Youssef Hamadi and Lucas Bordeaux (Eds.)

Integration of SAT and
CP Techniques

First International Workshop
Nantes, France, September 25, 2006

Held in Conjunction with the 12t International Conference on
Principles and Practice of Constraint Programming (CP 2006)

Contents

Constraint-Based Subsearch in Dynamic Local Search for Lifted SAT
0] o] [T 1 o 1= R 1
Colin Quirke and Steve Prestwich

Interpolant based Decision Procedure for Quantifier-Free Presburger
ANTMEBTIC. .. 15

Shuvendu K. Lahiri and Krishna K. Mehra

Using SAT Encodings to Derive CSP Value Ordering Heuristics................ 33
Christophe Lecoutre, Lakhdar Sais and Julien Vion

Representing Boolean Functions as Linear Pseudo-Boolean Constraints.....49
Jan-Georg Smaus

Dealing with SAT and CSPs in a single framework................cccoiiivennn.e. 65
Belaid Benhamou, Lionel Paris and Pierre Siegel

Interval Constraint Solving Using Propositional SAT Solving Techniques.....81
Martin Frédnzle, Christian Herde, Stefan Ratschan, Tobias Schubert,
and Tino Teige

Nogood Recording From Restars...........cooviiiiiiiiiiiee e, 97
Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary and
Vincent Vidal

Automata for Nogood Recording in Constraint Satisfaction Problems........ 113
Guillaume Richaud, Hadrien Cambazard, Barry O’Sullivan and
Narendra Jussien

Foreword

SAT and CP techniques are two problem solving technologhéstwshare many simi-
larities, and there is considerable interest in crossliféng these two areas. The tech-
nigues used in SAT (propagation, activity-based heusstionflict analysis, restarts,
etc.) constitute a very successful combination which makedern DPLL solvers ro-
bust enough to solve large real-life instances without #/k tuning usually required
by CP tools. Whether such techniques can help the CP commewglop more ro-
bust and easier-to-use tools is an exciting question. @mitalion of SAT, on the other
hand, is that not all problems are effectively expressedBo@ean format. This makes
CP an appealing candidate for many applications, like softwerification, where SAT
is traditionally used but more expressive types of constsavould be more natural.

The goal of this first workshop on SAT and CP integration isdodi the discus-
sions between the SAT and CP communities by encouragingissioms at the border
of these two areas. We have selected eight high quality pagpleich we believe are
addressing this goal.

We wish to thank all the authors who submitted papers to thikshop and the
members of the program committee for their work in the orgatidn of this event.

September 2006
Youssef Hamadi and Lucas Bordeaux

Organizing Committee

Youssef Hamadi and Lucas Bordeaux Microsoft Research, Gdgay UK

Program Committee

Christian Bessiere, LIRMM, Montpellier, France

Lucas Bordeaux, Microsoft Research, UK

lan P. Gent, University of St Andrews, UK

Youssef Hamadi, Microsoft Research, UK

Joao Marques-Silva, University of Southampton, UK
Madan Musuvathi , Microsoft Research, Redmond, USA
Robert Nieuwenhuis, UPC, Barcelona, Spain

Andreas Podelski, Max-Planck Institut, Germany
Lakdhar S&s, CRIL, Lens, France

Karem A. Sakallah, University of Michigan, USA
Sathiamoorthy Subbarayan, ITU, Copenhagen, Denmark
Lintao Zhang, Microsoft Research, Silicon Valley, USA

Constraint-Based Subsearch in Dynamic Local
Search for Lifted SAT Problems

Colin Quirke! and Steve Prestwich?

! Boole Centre for Research in Informatics,
University College, Cork, Ireland
c.quirke@4c.ucc.ie
2 Cork Constraint Computation Centre
Department of Computer Science, University College, Cork, Ireland
s.prestwich@cs.ucc.ie

Abstract. Many very large SAT problems can be more naturally ex-
pressed by quantification over variables, or “lifting”. We explore imple-
mentation, heuristic and modelling issues in the use of local search on
lifted SAT models. Firstly, adapting existing local search algorithms to
lifted models creates overheads that limit the practicality of lifting, and
we design a new form of dynamic local search for lifted models. Secondly,
finding a violated clause in a lifted model is an NP-complete problem
called “subsearch”, and we show that subsearch benefits from advanced
constraint techniques. Thirdly, lifting provides the opportunity for us-
ing SAT models that would normally be ignored because of their poor
space complexities, and we use alternative SAT-encodings of a constraint
problem to show that such lifted models can give superior results.

1 Introduction

In this paper we address the problem of solving very large Boolean Satisfiability
(SAT) problems. We show two links between Constraint Satisfaction Problems
(CSPs) and SAT: (i) large CSPs can be modelled as large SAT problems, and
solved using a SAT algorithm capable of handling such problems; (ii) Constraint
Programming (CP) techniques can boost the performance of a SAT solver aimed
at large problems.

An interesting technique for handling large SAT problems is lifting [2,7]:
replacing a large set of related clauses by a single formula quantified over vari-
ables, then redesigning a search algorithm to operate on these formulae. This
is impractical for random problems which (by definition) cannot be lifted, but
structured problems may produce exponentially smaller formulae. Both complete
and incomplete search algorithms may be adapted to lifted SAT models.

Often, when modelling a structured problem in the SAT domain, we develop
lifted formulae such as

Va,b,c. —=X(a,b)VY(b,c)

where a, b and ¢ are finite domain, integer variables and X () and Y () are boolean
predicates. The formulae are then easily grounded into propositional logic by enu-
merating the quantification and replacing each predicate with a boolean variable.
These ground clauses can then be solved by existing SAT solvers.

Lifted formulae can produce very large sets of ground clauses, so it is de-
sirable to work with the model in its lifted form. To achieve this we delay the
grounding of the lifted model until it is specifically required by a search algo-
rithm. In this way we avoid the need to store the complete ground model at any
one time, and only concern ourselves with the portion which is currently interest-
ing to the search. This procedure requires us to use advanced search techniques
that are separate to the search for a solution, and so is labelled subsearch. This
subsearch can be naturally expressed as a constraint satisfaction problem and
solved using constraint techniques. Lifting, therefore, is an application of con-
straint techniques to solve large SAT problems.

Here we consider only local search algorithms, as these are often superior on
large problems. We shall explore several issues:

— Search heuristics. Previous lifted SAT algorithms [2,7] have been direct
adaptations of existing search algorithms, which is a natural approach to
take. However, we shall show that lifting current local search algorithms
has several disadvantages: they create large runtime overheads, they may
consume a great deal of memory, and some of the best heuristics cannot be
applied to lifted models.

— Implementation techniques. The problem of locating clauses with certain
properties (for example the property of violation), which must be solved by
any search algorithm, is an NP-complete problem [2]. This subsearch problem
is therefore a candidate for solution by constraint-based methods. We shall
investigate the use of forward checking vs generalised arc consistency, and
conflict-based backjumping vs chronological backtracking.

— Modelling. What impact does lifting have on our choice of SAT model
for a problem? When faced with a new problem to solve by SAT methods,
we often choose a model with good space complexity. But given the option
of lifting, we are free to consider SAT-encodings that would otherwise be
impractical. We use a constraint problem to show that such models may in
fact give superior results.

This paper extends the work of [11] in several directions.

2 Dynamic local search for lifted models

Some local search algorithms fall into the category of random walks, which are
a significant advance over earlier successful algorithms such as GSAT [15]. The
best-known such algorithm is Walksat [5,14] which has a number of variants.
Walksat/G randomly selects a violated clause then flips the variable (reassigns
it from true to false or vice-versa) that minimizes the total number of violations.
Walksat/B selects flips that incur the fewest breaks (non-violated clauses that

would be violated by the flip). Both select a random variable in the clause (a
random walk move) with probability p (the noise parameter). Walksat/SKC
(Selman-Kautz-Cohen) is a version of B that allows freebies to override the
random walk heuristic. Freebies are flips that incur no breaks, and if at least
one freebie is possible from a violated clause then it is always selected. For every
candidate variable in a violated clause the break count is the number of clauses
that would be newly violated by a flip, while the make count is the number of
clauses that wold be newly satisfied. Both SKC and B use a break count for each
candidate variable, and G uses a combination of make count and break count to
determine the flip with minimal violation.

Some problems defeat random walk algorithms, but are solved quite easily by
an alternative form of local search based on clause weighting. These algorithms
modify the objective function during search. They attach a weight to each clause
and minimize the sum of the weights of the violations. The weights are varied
dynamically, making it unlikely for the search to be trapped in local minima.
Clauses that are frequently violated tend to be assigned higher weights. An early
SAT algorithm of this form was Breakout [6] which increments violated clause
weights at local minima. The Discrete Lagrangian Method (DLM) [16] periodi-
cally smooths the weights to reduce the effects of out-of-date local minima, and
is based on the Operations Research technique of Lagrangian relaxation.

We would like to adapt the best current local search algorithms to lifted
models. Previous lifted SAT algorithms [2,7] have been direct adaptations of
existing search algorithms, which is a natural approach. However, we claim that
most of the best known local search algorithms are unsuitable for lifting, for
several reasons:

— Current algorithms typically maintain a set of currently violated clauses,
which is used to guide local moves. But for very large problems the set of
violated clauses may also be very large. Though in practice it often remains
manageably small it is not guaranteed to do so for all problems, especially
in early phases of the search when it is far from any solution. In fact it
is reported in [2] that a lifted solver ran out of memory on a lifted model
corresponding to billions of clauses.

