
How to Win the Clone Wars:
Efficient Periodic n-Times Anonymous Authentication

Jan Camenisch
Zurich Research Lab

IBM Research

jca@zurich.ibm.com

Susan Hohenberger
Zurich Research Lab

IBM Research

sus@zurich.ibm.com

Markulf Kohlweiss
Dept. of Electrical Engineering
Katholieke Universiteit Leuven

mkohlwei@esat.kuleuven.be

Anna Lysyanskaya
Computer Science Dept.

Brown University

anna@cs.brown.edu

Mira Meyerovich
Computer Science Dept.

Brown University

mira@cs.brown.edu

ABSTRACT
We create a credential system that lets a user anonymously
authenticate at most n times in a single time period. A
user withdraws a dispenser of n e-tokens. She shows an e-
token to a verifier to authenticate herself; each e-token can
be used only once, however, the dispenser automatically re-
freshes every time period. The only prior solution to this
problem, due to Damg̊ard et al. [29], uses protocols that
are a factor of k slower for the user and verifier, where k
is the security parameter. Damg̊ard et al. also only sup-
port one authentication per time period, while we support
n. Because our construction is based on e-cash, we can use
existing techniques to identify a cheating user, trace all of
her e-tokens, and revoke her dispensers. We also offer a
new anonymity service: glitch protection for basically hon-
est users who (occasionally) reuse e-tokens. The verifier can
always recognize a reused e-token; however, we preserve the
anonymity of users who do not reuse e-tokens too often.

Categories and Subject Descriptors: K.6.5 [Security
and Protection]:Authentication.

General Terms: Security, Algorithms.

Keywords: n-anonymous authentication, clone detection,
credentials.

1. INTRODUCTION
As computer devices get smaller and less intrusive, it be-

comes possible to place them everywhere and use them to
collect information about their environment. For example,
with today’s technology, sensors mounted on vehicles may
report to a central traffic service which parts of the roads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

are treacherous, thus assisting people in planning their com-
mutes. Some have proposed mounting sensors in refrigera-
tors to report the consumption statistics of a household,
thus aiding in public health studies, or even mounting them
in people’s bodies in an attempt to aid medical science. In
all these areas, better information may ultimately lead to a
better quality of life.

Yet this vision appears to be incompatible with privacy.
A sensor installed in a particular car will divulge that car’s
location, while one installed in a fridge will report the eating
and drinking habits of its owner.

A naive solution would be to supply only the relevant
information and nothing else.1 A report about the road
conditions should not say which sensor made the measure-
ment. However, then nothing would stop a malicious party
from supplying lots of false and misleading data. We need
to authenticate the information reported by a sensor with-
out divulging the sensor’s identity. We also need a way to
deal with rogue sensors, i.e., formerly honest sensors with
valid cryptographic keys that are captured by a malicious
adversary and used to send lots of misleading data.

The same problem arises in other scenarios. Consider an
interactive computer game. Each player must have a license
to participate, and prove this fact to an on-line authority
every time she wishes to play. For privacy reasons, the player
does not wish to reveal anything other than the fact that
she has a license. How can we prevent a million users from
playing the game for the price of just one license?

A suite of cryptographic primitives such as group signa-
tures [27, 21, 1, 6] and anonymous credentials [25, 30, 39,
14, 16, 17] has been developed to let us prove that a piece
of data comes from an authorized source without revealing
the identity of that particular source. However, none of the
results cited above provide a way to ensure anonymity and
unlinkability of honest participants while at the same time
guaranteeing that a rogue cannot undetectably provide mis-
leading data in bulk. Indeed, it seems that the ability to
provide false data is a consequence of anonymity.

1Divulging the relevant information alone may already con-
stitute a breach of privacy. This has to do with statistical
properties of the data itself. See Sweeney [46] and Chawla
et al. [28] on the challenges of determining which data is and
is not safe to reveal.

201

Recently Damg̊ard, Dupont and Pedersen [29] presented a
scheme that overcomes this seeming paradox. The goal is to
allow an honest participant to anonymously and unlinkably
submit data at a small rate (for example, reporting on road
conditions once every fifteen minutes, or joining one game
session every half an hour), and at the same time to have
a way to identify participants that submit data more fre-
quently. This limits the amount of false information a rogue
sensor can provide or the number of times that a given soft-
ware license can be used per time period.

While the work of Damg̊ard et al. is the first step in the
right direction, their approach yields a prohibitively expen-
sive solution. To authenticate itself, a sensor acts as a prover
in a zero-knowledge (ZK) proof of knowledge of a relevant
certificate. In their construction, the zero-knowledge prop-
erty crucially depends on the fact that the prover must make
some random choices; should the prover ever re-use the ran-
dom choices he made, the prover’s secrets can be efficiently
computed from the two transcripts. The sensor’s random
choices are a pseudorandom function of the current time
period (which must be proven in an additional ZK proof
protocol). If a rogue sensor tries to submit more data in the
same time period, he will have to use the same randomness
in the proof, thus exposing his identity. It is very challeng-
ing to instantiate this solution with efficient building blocks.
Damg̊ard et al. use the most efficient building blocks avail-
able, and also introduce some of their own; their scheme
requires that the user perform 57+68k exponentiations to
authenticate, where k is the security parameter (a sensor
can cheat with probability 2−k).

We provide a completely different approach that yields
a practical, efficient, and provably secure solution. We re-
late the problem to electronic cash (e-cash) [23, 24] and in
particular, to compact e-cash [12]. In our approach, each
participant obtains a set of e-tokens from the central server.
Similar to the withdrawal protocol of e-cash, the protocol
through which a participant obtains these e-tokens does not
reveal any information to the server about what these e-
tokens actually look like. Our protocol lets a participant
obtain all the e-tokens it will ever need in its lifetime in one
efficient transaction. The user performs only 3 multi-base
exponentiations to obtain e-tokens, and 35 multi-base expo-
nentiations to show a single e-token. If the user is limited
to one e-token per time period (as in the Damg̊ard et al.’s
scheme), the scheme can be further simplified and the user
will need to do only 13 multi-base exponentiations to show
an e-token. We provide more details on efficiency in §4.3.

Distributed sensors can use an e-token to anonymously
authenticate the data they send to the central server. In
the on-line game scenario, each e-token can be used to es-
tablish a new connection to the game. Unlike e-cash, where
it is crucial to limit the amount of money withdrawn in
each transaction, the number of e-tokens obtained by a par-
ticipant is unlimited, and a participant can go on sending
data or connecting to the game for as long as it needs. The
e-tokens are anonymous and unlinkable to each other and
to the protocol where they were obtained. However, the
number of e-tokens that are valid during a particular time
period is limited. Similarly to what happens in compact e-
cash, reusing e-tokens leads to the identification of the rogue
participant. We also show how to reveal all of its past and
future transactions.

Thus, in the sensor scenario, a sensor cannot send more

than a small number of data items per time period, so there
is a limit to the amount of misleading data that a rogue sen-
sor can submit. Should a rogue sensor attempt to do more,
it will have to reuse some of its e-tokens, which will lead
to the identification of itself and possibly all of its past and
future transactions. Similarly, in the on-line game scenario,
a license cannot be used more than a small number of times
per day, and so it is impossible to share it widely.

Our Contribution Our main contribution is the new ap-
proach to the problem, described above, that is an order of
magnitude more efficient than the solution of Damg̊ard et
al. In Section 4, we present our basic construction, which is
based on previously-proposed complexity theoretic assump-
tions (SRSA and y-DDHI) and is secure in the plain model.

Our construction builds on prior work on anonymous cre-
dentials [14, 38], so that it is easy to see which parts need
to be slightly modified, using standard techniques, to add
additional features such as an anonymity revoking trustee,
identity attributes, etc. The computational cost of these ad-
ditional features is a few additional modular exponentiations
per transaction.

