
Cache-Collision Timing Attacks Against AES

Joseph Bonneau1 and Ilya Mironov2

1 Computer Science Department, Stanford University jbonneau@stanford.edu
2 Microsoft Research, Silicon Valley Campus mironov@microsoft.com

Abstract. This paper describes several novel timing attacks against the
common table-driven software implementation of the AES cipher. We de-
fine a general attack strategy using a simplified model of the cache to
predict timing variation due to cache-collisions in the sequence of lookups
performed by the encryption. The attacks presented should be applica-
ble to most high-speed software AES implementations and computing
platforms, we have implemented them against OpenSSL v. 0.9.8.(a) run-
ning on Pentium III, Pentium IV Xeon, and UltraSPARC III+ machines.
The most powerful attack has been shown under optimal conditions to
reliably recover a full 128-bit AES key with 213 timing samples, an im-
provement of almost four orders of magnitude over the best previously
published attacks of this type [Ber05]. While the task of defending AES
against all timing attacks is challenging, a small patch can significantly
reduce the vulnerability to these specific attacks with no performance
penalty.

Keywords: AES, cryptanalysis, side-channel attack, timing attack, cache.

1 Introduction

Side-channel attacks have been demonstrated experimentally against a variety
of cryptographic systems. Side-channel attacks utilize the fact that in reality,
a cipher is not a pure mathematical function EK [P ] → C, but a function
EK [P ] → (C, t), where t is any additional information produced by the physical
implementation. The attacks presented in this paper use timing data.

In 1997, Rijmen and Daemen proposed the Rijndael cipher to the National
Institute of Standards and Technology (NIST) as a candidate to become the Ad-
vanced Encryption Standard (AES). After four years of competition, Rijndael
was chosen by NIST in October 2000 and officially became AES in 2001 with US
FIPS 197. The cipher is now widely deployed and is expected to be the world’s
predominant block cipher over the next 25 years. In its final evaluation of Rijn-
dael [NBB+00], NIST stated that table lookup operations are “not vulnerable
to timing attacks” and regarded Rijndael as the easiest among the finalists to
defend against side-channel attacks.

In contrast to NIST’s predictions, a number of side channel attacks have
already been demonstrated against AES, including timing attacks by Bernstein
[Ber05] and Tsunoo et al. [TSS+03]. This paper considers a model for attacking



AES by using the timing effects of cache-collisions to gather noisy information
about the likelihood of relations between key bytes. This leads to a multivariate
optimization problem, where the unknown key is an optimal value of a certain
objective function. We solve for the key using a variety of AI methods, including
belief propagation and iterated local search, as discussed in Appendix D. We also
deviate from previous work in attacking the final round of encryption instead of
the first round. Table 1 demonstrates the improvements of the attacks in this
paper over several previous attacks (see also [CLS06,NSW06,NS06]).

Table 1. Overview of timing attacks against AES.

Attack Samples needed Sample type Goal

Bernstein [Ber05] 227.5 Plaintext/timing Full key recovery

Tsunoo et al. [TSS+03] 226 Plaintext/timing Full key recovery

First round attack 214.58 Plaintext/timing 60 key bits recovered

Final round attack 215 Ciphertext/timing Full key recovery

Expanded Final round attack 213 Ciphertext/timing Full key recovery

2 Overview of the AES cipher

A full description of the Rijndael cipher is provided in [DR02], but below is a brief
description of the cipher’s properties that were utilized in this study. This paper
will focus exclusively on AES with a 128 bit key. 192 and 256 bit versions use a
different key expansion algorithm and more rounds. AES is an iterated cipher:
Each round i takes a 16-byte block of input Xi and a 16-byte block of key mate-
rial Ki, producing a 16-byte block of output Xi+1. Each round is carried out by
performing the algebraic operations SubBytes, ShiftRows, and MixColumns on
Xi, then taking the exclusive-or with the round key Ki. Performance-oriented
software implementations of AES combine all three operations and pre-compute
the values. The values are stored in large lookup tables, T0, T1, T2, T3, each map-
ping one byte of input to four bytes of output. Each round is carried out by
splitting up Xi into 16 bytes xi

0, x
i
1, . . . , x

i
15, and Ki into 16 bytes ki

0, k
i
1, . . . , k

i
15.

The encryption round is then carried out as:

Xi+1 = {T0[xi
0 ]⊕ T1[xi

5 ]⊕ T2[xi
10]⊕ T3[xi

15]⊕ {ki
0 , ki

1 , ki
2 , ki

3 },
T0[xi

4 ]⊕ T1[xi
9 ]⊕ T2[xi

14]⊕ T3[xi
3 ]⊕ {ki

4 , ki
5 , ki

6 , ki
7 },

T0[xi
8 ]⊕ T1[xi

13]⊕ T2[xi
2 ]⊕ T3[xi

7 ]⊕ {ki
8 , ki

9 , ki
10, k

i
11}, (1)

T0[xi
12]⊕ T1[xi

1 ]⊕ T2[xi
6 ]⊕ T3[xi

11]⊕ {ki
12, k

i
13, k

i
14, k

i
15}}.