— Most SAT local search algorithms try to minimise the number of violated
clauses, or in some cases to minimise break counts. The former type of al-
gorithm also implicitly maintain break counts, along with make counts. We
show that algorithms maintaining break counts incur large overheads on
lifted problems. We propose instead to develop an algorithm, with consider-
ation for the underlying constraint technology.

— Dynamic local search algorithms currently give the best local search results
on many benchmarks. However, most such algorithms are based on clause
weighting, which is impractical in a lifted context because individual clauses
are not explicitly represented.

These drawbacks may partially explain why lifting has not taken off in the SAT
community. We shall develop a local search algorithm that does not maintain a

set of violated clauses, is not based on the use of break counts, and dynamically
updates its search heuristics without weighting clauses.

2.1 Walksat with make counts

There is an asymmetry in make and break counts: though the latter are expensive
to compute by subsearch, the former are not. Assuming that the counts are
known for a given problem state, consider updating the make and break counts
having chosen a variable to flip. To update the make count we need to check each
currently violated clause and decrement the make count for the other variables in
these clauses. We may then flip the variable and again check the newly violated
clauses and increment the make count for each variable they contain. To update
the break count we need to check each satisfied clause and increment the break
count of any variable which will become the only satisfying variable in that
clause. We may then flip the variable and check each satisfied clause. If any clause
is newly satisfied we increment the flipped variable’s break count. If any clause
is now satisfied by our flipped variable and one other variable we decrement
the latter variable’s break count. As the set of violated clauses is typically much
smaller than the set of satisfied clauses, updating make counts is a much cheaper
procedure.

Break counts are implicitly used in Walksat/G and other algorithms, besides
the obvious variants such as B and SKC. Can we base a Walksat-like algorithm
on make counts alone? As far as we know, no such algorithm has been reported in
the literature. We propose an algorithm called Walksat/M that uses make counts
to guide search (Algorithm 2.1). The subsearch in this algorithm is required at
lines 7 and 9. The subsearch at line 7 for a violated clause is required by all of the
aforementioned, random walk algorithms. The subsearch for make counts at Line
9 is where SKC and B use subsearch for break counts and G requires subsearch
for both make and break counts. Details on constraint-based subsearch appear
in Section 3.

Before lifting this algorithm we evaluate its potential using a ground version.
We compare the performance of Walksat/M with Walksat/SKC on randomly
generated problems from the phase transition with 50 variables (uf_50), 100
variables (uf_-100) and 200 variables (uf_200). The sets uf_50 and uf_100 both
contain 1000 instances, while set uf_200 contains 100 instances. Each instance
is solved 1000 times by both algorithms with approximately optimal noise set-
tings and the median steps to solution for each set is presented in Figure 1.
Walksat /SKC is clearly superior on these problems, but Walksat/M gives quite
good results. Scatter plots comparing the algorithms on each individual instance
of uf_100 and uf_200 are presented in Figure 2. These plots record the median
search cost of both algorithms on each instance.

We also compare the algorithms on structured problems. We use Blocks
World (bw) planning and the All Interval Series (ais) from SATLib!. Each

! http://www.cs.ubc.ca/ hoos/SATLIB

Algorithm 2.1 Walksat/M
1: for i := 1 to MAX-TRIES do

2: P := arandomly generated truth assignment
3: for j:=1to MAX-FLIPS do

4 if P is a solution then

5: return P

6 else

7 ¢ := a randomly selected violated clause
8: for all literal | € ¢ do

9: M (1) = number of clauses that become satisfied if [flipped
10: m = maximum value of M (l)

11: L, ={M(1) =m}

12: if with probability p then

13: flip a random literal in ¢

14: else

15: flip a random literal in L.,

16: return failure

instance is solved 100 times at approximately optimal noise settings and me-
dian search steps for each instance are presented in Figure 1. Walksat/SKC,
again, outperforms Walksat/M, which fails to solve larger instances in a reason-
able time. While initially promising, it is clear that Walksat/M is not powerful
enough to challenge Walksat/SKC on these problems and so we seek to improve
its performance using techniques from Dynamic local search.

Problem |Walksat/SKC Walksat/M
uf_50 408 1101
uf_100 2226 6459
uf_200 13514 41288
bw_large.a 10364 27161
bw_large.b 416550 1292778
bw_large.c 9718052 —
ais6 891 4159
ais8 19306 194077
ais10 106752 5065650
ais12 1219293 —

Fig. 1. Comparison of median search cost for Walksat/SKC and Walksat/M on SAT
benchmarks

2.2 Dynamic local search by variable weighting

Clause weighting techniques, from dynamic local search, are not suitable in a
lifted setting, as we do not explicitly store clauses. A technique for variable

1e+06 T T 1e+08

100000

1e+06
o000 |- L
S e
s
TP
4

ok
g B

F et b
10000 | P
'

Walksat/M Flips
Walksat/M Flips

100000 -

1000 |

L L 1000 L L
100 1000 10000 100000 1000 10000 100000 1e+06

Walksa'SKC Flips Walksa'SKC Flips

Fig. 2. Scatter plots of the median search cost (local moves) for both Walksat/SKC
and Walksat/M for the 100 variable and 200 variable instances.

weighting is proposed in [8] and we adapt it here for use with Walksat/M. Each
boolean variable is initially assigned a 0 weight. Every time a variable is flipped
we increment its weight. When selecting a variable to flip from a violated clause
we choose the variable with a maximum score m,, + ¢(u — w,), where m,, is the
make count of v, w, is its current weight, u is the current mean weight, and c is
a parameter used to tune the search.? This new variable selection system does
not affect the subsearch components of Walksat/M and so little flip rate penalty
is incurred from its use. We call this algorithm Walksat/MVW.

We compare the median flips to solution of Walksat/MVW to Walksat/SKC
and Walksat/M on Blocks World Planning and All Interval Series. The results
presented in Figure 3 show that MVW uses far fewer flips than M on all prob-
lems. MVW was better than SKC on Blocks World Planning and significantly
improves performance on the All Interval Series. We propose Walksat/MVW as
a promising algorithm for lifting.

Problem |Walksat/SKC Walksat/M Walksat/MVW
bw_large.a 10364 27161 11635
bw_large.b 416550 1292778 384832
bw_large.c 9718052 — 918675
ais6 891 4159 1180
ais8 19306 194077 24690
ais10 106752 5065650 204410
aisl2 1219293 — 7384394

Fig. 3. Comparison of median search cost for SKC, M and MVW on SAT benchmarks

2 The value of ¢ is fine tuned for each instance by experimentation. Future work may
examine automatically tuning this value.

3 Constraint-based subsearch

Subsearch refers to the explicit searches contained in many algorithms (both
complete and incomplete). Examples include finding a violated clause in local
search or finding a unit clause in unit propagation. These searches are usually
ignored in a ground setting and may be implemented by linear search through
a list or an indexing system. It is shown in [7] that when ground clauses are
generated from lifted formulae, the resulting subsearch is NP-complete and so
may benefit from more advanced search techniques. Dealing directly with the
lifted formulae allows us to apply such techniques from constraint satisfaction.

We represent SAT models using formulae very similar to the extended axioms
of [2]. We define Boolean predicates, each of which may have any number of
integer terms, and constraints can be expressed on the terms. The integer terms
in a lifted formula become integer variables in a constraint satisfaction problem.
Constraints are derived from the Boolean predicates, by restricting integer values
to those that make the predicate false. Examples can be seen in Section 4.2. If
subsearch finds no solution (a violated clause) using a given formula then it does
not contain a violated clause, so it tries the next formula, until either a violated
clause is found or no formulae remain (in the latter case the SAT problem is
solved). A complication is that each formula may encode different numbers of
clauses. We therefore weight formula according to the number of clauses that
they encode, and when searching for a violated clause the formula are selected
in an order that is random but biased to select large formula first. Without this
bias, clauses occurring in smaller formula are more likely to be selected. The bias
helps to correct this.

When using subsearch to update make or break counts we need to find all
solutions to our constraint model. In fact we frequently need to use more than
one model as our boolean variable appears in multiple formulae. The asymmetry
between make and break count means that make count requires using our models
to search for violation while break count requires search for satisfaction. The
constraint models to search for violation are typically tightly constrained with a
small number of solutions. This leads to iteration over a smaller set: constraint
models for satisfaction are typically loosely constrained with a far larger set
of solutions. We argue, therefore, that make counts are a better candidate for
subsearch in a lifted setting.

We implemented a prototype lifted Walksat/MVW in C++ using the EFC
constraint library [3], which provides powerful CP techniques such as forward
checking (FC), generalized arc-consistency (GAC) [4], conflict-directed back-
jumping (CBJ) [12] and dynamic variable ordering. The lifted algorithms in
[7] did not use constraint propagation; one in [2] did but used static variable
ordering. Our algorithm therefore uses more constraint-based techniques than
previous lifted algorithms.

