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Abstract
The rapid increase of mobile phone cameras has enabled

users to easily take and share pictures. This has created a
potential for mobile device driven sensing of our world at a
previously unachieved spatio-temporal granularity, enabling
a variety of new applications. The data collection activity is
highly uncoordinated and hence, a key issues in effectively
using such imagery is understanding the relevance value of
each image. Having such a value can not only streamline
the resource usage in sharing the image data but also sup-
port the development of incentive mechanisms for users to
contribute worthwhile data. We discuss the problem of as-
signing relevance values to images from mobile devices with
respect to an application’s existing image data-set. We de-
scribe a general information theoretic framework for com-
puting relative relevance and discuss specific value compu-
tation for a coverage based metric. We also develop a prac-
tical algorithm to compute relevance and describe methods
to make our computation scalable to large data sets. Finally,
we present our prototype implementation demonstrating our
methods on real world data .

1 Introduction
A large fraction of cellular phones is now embedded with

cameras. Since images provide a rich sensing modality, the
widespread adoption of camera phones has created a po-
tentially omnipresent sensor network that can provide fine
grained measurements of the physical world. This capability
can enable a variety of applications. For instance, users car-
rying cell-phone cameras may provide instantaneous news
coverage of an unplanned interesting event. Images of side-
walks taken by users in their local regions may be used to
enhance or update the street side imagery of the global road
network. User groups may collect interest specific images
documenting conditions of their interest, such as the main-
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tenance status of a community park after a thunderstorm.
Many other applications of sensing via mobile devices have
been previously discussed [1, 2].

This mobile device centric sensor network is different
from traditional wireless sensor networks. Rather than hav-
ing dedicated sensing devices, this network piggybacks on
user carried mobile devices. This leads to several design
challenges, one of which is the extremely uncoordinated be-
havior of the network. In this paper we address one of the
implications of uncoordinated behavior: that on data collec-
tion. The sensing devices may be present at different loca-
tions at different times and may never all be connected. This
makes centralized coordination of data collection activities
very difficult. We discuss how the applications using the data
collected by such networks may exercise some control on the
collection and sharing of data.

We propose to achieve a semblance of coordination in the
data collection activity through assigning relevance metrics
to data provided by mobile devices. If we provide a relevance
metric that captures the utility of the data for the application,
the application may extract the most useful data from the
plethora of images provided by a large number of uncoordi-
nated mobile devices. This can help streamline the use of
system resources, such as bandwidth and storage space. Fur-
ther, the relevance metrics can be used to design incentive
mechanisms that persuade users to contribute more relevant
data, thus leading to distributed coordination in the data col-
lection activity. Also, if uploading the data from the mobile
device is costly, relevance values may help select appropriate
images to be uploaded.
1.1 Problem Description

We use the following system model (Fig. 1). Multiple
contributors carrying mobile cameras upload images, using
cellular or Internet connections. The images are processed
by our relevance computation engine to assign application
specific relevance metrics. Multiple applications may then
access this data filtered by the relevance metric of their inter-
est.

Relevance may be measured among several dimensions
based on the application. Relevance may be temporal. For
instance, for live coverage of an event, the latest image or
the image taken at the correct time instance may be the most
worthwhile. Relevance may also be spatial, measured in
terms of the extent of spatial coverage provided by the im-
age, its resolution, or its image quality, including the inten-
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Figure 1. A block diagram of the system.

sity histogram, contrast, blur, or device sensor noise. Other
dimensions of relevance include the utility of an image for
3D reconstruction of the scene, which may depend on the
perspective provided by the image relative to other images.
Sophisticated relevance metrics may also be based on the se-
mantic content of the image, measured in terms of the objects
of interest captured by it.

In this paper, we focus on a spatial relevance metric based
on the coverage of the physical world provided by an image.
Relevance of an image is then measured in terms of novel
coverage provided with respect to a previously obtained set
of images. Such coverage based relevance is useful for sev-
eral applications such as enhanced or updated imagery of
streets, highways or other public spaces such as parks, or
coverage of community specific areas, such as a park after a
thunderstorm. Measuring coverage based relevance for mo-
bile camera imagery has certain issues arising out of the un-
coordinated nature of this data collection activity. Unlike
controlled imagery collected by satellite, airplane, or vehicle
mounted cameras currently used by online mapping services
[3, 4], the spatial relationships among the images from multi-
ple mobile devices are unknown and uncontrolled. Arbitrary
variation may exist in perspective, lighting conditions, im-
age size, resolution, or noise quality, due to multiple users
and mobile devices being involved. This implies that match-
ing pixels across images will not yield the coverage overlaps.
Also, since the number of images may be very large, such
as thousands, the incremental processing required for each
additional image should be scalable. Our methods address
many of these issues.