In Section 5, we extend our basic solution to make it tol-
erate occasional glitches without disastrous consequences to
the anonymity of a participant. Suppose that a sensor gets
reset and does not realize that it has already sent in a mea-
surement. This should not necessarily invalidate all of the
sensor’s data. It is sufficient for the data collection center
to notice that it received two measurements from the same
sensor, and act accordingly. It is, of course, desirable, that a
sensor that has too many such glitches be discovered and re-
placed. Our solution allows us to be flexible in this respect,
and tolerates m such glitches (where m is specified ahead
of time as a system-wide parameter) at the additive cost of
O(km) in both efficiency and storage, where k is the security
parameter. This does not add any extra computational or
set-up assumptions to our basic scheme.

In Section 6, we consider more variations of our basic
scheme. We show, also in the plain model, how to enable the
issuer and verifiers to prove to third parties that a particu-
lar user has (excessively) reused e-tokens (this is called weak
exculpability); and enable the issuer and verifiers to trace
all e-tokens from the same dispenser as the one that was
excessively reused (this is called tracing). We also show, in
the common-parameters and random-oracle models, how to
achieve strong exculpability, where the honest verifiers can
prove to third parties that a user reused a particular e-token.
Finally, we explain how e-token dispensers can be revoked;
this requires a model where the revocation authority can
continuously update the issuer’s public key.

A Note on Terminology Damg̊ard et al. call the problem
at hand “unclonable group identification,” meaning that,
should a user make a copy of his sensor, the existence of
such a clone will manifest itself when both sensors try to
submit a piece of data in the same time period. We extend
the problem, and call the extended version “periodic n-times
anonymous authentication,” because it is a technique that
allows one to provide anonymous authentication up to n
times during a given time period. For n = 1 (when there is
only one e-token per user per time period) our scheme solves
the same problem as the Damg̊ard et al. scheme.

Related Work Anonymity, conditional anonymity, and
revocable anonymity, are heavily researched fields; due to

202

space constraints, we compare ourselves only to the most
relevant and the most recent work. Anonymous creden-
tials allow one to prove that one has a set of credentials
without revealing anything other than this fact. Revocable
anonymity [27, 10, 18, 37] allows a trusted third party to dis-
cover the identity of all otherwise anonymous participants; it
is not directly relevant to our efforts since we do not assume
any such TTP, nor do we want anyone to discover the iden-
tity of honest users. Conditional anonymity requires that a
user’s transactions remain anonymous until some conditions
are violated; our results fall within that category. With the
exception of Damg̊ard et al.’s work [29], no prior literature
on conditional anonymity considered conditions of the form
“at most n anonymous transactions per time period are al-
lowed.” Most prior work on conditional anonymity focused
on e-cash [26, 9, 12], where the identity of double-spenders
could be discovered. A recent variation on the theme is
Jarecki and Shmatikov’s [36] work on anonymous, but link-
able, authentication where one’s identity can be discovered
after one carries out too many transactions. Another set of
recent papers [47, 42] addressed a related problem of allow-
ing a user to show a credential anonymously and unlinkably
up to k times. Showing an anonymous credential more than
k times allows a verifier to link the k + 1 st showing to a
previous transaction, but, in contrast to our scheme, does
not in any way lead to the identification of the misbehaving
user.

2. DEFINITION OF SECURITY
Our definitions for periodic n-times anonymous authenti-

cation are based on the e-cash definitions of [12] and [13].
We define a scheme where users U obtain e-token dispensers
from the issuer I, and each dispenser can dispense up to n
anonymous and unlinkable e-tokens per time period, but no
more; these e-tokens are then given to verifiers V that guard
access to a resource that requires authentication (e.g., an
on-line game). U , V, and I interact using the following al-
gorithms:

– IKeygen(1k, params) is the key generation algorithm of the
e-token issuer I. It takes as input 1k and, if the scheme
is in the common parameters model, these parameters
params . It outputs a key pair (pkI , skI). Assume that
params are appended as part of pkI and skI .

– UKeygen(1k, pkI) creates the user’s key pair (pkU , skU)
analogously.

– Obtain(U(pkI , skU , n), I(pkU , skI , n)) At the end of this
protocol, the user obtains an e-token dispenser D, usable
n times per time period and (optionally) the issuer ob-
tains tracing information tD and revocation information
rD. I adds tD and rD to a record RU which is stored
together with pkU .

– Show(U(D, pkI , t, n),V(pkI , t, n)). Shows an e-token from
dispenser D in time period t. The verifier outputs a to-
ken serial number (TSN) S and a transcript τ . The user’s
output is an updated e-token dispenser D′.

– Identify(pkI , S, τ, τ ′). Given two records (S, τ) and (S, τ ′)
output by honest verifiers in the Show protocol, where
τ �= τ ′, computes a value sU that can identify the owner
of the dispenser D that generated TSN S.
The value sU may also contain additional information spe-
cific to the owner of D that (a) will convince third parties

that U is a violator (weak exculpability), that (b) will
convince third parties that U double-showed this e-token
(strong exculpability), or that (c) can be used to extract
all token serial numbers of U (traceability).

A periodic n-times anonymous authentication scheme needs
to fulfill the following three properties:

Soundness. Given an honest issuer, a set of honest verifiers
are guaranteed that, collectively, they will not have to accept
more than n e-tokens from a single e-token dispenser in a
single time period. There is a knowledge extractor E that
executes u Obtain protocols with all adversarial users and
produces functions, f1, . . . , fu, with fi : T × I → S. I is
the index set [0..n − 1], T is the domain of the time period
identifiers, and S is the domain of TSN’s. Running though
all j ∈ I, fi(t, j) produces all n TSNs for dispenser i at time
t ∈ T. We require that for every adversary, the probability
that an honest verifier will accept S as a TSN of a Show
protocol executed in time period t, where S �= fi(j, t), ∀1 ≤
i ≤ u and ∀0 ≤ j < n is negligible.

Identification. There exists an efficient function φ with the
following property. Suppose the issuer and verifiers V1,V2

are honest. If V1 outputs (S, τ) and V2 outputs (S, τ ′) as the
result of Show protocols, then Identify(pkI , S, τ, τ ′) outputs
a value sU , such that φ(sU) = pkU , the violator’s public key.
In the sequel, when we say that a user has reused an e-token,
we mean that there exist (S, τ) (S, τ ′) that are both output
by honest verifiers.

Anonymity. This property is captured as follows: the ad-
versary, acting as the issuer, may run many Obtain proto-
cols with many honest users. Then this adversary may in-
voke Show protocols with users of his choice, up to n times
per time period with the same user. The adversary should
not be able to distinguish whether he is indeed interacting
with real users or with a simulator S that pretends to be
real users without knowing anything about them, including
which users it is supposed to be at any point in time, and
without access to any secret or public key, or the user’s
e-token dispenser D. A formal definition for anonymity ap-
pears in the full version of this paper.

Additional Extensions In §5, we provide definitions of
security in the context of glitches, i.e., re-use of e-tokens
that do not occur “too often.”

In §6, we discuss natural extensions to our basic construc-
tion that build on prior work on anonymous credentials and
e-cash, namely the concepts of weak and strong exculpabil-
ity, tracing, and revocation. We now define the correspond-
ing algorithms and security guarantees for these extensions:

– VerifyViolator(pkI , pkU , sU) publicly verifies that the user
with public key pkU has double-spent at least one e-token.

– VerifyViolation(pkI , S, pkU , sU) publicly verifies that the
user with public key pkU is guilty of double-spending the
e-token with TSN S.