The round calculation can be performed very efficiently in software this way,
using just 16 table lookups and 16 word-length x-or’s. A complete encryption
consists of an x-or with the first 16 bytes of key material, referred to as “in-
put whitening,” followed by 9 normal encryption rounds, plus a simplified final
round. The final round performs no MixColumns operation as it might trivially



be inverted by an attacker and would ostensibly slow down hardware implemen-
tations. This omission will prove crucial, as it causes software implementations
to use a new table T4 in the last round, which is just the AES S-Box.

A total of 10 rounds are used in 128-bit AES, but 11 16-byte blocks of key
material are needed because of the input-whitening. These 176 bytes of key
material are generated by taking the raw 16-bytes of the key and repeatedly
carrying out a non-linear transformation which produces the next 16-byte block
based on the previous 16-byte block until all 176 bytes are created. This key
expansion structure was explicitly chosen [DR02] to be invertible given any 16
consecutive bytes of the expanded key. This is useful to an attacker in that
recovery of the final 16 bytes of the expanded key (or any other 16 bytes) is
equivalent to recovery of the original key.

This formulation was a part of the original Rijndael proposal [DR02]. The
attacks in this paper are widely applicable as many AES implementations have
made no significant changes to the original optimized Rijndael code In addition
to OpenSSL v. 0.9.8.(a), which was used in our experiments, the AES imple-
mentations of Crypto++ 5.2.1 and LibTomCrypt 1.09 use the original Rijndael
C implementation with very few changes and are highly vulnerable. The AES
implementations in libgcrypt v. 1.2.2 and Botan v. 1.4.2 are also vulnerable, but
use a smaller byte-wide final table which lessens the effectiveness of the attacks.

3 Related Work

Side-channel attacks have been demonstrated against implementations of many
cryptosystems, utilizing timing [Ber05,TSS+03,Koc96,BB05], power consump-
tion [ABDM00,KJJ99], electromagnetic radiation [GMO01], etc. Public key algo-
rithms have proved the most vulnerable to timing attacks because they typically
perform lengthy mathematical operations, the running time of which depends
directly on the data due to branch statements. Kocher demonstrated timing at-
tacks against a variety of software public-key systems in 1996 [Koc96]. Brumley
and Boneh demonstrated more advanced timing attacks against RSA in 2003
which were effective even against a remote SSL server [BB05], these attacks
were improved by another order of magnitude in 2005 [ASK05].

A similar timing attack was demonstrated against the reference AES imple-
mentation which uses branch statements to perform multiplication in the field
GF(28) [KQ99]. However, as noted above, performance AES implementations
pre-compute this calculation, obviating this attack. During the AES selection
process, it was believed that timing attacks were only applicable to software
with a data-dependent execution path (i.e., branch statements, data-dependent
shifts), although Kocher did suggest that timing attacks could be constructed
against symmetric ciphers by studying “cache hit ratio” [Koc96], a conclusion
also reached by Kelsey et al. [KSWH00]. Nevertheless, in an analysis of AES
finalists done by Daemen and Rijmen, Rijndael was deemed a “favorable” can-
didate to secure against timing attacks, since it did not use branch instructions or
data-dependent rotations [DR99]. Even by the final NIST evaluation [NBB+00],



it was not recognized that table lookups could lead to timing attacks due to the
effects of cached memory and AES was considered to be safe.

The use of table lookups into cached memory has recently been recognized as
an exploitable cryptographic side-channel [Pag02]. Recent attacks due to Osvik,
Shamir, and Tromer demonstrate how specific information about what values in
cached memory the encryption algorithm has accessed can quickly leak enough
information to reconstruct an AES key [OST06]. For example, if the attacker can
determine that, whenever p0 = z, the data in T0[z′] is accessed during encryption,
then it must be the case that x0

0 = z′. Since it holds that p0 ⊕ k0 = x0
0, the

attacker can conclude that k0 = z ⊕ z′. These attacks are different from timing
attacks because they require that the attacker gain direct knowledge about cache
access patterns,3 thus they are directly using cache accesses as a cryptographic
side-channel instead of timing.

Another class of cache attacks focuses on the use of power consumption
to detect whether lookups performed during AES encryption resulted in hits
or misses. This technique was first demonstrated in [BBM+06]. An attack us-
ing power analysis of the first round was also described by Lauradoux [Lau05].
Acıiçmez and Koç [AK06] extended this approach by considering the first two
rounds of AES. Their attack requires a very low (∼ 50) number of encryptions,
but require physical access to a machine’s power supply.

Cache access patterns also cause timing variation, which can be used to con-
struct a timing attack against AES software without direct observation of the
cache accesses. This principle was first demonstrated by Tsunoo et al. [TTMM02,TSS+03]
who demonstrated timing attacks against DES and MISTY. Tsunoo et al, as-
suming that cache hit ratio should be correlated with encryption time, collect a
number of plaintexts with unusually long encryption times. These plaintexts are
then used to infer information about key bytes by inferring that the correct key
should be one that leads to the lowest cache-hit ratio when used with the set of
“slow” plaintexts. While the authors focus on attacking DES, the possibility of
an attack on AES is briefly mentioned in [TSS+03]. Unfortunately, insufficient
detail is provided to reproduce the attack, although a figure of 218 plaintexts
with long encryption times is presented for the attack. Assuming consistency
with the attacks on DES, this means a total of 224 plaintexts are needed.