2 Information Theoretic Image Ranking
Before discussing coverage specific relevance computa-

tion, we describe a general framework to determine the rele-
vance of data, based on information theory.

2.1 Entropy
Information theory defines the information content of a

data value based on the probability of occurrence of the data
value. Suppose data is represented by a parameterxand takes
values in the setX of finite cardinality. Suppose the proba-
bility that x takes a particular valueXi in the setX is denoted
P(x = Xi). Then, the entropyH(X) with respect to the prob-

ability distribution ofx, is defined in as [5]:

H(X) = E[−log2P(x)] =− ∑
x∈X

P(x)log2P(x) (1)

whereP(x) denotesP(x = Xi). Consider now a second para-
metery, taking values in the setY , that has some information
aboutx. The novel information inx when the value ofy is
already known may be modelled as the conditional entropy
of x giveny, H(X|y = Yi). This can be calculated using the
same formula as used for entropy but applied to the condi-
tional probability ofx:

H(X|y = Yi) = E[−log2P(x|y = Yi)] (2)

The above entropy concepts can be applied to image data
to measure the coverage information provided by an im-
age. Suppose an image is represented by a vectorx =
{x1,x2, ...,xn} wheren is the number of pixels in the im-
age1. Entropy can be computed for a vector variablex by
using its joint probability distribution in equation (2). Sup-
pose next that a set of images{y1,y2, ...,ym} has already
been obtained, and the novel information inx is to be de-
termined with respect to these images. The conditional en-
tropy H(x|y1, ...,ym) may then be used to measure the novel
information in imagex given the set of previously obtained
images.
2.2 Coverage Based Entropy Measure

The definition of the probability measure used forx and
for its conditional probability given the previously obtained
images will determine what aspect of the information con-
tained in the image is being used for characterizing rele-
vance. We now develop coverage based metrics for these
quantities.

Suppose the set of all images from whichx is taken is rep-
resented byA = {a1,a2, ...,aN}, whereN is the total number
of possible images. Then, the probability of imagex taking
a particular valueai is denotedP(x = ai). Note that:

P(x = ai) = P(x1 = ai1,x2 = ai2, ...,xn = ain) (3)

≥ P(x1 = ai1)P(x2 = ai2)...P(xn = ain) (4)

where we restrict all images to a size ofn pixels. The in-
equality in (4) is due to the fact that pixel values are typi-
cally not independent in an image. Modelling the interde-
pendence among pixels is computationally intractable in a
general sense since it depends heavily on the scene content
of the image. As a heuristic, we use the probability com-
puted with the independence assumption as an exact metric
for probability and use it for computing image entropy. This
is in keeping with the maximum entropy assumption used
in signal processing when the exact interdependence among
signal components is unknown. Suppose each pixel may take
one ofB values, whereB may depend on pixel bit depth. The
individual pixel probability, assuming uniform distribution
over all possible pixel values becomesP(x j = ai j ) = 1/B and
is same for allj ∈ {1,2, ...,n}. Also, the number of possible
imagesN = Bn. Thus,

H(x) = − ∑
x∈A

P(x = ai) log2P(x = ai)

1We use boldface letters to represent vectors throughout.



= −
Bn

∑
i=1

[
n

∏
j=1

P(x j = ai j )

]
log2

[
n

∏
j=1

P(x j = ai j )

]

= −
Bn

∑
i=1

(
n

∏
j=1

1
B

)
log2

(
n

∏
j=1

1
B

)
= nlog2(B) (5)

The result is intuitive as the coverage is found to be propor-
tional to the number of pixels. Now, to define conditional
entropy with respect to previously obtained images, we need
to define the conditional probability for imagex with respect
to previously known images such that coverage information
from previously known images is taken into account. To
this end, we define a new vectorz, called the overlap vec-
tor, that contains all pixels ofx that correspond to the same
physical region as contained in the previously known images
yi , i ∈ {1,2, ..,m}. Note that the pixel values inz need not
be equal to values of corresponding pixels in the previously
known images but only the represented physical region needs
to be the same. This means that same pixel value arising due
to different objects in the view will not cause the novel in-
formation inx to be lost, nor will variations in pixel values
due to changes in lighting, sensor noise, or perspective for
the same physical region cause a pixel to be missed fromz.
Suppose vectorz is computed, and hask pixels. Re-order the
pixels ofx such that the pixel coordinates that do not occur
in z are indexed{1, ...,(n− k)} and the remaining ones are
indexed{(n− k+ 1), ...,n}. Then, the conditional entropy
becomes:

H(x|y1,y2, ...,ym) = H(x|z)
= H({x1, ...,xn|xn−k+1, ...,xn})
= H({x1, ...,xn−k})
= (n−k) log2B (6)

again using the independence assumption and maximum en-
tropy principle. Note thatn andk depends only on the size
of imagex and not the sizes of previously obtained images.
Since,z andk can be determined forx with respect to arbi-
trarily sized images, all images in the database need not be
the same size. We normalize the conditional entropy with
respect ton, obtaining the relevance metric,r(x):

r(x) = (1−k/n) log2B. (7)

3 Algorithm for Overlap Computation
Clearly, to use the above formula for relevance assign-

ment, a crucial step is the computation of vectorz contain-
ing the pixels ofx that correspond to regions overlapping
with previously obtained images. We now discuss how this
can be computed for real images.