– Trace(pkI , pkU , sU , RU , n), given a valid proof sU and the
user’s tracing record RU , computes all TSNs correspond-
ing to this user. Suppose the user has obtained u e-token
dispensers, Trace outputs functions f1, . . . , fu such that
by running though all j ∈ [0..n − 1], fi(t, j) produces all
n TSNs for e-token dispenser Di at time t. If sU is in-
valid, i.e. VerifyViolator(pkI , pkU , sU) rejects, Trace does
nothing.

203

– Revoke(pkI , rD,RD) takes as input a revocation database
RD (initially empty) and revocation information rD that
corresponds to a particular user (see Obtain). It outputs
the updated revocation database RD . In the sequel, we
assume that RD is part of pkI .

These algorithms should fulfill the following properties:

Weak exculpability. An adversary cannot successfully blame
an honest user U for reusing an e-token. More specifically,
suppose an adversary can adaptively direct a user U to ob-
tain any number of dispensers and show up to n e-tokens
per dispenser per time period. The probability that the ad-
versary produces sU such that VerifyViolator(pkI , pkU , sU)
accepts is negligible.

Strong exculpability. An adversary cannot successfully blame
a user U of reusing an e-token with token serial number S,
even if U double-showed some other e-tokens. More specif-
ically, suppose an adversary can adaptively direct a user to
obtain any number of dispensers and show any number of
e-tokens per dispenser per time period (i.e. he can reset the
dispenser’s state so that the dispenser reuses some of its e-
tokens). The probability that the adversary outputs a token
serial number S that was not reused and a proof sU such
that VerifyViolation(pkI , S, pkU , sU) accepts is negligible.

Tracing of violators. The token serial numbers of violators
can be efficiently computed. More specifically, given a value
sU such that VerifyViolator(pkI , pkU , sU , n) accepts, and sup-
posing U has obtained u e-token dispensers, Trace(pkI , pkU ,
sU , RU , n) produces functions f1, . . . , fu such that by run-
ning though all j ∈ [0..n − 1], fi(t, j) produces all n TSNs
for e-token dispenser i at time t.

Dynamic revocation. The Show protocol will only succeed
for dispensers D that have not been revoked with Revoke.
(Recall that Show takes as input the value pkI that contains
the database DB of revoked users.)

3. PRELIMINARIES
Our e-token system can be shown secure under several

different complexity assumptions. Notation: we write G =
〈g〉 to denote that g generates the group G.

Bilinear Maps. Let Bilinear Setup be an algorithm that,
on input the security parameter 1k, outputs the parameters
for a bilinear map as γ = (q, g1, h1, G1, g2, h2, G2, GT , e).
Each group G1 = 〈g1〉 = 〈h1〉, G2 = 〈g2〉 = 〈h2〉, and GT

are of prime order q ∈ Θ(2k). The efficient mapping e :
G1 ×G2 → GT is both: (Bilinear) for all g1 ∈ G1, g2 ∈ G2,
and a, b ∈ Z

2
q, e(ga

1 , gb
2) = e(g1, g2)

ab; and (Non-degenerate)
if g1 is a generator of G1 and g2 is a generator of G2, then
e(g1, g2) generates GT .

Complexity Assumptions. The security of our scheme
relies on the following assumptions:

Strong RSA Assumption [4, 34]: Given an RSA mod-
ulus n and a random element g ∈ Z

∗
n, it is hard to compute

h ∈ Z
∗
n and integer e > 1 such that he ≡ g mod n. The

modulus n is of a special form pq, where p = 2p′ + 1 and
q = 2q′ + 1 are safe primes.

Additionally, our constructions require one of y-DDHI or
SDDHI, depending on the size of the system parameters.
Alternatively, we can substitute DDH for either of these

assumptions, where the cost is an increase in our time and
space complexity by a factor roughly the security parameter.

y-Decisional Diffie-Hellman Inversion (y-DDHI) [5,
32]: Suppose that g ∈ G is a random generator of order
q ∈ Θ(2k). Then, for all probabilistic polynomial time ad-
versaries A,

Pr[a← Z
∗
q ; x0 = g1/a; x1 ← G; b← {0, 1};

b′ ← A(g, ga, ga2
, . . . , gay

, xb) : b = b′] < 1/2 + 1/poly(k).

In the full version of this paper, we show that the SDDHI
assumption holds in generic groups.

Strong DDH Inversion (SDDHI): Suppose that g ∈ G

is a random generator of order q ∈ Θ(2k). Let Oa(·) be an

oracle that, on input z ∈ Z
∗
q , outputs g1/(a+z). Then, for all

probabilistic polynomial time adversaries A(·) that do not
query the oracle on x,

Pr[a← Z
∗
q ; (x,α)← AOa(g, ga); y0 = g1/(a+x); y1 ← G;

b← {0, 1}; b′ ← AOa (yb, α) : b = b′] < 1/2 + 1/poly(k).

Additionally, our constructions require one of the follow-
ing assumptions. XDH requires non-supersingular curves,
whereas SF-DDH may reasonably be conjectured to hold in
any bilinear group.

External Diffie-Hellman Assumption (XDH) [35, 44,
40, 6, 3]: Suppose Bilinear Setup(1k) produces the param-
eters for a bilinear mapping e : G1 × G2 → GT . The XDH
assumption states that the Decisional Diffie-Hellman (DDH)
problem is hard in G1.

Sum-FreeDecisionalDiffie-Hellman Assumption(SF-
DDH) [31]: Suppose that g ∈ G is a random generator of
order q ∈ Θ(2k). Let L be any polynomial function of k. Let
O�a(·) be an oracle that, on input a subset I ⊆ {1, . . . , L},
outputs the value gβI

1 where βI =
Q

i∈I ai for some �a =

(a1, . . . , aL) ∈ Z
L
q . Further, let R be a predicate such that

R(J, I1, . . . , It) = 1 if and only if J ⊆ {1, . . . , L} is DDH-
independent from the Ii’s; that is, when v(Ii) is the L-length
vector with a one in position j if and only if j ∈ Ii and zero
otherwise, then there are no three sets Ia, Ib, Ic such that
v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise over
the integers). Then, for all probabilistic polynomial time

adversaries A(·),

Pr[�a = (a1, . . . , aL)← Z
L
q ; (J, α)← AO�a(1k); y0 = g

Q
i∈J ai ;

y1 ← G; b← {0, 1}; b′ ← AO�a(yb, α) : b = b′∧
R(J,Q) = 1] < 1/2 + 1/poly(k),

where Q is the set of queries that A made to O�a(·).
Key Building Blocks. We summarize the necessary in-
formation about our system components.

DY Pseudorandom Function (PRF). Let G = 〈g〉 be
a group of prime order q ∈ Θ(2k). Let a be a random
element of Z

∗
q . Dodis and Yampolskiy [32] showed that

fDY
g,a (x) = g1/(a+x) is a pseudorandom function, under the

y-DDHI assumption, when either: (1) the inputs are drawn

from the restricted domain {0, 1}O(log k) only, or (2) the ad-
versary specifies a polynomial-sized set of inputs from Z

∗
q

before a function is selected from the PRF family (i.e., be-
fore the value a is selected). For our purposes, we require
something stronger: that the DY construction work for in-
puts drawn arbitrarily and adaptively from Z

∗
q .

204

Theorem 3.1. In the generic group model, the Dodis-
Yampolskiy PRF is adaptively secure for inputs in Z

∗
q .

The proof is included in the full version of this paper.

Pedersen and Fujisaki-Okamoto Commitments. Re-
call the Pedersen commitment scheme [43], in which the
public parameters are a group G of prime order q, and
generators (g0, . . . , gm). In order to commit to the val-
ues (v1, . . . , vm) ∈ Zq

m, pick a random r ∈ Zq and set
C = PedCom(v1, . . . , vm; r) = gr

0

Qm
i=1 gvi

i .
Fujisaki and Okamoto [34] showed how to expand this

scheme to composite order groups.