Our approach is similar to that of Tsunoo et al. in utilizing the correlation
between cache hits and encryption time. However, our attacks focus on individual
cache-collisions during encryption, instead of overall hit ratio. Furthermore, we
use the entire data set, instead of simply plaintexts resulting in long encryption,
and we consider conditions which lead to a shorter encryption time, instead of a
longer one. Our methods is similar to that used in recent attacks independently
described by Acıiçmez [Acıi05] and Neve et al. [NSW06,NS06], although our
attacks differ in focusing on the final round of encryption as opposed to the first
round.

3 As implemented in [OST06], knowledge of cache accesses is gained by running attack
code on the target computer before and after the encryption operation.



Bernstein demonstrated a different type of timing attack against AES in
2005 [Ber05] which can be thought of as a statistical timing attack. Bernstein
observed that since the input bytes to the first round of encryption are simply
the bytes x0

i = pi ⊕ ki, and these bytes are immediately used as indices into
the lookup tables, the entire encryption time t can be affected by each of the
values x0

i . To carry out Bernstein’s attack, first a large volume of timing data is
collected for each value of an input byte x0

i using a reference machine, this data
is then correlated with data from the target machine to recover the key.

Bernstein’s attack is a generic attack because it does not utilize any specific
knowledge of why the value of a specific x0

i affects the encryption time, only the
empirical observation that certain values do cause time variation. This approach
is widely applicable because, as Bernstein details, it is extremely difficult to
achieve fast constant-time software, and any timing variation could potentially
be exploitable. The statistical attack method can even be extended [CLS06] to
exploit timing variation of individual bits of the key instead of whole bytes.

The first downside of the statistical approach is that it requires a large num-
ber of samples, approximately 227.5 in Bernstein’s experiments. More critically,
the attack is very fragile because relies on subtle machine-specific cache effects,
requiring that the attacker recreate the target platform exactly. In our own ex-
periments with Bernstein’s attack code, we found even small changes to the mix
of background processes from the target machine to the reference machine were
enough to make the attack fail, raising serious doubts on the practicality of the
attack. Similar difficulty in reproducing the attacks was reported in [OST06]
and [OT05]. A recent analysis by Neve et al. [NSW06] discusses the reasons the
attack succeeds in some cases and why it is probably not practical.

In contrast, this paper focuses exclusively on white-box timing attacks, which
use expected timing effects due to the structure of the cipher. This approach
requires no specific information about the target platform, and is likely to require
far fewer samples if encryption software lends itself to simple and predictable
timing effects, as AES does.

4 Attack Model and Strategy

The attacks in this paper assume the computer performing the encryption op-
eration uses cached memory which can be described using a simple model of
the cache. A cache is a small, fast storage area situated between the CPU and
main memory. When values are looked up in main memory, they are stored in
the cache, evicting older values in the cache. Subsequent lookups to the same
memory address can then retrieve the data from the cache, which is faster than
main memory, this is called a “cache hit.”

Complicating matters is the fact that modern caches do not store individual
bytes, but groups of bytes from consecutive “lines” of main memory. Line size
varies between 32 bytes for a Pentium III and 64 or 128 bytes on more recent
Pentium IV or AMD Athlon processors. Since the usual size of AES table entries
is 4 bytes, groups of 8 consecutive table entries share a line in the cache on a



Pentium III (this value is defined as δ in [OST06]). So, for any bytes l, l′ which
are equal ignoring the lower log2 δ bits (notated as 〈l〉 = 〈l′〉 in [OST06]), looking
up address l will cause an ensuing access to l′ to hit in cache.

We view an AES encryption as a sequence of 160 table lookups to indices
l1, l2, ..., l160. A “cache collision” occurs if two separate lookups li, lj satisfy
〈li〉 = 〈lj〉. In this situation, lj should always hit in the cache.4 If it were the
case that 〈li〉 6= 〈lj〉, then the access to lj may result in a cache miss if T [lj ] was
out of memory prior to the encryption and no previous access fetched it. This
should, on the average, take more time as it will require a second cache lookup
with non-zero probability. We formalize this assumption:

Cache-Collision Assumption. For any pair of lookups i, j, given a large
number of random AES encryptions with the same key, the average time when
〈li〉 = 〈lj〉 will be less than the average time when 〈li〉 6= 〈lj〉.

This assumption rests on the approximation that the individual table lookups
in the sequence are effectively independent for random plaintexts, which seems
to hold in practice.5 This assumption greatly oversimplifies many the intricacies
of modern caches, as discussed in Appendix B and Appendix C, but is well
supported by experimental data as shown in Figure 1. Notice that there is a
clear correlation, especially for ≤ 10 collisions, which is where 90% of the data
lies. We fit the experimental data with a linear model where the unknowns are
defined as bonuses due to collisions between table lookups in the final round,
a total of 120 variables. Depending on the mix of the processes running in the
background the model explains between 13% and 28% of the variance in the
timing data (the results are supported by five-fold cross-validation).