3.1 Design Considerations
The method to computez, should be robust to changes

in lighting, sensor noise, image size or resolution, and small
perspective changes. Directly matching pixel values is obvi-
ously not a good strategy in terms of robustness. Instead we
take an approach based on key features. Key features are cer-
tain invariants in the image which are robust to pixel value

changes due to the above mentioned factors. Several key fea-
ture detection methods have been proposed and we use the
one from [6].

However, detecting and matching key features directly
does not yield the entire overlapping physical region in the
image views since key features only occur at certain peculiar
scene features such as object corners and texture rich spaces.
Also, errors may sometimes occur in matching key features
across images leading to false positives.

While the key features do not directly yield the overlap
regions, the pixel locations of the key features of the input
image that are found to be matching with a previous image
can be used to find some of the pixels which represent the
same physical region across the two images. Computing the
convex hull of the pixel locations of the matched key features
then suggests what portion of the input image overlaps with
the previous image. However, as key features depend on the
scene texture, the convex hull found may be much smaller
than the actual overlap region, leaving significant textureless
overlap regions undetected. To overcome this limitation, we
assume that the fraction of texture rich areas in the image
is similar for both overlapping and non-overlapping regions.
Thus, rather than computing the number of pixels in the over-
lapping convex hull, we consider the number of key features
in the overlapping convex hull divided by the total number of
key features in the image as an indicator of the overlapping
fraction in the image. Hence, when no textures exist in a
large part of the image, the denominator of the fraction is ap-
propriately reduced, leading to a normalized estimate of the
overlap. This fraction is then used instead of the ratiok/n in
equation (7). This also normalizes the overlap fraction with
respect to varying image sizes.

To overcome false positives in matching key features, we
use majority logic based outlier rejection. We assume that
the affine transformation of the input image required to align
the overlapping region with the corresponding region in a
previously known image is similar for all matched key fea-
tures. We approximate this transformation by a difference
vector and among all the matched features take only thoseP
percent that lead to most similar difference vectors. The re-
maining 100−P percent matching features that have signif-
icantly varying difference vectors are rejected. The value of
P is chosen high, such as 90% assuming that the outliers will
be much fewer in number than the correct matches. Also,
since false matches may occur between unrelated images, we
threshold on the number of matching features to reliably de-
tect if there is indeed any overlap.
3.2 Scalability Concerns

In addition to the above issues, the relevance computation
method should also be scalable, since the number of mobile
devices and the resultant number of images taken can be very
large. We enhance scalability as follows.

First, we cluster the image data set into virtual neighbor-
hoods. A virtual neighborhood (VN) is defined as a col-
lection of images corresponding to a common region of the
physical world. If the number of images within a single VN
grows very large, it may be split into multiple VN’s. The
VN of an image may be determined from the metadata asso-
ciated with the image. Metadata includes the device identity,



such as the mobile phone number or login ID, from which
the image came, any tags applied to the image by the con-
tributor, such as the application name, a file name, or context
information, and also the GPS coordinates if the device pro-
vided them. For the purpose of this paper, we assume that
an appropriate method to determine the VN is available; de-
veloping specific clustering methods is part of our ongoing
work. An image is compared only with the images in its as-
signed VN for relevance computation, drastically reducing
the required computation.

Second, we restrict the number of key features extracted
from each image. Since the number of key features in an im-
age depends on its size, we scale down each image to a stan-
dard size such that the number of key features extracted stays
manageable. Also, when key features are extracted from a
new image to compare against previously obtained images,
we cache this key feature information along with the image.
Thus, feature extraction needs to be performed only once for
each image.

3.3 Relevance Ranking Algorithm
The above methods are made more precise in the follow-

ing algorithm to compute vectorz and then assign relevance
using equation (7).

Algorithm ASSIGN RELEVANCE

Inputs: Input image:X. Previously obtained images in VN:
Y1, ...,Ym. Cached results for this VN: structC.

Outputs: Relevance metric:r(X). Updated VN image set:
Y1, ...,Ym,X. Updated cache: structC.

Initializations: z = null vector.i = 1.

Step 1: Scale Image.Resize imageX such that its longer
dimension is reduced toLstd.