CL Signatures. Camenisch and Lysyanskaya [16] came
up with a secure signature scheme with two protocols: (1)
An efficient protocol for a user to obtain a signature on the
value in a Pedersen (or Fujisaki-Okamoto) commitment [43,
34] without the signer learning anything about the message.
(2) An efficient proof of knowledge of a signature protocol.
Security is based on the Strong RSA assumption. Using
bilinear maps, we can use other signature schemes [17, 6]
for shorter signatures.

Verifiable Encryption. For our purposes, in a verifiable
encryption scheme, the encrypter/prover convinces a verifier
that the plaintext of an encryption under a known public key
is equivalent to the value hidden in a Pedersen commitment.

Camenisch and Damg̊ard [11] developed a technique for
turning any semantically-secure encryption scheme into a
verifiable encryption scheme.

Bilinear El Gamal Encryption. We require a cryptosys-
tem where gx is sufficient for decryption and the public key
is φ(gx) for some function φ. One example is the bilinear El
Gamal cryptosystem [7, 2], which is semantically secure un-
der the DBDH assumption; that is, given (g, ga, gb, gc, Q),
it is difficult to decide if Q = e(g, g)abc. DBDH is implied
by y-DDHI or Sum-Free DDH.

Agreeing on the Time. Something as natural as time
becomes a complex issue when it is part of a security system.
First, it is necessary that the time period t be the same for all
users that show e-tokens in that period. Secondly, it should
be used only for a single period, i.e., it must be unique.
Our construction in §4 allows for the use of arbitrary time
period identifiers, such as those negotiated using the hash
tree protocol in [29]. For Glitch protection, §5, we assume
a totally ordered set of time period identifiers.

4. A PERIODIC N-TIMES ANONYMOUS
AUTHENTICATION SCHEME

4.1 Intuition Behind our Construction
In a nutshell, the issuer and the user both have key pairs.

Let the user’s keypair be (pkU , skU), where pkU = gskU and
g is a generator of some group G of known order. Let fs

be a pseudorandom function whose range is the group G.
During the Obtain protocol, the user obtains an e-token dis-
penser D that allows her to show up to n tokens per time
period. The dispenser D is comprised of seed s for PRF
fs, the user’s secret key skU , and the issuer’s signature on
(s, skU). We use CL signatures to prevent the issuer from
learning anything about s or skU . In the Show protocol,
the user shows her ith token in time period t: she releases
TSN S = fs(0, t, i), a double-show tag E = pkU · fs(1, t, i)R

(for a random R supplied by the verifier), and runs a ZK
proof protocol that (S, E) correspond to a valid dispenser
for time period t and 0 ≤ i < n (the user proves that S
and E were properly formed from values (s, skU) signed by
the issuer). Since fs is a PRF, and all the proof proto-
cols are zero-knowledge, it is computationally infeasible to
link the resulting e-token to the user, the dispenser D, or
any other e-tokens corresponding to D. If a user shows
n + 1 e-tokens during the same time interval, then two of
the e-tokens must use the same TSN. The issuer can easily
detect the violation and compute pkU from the two double-

show tags, E = pkU · fs(1, t, i)R and E′ = pkU · fs(1, t, i)R′
.

From the equations above, fs(1, t, i) = (E/E′)(R−R′)−1
and

pkU = E/fs(1, t, i)R.

4.2 Our Basic Construction
Let k be a security parameter and lq ∈ O(k), lx, ltime, and

lcnt be system parameters such that lq ≥ lx > ltime + lcnt +3
and 2lcnt − 1 > n, where n is the number of tokens we allow
per time period.

In the following, we assume implicit conversion between
binary strings and integers, e.g., between {0, 1}l and [0, 2l−
1]. Let F(g,s)(x) := fDY

g,s (x) := g1/(s+x) for x, s ∈ Zq
∗

and 〈g〉 = G being of prime order q. For suitably defined
ltime, lcnt, and lx define the function c : {0, 1}lx−ltime−lcnt ×
{0, 1}ltime × {0, 1}lcnt → {0, 1}lx as:

c(u, v, z) :=
“
u2ltime + v

”
2lcnt + z .

Issuer Key Generation: In IKeygen(1k, params), the is-
suer I generates two cyclic groups:

1. A group 〈g〉 = 〈h〉 = G of composite order p′q′ that
can be realized by the multiplicative group of quadratic
residue modulo a special RSA modulus N = (2p′ +
1)(2q′ + 1). In addition to CL signatures, this group
will be needed for zero-knowledge proofs of knowledge
used in the sequel. Note that soundness of these proof
systems is computational only and assumes that the
prover does not know the order of the group.

2. A group 〈g〉 = 〈g̃〉 = 〈h〉 = G of prime order q with
2lq−1 < q < 2lq .

The issuer must also prove in zero-knowledge that N is a
special RSA modulus, and 〈g〉 = 〈h〉 are quadratic residues
modulo N . In the random oracle model, one non-interactive
proof may be provided. In the plain model, the issuer must
agree to interactively prove this to anyone upon request.

Furthermore, the issuer generates a CL signature key pair
(pk, sk) set in group G. The issuer’s public-key will contain
(g, h,G, g, g̃, h, G, pk), while the secret-key will contain all
of the information.

User Key Generation: In UKeygen(1k, pkI), the user
chooses a random skU ∈ Zq and sets pkU = gskU ∈ G.

Get e-Token Dispenser: Obtain(U(pkI , skU , n), I(pkU ,
skI , n)). Assume that U and I have mutually authenticated.
A user U obtains an e-token dispenser from an issuer I as
follows:

1. U and I agree on a commitment C to a random value
s ∈ Zq as follows:

205

(a) U selects s′ at random from Zq and computes

C′ = PedCom(skU , s′; r) = gskU g̃s′hr.
(b) U sends C′ to I and proves that it is constructed

correctly.
(c) I sends a random r′ from Zq back to U .

(d) Both U and I compute C = C′g̃r′
= PedCom(skU ,

s′ + r′; r). U computes s = s′ + r′ mod q.

2. I and U execute the CL signing protocol on commit-
ment C. Upon success, U obtains σ, the issuer’s signa-
ture on (skU , s). This step can be efficiently realized
using the CL protocols [16, 17] in such a way that I
learns nothing about skU or s.

3. U initializes counters T := 1 (to track the current pe-
riod) and J := 0 (to count the e-tokens shown in the
current time period). U stores the e-token dispenser
D = (skU , s, σ, T, J).

Use an e-Token: Show(U(E, pkI , t, n),V(pkI , t, n)). Let
t be the current time period identifier with 0 < t < 2ltime .
(We discuss how two parties might agree on t in Section 3.)
A user U reveals a single e-token from a dispenser D =
(skU , s, σ, T, J) to a verifier V as follows:

1. U compares t with T . If t �= T , then U sets T := t and
J := 0. If J ≥ n, abort!

2. V sends to U a random R ∈ Z
∗
q .

3. U sends to V a token serial number S and a double
spending tag E computed as follows:

S = F(g,s)(c(0, T, J)), E = pkU ·F(g,s)(c(1, T, J))R

4. U and V engage in a zero-knowledge proof of knowledge
of values skU , s, σ, and J such that:

(a) 0 ≤ J < n,
(b) S = F(g,s)(c(0, t, J)),

(c) E = gskU · F(g,s)(c(1, t, J))R,
(d) VerifySig(pkI, (skU , s), σ)=true.

5. If the proof verifies, V stores (S, τ), with τ = (E, R),
in his database. If he is not the only verifier, he also
submits this tuple to the database of previously shown
e-tokens.

6. U increases counter J by one. If J ≥ n, the dispenser
is empty. It will be refilled in the next time period.

Technical Details. The proof in Step 4 is done as follows:

1. U generates the commitments CJ = gJhr1 , Cu =
gskU hr2 , Cs = gshr3 , and sends them to V.

2. U proves that CJ is a commitment to a value in the
interval [0, n−1] using standard techniques [22, 19, 8].

3. U proves knowledge of a CL signature from I for the
values committed to by Cu and Cs in that order. This
step can be efficiently realized using the CL proto-
cols [16, 17].