The notion of using collisions in the cache is by no means unique to this
paper. Because caches are specifically designed to behave differently in the pres-
ence of a collision a non-collision, they are a natural side channel for attack-
ing AES. This general notion has been used in several other attacks on AES
[TTMM02,Pag02,TSS+03,Lau05,OST06], we seek to explicitly define the utility
of cache collisions as they apply to timing attacks (similar to [Acıi05,NSW06,NS06]).

5 First Round Attack

A natural approach to attacking AES is to analyze table lookups performed in
the first round, because they use the indices x0

i = pi⊕ki, each of which depends
on only one key byte and one plaintext byte. In equation (1), we can see that in
the first round of encryption, the bytes x0

0, x
0
4, x

0
8, x

0
12 are each used as an index

4 We are assuming that the AES encryption itself does not evict any table entries
after loading them, a reasonable assumption given the large size of modern caches
compared to the AES tables.

5 This will not hold for the first round if plaintexts are not random. This should hold
for the final round regardless of plaintext, since the output ciphertext should be
statistically random in any secure cipher.



0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# collisions

# 
sa

m
p

le
s

-50

-40

-30

-20

-10

0

10

20

30

T
im

in
g

 d
ev

ia
ti

o
n

 (
cy

cl
es

)

ave + sd/2
80% quantile
20% quantile
ave - sd/2
# samples

Fig. 1. Time deviation vs number of final round cache-collisions, Pentium III

into table T0; they make up a “family” of four bytes in that they are all used
to access the same table. There are three other families of bytes which share
the tables T1, T2, and T3 in round one. A cache collision occurs whenever two
bytes x0

i , x
0
j in the same family satisfy 〈x0

i 〉 = 〈x0
j 〉. This should occur when

〈pi〉 ⊕ 〈ki〉 = 〈pj〉 ⊕ 〈kj〉, or after rearranging, 〈pi〉 ⊕ 〈pj〉 = 〈ki〉 ⊕ 〈kj〉.
Plaintexts satisfying 〈pi〉 ⊕ 〈pj〉 = 〈ki〉 ⊕ 〈kj〉 for a pair of bytes i, j should

have a lower average encryption time due to the collision. The first round attack
algorithm compiles timing data into a table t[i, j, 〈pi〉⊕〈pj〉] of average encryption
times for all i, j in the same table family. If a low average time occurs at t[i, j, ∆],
the algorithm estimates that 〈ki〉 ⊕ 〈kj〉 = ∆. A t-test is used to identify values
which are lower than the mean to a statistically significant degree. For each table
family, the attacker will eventually have a redundant set of six equations, such
as 〈k0〉 ⊕ 〈k4〉 = ∆1, 〈k0〉 ⊕ 〈k8〉 = ∆2, 〈k0〉 ⊕ 〈k12〉 = ∆3, 〈k4〉 ⊕ 〈k8〉 = ∆4,
〈k4〉 ⊕ 〈k8〉 = ∆5, 〈k8〉 ⊕ 〈k12〉 = ∆6 for table T0.

The four sets of equations for key bytes within the same family are the only
information gained by this attack; there is no way to gain exact key information
without looking at other rounds (see Section 8).Furthermore, there is no way
to learn the lower log2 δ bits of each key byte. The attacker must still guess a
value for one complete byte in each table family, plus the low-order log2 δ bits
of the other bytes, or a total of 4 × (8 + 3 · log2 δ) = 68 bits (for δ = 8), which
is impractical to search for almost any real attacker.The attack does provides a
significant speedup over previous attacks, in experiments with 50 random keys
on a Pentium III the attack succeeded with an average of 214.6 timing samples.

6 Final Round Attack

To design a fast attack which can recover the full key, we consider the final round
of encryption. As noted previously, the final round of AES omits the MixColumns
operation, reducing equation (1) to simply:



C = {T4[x10
0 ]⊕ k10

0 , T4[x10
5 ]⊕ k10

1 , T4[x10
10]⊕ k10

2 , T4[x10
15]⊕ k10

3 , (2)

T4[x10
4 ]⊕ k10

4 , T4[x10
9 ]⊕ k10

5 , T4[x10
14]⊕ k10

6 , T4[x10
3 ]⊕ k10

7 ,

T4[x10
8 ]⊕ k10

8 , T4[x10
13]⊕ k10

9 , T4[x10
2 ]⊕ k10

10, T4[x10
7 ]⊕ k10

11,

T4[x10
12]⊕ k10

12, T4[x10
1 ]⊕ k10

13, T4[x10
6 ]⊕ k10

14, T4[x10
11]⊕ k10

15}.