To evaluate the benefits of CP techniques in lifted local search we performed
experiments to compare the flip rates of ground Walksat/SKC against lifted
Schoning’s algorithm and Walksat/MVW with FC, GAC, FC with CBJ, and
GAC with CBJ, on the quaternary Golomb ruler model and a new model for

Balanced Incomplete Block Design, which is described in Section 4.2. The results
in Figure 4 show that the ground and all the lifted versions of Schoning’s algo-
rithm (a simple local search algorithm described in [13]) perform similarly on
small Golomb ruler problems, but that GAC has superior scaling as the problem
size grows. More powerful constraint propagation leads to faster subsearch and
therefore faster location of violated clauses. CBJ improved FC but not GAC,
which is consistent with previous results in the CP literature. The results in
Figure 5 show again that GAC beats FC, this time on MVW applied to Golomb
ruler problems (FC and FCCBJ were very poor). The results in Figure 6 show
similar results for Walksat/MVW on the Balanced Incomplete Block Design
problem (using the model of Section 4).

We conclude that lifting with an appropriate constraint solver pays off on suf-
ficiently large problems (crossover between Walksat and Schéning[GAC] occurs
at approximately 600,000 clauses and for WalkSAT/M[GAC] at approximately
4,000,000 clauses). In future work we aim to improve both the implementation
and the search heuristics.

100000

10000

1000 i

flips per second

100

10

marks

Fig. 4. Flip rate scaling on Golomb rulers: Schoning’s algorithm

4 The impact of lifting on problem modelling

Finally we explore the effect of lifting on SAT modelling. Given the option of
using a very large model, might this sometimes be better than using one with
lower space complexity? We show that this does occur, using Balanced Incom-
plete Block Designs (BIBDs).

flips per second

flips per second

100000

10000

1000

100

10

Ground —+—
GAC --
FC -

marks

Fig. 5. Flip rate scaling on Golomb rulers: Walksat/MVW

1le+06 T T
Ground —+—
GAC -
GACCBJ ---%---
100000 B
10000 B
1000 4
o N T T x‘*—-_»\ i
X
——————————————————————————— *.
1 L L L L L L L L 1
1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1le+l0 1le+ll le+l2 1le+l3
size

Fig. 6. Flip rate scaling on BIBDs: Walksat/MVW

4.1 A known model

A BIBD is an incidence system (v, k,7,b, A) in which a set of v points is parti-

tioned into b subsets (blocks) such that any two points determine A blocks with

k points in each block and each point is contained in r different blocks. The

problem is in CSPLib(problem 28)3. The five parameters are not independent,
but satisfy the two relations

vr = bk (1)

Av—-1)=rk-1) (2)

These conditions must be met but are not sufficient to prove the existence of

a BIBD. The three parameters v,k and A determine the remaining two as r =

% and b = 4. Hence a BIBD(v, b, 7, k, \) is often written as (v, k, \) design.
The notation 2-(v, k, \) design is also used, since BIBDs are t-designs with ¢ = 2.

4.2 A new model

BIBDs have been SAT-encoded before in [10], but with poor results. We now
present a new model with higher space complexity. Note that such a model
would normally be rejected without even being tested. This model is similar to
the pseudo-boolean model presented in [9] and space complexity derives from
the expansion of cardinality constraints. To encode the BIBD, with parameters
(v, k, A\, 1, b), into propositional logic, we define two sets of boolean variables.

oneAt;; 1<i<v,1<j<b

zeroAt;; 1<i<v,1<j<b

These represent the v x b incidence matrix M, with the meaning that if oneAt; o
is true there is a one in position M, o) and if zeroAts 3 is true there is a zero in
position M 3.
We define a set of clauses to ensure that each element in the matrix is zero
or one.
oneAt; ; V zeroAt;; 1<i<v,1<j<b
I<i<ol<y<

b

—oneAt; i V —zeroAt; ;
J \J)

We define a set of clauses that state the maximum number of ones per row is 7.

—oneAt; z1 V moneAt; z2 V...V moneAt; (r41)
I<zl<a2<...<z(r+1)<b

We define a set of clauses that state the maximum number of zeros per row is
b—r.

—2er0At; o1 V m2er0At; o V ...V zer0At; p(b—ri1)
I<zl<a2<...<z(b—r+1)<b

3 http://www.csplib.org

10

These clauses ensure that each row contains exactly r ones. We do the same for
columns.

—oneAtyy j V moneAtys j V...V moneAty i1,
I<el<a2<...<z(k+1)<v

—zeroAtyy j V —zeroAtys iV ..V mzeroAt (y_ gt
I1<zl<a2<...<z(v—k+1)<v

We define a set of clauses that state the maximum scalar product between any
pair of rows is .

—oneAt; z1 V moneAty z1 V...V moneAt; y(xy1) V moneAty p(ai1)
i#id1<2l<...<2(A+ 1) <w (3)

4.3 Proof of model correctness

Clause (3) only constrains the scalar product between any pair of rows to be
at most A. This is sufficient to represent the problem according to the following
argument.

Lemma 1. In any v X b binary matriz with k ones per row and b ones per
column the mean scalar product of row pairs is A.

Proof. Let x;; be the scalar product of rows i and i'. The mean value of all x;

18
E i

1<i<i/ <
v
2

We have (g) pairs of ones in any column. Totalled over all columns is b(g) Pairs

of ones. Each pair of ones is contributes exactly 1 to the total value of all scalar

products. This gives
E Tiy =b F
0,4 = 9

1<i<i' v

(4)

T4 =

We can now rewrite equation(4) as

Which simplifies to
_ bk(k—1)

Tir =

11

As bk/v =r from equation(1)

r(k—1) _
v—1

The mean scalar product has to be A and clause(3) states that no scalar product

can be greater than A. This implies that all scalar products must be exactly A
and so the model is correct.

Ty = (from equation(2))

4.4 Comparison of the grounded models

The model presented in [10] has a polynomial space complexity in (v, k,7,b, A),
while the model presented here has an exponential complexity of O(v (IT’) +b(})+

v(f\)) We can still generate a ground model for smaller instances but this be-
comes unwieldy beyond a few million clauses. The largest model shown here
would have 1.58 x 1012 clauses if ground but could easily be solved by our lifted

solver.

4.5 Evaluation of the lifted model

We test the new model using both ground Walksat/SKC and lifted Walksat/MVW,
and compare the median flips to solution with those reported in [10]. The re-
sults in Table 4.5 show that Walksat/SKC does much better on the new model
and can solve more problems than the original in a reasonable time. However,
its performance degrades as the memory requirement increases, and the ground
model struggles to solve the larger problems. The lifted Walksat/MVW does
even better on these models and can easily cope with the larger problems.

We believe these are the largest BIBDs found using SAT techniques. This il-
lustrates an interesting result: that when space complexity is not an issue it might
be better to choose an exponentially larger SAT model, despite the additional
subsearch overhead this might cause. The compromises in model simplicity that
we make to reduce space complexity might have a deleterious effect on search
performance, but these can be avoided by using a lifted model.

5 Conclusion

We have addressed several practical issues that arise when modelling very large
SAT problems. We devised a new dynamic local search algorithm, based on
the properties of the underlying constraint problem, that has good heuristics
and is more amenable to lifting than all other local search algorithms that we
know of. We showed that CP techniques can greatly speed up subsearch, so that
lifting becomes applicable to more problems. Finally, we showed that when SAT-
encoding constraint problems, the best choice of model may be very different with
lifting than without. These advances help to make SAT technology applicable
to much larger problems.

In future work we hope to investigate ways of further improving subsearch,
using techniques such as global constraints and possibly ideas from [1]. We also
hope to extend the SAT solver to a CSP solver.

12

BIBD Original SAT Model New SAT Model

(v,b,7,k, \))| Walksat/SKC flips|Walksat /SKC|Walksat/MVW
77,33, 51412 406 117
6,10,5.3.2 121259 637 248
9,12,4,3,1 6382697 3102 366
11,11,5,5,2 — 8383 6547
7,14,6,3,2 2028247 1754 339
13,13,4,4,1 — 3725 1216
8,14,7,4,3 — 7644 2385
10,15,6,4,2 - 33913 2959
9,18,8,4,3 — 36046 9386
6,20,10,3,4 — — 362
7,21,9,3,3 — — 453
9,24,8,3,2 — — 664
728,123 4 — — 509
6,30,15,3,6 — — 602
7351535 — — 606
6,40,20,3,8 — — 752

Table 1. Comparison of results from [10] with the new model

Acknowledgement

This work was supported by the Boole Centre for Research in Informatics, Uni-
versity College, Cork, Ireland, and is based in part upon works supported by
the Science Foundation Ireland under Grant No. 00/P1.1/C075. Many thanks to
George Katsirelos, Department of Computer Science, University of Toronto, for
implementing new EFC features at our request.

References

1. V. Chandru, J. N. Hooker, A. Shrivastava, G. Rago. A Partial Instantiation Based
First Order Theorem Prover. International Workshop on First Order Theorem Prov-
ing, Vienna, 1998.

2. Satisfiability Algorithms and Finite Quantification. M. L. Ginsberg, A. J. Parkes.
Seventh International Conference Principles of Knowledge Representation and Rea-
soning, Morgan Kaufmann, 2000, pp. 690-701.