4. U as prover and V as verifier engage in the following
proof of knowledge, using the notation by Camenisch
and Stadler [21]:

PK{(α, β, δ, γ1, γ2, γ3) : g = (Csg
c(0,t,0)CJ)αhγ1 ∧

S = gα ∧ g = (Csg
c(1,t,0)CJ)βhγ2 ∧

Cu = gδhγ3 ∧E = gδ(gR)β} .

U proves she knows the values of the Greek letters; all
other values are known to both parties.

Let us explain the last proof protocol. From the first step
we know that CJ encodes some value Ĵ with 0 ≤ Ĵ < n,

i.e., CJ = gĴhr̂J for some r̂J . From the second step we
know that Cs and Cu encoded some value û and ŝ on which
the prover U knows a CL signature by the issuer. Therefore,
Cs = gŝhr̂s and Cu = gûhr̂u for some r̂s and r̂u. Next, recall
that by definition of c(·, ·, ·) the term gc(0,t,0) corresponds to

gt2lcnt
. Now consider the first term g = (Csg

c(0,t,0)CJ)αhγ1

in the proof protocol. We can now conclude the prover U
knows values â and r̂ such that g = g(ŝ+t2lcnt+Ĵ)âhr̂ and S =
gâ. From the first equation is follows that â = (ŝ + (t2lcnt +

Ĵ))−1 (mod q) must hold provided that U is not privy to
logg h (as we show via a reduction in the proof of security)

and thus we have established that S = F(g,ŝ)(c(0, t, Ĵ)) is a
valid serial number for the time period t. Similarly one can
derive that E = gû ·F(g,ŝ)(c(1, t, Ĵ))R, i.e., that E is a valid
double-spending tag for time period t.

Identify Cheaters: Identify(pkI , S, (E, R), (E′, R′)). If the
verifiers who accepted these tokens were honest, then R �=
R′ with high probability, and proof of validity ensures that

E = pkU · fs(1, T, J)R and E′ = pkU · fs(1, T, J)R′
. The

violator’s public key can now be computed by first solving

for fs(1, T, J) = (E/E′)(R−R′)−1
and then computing pkU =

E/fs(1, T, J)R.

Theorem 4.1. Protocols IKeygen, UKeygen, Obtain, Show,
and Identify described above achieve soundness, identifica-
tion, and anonymity properties in the plain model assuming
Strong RSA, and y-DDHI if lx ∈ O(log k) or SDDHI other-
wise.

In the full version of this paper, we prove the theorem.
Recall that lx dictates the number of time periods and the
number of allowed shows per time period; when these values
are small, security is based only on Strong RSA and y-DDHI.

4.3 Efficiency Discussion
To analyze the efficiency of our scheme, it is sufficient

to consider the number of (multi-base) exponentiations the
parties have to do in G and G. In a decent implementation,
a multi-base exponentiation takes about the same time as
a single-base exponentiation, provided that the number of
bases is small. For the analysis we assume that the Strong
RSA based CL-signature scheme is used.

Obtain: both the user and issuer perform 3 exponentia-
tions in G. Show: the user performs 12 multi-base exponen-
tiation in G and 23 multi-base exponentiations in G, while
the verifier performs 7 multi-base exponentiation in G and
13 multi-base exponentiations in G. If n is odd, the user
only needs to do 12 exponentiations in G, while the veri-
fier needs to do 7. To compare ourselves to the Damg̊ard
et al. [29] scheme, we set n = 1. In this case, Show re-
quires that the user perform 12 multi-base exponentiation
in G and 1 multi-base exponentiations in G and the verifier
perform 7 multi-base exponentiation in G and 1 multi-base
exponentiations in G. Damg̊ard et al. requires 57+68r ex-
ponentiations in G, where r is the security parameter (i.e.,
2−r is the probability that the user can cheat). Depend-
ing on the application, r should be at least 20 or even 60.
Thus, our scheme is an order of magnitude more efficient
than Damg̊ard et al.

206

5. GLITCH PROTECTION EXTENSION
In our periodic n-times anonymous authentication scheme,

a user who shows two tokens with the same TSN becomes
identifiable. (Recall that only n unique TSN values are
available to a user per time period.) A user might acciden-
tally use the same TSN twice because of hardware break-
downs, clock desychronization, etc. We want to protect
the anonymity of users who occasionally cause a glitch (re-
peat a TSN in two different tokens), while still identifying
users who cause an excessive amount of glitches. A user
might be permitted up to m glitches per monitoring inter-
val (e.g., year). Any TSN repetition will be detected, but the
user’s anonymity will not be compromised until the (m+1)st
glitch. A token that causes a glitch is called a clone.

Suppose a user has u glitches in one monitoring interval.
Our goal is to design a scheme where:

– if u = 0, all shows are anonymous and unlinkable;

– if 1 ≤ u ≤ m, all shows remain anonymous, but a link-id
L is revealed, making all clones linkable;

– if u > m, the user’s public key is revealed.

One can think of link-id L as a pseudonym (per monitor-
ing interval) that is hidden in each token released by the
same user (much in the same way that the user’s public key
was hidden in each token released by a user in the basic
scheme). If tokens (S, τ) and (S, τ ′) caused a glitch, then
we call (S, τ, τ ′) a glitch tuple, where by definition τ �= τ ′.
We introduce a new function GetLinkId that takes as input
a glitch tuple and returns the link-id L. Once m + 1 clones
are linked to the same pseudoym L, there is enough infor-
mation from these collective original and cloned transcripts
to compute the public key of the user.

We continue to use identifier t ∈ T for (indivisible) time
periods. Identifier v ∈ V refers to a monitoring interval.
We give two glitch protection schemes: §5.1 considers dis-
joint monitoring intervals, while §5.2 works on overlapping
monitoring intervals. For the first scheme, we assume the
existence of an efficient function MV that maps every time
period t to its unique monitoring interval v ∈ V.

5.1 Basic Glitch Protection
Our basic glitch protection scheme tolerates up to m clones

per monitoring interval v; monitoring intervals are disjoint.
We informally define the protocols and security properties

of a periodic authentication scheme with glitch protection:

– ShowGP(U(D, pkI , t, n, m),V(pkI , t, n, m)). Shows an e-
token from dispenser D in time period t and monitoring
interval v = MV(t). The verifier obtains a token serial
number S and a transcript τ .

– GetLinkId(pkI , S, τ, τ ′). Given e-tokens (S, τ, τ ′), where τ
�= τ ′ by definition, computes a link-id value L.

– IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+�+1)).

Given m+1 glitch tuples where for each i, GetLinkId(Si, τi,
τ ′

i) produces the same link-id L, computes a value sU that
can be used to compute the public key of the owner of the
dispenser D from which the TSNs came.

We give two new security properties GP Anonymity and GP
Identification that supercede the Anonymity and Identifica-
tion properties of §2.

GP Anonymity. An adversarial issuer, even when cooperat-
ing with verifiers and other dishonest users, and adaptively
directing honest users to show e-tokens and up to m clones
of his choice for every monitoring interval v ∈ V, cannot
learn anything about a user’s e-token usage behavior except
what is available from side information from the environ-
ment. This property is captured by a simulator S which
can interact with the adversary as if he were the user. S
doesn’t have access to the user’s secret or public key, or her
e-token dispenser D. However, when the adversary asks S
to make a clone, the environment passes S a link-id. In the
full version of this paper, we provide a formal definition.