In this equation, C is the 16-byte output ciphertext, and T4 is the AES S-box.
The details of the S-box are inconsequential to this attack, the only important
fact is that the S-box is a non-linear permutation over all 256 possible byte
values. For any two ciphertext bytes ci, cj , it holds that ci = k10

i ⊕ T4[x10
u ] for

some u and cj = k10
j ⊕ T4[x10

w ] for some w. Regardless of the actual values of u

and w, whenever x10
u = x10

w , a cache collision occurs on T4. Suppose x10
u = x10

w ,
and T4[x10

u ] = T4[x10
w ] = α. Then it will hold that ci = k10

i ⊕α and cj = k10
j ⊕α.

If, on the other hand, ci⊕ cj 6= k10
i ⊕k10

j , two different values α, β must have
resulted from the table lookups. It would be true that α⊕β = γ = ci⊕cj⊕k10

i ⊕
k10

j with γ a constant for a fixed value of ci ⊕ cj . Since α and β are the direct
results of S-box lookups, though, a fixed differential γ does not guarantee a fixed
offset of the lookup indexes used to produce them. Ironically, the non-linearity
which is the raison d’être of the S-box also enables this attack to succeed. For
the purposes of this attack, given values of α and β satisfying α⊕β = γ 6= 0, the
indexes which were looked up in the S-box to produce α and β are essentially
random. So, if ci⊕ cj = k10

i ⊕ k10
j , then a cache collision occurs in T4, otherwise,

the lookups will be from two essentially random locations in T4.

The goal of the attack is to record timing data for random ciphertexts at each
value of ∆ = ci⊕cj . For each ciphertext/time pair observed, the encryption time
is used to update a table of average times t[i, j, ∆] for all values i, j. The goal to
find one value ∆′

i,j for each i, j such that t[i, j,∆′
i,j ] < t̄ where t̄ is the average

encryption time over all ciphertexts. Eventually, the values of ∆′
i,j will become

accurate guesses for the true values ∆i,j = k10
i ⊕ k10

j , which should be the only
values which cause significantly low encryption times.

These values can be used by an attacker to construct a guess at the final 16
bytes of the expanded key in the presence of noise, as described in Appendix D.
The authors of Rijndael made it a specific design goal to enable recovery of the
entire key given any 16 consecutive bytes of the expanded key [DR02]. Thus, it is
simple to revert the key expansion algorithm to recover the raw key K given the
final 16 bytes k10

0 , k10
1 , . . . , k10

15 of the expanded key. For each guess at the final
key bytes, the attack program reverts the key and checks it against one known
plaintext/ciphertext pair. Table 2 presents statistical data for the number of
(C, t) pairs seen before the attack recovers a full 128-bit AES key, from attacks
against 50 random keys.



7 Expanded Final Round Attack

One problem with the simple final round attack is that it considers only cache
collisions due to lookups on the same table index. When the number of table
entries per cache line δ is 8 or 16, however, the majority of cache collisions will
not be on the same index but on two different indices of the same cache line.
To take advantage of all cache collisions, we consider all conditions for which
there will be a cache collision in the final round on two bytes i, j. Recall that
ci = k10

i ⊕ S[x10
u ] and cj = k10

j ⊕ S[x10
v ] for some u, v. A collision will occur

whenever 〈x10
u 〉 = 〈x10

v 〉, or equivalently:

〈S−1[ci ⊕ ki]〉 = 〈S−1[cj ⊕ kj ]〉. (3)

An attacker can utilize this relationship by guessing exact values (k′i, k
′
j) for

each i, j, instead of guessing only a differential. For each guess, an average time
is computed for all timing samples which satisfy equation (3) under the guessed
key bytes. The correct value will eventually have a lower average time due to the
cache collision. The memory and time requirements for analyzing timing data
are higher in this attack because there are 256 · 256 = 65, 536 possible guesses
for each pair of bytes. However, the data processing can be done off-line by the
attacker after the data is collected. In practice, an attacker will want to reduce
the amount of samples needed at the expense of increasing off-line processing
time. Appendix D describes details of the attack algorithm.

This greatly speeds up the attack because the data collection rate is effec-
tively increased by δ, since all cache-line collisions over any two bytes i, j are
detected instead of exact byte collisions. That is, the proportion of random sam-
ples which satisfy equation (3) is δ

256 , instead of 1
256 for the simpler version of

the attack. Additionally, the data is more precise in that a guess can be made
about the probability of the exact value of a pair of key bytes, instead of simply
a differential. These factors combine to give the following performance numbers
over 50 random keys:

Table 2. Median samples required, Final round Attacks.

Attack Type
CPU Final Round Expanded Final Round

Cache Eviction Policy
L1 L2 L1 L2

Pentium III 1.0 GHz 216 215 214 213

Pentium IV Xeon 3.2 GHz 219.9 216 218.6 213.6

UltraSPARC-III+ 0.9 GHz 218.7 215 217.3 214.3



8 Attack Variants

The final round attacks are effective against decryption with only minor modifi-
cations, require known plaintext instead of known ciphertext. They are actually
slightly simpler in that they recover information about the raw key, instead of
the final bytes of the expanded key, so key reversion is not necessary.

