmes, Member, IEEE
	I. I NTRODUCTION
	II. G ENERAL D ESIGN M ETHODOLOGY
	A. General Arithmetic Mechanism
	B. Design Issues for ASR

	III. C OMPUTATION R EORDERING FOR G AUSSIAN L IKELIHOOD E VALUAT
	A. Problem Formulation

	Fig. 1. Linear accumulation versus tree-structure accumulation.
	B. Computation Reordering Strategies

	Fig. 2. Adding adjacent elements versus re-ordering elements to
	IV. N ORMALIZATION OF V ITERBI S EARCH
	A. Problem Formulation
	B. Within-Word Normalization
	C. Cross-Word Normalization
	D. Time-Invariant Normalization

	V. D ISCRIMINATIVELY I NSPIRED D ISTORTION M EASURE
	VI. O PTIMIZATION OF B IT -W IDTH A LLOCATION
	A. Single-Variable Quantization
	B. Single-Dimensional Increment
	C. Multidimensional Increment

	VII. S YSTEM O RGANIZATION
	A. Baseline System Configuration
	B. Codebook and Table Definition

	TABLE I S YSTEM V ARIABLES AND T HEIR C ORRESPONDING E XPRESSION
	VIII. E XPERIMENTS AND R ESULTS
	A. System Development

	TABLE II M INIMUM B IT -W IDTH TO W HICH E ACH V ARIABLE CAN BE
	Fig. 3. Single-variable quantization for accumulative variable $
	TABLE III C OMPARISON OF T WO B IT -W IDTH O PTIMIZATION A LGORI
	Fig. 4. Single-variable quantization for forward probability.
	TABLE IV O PTIMAL B IT -W IDTH A LLOCATION S CHEME
	TABLE V %WER S ON E VAL S ET U SING THE S CHEME IN T ABLE€ IV
	B. Final System Evaluation

	Fig. 5. Speedup (in cycles) versus cycles per lookup.
	C. CPU Time Simulation
	IX. S UMMARY AND C ONCLUSION
	S. Takahashi, K. Aikawa, and S. Sagayama, Discrete mixture HMM,
	V. Digalakis, S. Tsakalidis, C. Harizakis, and L. Neumeyer, Effi
	E. Bocchieri, Vector quantization for the efficient computation
	M. J. F. Gales, K. M. Knill, and S. J. Young, State based Gaussi
	M. Ravishankar, R. Bisiani, and E. Thayer, Sub-vector clustering
	M. Vasilache, Speech recognition using HMMs with quantized param
	E. Bocchieri and B. K. Mak, Subspace distribution clustering hid
	K. Filali, X. Li, and J. Bilmes, Data-driven vector clustering f
	C. Iordache and P. T. P. Tang, An overview of floating-point sup
	Y. Gong and U. H. Kao, Implementing a high accuracy speaker-inde
	E. Cornu, N. Destrez, A. Dufaux, H. Sheikhzadeh, and R. Brennan,
	I. Varga et al., ASR in mobile phones An industrial approach, IE
	B. Mathew, A. Davis, and Z. Fang, A low-power accelerator for th
	D. Citron, D. Feitelson, and L. Rudolph, Accelerating multi-medi
	X. Li, J. Malkin, and J. Bilmes, Codebook design for ASR systems
	J. Malkin, X. Li, and J. Bilmes, Custom arithmetic for high-spee
	B. Delaney, N. Jayant, M. Hans, T. Simunic, and A. Acquaviva, A
	S. J. Melnikoff, P. B. James-Roxby, S. F. Quigley, and M. J. Rus
	S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, The chimaera r
	K. -F. Lee, Automatic Speech Recognition: The Development of the
	J. R. Deller, J. H. Hansen, and J. G. Proakis, Discrete-Time Pro
	F. Fang, T. Chen, and R. A. Rutenbar, Floating-point bit-width o
	J. F. Pitrelli, C. Fong, and H. C. Leung, Phonebook: A phonetica
	S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollaso
	Y. Linde, A. Buzo, and R. M. Gray, An algorithm for vector quant
	D. Burger, T. M. Austin, and S. Bennett, Evaluating Future Micro
	P. Beyerlein and M. Ullrich, Hamming distance approximation for
	J. R. Bellegarda and D. Nahamoo, Tied mixture continuous paramet
	J. A. Bilmes, Buried Markov models for speech recognition, prese