3. G. Katsirelos. EFC, available at http://www.cs.toronto.edu/~gkatsi/efc/efc.html.

4. A. K. Mackworth. On Reading Sketch Maps. Fifth International Joint Conference
on Artificial Intelligence, Kaufmann, 1977, pp. 598-606.

5. D. McAllester, B. Selman, H. Kautz. Evidence for Invariants in Local Search. Four-
teenth National Conference on Artificial Intelligence, AAAI Press, 1997, pp.321-326

6. P. Morris. The Breakout Method for Escaping from Local Minima. Proceedings of
the Eleventh National Conference on Artificial Intelligence, AAAI Press / MIT Press,
1993, pp. 40-45.

7. A. J. Parkes. Lifted Search Engines for Satisfiability. PhD dissertation, University
of Oregon, 1999.

13

8. S. D. Prestwich. Random Walk With Continuously Smoothed Variable Weights.
Eighth International Conference on Theory and Applications of Satisfiability Testing,
Lecture Notes in Computer Science vol. 3569, Springer, 2005, pp. 203-215.

9. S. D. Prestwich. A Local Search Algorithm for Balanced Incomplete Block Designs.
Recent Advances in Constraints, Joint ERCIM/CologNet International Workshop on
Constraint Solving and Constraint Logic Programming, Lecture Notes in Artificial
Intelligence vol. 2627, Springer, 2003, pp. 132-143.

10. S. D. Prestwich. Balanced Incomplete Block Design as Satisfiability Twelfth Irish
Conference on Artificial Intelligence and Cognitive Science 2001, pp. 189-198.

11. S. D. Prestwich, C. Quirke. Local Search for Very Large SAT Problems. Short
paper, Seventh International Conference on Theory and Applications of Satisfiability
Testing, Vancouver, BC, Canada, 2004.

12. P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computa-
tional Intelligence vol. 9 no. 3, 1993, pp. 268-299.

13. U. Schoning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction
Problems. Fortieth Annual Symposium on Foundations of Computer Science, IEEE
Computer Society, 1999, pp. 410—414.

14. B. Selman, H. Kautz, B. Cohen. Noise Strategies for Improving Local Search. Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence, AAAT Press,
1994, pp. 337-343.

15. B. Selman, H. Levesque, D. Mitchell. A New Method for Solving Hard Satisfiability
Problems. Proceedings of the Tenth National Conference on Artificial Intelligence,
MIT Press 1992, pp. 440-446.

16. Z. Wu, B. W. Wah. An Efficient Global-Search Strategy in Discrete Lagrangian
Methods for Solving Hard Satisfiability Problems. Proceedings of the Seventeenth
National Conference on Artificial Intelligence, AAAI Press, 2000, pp. 310-315.

14

Interpolant based Decision Procedure for
Quantifier-Free Presburger Arithmetic

Shuvendu K. Lahiri! and Krishna K. Mehra?

! Microsoft Research
shuvendu@microsoft.com
2 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India.
kmehra@iitkgp.ac.in

Abstract. Recently, off-the-shelf Boolean SAT solvers have been used
to construct ground decision procedures for various theories, including
Quantifier-Free Presburger (QFP) arithmetic. One such approach (often
called the eager approach) is based on a satisfiability-preserving trans-
lation to a Boolean formula. Eager approaches are usually based on en-
coding integers as bit-vectors and suffer from the loss of structure and
sometime very large size for the bit-vectors.

In this paper, we present a decision procedure for QFP that is based
on alternately under and over-approximating a formula, where Boolean
interpolants are used to compute the overapproximation. The novelty of
the approach lies in using information from each phase (either under-
approximation or overapproximation) to improve the other phase. Our
preliminary experiments indicate that the algorithm consistently out-
performs approaches based on eager and very lazy methods on a set of
verification benchmarks.

1 Introduction

Decision procedures for quantifier-free theories are the cornerstones of many au-
tomated analysis tools for software and hardware. Software verification tools
like SLAM [2] use decision procedures to perform automated predicate abstrac-
tion and refinement of programs; ESC-JAVA [12] uses decision procedures to
discharge verification conditions in static analysis of programs. High-level hard-
ware verification tools including UCLID [5] use decision procedures for checking
first-order formulas arising from bounded model checking or invariant checking
for models of microprocessor and cache coherence protocols.

The quantifier-free queries that arise in verification typically have a lot of
Boolean structure in addition to theory constraints. This requires an interplay
between a search algorithm to case split on the Boolean structure and a deci-
sion procedure for the ground theory. In recent years, several approaches have
emerged to leverage the rapid improvements in Boolean Satisfiability (SAT) solv-
ing [22]. These techniques differ mainly in how closely the SAT solver interacts
with theory reasoning. The eager approaches rely on translating the quantifier-
formula to an equisatisfiable Boolean formula and use a SAT solver to solve the
resultant Boolean formula [5,32]. The (very) lazy techniques create a Boolean
abstraction of the first-order formula, and refine it based on assignments that are
inconsistent with the underlying theory [1,3,11]. Both these approaches treat

15

the SAT-solver as a black-box. Finally, other approaches augment the Davis,
Putnam, Logeman and Loveland (DPLL) [8,9] algorithm for the Boolean SAT
solvers with theory specific reasoning [23, 4].3

Quantifier-free Presburger (QFP) arithmetic is the quantifier-free fragment of
Presburger arithmetic [25], which deals with linear arithmetic constraints along
with Boolean connectives. Kroening et al. [18] proposed a framework for integrat-
ing the Boolean and the theory reasoning for QFP, based on alternately under
and over-approximating the input QFP formula. The algorithm searches for a
satisfying solution in a sequence of increasingly large domains, lazily increasing
the domain size when no satisfying solution is found in a smaller domain. The
proof of unsatisfiability in a domain is used to construct an abstraction of the
original formula. The abstractions are checked using a decision procedure for
QFP. They illustrate that the procedure terminates and therefore constitutes a
decision procedure for QFP.

In this work, we present an alternate implementation of the above framework
that is based on Craig’s interpolants [7,26] to construct the abstraction, once
a formula is unsatisfiable in a given domain. Unlike the approach in [18], our
method has the advantage of not requiring a clausal representation of the input
QFP formula to construct the abstraction. The algorithm also differs in several
other respects: first, we do not require a complete decision procedure for QFP to
check the abstraction, and secondly, we leverage the learning from the search in
the smaller domains when moving to a larger domain. We compare our approach
with Kroening et al.’s work in detail in Section 5.

At a high level, our algorithm works as follows: Consider a QFP formula
¢. Given a domain D, it is possible to construct a Boolean formula ¢, whose
satisfiability determines the existence of a satisfying solution for ¢ in the domain
D. This Boolean formula underapproximates the original formula ¢. If ¢, is
unsatisfiable, then we use Boolean interpolant generation to construct a formula
¢o in QFP that is an overapproximation of ¢ (we defer the actual details of the
procedure to Section 3). Intuitively, the overapproximation abstracts the reason
why ¢ was unsatisfiable in the particular domain D, in terms of the constraints
in ¢. The overapproximation ¢, generated serves two purposes: first, if ¢, is
unsatisfiable, then ¢ is unsatisfiable and secondly, we can generate some conflict
clauses (tautologies in QFP) from ¢, that can be added to ¢, to prune the search
space for future underapproximations.

The theory of QFP has a small-model property for any formula ¢ in the
theory, i.e., if ¢ is satisfiable, then it has a satisfying assignment in a finite
domain D,,,; determined by the formula ¢. This ensures that we can start
with a small domain D and increase the size lazily until the maximum domain
D 4z s reached. The small-model property also allows us to use an incomplete
decision procedure for QFP to check the satisfiability of ¢,. In our experience,
the maximum domain size D,, ., is almost never reached.

We have implemented the algorithm in Zap theorem prover [33] and pro-
vide preliminary experimental evaluation of the approach on a set of verification
benchmarks. The algorithm seems to consistently outperform an implementation
based on purely eager encoding (that use the maximum domain size D4, to en-

3 Although the latter techniques are also refered to as lazy techniques, we mostly refer
to the very lazy techniques [1, 3, 11] that treat the SAT-solver as a black box as lazy
in this paper.

16

code an equisatisfiable formula to SAT). It also outperforms an implementation
of the very lazy Verifun [11] approach on these benchmarks.

The rest of the paper is organized as follows: In Section 2, we describe the
background material including eager and lazy approaches for leveraging SAT
solvers. We also describe basics of interpolants. In Section 3, we motivate the
algorithm and present the details of the decision procedure for QFP. Section 4
describes the experimental evaluation of the approach. We describe related work
in Section 5 and finally conclude. Appendix B presents a variation of the algo-
rithm that does not require computing D, for completeness.

2 Preliminaries

In this section, we provide some background on the logic QFP, eager and the
(very) lazy approaches for solving QFP along with Boolean interpolants.