A key area for further research is adaptive chosen plaintext/ciphertext at-
tacks. In many real world, an attacker may be able to get encryption times for
chosen plaintext and/or chosen ciphertext, this ability could likely be used to
greatly decrease the number of samples required for an attack to succeed.

Another promising avenue is extending the first round attack shown here to
two rounds. The problem of the first round attack only recovering partial key
information is a common problem in cache-based attacks due to the use of cache
lines on modern processors, considering the second round of cache accesses is
a common solution [Acıi05,AK06,OST06,NSW06]. In the online version of the
paper we discuss an approach to extending our first round attack to a two rounds
attack, which could potentially recover the key with 216 samples, but requires a
very high offline search by the attacker.

9 Countermeasures and Conclusions

General countermeasures against cache-based side channel attacks on AES have
been widely discussed in the literature. Suggested approaches vary from modify-
ing hardware to limit the amount of data leaked by the cache [Pag02,Pag05,Ber05,OST06],
to constant-time software [Ber05], to careful obfuscation of cache access patterns
by the AES software [BGNS06]. Unfortunately, all of these approaches have per-
formance implications. We add to the discussion the specific suggestion of scrap-
ping the special final round lookup table T4, whose function can be replaced by
the other four tables. This small modification led to our attacks requiring as
many as 1,000 times more samples, and has no performance cost. Details are
presented in the online version of the paper. In lieu of stronger protections, this
“free” defense should be considered.

Side-channel attacks were not given adequate treatment in the AES selection
process. Rijndael, in optimized form, makes heavier use of lookup tables than
any of the other four AES finalists, which exposes it to multiple side-channel
attacks, including timing. By comparison, Serpent [BAK98], the AES runner-
up, uses only tiny 4-bit by 4-bit S-boxes, which are in fact implemented only
by logical operations, making Serpent invulnerable to cache-based side-channel
attacks. At the time this was not recognized as an advantage, but it should be
clear now that table lookups should be avoided or used with extreme caution in
future cryptographic software.

The attacks described in this paper represent a significant step towards de-
veloping realistic remote timing attacks against AES, which are to make use
of less accurate data than the processor cycle counts available in the simulated
environment used in this study. There are a number of environments where such



an attack could potentially be employed where direct observation of the pattern
of cache accesses is not possible:

– On an encrypted network file system, an attacker which could time encryp-
tions of single disk blocks and attempt to recover the encryption key.

– In a virtual machine environment, the virtual machine monitor could force
cache flushes between context switches. An attacker could attempt to time
another virtual machine performing encryptions.

– As recently proposed by Page [Pag05], a computer could partition cache
between separate processes. User-level processes could not access the cache
used by a root-level daemon process doing encryptions, but could time en-
cryptions being done by that process.

– An SSL server (or client) could be a source of timing data to an attacker
listening on the network. It is possible that both encryption and decryption
could be observed in this setting.

In principle, the attacks in this paper could be employed in such scenarios,
since they only require timing data and known plaintext or ciphertext. It re-
mains to be seen if the timing data which could be obtained is accurate enough
to attack, and there are additional complications as discussed in Appendix A.
Nevertheless, the timing attacks in this paper should make clear the need for
software AES implementations to protect against timing variation due to cached
memory. While AES has resisted conventional cryptanalysis so far, it will be ren-
dered useless if practical timing attacks are developed.

10 Acknowledgements

We are grateful to Dan Boneh for his encouragement of this research as well
as many helpful comments, as well as Andrew Morrison and anonymous CHES
2006 reviewers for comments on drafts of this paper.

References

[ABDM00] Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier Moyart.
Power analysis, what is now possible.... In Advances in Cryptology—
ASIACRYPT 2000, pages 489–502, 2000.

[AK06] Onur Acıiçmez and Çetin Kaya Koç. Trace driven cache attack on AES.
IACR Cryptology ePrint Archive, Report 2006/138, April 2006.

[Acıi05] Onur Acıiçmez. “Remote Timing Attacks”. Given at In-
tel Corporation, Oregon, USA, December 2005. Available at:
http://web.engr.oregonstate.edu/ aciicmez/osutass/

[ASK05] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. Improving Brum-
ley and Boneh timing attack on unprotected SSL implementations. ACM
Conference on Computer and Communications Security, 2005.

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Fast Software Encryption ’98, pages 222–238, 1998.



[BGNS06] Ernie Brickell and Gary Graunke and Michael Neve and Jean-Pierre Seifert.
Software mitigations to hedge AES against cache-based software side chan-
nel vulnerabilities. IACR ePrint Archive, Report 2006/052, Feb 2006.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[BBM+06] Guido Bertoni, Luca Breveglieri, Matteo Monchiero, Gianluca Palermo,
and Vittorio Zaccaria. AES power attack based on induced cache miss and
countermeasure. ITCC(1), 2005.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. April 2005.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[CLS06] Anne Canteaut, Cedric Lauradoux, and Andre Seznec. Understand-
ing cache attacks. Technical Report, April 2006. Available at:
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5881.pdf

[DR99] Joan Daemen and Vincent Rijmen. Resistance against implementation
attacks: A comparative study of the AES proposals. Second AES Candidate
Conference, February 1999.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES—the
advanced encryption standard. Springer-Verlag, 2002.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cryptographic Hardware and Embedded
Systems—CHES 2001, pages 251–261, 2001.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Advances in Cryptology—CRYPTO ’99, pages 388–397, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Advances in Cryptology—CRYPTO ’96,
pages 104–113, 1996.