Step 2: Extract Key Features.Extract key feature vectors:
f x
1 , ..., f x

p wherep is the number of key features ofX.

Step 3: Match Features. From structC, for i−th pre-
viously known imageYi load feature vectorsf y

1 , ..., f y
q ,

whereq is the number of feature vectors ofYi . For each
feature vectorf x

j of X, if a match is found with any of
the featuresf y

1 , ..., f y
q , add the pixel corresponding to

the location off x
j in the imageX to vectorztmp . If the

number of pixels added toztmp is less than thresholdδm
skip to step 5.

Step 4: Reject Outliers.For all matched key feature pairs
across imagesX andYi , compute the two dimensional
difference vector between the pixel coordinates of the
respective key features. Compute the mode of the dif-
ference vectors. Retain inztmp pixels from onlyP per-
cent of the matched key features whose difference vec-
tors are closest to the mode. Setz = z∪ztmp .

Step 5: Iterate. Seti = i +1. If i ≤m, goto Step 3.

Step 6: Compute Texture Normalized Overlap. Com-
pute the convex hull of the locations of pixels inz.
Count the number of feature vectors amongf x

1 , ..., f x
p

that have a location within the convex hull, denote the
count ask. Compute relevance metricr(X) = 1−k/p.

The factor log2B is ignored since all images in our data
set have the same pixel-depth and this constant will only
scale all relevance metric values by a constant amount;
the relevance metric is thus a fraction between 0 and 1.

Step 6. Update Cache.: Add the feature vectorsf x
1 , ..., f x

pto
the caching structC, add the new image to the VN’s
image data set, and incrementm= m+1.

4 Prototype Implementation
We now describe the realization of methods discussed

above in a prototype implementation. We took several
images using mobile devices at different locations, spread
across two VN’s. The values of the various parameters used
in Algorithm ASSIGNRELEVANCE were:Lstd = 400,P=
90%, andδm = 5.

As an illustration, Fig. 2 shows six of a set ofm= 22 im-
ages taken outside an office building, forming one VN. Note
that some of these images are covering the same physical
region though there is little exact pixel value match.

(1) (2) (3)

(4) (5) (6)

Figure 2. A few sample images from the data set.

Consider images (5) and (6) in the above set. A significant
region of image (6) captures the same world view as already
available in image (5), though from a different perspective
and zoom. Thus, from a coverage point of view, a portion
of image (6) is redundant2. Matching key features and the
corresponding convex hulls are shown in Fig. 3. Note that
while the perspectives are different, the convex hull over-
lap regions in the two images capture the same portion of
the physical world. For this specific VN, assuming the im-
ages arrive in the order of their indices, relevance value is
calculated for each image with respect to all images with a
lower index. The values computed are shown in Fig. 4. One
of the applications of the relevance value is selecting which
images to use out of a given data set. Consider a query ask-
ing for what all is present in the scene - the most relevant
images then are those that cover a significant portion of the

2The image may have different relevance value when the appli-
cation considers other basis for relevance such as image resolution,
or perspective difference for 3D reconstruction.



Figure 3. Overlap found between images (5) and (6).
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Figure 4. Relevance values assigned in one VN.

scene. Relevance values computed above can thus be used
as a threshold to control the size of data that the application
downloads to obtain images of interest. The relationship of
data size to relevance is plotted in Fig. 5 for two VN’s –
the outdoor one shown above and an indoor one with pho-
tographs of an office kitchen facility.

5 Related Work
Applications of data collected by mobile devices have

been considered before [2]. Methods focusing on sharing
images or video from camera-phones were considered in
[7, 8, 9]. We provide methods to share images with applica-
tion specific relevance that may be used in the above projects
to enhance the usefulness of data collected. The use of met-
rics similar to relevance has been previously made for select-
ing the value of information for a user in different parts of an
image [10]. Information theoretic measures for quantifying
the value of measurements have also been used in robotics
and computer vision [11, 12]. We developed relevance met-
rics for coverage applications of image data.

6 Conclusions
There are currently no well-understood mechanisms to

collect and use uncoordinated data from sensor networks
of phone cameras. We proposed an information theoretic
framework for assigning application specific relevance to the
images provided by such networks, enabling applications to
use the uncoordinated data in a resource-efficient manner.
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Figure 5. Data download size when images above a
threshold relevance value are downloaded.

We presented a specific realization of this framework for a
coverage based metric. All our methods were demonstrated
on real image data and an illustration of how relevance can
be used to control the download data size was also provided.

Our methods can further be used to design incentive
mechanisms for data contributors such that more relevant
data is collected. We also used virtual neighborhoods to clus-
ter images for computation scalability. The automatic clus-
tering of images into such neighborhoods is an open prob-
lem. We are addressing these issues in our ongoing work.
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