2.1 Quantifier-free Presburger (QFP) Arithmetic

Presburger arithmetic is the first-order theory of structure (N, 0, 1, +, <), where
N denote the set of natural numbers. Since every integer variable can be ex-
pressed as the difference of two natural numbers, we assume that the underlying
domain is the set of integers Z. Quantifier-free Presburger Arithmetic (QFP) is
the quantifier-free fragment of Presburger arithmetic. Let X be a set of integer
variables. An atomic formula (atomic-formula) in this theory (also refered to as
a linear constraint) is an expression of the form:

E a; xx; < c,
i

where z; € X and the coefficients a; and c¢ are constants in Z. A formula in this
QFP is a Boolean combination of atomic formulas:

formula ::= true | false | atomic-formula

| formula A formula| formulaV formula | —formula

Observe that the other relational operators {=, #, <, >, >} can be expressed
in QFP.

A formula ¢ in QFP is satisfiable if there is an assignment p : X — Z that
maps each z; € X to an integer value, such that the evaluation of ¢ under p
is true. A formula ¢ is unsatisfiable if there is no assignment p under which ¢
evaluates to true.

A monome is a conjunction of atomic formulas in QFP. Checking the satisfi-
ability of a monome in QFP is NP-complete [24]. However, efficient algorithms
based on branch-and-bound heuristics are implemented in various Integer Lin-
ear Programming (ILP) solvers like LP_SOLVE [20] and commercial tools like
CPLEX [15] to solve this fragment. The complexity of checking the satisfiabil-
ity of QFP formulas is no worse than checking satisfiability of a conjunction of
atomic formulas. Previous studies have indicated that ILP solvers do not perform
well for QFP formulas with a significant Boolean structure, that arise from ver-
ification problems [28,18]. To circumvent this problem, two methods have been
proposed in recent years to leverage backtracking search of modern Boolean
satisfiability solvers. We describe the two approaches in the next section.

17

2.2 Lazy and Eager Methods for solving QFP

Lazy Methods The lazy methods [1, 27, 3] leverage the backtracking of modern
Boolean Satisfiability (SAT) solvers to case-split on the Boolean structure in the
QFP and use a ILP solver to check the satisfiability of a conjunction of linear
constraints. The algorithms can be loosely described as follows:

1. The QFP formula ¢ is abstracted to a Boolean formula ¢, by replacing each
atomic constraint with a Boolean variable.

2. The SAT solver enumerates satisfying solutions over ¢, and uses the ILP
solver to validate the solution over the QFP theory.

3. If the satisfying solution is consistent with the QFP theory, the procedure re-
turns satisfiable. Otherwise, the solver returns a conflict clause (a tautology
in QFP) that rules out the current assignment. Typically, the literals that
appear in the proof of unsatisfiability of the current assignment, constitute
the conflict clause [3,11]. This helps towards finding a “minimal” unsatisfi-
able core to rule out more than just the present satisfying assignment. The
conflict clause is added to ¢, and Step 2 is repeated.

Eager Methods Eager methods (e.g. implemented in UCLID [19]) are based
on translating a QFP formula ¢ to an equisatisfiable Boolean formula ¢po0r,
such that ¢ is satisfiable if and only if ¢, is satisfiable. Since the problem of
deciding the satisfiability of QFP is in NP, QFP enjoys a small-model property
— a QFP formula ¢ is satisfiable over Z if and only if it is satisfiable over a finite
domain I C Z. The measure log(ID) denotes the number of Boolean variables to
represent the domain D.

Let m be the number of atomic formulas in ¢ and n be the number of variables
in X. When the set of atomic constraints in ¢ is restricted to difference logic
constraints (where the atomic formulas are restricted to x; — x; < ¢), the size of
the domain log(D) is O(log(n) + log(¢max)), where ¢pq is the absolute value of
largest constant ¢ that appears in any of the constraints. Seshia and Bryant [28]
show that for general linear constraints, log(ID) is bound by

O(log(n) + log(m) + log(cmaz) + k * (log(amaz) + log(w))), (1)

where a4, is the maximum absolute value of any coefficient, k is the number of
non-difference atomic formulas in ¢ and w is the maximum number of variables
in any linear constraint. When the number of non-difference constraints in ¢ is
small, the size of log(ID) is almost logarithmic in n and m.

The above bounds suggest that one can encode each variable z € X using
log(D) Boolean variables and translate ¢ to a Boolean formula. The arithmetic
operator + can is encoded as an word adder, * is implemented as a shift operator
since only variables are multiplied with constants. Similarly, the relational oper-
ator < is encoded as word comparator. The size of the resultant Boolean formula
®boot incur a polynomial blowup (typically log(ID)) over ¢. Finally, the resultant
formula can be checked using any state-of-the-art SAT solvers. We refer to this
encoding as small-model encoding of a first-order formula.

Comparison of the two methods In this section, we highlight the main
weaknesses of the eager and the lazy approaches, that limit the scalability of the
approaches:

18

The appeal of small-model based encoding to SAT lies in the fact that it
provides only a polynomial blowup when translating a linear arithmetic formula
to a Boolean formula. However, the blowup can be linear in the size in the size
of the number of constraints and variables in the first-order formula, when the
number of non-difference constraints is large. The small model size also explodes
in the presence of large constants in the formula. More seriously, small-model
encoding suffer from a loss of structure of the formula. For example, consider
the simple formula:

p=x<yANy<zAz<czx

There is a polynomial algorithm for deciding the satisfiability of such conjunction
of linear arithmetic formulas, based on negative cycle detection [6]. However,
converting to a Boolean formula introduces a lot of disjunctions resulting from
the encoding of < as a circuit. This results in SAT solver to perform a lot of
case splits before detecting unsatisfiability.

The lazy approaches (e.g. Verifun [11]) suffer from the need to invoke a
decision procedure for the first-order theory a very large number of times in
the presence of a lot of Boolean structure (i.e. disjunctions) in the formula.
Moreover, since the decision procedures take over only after the SAT solver has
found a Boolean model, the monome handed to the theory can have a lot of
theory literals. When the monome is unsatisfiable in the theory, if often happens
because of very small subset of literals in the monome. Although the decision
procedure can figure out the core reason for unsatisfiability (using the proof of
unsatisfiability), the decision procedure is often overwhelmed with the size of the
monome that it obtains from the SAT solver. This is particularly problematic for
the theory of integer linear arithmetic, for which the decision procedures have
exponential worst-case complexity.

2.3 Boolean Interpolants

Consider two satisfiable Boolean formulas A and B such that A A B = false.
Let V' be the set of Boolean variables shared by both A and B. An (Boolean)
interpolant [7] of the pair of formulas (A, B) is a Boolean formula I, such that:

1. A=1,
2. I AN B = false, and
3. The set of variables in I is a subset of V.

Pudlak [26] showed that given the proof of unsatisfiability of A A B, an inter-
polant I can be obtained in time linear to the size of the proof. A description of
the algorithm when both A and B are present in conjunctive normal form (CNF)
has been described by McMillan [21]. The motivation for using the interpolant
I of (A, B) is usually two-fold: (a) it is an abstraction of A that is sufficient to
prove the unsatisfiability with B and (b) it is over the common variables of A
and B.

3 Interpolant-based Decision Procedure for QFP
In this section, we describe an algorithm to decide the satisfiability of a QFP

formula ¢. The algorithm alternates between two phases that check the satisfi-
ability of an underapproximation and overapproximation of ¢, respectively. In

19

the underapproximation phase, the algorithm creates a formula ¢, that is an
underapproximation of ¢ by restricting the domain of each variable that ap-
pear in the formula. If the formula ¢, has a satisfying assignment within the
small bounds, it reports satisfiable. Otherwise, it computes an abstraction ¢, of
¢ by using Boolean interpolants. The abstract formula ¢, is then checked for
(un) satisfiability. If ¢, is unsatisfiable, then ¢ is unsatisfiable. Otherwise, we
repeat the phases with an increased domain for the variables. The algorithm
adds additional clauses that it discovers while checking ¢, to the formula ¢, to
speed up the underapproximation phase in the further iterations. We describe
the algorithm in details in the next few paragraphs.

1. [Input]. Given a QFP formula ¢.

2. [Encoding]. Construct the Boolean structure of ¢ by replacing an atomic
formula e with a Boolean variable b, in ¢. The resultant formula ¢, will be
referred to as the (Boolean) skeleton of ¢. Let atoms(()¢) denote the set of
atomic formulas in ¢. We introduce a set of fresh variables B = {b. | e €
atoms($)} and create a formula

¢th: /\ be<:>e ’

e€atoms(¢)

called the theory portion of ¢. Finally, the formula representing the conjunc-
tion of the Boolean skeleton and the theory component is called ¢y;:

Dot = Pp N P

3. [Initialize]. Compute the maximum model size D, for each variable using
Equation 1. The initial domain for each variable is restricted to D, i.e. each
variable v € vars(¢) takes values in (=D, ..., D].

4. [Boolean UNSAT]. We first check if the skeleton of ¢ is unsatisfiable
using the SAT solver. If ¢, is unsatisfiable, the algorithm returns UNSAT-
ISFIABLE.

5. [Underapproximation]. We construct a Boolean formula for ¢4, by us-
ing the small-model encoding technique described in Section 2.2. We use
BE (¢, D) to denote the Boolean translation. Let the resultant Boolean
formula be ¢,,, an underapproximation of ¢y;:

¢u = ¢p N BE(¢un, D)

We check if ¢, is satisfiable using a SAT solver. If ¢, is satisfiable, the
algorithm returns SATISFIABLE. If ¢, is unsatisfiable and D > D, 4., we
return UNSATISFIABLE.