[KQ99] F. Koeune and J.-J. Quisquater. A timing attack against Rijndael. Tech-
nical Report CG-1999/1, June 1999.

[KSWH00] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel
cryptanalysis of product ciphers. J. of Computer Security, 8(2/3), 2000.

[Lau05] Cedric Laradoux. Collision attacks on processors with cache and coun-
termeasures. Western European Workshop on Research in Cryptology—
WEWoRC’05, C. Wolf, S. Lucks, and P.-W. Yau (editors), pp. 76–85, 2005.

[LMV04] H. Ledig, F. Muller, and F. Valette. Enhancing collision attacks. In Crypto-
graphic Hardware and Embedded Systems—CHES 2004, pp. 176–190, 2004.

[NBB+00] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin,
J. Foti, and E. Roback. Report on the development of
the Advanced Encryption Standard (AES). October 2000.
http://csrc.nist.gov/CryptoToolkit/aes/round2/r2report.pdf.

[NSW06] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A refined look at
Bernstein’s AES side-channel analysis. ASIACCS, p. 369, 2006.

[NS06] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache
attacks on AES. In SAC’06, to appear.

[OT05] Mairead O’Hanlan and Anthony Tonge. Investigation of cache timing at-
tacks on AES. School of Computing, Dublin City University, 2005.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: the case of AES. In CT-RSA, pages 1–20, 2006.

[Pag02] Daniel Page. Theoretical use of cache memory as a cryptanalytic side-
channel. Technical Report CSTR-02-003, University of Bristol, April 2002.



[Pag03] Daniel Page. Defending against cache based side channel attacks. Technical
Report. Department of Computer Science, University of Bristol, 2003.

[Pag05] Daniel Page. Partitioned cache as a side-channel defense mechanism. IACR
Cryptology ePrint Archive, Report 2005/280, August 2005.

[Per05] Colin Percival. Cache missing for fun and profit. Presented at BSDCan ’05,
2005. http://www.daemonology.net/hyperthreading-considered-harmful/.

[SLFP04] Kai Schramm, Gregor Leander, Patrick Felke, Christof Paar. A collision-
attack on AES: Combining side channel- and differential-attack. In Crypto-
graphic Hardware and Embedded Systems—CHES 2004, pp. 163–175, 2004.

[SWP03] Kai Schramm, Thomas J. Wollinger and Christof Paar. A new class of
collision attacks and its application to DES. In Fast Software Encryption—
FSE’03, pages 206–222, 2003.

[TSS+03] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Cryptanalysis
of DES implemented on computers with cache. In Cryptographic Hardware
and Embedded Systems—CHES 2003, pp. 62–76, 2003.

[TTMM02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In International Symposium on Information Theory and Applica-
tions 2002, pages 803–806, 2002.

[TTS+06] Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Hiroya Kubo, and
Kazuhiko Minematsu. Improving cache attacks by considering cipher struc-
ture. In International Journal of Information Security 2006.

A Implementation Notes

All of the attacks described in this paper have been implemented as a UNIX
command line program aes attack, the source code of which is available at
the author’s website. The program can be recompiled to use any of the attack
algorithms described, as well as options for decryption attacks and different
cache eviction routines. The program first generates a large number of timing
samples by repeatedly triggering one encryption for a random plaintext using
an OpenSSL library call and recording the resulting ciphertext along with a
processor cycle count. Each timing/ciphertext pair is added to a large buffer
after being recorded, this allows a minimum of activity in between encryptions.
An explicit cache eviction routine is called before each encryption, as described in
Appendix B, no other work is done between encryptions. After each encryption,
each byte of the resulting ciphertext is touched, this must be done to ensure the
encryption has finished before recording the ending time on platforms such as
the Pentium IV which support out-of-order instruction execution while waiting
for cache misses.

After generating a large number of samples, the attack algorithm is called
with a small set of the data. It is incrementally given more of the data until it
succeeds in recovering the key. Samples are not used if their time is more than
twice the lowest time seen, this eliminates noise due to page faults and context
switches. These ignored samples are still counted when reporting the number of
samples necessary for the attack to succeed.



B Cache Eviction

All of the attacks described in this paper require the AES lookup tables to be (at
least partially) out of the cache prior to an encryption operation. If all tables are
cached, which would occur during a long run of consecutive encryptions, then
cache collisions will not reduce timing. In a real attack scenario, an attacker
must have some ability to remove the tables from cache before an encryption.
The most likely approach would be simply waiting. If the target machine is doing
other work, the tables will probably be quickly evicted from memory as other
processes load their own data. Also, it is assumed that the target program only
performs key expansion once, then stores the expanded key in memory and uses
it for subsequent encryptions. Otherwise, key expansion before each encryption
would have the side effect of loading some of the AES tables into memory, since
they are used in key expansion.