GP Identification. Suppose the issuer and verifiers are hon-
est and they receive m + 1 glitch tuples Input = (S1, τ1, τ

′
1),

. . . , (Sm+1, τm+1, τ
′
m+1) with the same L = GetLinkId(pkI ,

Si, τi, τ
′
i) for all 1 ≤ i ≤ m + 1. Then with high probabil-

ity algorithm IdentifyGP(pkI , Input) outputs a value sU for
which there exists an efficient function φ such that φ(sU) =
pkU , identifying the violator.

Intuition behind construction. Recall that in our basic
scheme, an e-token has three logical parts: a serial number
S = F(s,g)(c(0, T, J)), a tag E = pkU ·F(s,g)(c(1, T, J))R, and
a proof of validity. If the user shows a token with TSN S

again, then he must reveal E′ = pkU · F(s,g)(c(1, T, J))R′
,

where R �= R′, and the verifier can solve for pkU from
(E, E′, R, R′).

Now, in our glitch protection scheme, an e-token has four
logical parts: a serial number S = F(s,g)(c(0, T, J)), a tag
K that exposes the link-id L if a glitch occurs, a tag E that
exposes pkU if more than m glitches occur, and a proof of
validity.

We instantiate K = L ·F(g,s)(c(2, T, J))R. Now a double-
show reveals L just as it revealed pkU in the original scheme.
The link-id for monitoring interval v is L = F(s,g)(c(1, v, 0)).

Once the verifiers get m+1 clones with the same link-id L,
they need to recover pkU . To allow this, the user includes tag
E = pkU ·Qm

i=1 F(g,s)(c(3, v, i))ρi ·F(s,g)(c(4, T, J))R. (Here,
it will be critical for anonymity that the user and the verifier
jointly choose the random values R, ρ1, . . . , ρm.)

Now, suppose a user causes m + 1 glitches involving �
distinct TSNs. Given (E, R, ρ1, . . . , ρm) from each of these
(m+�+1) tokens, the public key of the user can be computed
by repeatedly using the elimination technique that allowed
the discovery of L from (K, K′, R,R′). We have (m + � +1)
equations E and (m+�+1) unknown bases including pkU and
the F(s,g)(.) values. Thus, solving for pkU simply requires
solving a system of linear equations.

Construction. ShowGP and IdentifyGP replace the corre-
sponding Show and Identify algorithms of the basic construc-
tion in §4.
ShowGP(U(D, pkI , t, n, m),V(pkI , t, n, m)). Let v = MV(t).
A user U shows a single e-token from a dispenser D =
(skU , s, σ, T, J) to a verifier V as follows:

1. U compares t with T . If t > T , then U sets T := t and
J := 0. If J ≥ n, abort!

2. V and U jointly choose R, ρ1, . . . , ρm uniformly at ran-
dom from Z

∗
q . The user and verifier can use coin-

flipping to generate a seed x and then use x to generate
the other values (either via a PRF like Fg,x(.), or by
treating some hash function H(.) as a random oracle).

207

3. U sends V an interval serial number S, a double spend-
ing tag K encoding the link-id L, and a special (m+1)-
cloning tag E:

S = F(g,s)(c(0, T, J)),

K = F(g,s)(c(1, v, 0)) · F(g,s)(c(2, T, J))R,

E = pkU · F(g,s)(c(3, v, 1))ρ1 · · ·
F(g,s)(c(3, v, m))ρm · F(g,s)(c(4, T, J))R

4. U performs a zero-knowledge proof that the values
above were correctly computed.

5. If the proof verifies, V stores (S, τ), where τ = (K, E, R,
ρ1, . . . , ρm), in his database.

6. U increments counter J by one. If J ≥ n the dispenser
is empty. It will be refilled in the next time period.

GetLinkId(pkI , S, (K, E, R, �ρ), (K′, E′, R′, �ρ′)). Returns

L =
K

(K/K′)(R−R′)−1R
.

IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)). Let the

m+1 glitch tuples include � distinct TSN values. We extract
the values (Ei, R, ρ1, . . . , ρm) (or (E′

i, R
′, ρ′

1, . . . , ρ
′
m)) from

all m + � + 1 unique transcripts. Now, we use the intuition
provided above to solve for pkU .

Theorem 5.1. The scheme described above is a secure
periodic n-times anonymous authentication scheme with ba-
sic glitch protection. It fulfills the soundness, GP anonymity
and GP identification properties.

The proof can be found in the full version of this paper.

5.2 Window Glitch Protection
The basic glitch protection scheme prevents users from

creating more than m clones in a single monitoring interval.
If two neighboring time periods fall in different monitoring
intervals, then a malicious user can create m clones in each
of them. We want to catch users who make more than m
clones within any W consecutive time periods.

We define an interval of consecutive time-periods to be a
window. For convenience, we will consider each time period
identifier t to be an integer, and time periods t and t + 1 to
be neighbors. Each time period is in W different windows of
size W . If we let a time period define the end of a window,
then time period t would be in windows t, t+1, . . . , t+W−1.

(m, W)-Window glitch protection allows a user to clone at
most m e-tokens during any window of W consecutive time
periods. We describe the new protocols associated with a
window glitch protection scheme:

– ShowWGP(U(D, pkI , t, n, m, W),V(pkI , t, n, m,W)).
Shows an e-token from dispenser D for time period t. The
verifier obtains a serial number S and a transcript τ .

– GetLinkIds(pkI , S, τ, τ ′). Given two e-tokens (S, τ) and
(S, τ ′), outputs a list of W link-ids L1, . . . , LW .

– IdentifyWGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)).

Given m+1 glitch tuples where for each i, the same link-
id L is in the list of link-ids produced by GetLinkId(Si, τi,
τ ′

i), computes a value sU that can be used to compute the
public key of the owner of the dispenser D from which
the TSNs came.

We modify the GP Anonymity and GP Identification prop-
erties to apply to window glitch protection.

WGP Anonymity. This property is the same as for basic
glitch protection, except that now the adversary cannot ask
a user to create more than m clones within any window
of W consecutive time periods. Since each time period is
part of W different windows, the environment will pass the
simulator a set of link-ids.

WGP Identification. Suppose the issuer and verifiers are
honest. Should they receive a list of m + 1 glitch tuples
Input = (S1, τ1, τ

′
2), . . . , (Sm+1, τm+1, τ

′
m+1), such that ∃L :

∀i : L ∈ GetLinkIds(pkI , Si, τi, τ
′
i), then with high proba-

bility IdentifyWGP(pkI, Input) outputs a value sU for which
there exists an efficient function φ such that φ(sU) = pkU ,
identifying the violator.

Construction. Intuitively, we replicate our basic glitch so-
lution W times for overlapping windows of W time periods.

ShowWGP(U(D, pkI , t, n, m, W). We modify the ShowGP
protocol as follows. In step 3, the user and verifier jointly
choose random numbers R1, . . . , RW and ρ1,1, . . . , ρW,m. In
step 4, the user calculates essentially the same values S, K, E,
except that now she calculates separate Ki and Ei tags for
every window in which time period T falls:

S = F(s,g)(c(0, T, J))

Ki = F(s,g)(c(1, T + i, 0)) · F(s,g)(c(2, T, J))Ri

Ei = pkU · F(s,g)(c(3, T + i, 1))ρi,1 · · ·
F(s,g)(c(3, T + i, m)))ρi,m · F(s,g)(c(4, T, J))Ri

Finally, in step 5, the user proves to the verifier that the val-
ues S, K1, . . . , KW , E1, . . . , EW are formed correctly. That,
along with the random numbers generated in step 3, forms
the transcript stored in steps 6. Step 7 is unchanged.

GetLinkIds(pkI , S, τ, τ ′). Returns the link-ids:

Li =
Ki

(Ki/K′
i)

(Ri−R′
i
)−1Ri

, 1 ≤ i ≤ m + 1.