6. [Overapproximation]. If ¢, is unsatisfiable, compute the Boolean inter-
polant ¢; of ¢, and BE (¢, D). We construct the formula ¢, which is an
overapproximation of ¢;; as follows:

(rbo = ¢I /\thh

We check the satisfiability of ¢, using a conflict clause generator CCG()
for QFP (described later in this section). If CCG(¢,) returns UNSATISFI-
ABLE, the algorithm UNSATISFIABLE. Otherwise, CCG(¢,) returns a set
of (conflict) clauses ¢, representing tautologies in the theory of QFP.

20

We augment the conflict clauses ¢. to ¢, to create a more constrained
Boolean skeleton of ¢yp;:

b — P N\ O

7. [Repeat]. Increase the bound D for each variable by some predetermined
amount § > 0, i.e. D = D 4+ §. Goto step 4.

Let us first observe a couple of points about this algorithm.

— When ¢, is unsatisfiable in step 5, we know that the two components of ¢,
namely ¢, and BE(¢y,, D) are each satisfiable in isolation. This is because
step 4 ensures that ¢, is satisfiable and BE(¢q,, D) is always satisfiable for
any domain.

— The common variables in ¢, and BE(¢s,, D) are only the variables from
B. This allows us to construct an interpolant in terms of the B variables,
independent of the integer variables or the variables introduced during trans-
lating an integer variable to a symbolic bit vector.

3.1 Conflict Clause Generator (CCGQG)

The conflict clause generator algorithm takes as input the QFP formula ¢, =
o1 N ¢4, where ¢; is a Boolean formula over B variables and checks for the
unsatisfiability of the formula:

— If it returns UNSATISFIABLE, then the formula ¢, is unsatisfiable.
— Otherwise, it returns a conjunction of clauses ¢. = A, ¢;, such that ¢, =
¢. and each ¢; is a disjunction of literals over B.

The conflict clauses generator can be implemented as a simple variation of a
lazy SAT-based theorem proving framework as follows: Initially, ¢. is assigned
true. The SAT solver enumerates assignments to B variables that satisfy ¢;
and checks if the assignment satisfies ¢y, using a (possibly incomplete) decision
procedure for a conjunction of linear arithmetic constraints.

If the assignment is found unsatisfiable by the linear arithmetic decision pro-
cedure, the decision procedure returns a “proof core”, a subset of constraints
that are inconsistent. The negation of the proof core is a clause ¢; that is added
to ¢. (after mapping an atomic expression e to the corresponding b, variable).
The clause ¢; is also added to the ¢; to prevent it from generating the same as-
signment. However, if the linear arithmetic decision procedure returns satisfiable,
we simply add the negation of the assignment to ¢; and repeat the loop. The
process is continued until the number of satisfying assignments (that are also
satisfiable in the linear arithmetic theory) does not exceed some threshold. We
currently limit this threshold to be 5, i.e. after obtaining more than 5 satisfying
solutions, we return ¢..

The usefulness of the conflict clause generator comes from the fact that it
adds some structure back to the Boolean formula ¢,. The conflict clauses added
aid the SAT-solver to avoid some case-splits when it is checking the satisfiability
of the formula ¢, in the subsequent iterations with larger D values.

21

3.2 Correctness

It is not hard to show that the algorithm is sound and complete. The algorithm
returns with SATISFTABLE or UNSATISFIABLE in steps 4, 5, and 6. We use
the following invariant on the algorithm:

Lemma 1. At any point in the algorithm, ¢y is equisatisfiable with ¢. In step 5,
Gu = Qvt, and in step 6, . = Go-

Theorem 1. The algorithm described above is sound and complete for QFP.

Proofs of the lemma and the theorem can be found in the Appendix.

3.3 Example

In this section, we illustrate the working of the algorithm on a simple example.
Consider the following formula ¢:

p=(x<y)ANy<z)A(z<wVz<z)A (2)
(z<w)Ve<2w+1)A(E<w)V-o(z<2w+1))

Let us introduce Boolean variables {by<y, by<z, bz<w, ...} for the atomic
constraints in ¢. Let ¢4, denote the constraint [\, b. < €] as before and ¢ be
the Boolean skeleton of ¢.

Let us start with a domain D where each variable takes values in {0,1}. The
underapproximation of ¢ created by restricting each variable to D is unsatisfi-
able. Let

QSI = (bx<y A by<z A (bz<w \ bz<a:))

be the interpolant generated in step 6 of the algorithm. In this domain, the
formula (x <y Ay < zA(z <wV z < x)) is unsatisfiable. The monome = < y A
y < z Az < w can’t be satisfied because each variable can only take two values,
and the monome z < y Ay < z A z < z is always unsatisfiable.

Now ¢, = ¢1 A ¢y, is fed to the conflict clause generator. Even though ¢, is
satisfiable, it generates a conflict clause

¢c = (_‘bx<y \ _‘by<z \ _‘bz<:c) .

Once we add the conflict clause ¢, to ¢, we obtain unsatisfiable in the Boolean
skeleton. This example illustrates the interesting case where the unsatisfiability
of ¢ is detected in step 4 of the algorithm.

3.4 Discussion

In this section, we illustrated a decision procedure for QFP (or in general for
a theory T') that uses a sound procedure for deciding a formula in QFP (or in
theory T') as part of the conflict clause generator. The CCG() decision procedure
need not be complete for the theory. One can use a fast decision procedure
for a subset of integer linear arithmetic (e.g. based on negative cycle detection
algorithms), coupled with simple rules for more general arithmetic. This enables
us to plug in any fast decision procedure for a subset of QFP (e.g. difference
logic) as the CCG(). To ensure the completeness of the procedure, we need to

22

compute the small-model size D,,,, for a formula in the theory and search this
domain in the worst case.

However, we can avoid the need to compute the small-model size D,,q;, if
we have a sound and complete decision procedure for QFP as the conflict clause
generator. In this case, one can ensure that the sequence of overapproximations

L @2, ..., (where ¢! denotes the overapproximation generated during the iter-
ation 4 of the above algorithm) for the input formula ¢, will eventually converge
to ¢. Details of such a decision procedure is described in Appendix B.

4 Experiments

We have implemented a prototype of the technique in the theorem prover Zap [33].
We compare the following three variants of eager and lazy decision procedure
implemented in Zap. Since the C# implementation of Zap and SharpSAT intro-
duces some slowdown over other tools (e.g. Mathsat [4] or Barcelogic tools [23]),
it is difficult to draw many conclusions about the techniques by comparing the re-
sults of these tools. Hence, we evaluate the following three variants implemented
in Zap:

Verifun: This is the implementation of the lazy proof-explicating theorem prover
described in Section 2.2 based on the Verifun architecture [11]. The linear
arithmetic is restricted to Unit Two Variable Per Inequality (UTVPI) con-
straints [16], for efficiency. We do not consider examples where Verifun re-
turns satisfiable because of the incompleteness of the procedure. The UTVPI
decision procedure suffices to prove a lot of examples of our example set even
in the presence of more linear arithmetic.

Eager. This implements a small-domain encoding of a quantifier-free formula
to a Boolean formula [5] using the eager encoding technique mentioned in
Section 2.2. For encoding QFP, it uses the small model size computed by
Seshia et al. [28] reported in Equation 1.

EaZI. This is the implementation of the algorithm FEager Zap with Interpolants
(EaZl) described in Section 3. The initial size of the domain is restricted to
assign 3 bits for each integer variable. Each subsequent iteration increases
the number of bits per variable by 2. For the CCG() generation, it uses the
Verifun procedure described above. Observe that since the Verifun procedure
is restricted to UT'VPI, CCG() is not complete for general linear arithmetic.

In all the variants, we used SharpSAT as the Boolean SAT solver. SharpSAT
is a variant of ZChaff [22] developed by Lintao Zhang at Microsoft. We ran the
experiments on a 3GHz machine running Windows with 1 GB of memory. A
timeout of 300 seconds was set for each benchmark.

We have performed preliminary experiments on two sets of verification bench-
marks?: (1) Mathsat: This a set of QFP benchmarks obtained from the timed
automata verification problems [1]. An analysis of the formulas in previous
study [10] suggests that the coefficients of the QFP formulas are restricted to
{-1,0,1} (with more than two variables though), with the number of integer
variables ranging from around 10 to around 150. Most of the variables in these

4 We are experimenting with more arithmetic benchmarks from the SMT-LIB
suite [31], and may be able to report them for the final paper

23

benchmarks are Boolean variables. (2) SAL: This set of benchmarks [10] consists
of formulas derived from bounded model checking of linear and hybrid systems
and from test-case generation for embedded systems. Most of the benchmarks
have significant linear arithmetic constraints and the number of integer variables
range from tens to hundreds of variables.

4.1 Results

In this section, we present the results of running the three approaches on the
Mathsat and SAL benchmarks. We analyze the results for different options:

Eager vs Verifun on Mathsat Eager vs. Verifun on SAL
0 350
Wt 0 300 Jwenge 00 00 . .
D
. .
250 . 250 .
S 0 S 2004
=] =3
=2 2
E 1sof * * . ¢ a g 150 8. =
. . o o
wl y . .) 100 'c
(4 .« D 8
w0le B . 08,
. .
g. - . o
o - - -+ o 50 100 150 200 250 300 350
0 5 100 150 200 250 300 350
Eager
Eager g

Fig. 1. Eager vs. Verifun on Mathsat and Sal benchmarks.