For the purposes of this study, we consider two cases, if the AES tables are
fully evicted from Level 1 cache, and if the AES tables are fully evicted from
Level 2 cache. It is also easy to verify that if only some random fraction of the
table entries are out of cache, the attack will still succeed with additional sam-
ples. To simulate the eviction of tables from L2 cache, we sequentially accesses
a continuous block of memory the size of the cache, which will evict all previ-
ous contents. To save time in experiments on Pentium IV, we use the clflush
instruction. Eviction from L1 cache is similar, although we must be careful not
to evict tables from L2 cache. To do this, we read in a small amount of data to
evict only L1 cache, but not the AES tables in L2 cache.

C Pentium IV complications

The model discussed in Section 4 appears to be a very good approximation
for the cache behavior of the Pentium III and UltraSPARC processors. From
our experiments, we have seen that it does not fully capture the complexity of
the Pentium IV’s cache structure. The first complication is that Pentium IV
“usually” loads cache lines in pairs, making the cache lines 128 bytes. In some
experiments two indices being in neighboring cache lines produced a bigger time
drop than a traditional collision. Second, Pentium IV has a hardware pre-fetch
mechanism. If it notices “several” straight cache misses, it will begin pre-fetching
data in the direction the accesses are going, assuming it is a large serial data
read. The Intel documentation uses the word several, which it says could be
“as few as 2.” So, certain cache collisions may trigger the hardware pre-fetcher,
while others may not. Finally, Pentium IV supports out-of-order instruction
execution while waiting for cache misses. This means that in certain situations,
cache misses may have little effect on the overall encryption if there are enough
instructions to be executed which do not depend on the fetched value. The net
result of these Pentium IV features is somewhat chaotic behavior when a simple
model is assumed, this was also observed in [OST06].



D Final Round Optimizations

The final round attack looks at the average time for each possible value ∆i,j =
k10

i ⊕ k10
j for all i, j, where the true value for each ∆i,j should be lower than the

average. The raw data is converted into a cost function, c(i, j, ∆), which should
be low for values of ∆ which represented low times. Eventually, the true values
of each ∆i,j should be the lowest values. However, in the presence of noise, the
algorithm seeks to produce some guess K ′ at the key which minimizes the total
cost function C[K] =

∑
i,j [c(i, j, Ki ⊕Kj)]. The guess K ′ will not be a guess of

actual key bytes, but a set of offsets ∆0,i = k10
0 ⊕ k10

i for all 1 ≤ i ≤ 15. Two
adapted AI algorithms can be used to attempt to minimize this function.

The first is a variant of local optimization search. The cost function used by
this algorithm is simply c(i, j, ∆) = (∆ − ∆∗)2, where ∆∗ is the lowest value
observed for that particular i, j. After an initial guess K0 is made at the key
offsets, the total cost function is calculated for every key guess K ′

0 which can be
obtained by changing one byte of K0. The lowest cost K ′

0 then becomes the new
key guess K1. This process is repeated either until a local minimum is reached,
or a preset maximum number of iterations is reached. Each guess Ki leads to
256 possible values for the actual key. These are obtained by guessing all values
for k10

0 , the final 15 bytes of the key are then determined by the offsets ∆0,i.
Finally, the guess at the final 16 bytes of expanded key is reverted to a guess at
the original key, which can be checked against a known plaintext value.

The second approximation algorithm used is belief propagation. For this ap-
proach, a probability approximation ϕ(i, j, ∆) can be made based on the observed
data by mapping it to a normal distribution, since the average and standard de-
viation are known. This is used in place of a cost function. Next, an initial set of
probabilities are guessed for each key offset p0(i, ∆) = Pr[k10

0 ⊕ k10
i = ∆]. These

probability guesses p0(i,∆) are updated as follows: For each j 6= i, the maximum
value of p0(j,∆′) · ϕ(i, j, ∆⊕∆′) over all ∆′ is added to p1. The guesses p1 are
then normalized. This process is repeated, and the probabilities p(i,∆) should
eventually be higher for the correct values. After each iteration, the probabili-
ties are used to construct a best guess for the key, as before. In this study, both
algorithms were used, since we found experimentally that each was successful
before the other for certain data sets.

The expanded final round attack provides slightly different raw data than
the simple final round attack, namely, a set of average times t(i, j, α, β), low
times should occur at the values k10

i = α and k10
j = β. Instead of using a cost

function, each pair is given a weight w. A threshold τ is chosen, times t(i, j, α, β)
which are not among the τ lowest times for i, j are given weight 0. The lowest
time is given weight τ − 1, the next lowest time τ − 2, and so on. The goal of
the approximation algorithm is to produce a key guess which has the highest
sum of weights W [K] =

∑
i,j [w(i, j, Ki,Kj)]. After making an initial guess, the

algorithm proceeds to perform a series of local optimizations, changing one byte
in each round which raises the total weight of the key as much as possible.
Heuristically, this approach performed better than belief propagation for this
attack. For this study, the algorithm was used with τ = 16.