IdentifyWGP(pkI , (S1, τ1, τ
′
2), . . . , (Sm+1, τm+1, τ

′
m+1)). For

all i, let L ∈ GetLinkIds(pkI , Si, τi, τ
′
i), that is, let L be the

link-id each glitch tuple has in common. Let these m + 1
glitch tuples include � distinct TSN values. We extract the
values (Ei,j , Ri, ρi,1, . . . , ρi,m) (or (E′

i,j , R
′
i, ρ

′
i,1, . . . , ρ

′
i,m))

from all m + � + 1 unique transcripts, where j depends on
where L falls in the list GetLinkIds(pkI , Si, τi, τ

′
i). Now, we

use the same techniques as before to solve for pkU .

Theorem 5.2. The scheme described above is a secure
periodic n-times anonymous authentication scheme with win-
dow glitch protection. It fulfills the soundness, WGP anonymity
and WGP identification properties.

The proof can be found in the full version of the paper.

6. ADDITIONAL EXTENSIONS
One advantage of our approach to periodic anonymous

authentication is that its modular construction fits nicely
with previous work [12, 15]. Thus, it is clear which parts of
our system can be modified to enable additional features.

208

6.1 Weak Exculpability
Recall that weak exculpability allows an honest verifier (or

group of verifiers) to prove in a sound fashion that the user
with public key pkU reused some token. This convinces ev-
eryone in the system that the user with pkU is untrustworthy.

To implement weak exculpability, we need to define al-
gorithm VerifyViolator and to slightly adapt the IKeygen,
UKeygen, Show, and Identify algorithms. IKeygen′ now also
runs Bilinear Setup, and the parameters for the bilinear map
e : G1 × G2 → GT are added to pkI . UKeygen′ selects
a random skU ∈ Z

∗
q and outputs pkU = e(g1, g2)

skU . In
the Show′ protocol, the double-spending tag is calculated
as E = gskU

1 · F(g1,s)(c(1, T, J))R. Consequently the value

sU , returned by Identify′, is gskU
1 – which is secret informa-

tion! Thus, the VerifyViolator algorithm is defined as fol-
lows: VerifyViolator(pkI , pkU , sU) accepts only if e(sU , g2) =

e(gskU
1 , g2) = pkU . Intuitively, because gskU

1 is secret infor-
mation, its release signals that this user misbehaved.

A subtle technical problem with this approach is that tag
E is now set in a bilinear group G1, where DDH may be
easy, and we need to ensure that the DY PRF is still secure
in this group. Indeed, in groups where DDH is easy, the DY
PRF is not secure. There are two solutions [12]: (1) make
the XDH assumption, i.e., DDH is hard in G1, and continue
to use the DY PRF, or (2) make the more general Sum-Free
DDH assumption and use the CHL PRF [12], which works
in groups where (regular) DDH is easy.

Theorem 6.1. The above scheme provides weak excul-
pability under the Strong RSA, y-DDHI if lx ∈ O(log k) or
SDDHI, and either XDH or Sum-Free DDH assumptions.

6.2 Strong Exculpability
Recall that strong exculpability allows an honest verifier

(or group of verifiers) to prove in a sound fashion that the
user with public key pkU reused an e-token with TSN S.

For strong exculpability, we need to define VerifyViolation
and to adapt the Show and the Identify algorithms. In
Show′′, the ZK proof of validity is transformed into a non-
interactive proof, denoted Π, using the Fiat-Shamir heuris-
tic [33]. The proof Π is added to the coin transcript, denoted
τ . And Identify′′(pkI , S, τ1, τ2) adds both transcripts τ1, and
τ2 to its output sU . (The function φ(sU) = pkU ignores the
extra information.)

Thus, the VerifyViolation algorithm is defined as follows:
VerifyViolation(pkI , S, pkU , sU) parses τ1 = (E1, R1, Π1) and
τ2 = (E2, R2, Π2) from sU . Then, it checks that φ(sU) = pkU
and that Identify′′(pkI , S, τ0, τ2) = sU . Next, it verifies both
non-interactive proofs Πi with respect to (S, Ri, Ti). If all
checks pass, it accepts; else, it rejects.

A subtlety here is that, for these proofs to be sound even
when the issuer is malicious, the group G′ that is needed
as a parameter for zero-knowledge proofs here must be a
system parameter generated by a trusted third party, such
that no one, including the issuer, knows the order of this
group. So in particular, G′ cannot be the same as G [20].

Theorem 6.2. The above scheme provides strong excul-
pability under the Strong RSA, and y-DDHI if lx ∈ O(log k)
or SDDHI assumptions in the random oracle model with
trusted setup for the group G′.

6.3 Tracing
We can extend our periodic n-times authentication scheme

so that if a user reuses even one e-token, all possible TSN
values she could compute using any of her dispensers are now
publicly computable. We use the same IKeygen′, UKeygen′,
Show′, and Identify′ algorithms as weak exculpability, slightly
modify the Obtain protocol, and define a new Trace algo-
rithm.

In UKeygen′, the user’s keypair (e(g1, g2)
skU , skU) is of the

correct form for the bilinear ElGamal cryptosystem, where
the value gskU

1 is sufficient for decryption. Now, in our mod-
ified Obtain′, the user will provide the issuer with a verifi-
able encryption [11] of PRF seed s under her own public key
pkU . The issuer stores this tracing information in RU . When
Identify′ exposes gskU

1 , the issuer may run the following trace
algorithm:

Trace(pkI, pkU , sU , RU , n). The issuer extracts gskU
1 from sU ,

and verifies this value against pkU ; it aborts on failure. The
issuer uses gskU

1 to decrypt all values in RU belonging to
that user, and recovers the PRF seeds for all of the user’s
dispensers. For seed s and time t, all TSNs can be computed
as fs(t, j) = F(e(g1,g2),s)(c(0, t, j)), for all 0 ≤ j < n.

Theorem 6.3. The above scheme provides tracing of vi-
olators under the Strong RSA, y-DDHI if lx ∈ O(log k) or
SDDHI, and either XDH or Sum-Free DDH assumptions.

6.4 Dynamic Revocation
Implementing dynamic revocation requires modifying the

Obtain and Show protocols in the basic scheme, and defining
a new Revoke algorithm.

The mechanisms introduced in [15] can be used for revok-
ing CL signatures. In an adjusted CL protocol for obtaining
a signature on a committed value, the user obtains an ad-

ditional witness w = ve−1
, where v is the revocation public

key and e is a unique prime which is part of the CL signature
σ. In the CL protocol for proving knowledge of a signature,
the user also proves knowledge of this witness. Violators
with prime ẽ can be excluded by updating the revocation

public key v, such that v′ = vẽ−1
, and publishing ẽ. While

all non-excluded users can update their witness by comput-
ing function f(e, ẽ,v′, w) = w′, without knowing the order
of G, this update does not work when e = ẽ.

Thus, our e-token dispensers can be revoked by revoking
their CL signature σ. Obtain′′′ is adapted to provide users
with a witness w and to store the corresponding e as rD.
Show′′′ is adapted to update and prove knowledge of the wit-
ness. The Revoke(pkI , rD) algorithm is defined as follows:

Compute v′ = vrD
−1

and publish it together with update
information rD. Additional details are in [15].

Theorem 6.4. The above scheme provides dynamic revo-
cation under the Strong RSA, and y-DDHI if lx ∈ O(log k)
or SDDHI assumptions.

7. ACKNOWLEDGMENTS
Part of Jan Camenisch’s work reported in this paper is

supported by the European Commission through the IST
Programme under Contracts IST-2002-507932 ECRYPT and
IST-2002-507591 PRIME. The PRIME projects receives re-
search funding from the European Community’s Sixth Frame-
work Programme and the Swiss Federal Office for Educa-
tion and Science. Part of Susan Hohenberger’s work is

209

supported by an NDSEG Fellowship. Markulf Kohlweiss
is supported by the European Commission through the IST
Programme under Contract IST-2002-507591 PRIME. Anna
Lysyanskaya is supported by NSF Grant CNS-0347661. Mira
Meyerovich is supported by a U.S. Department of Home-
land Security Fellowship and NSF Grant CNS-0347661. All
opinions expressed in this paper are the authors’ and do not
necessarily reflect the policies and views of EC, DHS, and
NSF.