Verifun vs. Eager Figure 1 compares the Verifun and the Eager approach on
the benchmarks. Verifun scales better than Eager on the Mathsat benchmarks
whereas Eager outperforms Verifun on SAL benchmarks. We believe the differ-
ence in performance of Verifun on the two sets of benchmarks can be explained
by the number of times it invokes a theory decision procedure. Column 3 of
Figure 4.1 (marked “# Verifun Loops” for “Verifun”) shows that the number
of calls to the theory decision procedure for SAL benchmarks is at least an or-
der greater than in the case for Mathsat benchmarks. The results suggest that
neither Eager nor Verifun is robust enough for a large set of benchmarks.

Verifun vs. EaZI Figure 2 and Figure 3 compares EaZl with Eager and Verifun
on Mathsat and SAL benchmarks respectively.

EaZl outperforms Verifun consistently on both the set of benchmarks. To
understand the improvement, we extracted some information for a subset of
benchmarks. Figure 4.1 compares the two approaches in terms of three metric
(a) number of times a theory decision procedure was invoked, (b) the average
size of the number of constraints involved in the monome passed to the decision
procedure and (c) total time spent in the theory decision procedure.

We observed the following characteristics across a wide set of benchmarks:

— The number of times a theory decision procedure is invoked is usually much
smaller in the case of EaZlI. This can be explained because the abstraction of

24

Eazl vs Eager on Mathsat EaZl vs Verifun on Mathsat

o oo o <o 300 * ses see - . o0
.
.
o . 250 .
.
T 200 * S 0
2 o £ o
IS4] PRI .
w150 = g 150 .
s .
.
01 ¢ 2 e
.o ey
50 1. ‘\.
100 150 200 250 300 350 o
0 50 100 150 200 250 300 350
Eazl
Eazl

Fig. 2. Eazi vs. Eager and Verifun on Mathsat Benchmarks.

EaZl vs Eager on SAL EaZl vs Verifun on SAL

100 150 200 250 300 350 0 50 100 150 200 250 300 350

EaZzl Eaz|

Fig. 3. Eazi vs. Eager and Verifun on SAL Benchmarks.

the original formula ¢, has lot more conflicts in the Boolean structure and
thus comes to theory less often.

— The size of monome and the total time spent in the theory is reduced at least
by an order of magnitude in most cases. This is because the abstraction ¢,
contains a lot fewer constraints than ¢.

— The main bottleneck of the EaZl method shifts from the theory decision
procedure to SAT. In most cases, the interpolant generation consumes more
than 80% of the total time. We believe the performance of our algorithm
will further improve with improvement in the the interpolant generation
implementation in SharpSAT.

Eager vs. EaZI Figure 2 and Figure 3 indicate that EaZlI also outperforms the
Eager method in most of the examples in this set.

The small model size for the most examples calculated by Equation 1 requires
the Eager method to encode each variable with more than 15 bits in most case.
In some cases with large number of non-difference constraints, the number of
bits to encode each variable exceeds 100 bits. Although the EaZI method relies
on the small-model size for completeness, it never reaches this maximum domain
size for either proving unsatisfiability or satisfiability. For satisfiable instances,
it finds a satisfying solution using a small number of bits for most examples. For
unsatisfiable cases, the procedure exits from the CCG() procedure with UNSAT-
ISFTABLE, or the conflict clauses generated from CCG () makes the Boolean part

25

Example # Verifun Loops|Avg. Monome size|Total theory time(secs)
Verifun| EaZI [Verifun EaZl Verifun EaZl
sal Carpark2-t1-4 200 2 755 1 222.27 0.06
fischer3-mutex-5 372 72 399 66 116.84 2.45
fischer6-mutex-3 143 18 426 19 39.28 0.17
fischer9-mutex-3 221 40 603 15 107.14 0.25
inf-bakery-invalid-10| 180 0 211 - 47.90 0
inf-bakery-mutex-9 426 66 200 38 149.77 1.11
Ipsat-goal-12 233 45 2019 19 87.75 0.34
windowreal-safe-4 185 14 328 22 13.14 0.17
windowreal-safe2-4 254 8 328 23 19.14 0.17
mathsat| FISCHER10-5-fair 19 3 969 49 30.46 0.34
FISCHER11-5-fair 21 25 1072 113 42.54 11.53
FISCHERS3-8-fair 93 0 478 - 66.89 0
FISCHERS5-7-fair 81 52 682 93 108.69 8.85
FISCHERS-6-fair 36 40 935 108 94.72 14.29
PO3-10-PO3 18 0 686 - 18.89 0
PO3-9-PO3 38 3 618 20 25.53 0.07

Fig. 4. Analysis of EaZl vs. Verifun on Mathsat and SAL.

Eazl with and wo conflict clauses Eazl with and w/o conflicts on
Mathsat
as0
350
300 P
- . v 300 -*
9 20 . 9 E] o
= o 250 *
9 200 b
© ol 2 a0 4
o =
S 10 < . E
B . O 150
-— o o ’.
N
© 100 o
w . L 1w .
L = Vad
50 .’ N N 50 -
» i
o o
[50 100 150 200 250 300 350 [50 100 150 200 250 300 350
Eazl EaZl with conflict clauses

Fig. 5. Effect on conflict clauses in Eazi for SAL and Mathsat Benchmarks.

of the formula ¢p; unsatisfiable. Even for the unsatisfiable instances, we need to
increase the number of bits to at most 8 in most cases.

The Eager approach outperforms the EaZl approach on some of the SAL
benchmarks. This is primarily because the number of bits to encode each variable
is less than 20 and the overhead of computing interpolants in EaZl offsets the
advantage of learning from smaller domain size.

Adding Conflict Clauses We conjectured that the advantage of EaZl over
Eager comes from the fact that we add more structure (the conflict clauses
from CCG()) to ¢ and thereby aids the SAT solver to prune away the search
space efficiently. Figure 5 compares the EaZl approach with and without the
conflict clauses from CCG(). The conflict clauses make marked difference in the
results for the SAL benchmarks. Since the dominant time in the SAL experiments
is in solving the Boolean formula ¢,, addition of the conflict clauses help the
SAT solver. However, adding the conflict clauses made almost no difference for
the Mathsat examples. For most of the Mathsat examples, we found that the
abstraction ¢, was proved unsatisfiable by the conflict clause generator after the
first iteration. Hence the conflict clauses do not play a part in most of these
examples.

26

5 Related Work

In this section, we compare the interpolant based decision procedure for QFP
for other decision procedures for QFP or its restricted fragments. The use of
interpolants has been recently explored for finite-state model checking [21] and
in refining the abstractions for software verification [14, 17].

Eager approaches for translating a QFP formula to an equisatisfiable Boolean
formula employ either the small-model encoding discusses in Section 2.2 or add
all the theory constraints to the formula [32]. The latter approach can result in
an exponential number of constraints being added to the original formula. This
translation is often the bottleneck in the method. In [29], the authors encode
disjoint set of constraints in a formula using either the small-model encoding or
by adding all the theory constraints. The approach was restricted to the differ-
ence logic fragment of QFP, and use the number of constraints in the formula to
determine the encoding. In contrast, our approach uses small-encoding but in-
creases the size of encoding lazily starting from a small size. Beside, we only add
a very small set of theory constraints as conflict clauses in a more lazy manner.

Lazy approaches [3,11] use the lazy proof-exlicating framework described in
Section 2.2. The main bottleneck of these approaches appear to be the large
number of invocations of the theory decision procedure. The monomes passed to
the decision procedure are often large, even though the reason for unsatisfiability
of the monome is often simple and small. Our approach addresses this problem
by creating an abstraction of the original formula by using the interpolants and
using the lazy approach as a mean to generate conflict clauses. Our experiments
indicate that the size of the monome passed to the decision procedure is reduced
by more than an order of magnitude and the time spent in the theory decision
procedure is reduced considerably. Mathsat [1] use a layered approach, where a
sequence of increasingly complete (and therefore more complex) decision proce-
dures to decide a monome. However, to our knowledge, the approach still suffers
from passing large monomes to the linear arithmetic decision procedures.

DPLL(T) based approaches [13,23,4] use a closer integration of the theory
decision procedure with the SAT solver. In addition to the Boolean constraint
propagation in the SAT solver, the theory participates in the constraint propaga-
tion by adding all the theory facts implied by the theory in the current context.
This enables detection of early unsatisfiability than the lazy approaches. How-
ever, the decision procedures for the theories become more complex as they
need to support the generation of all the facts that are implied by a set of con-
straints. This may increase the complexity of the ILP decision procedures that
already have an exponential worst-case complexity. A promising approach has
been suggested by Sheini and Sakallah [30], where they integrate an UTVPI
decision procedure in DPLL(T) framework and use the general ILP solver in a
lazy framework. Currently, implementations based on DPLL(T) framework are
most competitive on the SMT-LIB QFP benchmarks.