8. REFERENCES
[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A

practical and provably secure coalition-resistant group
signature scheme. In CRYPTO, vol. 1880, p. 255–270, 2000.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved Proxy Re-encryption Schemes with Applications
to Secure Distributed Storage. In NDSS, p. 29–43, 2005.

[3] L. Ballard, M. Green, B. de Medeiros, and F. Monrose.
Correlation-Resistant Storage. Johns Hopkins University,
Technical Report # TR-SP-BGMM-050705, 2005.

[4] N. Barić and B. Pfitzmann. Collision-free accumulators and
fail-stop signature schemes without trees. In EUROCRYPT
’97, volume 1233, p. 480–494, 1997.

[5] D. Boneh and X. Boyen. Short signatures without random
oracles. In EUROCRYPT, v.3027 of LNCS, p. 56–73, 2004.

[6] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures using strong Diffie-Hellman. In CRYPTO,
volume 3152 of LNCS, p. 41–55, 2004.

[7] D. Boneh and M. Franklin. Identity-based encryption from
the Weil pairing. In CRYPTO, v.2139, p. 213–229, 2001.

[8] F. Boudot. Efficient proofs that a committed number lies in
an interval. In EUROCRYPT, vol. 1807, p. 431–444, 2000.

[9] S. Brands. Rethinking Public Key Infrastructure and
Digital Certificates— Building in Privacy. PhD thesis,
Eindhoven Inst. of Tech. The Netherlands, 1999.

[10] E. Brickell, P. Gemmel, and D. Kravitz. Trustee-based
tracing extensions to anonymous cash and the making of
anonymous change. In SIAM, p. 457–466, 1995.

[11] J. Camenisch and I. Damg̊ard. Verifiable encryption, group
encryption, and their applications to group signatures and
signature sharing schemes. In ASIACRYPT, volume 1976
of LNCS, p. 331–345, 2000.

[12] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Compact E-Cash. In EUROCRYPT, volume 3494 of
LNCS, p. 302–321, 2005.

[13] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Balancing accountability and privacy using e-cash. In SCN
(to appear), 2006.

[14] J. Camenisch and A. Lysyanskaya. Efficient
non-transferable anonymous multi-show credential system
with optional anonymity revocation. In EUROCRYPT,
volume 2045 of LNCS, p. 93–118, 2001.

[15] J. Camenisch and A. Lysyanskaya. Dynamic accumulators
and application to efficient revocation of anonymous
credentials. In CRYPTO, 2442 of LNCS, p. 61-76, 2002.

[16] J. Camenisch and A. Lysyanskaya. A signature scheme
with efficient protocols. In SCN 2002, volume 2576 of
LNCS, p. 268–289, 2003.

[17] J. Camenisch and A. Lysyanskaya. Signature schemes and
anonymous credentials from bilinear maps. In CRYPTO
2004, volume 3152 of LNCS, p. 56–72, 2004.

[18] J. Camenisch, U. Maurer, and M. Stadler. Digital payment
systems with passive anonymity-revoking trustees. In
ESORICS 96, volume 1146 of LNCS, p. 33–43, 1996.

[19] J. Camenisch and M. Michels. Proving in zero-knowledge
that a number n is the product of two safe primes. In
EUROCRYPT ’99, volume 1592, p. 107–122, 1999.

[20] J. Camenisch and M. Michels. Separability and efficiency
for generic group signature schemes. In CRYPTO ’99,
volume 1666 of LNCS, p. 413–430, 1999.

[21] J. Camenisch and M. Stadler. Efficient group signature
schemes for large groups. In CRYPTO ’97, volume 1296 of
LNCS, p. 410–424, 1997.

[22] A. Chan, Y. Frankel, and Y. Tsiounis. Easy come – easy go
divisible cash. In EUROCRYPT, v. 1403, p. 561–575, 1998.

[23] D. Chaum. Blind signatures for untraceable payments. In
CRYPTO ’82, p. 199–203. Plenum Press, 1982.

[24] D. Chaum. Blind signature systems. In CRYPTO ’83, p.
153–156. Plenum, 1983.

[25] D. Chaum. Security without identification: Transaction
systems to make big brother obsolete. Communications of
the ACM, 28(10):1030–1044, Oct. 1985.

[26] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic
cash. In CRYPTO, volume 403 of LNCS, p. 319–327, 1990.

[27] D. Chaum and E. van Heyst. Group signatures. In
EUROCRYPT ’91, volume 547 of LNCS, p. 257–265, 1991.

[28] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee.
Toward privacy in public databases. In TCC, volume 3378
of LNCS, p. 363–385, 2005.

[29] I. Damgard, K. Dupont, and M. O. Pedersen. Unclonable
group identification. In EUROCRYPT, volume 4004 of
LNCS, p. 555–572, 2006.

[30] I. B. Damg̊ard. Payment systems and credential mechanism
with provable security against abuse by individuals. In
CRYPTO, volume 403 of LNCS, p. 328–335, 1990.

[31] Y. Dodis. Efficient construction of (distributed) verifiable
random functions. In PKC, volume 2567, p. 1–17, 2003.

[32] Y. Dodis and A. Yampolskiy. A Verifiable Random
Function with Short Proofs an Keys. In PKC, volume 3386
of LNCS, p. 416–431, 2005.

[33] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In
CRYPTO, volume 263 of LNCS, p. 186–194, 1986.

[34] E. Fujisaki and T. Okamoto. Statistical zero knowledge
protocols to prove modular polynomial relations. In
CRYPTO ’97, volume 1294 of LNCS, p. 16–30, 1997.

[35] S. D. Galbraith. Supersingular curves in cryptography. In
ASIACRYPT, volume 2248 of LNCS, p. 495–513, 2001.

[36] S. Jarecki and V. Shmatikov. Handcuffing big brother: an
abuse-resilient transaction escrow scheme. In
EUROCRYPT, volume 3027 of LNCS, p. 590–608, 2004.

[37] A. Kiayias, M. Yung, and Y. Tsiounis. Traceable
signatures. In EUROCRYPT, vol. 3027, p. 571–589, 2004.

[38] A. Lysyanskaya. Signature Schemes and Applications to
Cryptographic Protocol Design. PhD thesis, Massachusetts
Institute of Technology, Sept. 2002.

[39] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In SAC, vol. 1758, p. 184-199, 1999.

[40] N. McCullagh and P. S. L. M. Barreto. A new two-party
identity-based authenticated key agreement. In CT-RSA,
volume 3376 of LNCS, p. 262–274, 2004.

[41] V. I. Nechaev. Complexity of a determinate algorithm for
the discrete log. Mathematical Notes, 55:165–172, 1994.

[42] L. Nguyen and R. Safavi-Naini. Dynamic k-times
anonymous authentication. In ACNS, volume 3531 in
LNCS, p. 318–333, 2005.

[43] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO, volume 576
of LNCS, p. 129–140, 1992.

[44] M. Scott. Authenticated ID-based key exchange and
remote log-in with simple token and PIN number, 2002.
http://eprint.iacr.org/2002/164.

[45] V. Shoup. Lower bounds for discrete logarithms and
related problems. In EUROCRYPT, LNCS, p. 256–266,
1997. Update: http://www.shoup.net/papers/.

[46] L. Sweeney. k-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[47] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous
authentication (extended abstract). In Asiacrypt, volume
3329 of LNCS, p. 308–322, 2004.

210

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