The approach closest to our work is Kroening et al.’s [18] work on deciding
QFP formulas using Boolean proof of unsatisfiability. Kroening et al. construct
a equisatisfiable clausal representation of the original QFP formula by intro-
ducing additional variables. The clausal form is encoded to a Boolean formula
by performing small-model encoding starting with a small size. An abstraction
of the original clausal formula is constructed by choosing a subset of clauses
that appear in the proof of unsatisfiability of the Boolean formula. This abstrac-

27

tion is checked using a sound and complete decision procedure for QFP. The
sequence is repeated with increasing small-model encoding size. Although sim-
ilar in many aspects, our approach differ from this work in several ways. First,
this method appears to require a clausal representation of the original formula
(that can introduce auxiliary variables and destroy some of the structure of the
original formula), and the abstraction is limited to be a subset of the clauses
in this representation. The abstraction is obtained in a fairly syntactic fashion,
by considering the subset of clauses for which there is a corresponding clause
in the proof of unsatisfiability for the Boolean formula. We believe that the use
of interpolants results in a more semantic method to construct the abstraction.
This might often result in more concise abstractions being generated. Secondly,
unlike their approach we do not require a complete decision procedure for QFP
(for checking the abstraction) to ensure the completeness of the procedure. Their
experiments (although on a different set of benchmarks) indicate that the lazy
decision procedure for ILP dominates the total time of the procedure. Finally, we
add conflict clauses from the abstractions generated from smaller domain sizes;
this allows us to prune the search space when searching in a larger domain.

6 Conclusion

In this paper, we present a framework for using simultaneous under and over
approximations to decide a quantifier-free first-order formula. The small-model
encoding is used to create the underapproximation of the formula and the inter-
polant generation from the proofs of unsatisfiability gives an overapproximation
of the formula. The method also demonstrates a mechanism to leverage some
conflict clauses learned during searching in a smaller domain size, to prune the
search space during the later search.

One of the directions of future work is to implement Kroening et al.’s scheme
and empirically compare the two approaches on the set of benchmarks. We are
also working on getting a more extensive evaluation on the SMT-LIB bench-
marks.

References

1. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In Andrei Voronkov, editor, Proceedings of the 18th International Confer-
ence on Automated Deduction (CADE-18), volume 2392 of LNCS, pages 195-210.
Springer Verlag, July 2002.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), Snowbird, Utah, June, 2001. SIGPLAN Notices, 36(5), May 2001.

3. C. W. Barrett, D. L. Dill, and A. Stump. Checking Satisfiability of First-Order For-
mulas by Incremental Translation to SAT. In Proc. Computer-Aided Verification
(CAV’02), LNCS 2404, pages 236—249, July 2002.

4. M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum,
and R. Sebastiani. Efficient satisfiability modulo theories via delayed theory com-
bination. In CAV, volume 3576 of LNCS 3576, pages 335—349, 2005.

5. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying Systems
using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted

28

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Functions. In Computer-Aided Verification (CAV’02), LNCS 2404, pages 78-92,
July 2002.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

W. Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. J.
Symbolic Logic, 22:250-268, 1957.

M. Davis, G.eorge Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394-397, July 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201-215, July 1960.

Leonardo M. de Moura and Harald Ruef}. An experimental evaluation of ground
decision procedures. In Computer Aided Verification (CAV ’04), LNCS 3114, pages
162-174. Springer-Verlag, 2004.

C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem Proving usign Lazy Proof
Explication. In Computer-Aided Verification (CAV 2008), LNCS 2725, pages 355—
367. Springer-Verlag, 2003.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02), pages 234-245, 2002.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Ce-
sare Tinelli. DPLL(T): Fast Decision Procedures. In Computer Aided Verification
(CAV ’04), LNCS 3114, pages 175-188. Springer-Verlag, 2004.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In Symposium on Principles of programming languages
(POPL ’04), pages 232-244. ACM Press, 2004.

ILOG CPLEX. Available at http://ilog.com/products/cplex.

J. Jaffar, M. J. Maher, P. J. Stuckey, and H. C. Yap. Beyond Finite Domains. In
Alan Borning, editor, Proceedings of the Second International Workshop on Prin-
ciples and Practice of Constraint Programming, PPCP’9/, volume 874 of LNCS
874, pages 86-94. Springer-Verlag, 1994.

Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition relation ap-
proximation. In Computer Aided Verification, 17th International Conference, CAV
2005, volume 3576 of LNCS, pages 39-51. Springer, 2005.

Daniel Kroening, Joél Ouaknine, Sanjit A. Seshia, and Ofer Strichman.
Abstraction-based satisfiability solving of presburger arithmetic. In Computer
Aided Verification (CAV ’04), LNCS 3114, pages 308-320. Springer-Verlag, 2004.
Shuvendu K. Lahiri and Sanjit A. Seshia. The uclid decision procedure. In Com-
puter Aided Verification (CAV ’04), LNCS 3114, pages 475-478. Springer-Verlag,
2004.

LP_SOLVE. Available at http://groups.yahoo.com/group/lp_solve/.

K.L. McMillan. Interpolation and sat-based model checking. In CAV 03:
Computer-Aided Verification, LNCS 2725, pages 1-13. Springer-Verlag, 2003.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 38th Design Automation Conference (DAC ’01), 2001.
R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation
and its Application to Difference Logic. In Computer Aided Verification, 17th
International Conference, CAV 2005, LNCS, pages 321-334. Springer, 2005.
Christos H. Papadimitriou. On the complexity of integer programming. J. ACM,
28(4):765-768, 1981.

M. Presburger. Uber die Vollstfindigkeit eines gewissea Systems Arithmetic ganzer
Zahlen in welchem die Addition als eiilzige Operation hervortritt. In Comptes-
rendus du I Congr s de Mathematiciens de Pays Slaves, pages 395:92-101, 1930.
P. Pudl’ak. Lower bounds for resolution and cutting planes proofs and monotone
computations. J. of Symbolic Logic, 62(3):981-998, 1995.

29

27. H. Ruefl and N. Shankar. Solving linear arithmetic constraints. Technical Report
CSL-SRI-04-01, SRI International, January 2004.

28. S. A. Seshia and R. E. Bryant. Deciding quantifier-free presburger formulas using
parameterized solution bounds. In 19th IEEE Symposium of Logic in Computer
Science(LICS ’04). IEEE Computer Society, July 2004.

29. S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SAT-based Decision Pro-
cedure for Separation Logic with Uninterpreted Functions. In Proc. Design Au-
tomation Conference (DAC), pages 425-430, June 2003.

30. Hossein M. Sheini and Karem A. Sakallah. A scalable method for solving satisfia-
bility of integer linear arithmetic logic. In Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, volume 3569 of LNCS, pages
241-256. Springer, 2005.

31. SMT-LIB: The Satisfiability Modulo Theories Library. Available at
http://combination.cs.uiowa.edu/smtlib/.

32. Ofer Strichman. On solving presburger and linear arithmetic with sat. In Formal
Methods in Computer-Aided Design (FMCAD ’02), LNCS 2517, pages 160-170,
2002.

33. Zap Project. Available at http://www.research.microsoft.com/tvm.

A Proof of correctness

Proof (Lemma 1 in Section 38). The proof follows simply by induction on the
number of iterations of the algorithm.

For the first iteration, ¢y, is equisatisfiable with ¢ since ¢ = AB : ¢y;. Since
¢, simply restricts the domain of each variable in ¢y, clearly ¢, = ¢p:. In
step 6, assume ¢, is unsatisfiable. Recall that ¢; is not unsatisfiable because
we have ensured that in step 4. We also know that the formula BE (¢, D) is
satisfiable. This is because it just says that the value of b, is the same as the value
of e. There are no constraints on any b, variables or the atomic constraints e. This
explains the reason why we have step 4 explicitly in the algorithm. Moreover,
recall that ¢, is a Boolean formula. Therefore, we can construct a Boolean
interpolant ¢y for the pair (¢, BE(¢w, D)). Since ¢, = @1, dpr = ¢o.

Now, let us assume that the lemma holds for some iteration. We want to
prove that it holds for the next iteration. Recall, that the only step in which
¢ changes is in step 6. We also know that ¢, = ¢, (from the property of
the conflict clause generator), and hence ¢ = ¢,. This in turn implies that
dve = (Ppr N ¢c). Moreover, (¢ A ppr = Ppt. Hence (Ppe A dpt) < dpe.
Therefore, the formula ¢, is equivalent across all iterations steps. This preserves
other parts of the lemma.

Proof (Theorem 1 in Section 3). It is easy to see that the algorithm terminates,
since D is monotonically increased and finally crosses D,,,,. Observe that the
algorithm returns SATISFIABLE, if and only when it finds ¢, SATISFIABLE.
Lemma 1 ensures soundness of the algorithm. The algorithm returns UNSAT-
ISFTABLE if and only if a formula weaker than ¢; is unsatisfiable. The weaker
formulas in step 4, step 5 and step 6 are ¢y, ¢, (only when D > D,,q,) and ¢,
respectively.

B Termination in the absence of D,,,,

In the previous section, the termination argument required computing a maxi-
mum domain size D,q. When D > D4, then the formula ¢, is equisatisfiable

30

with ¢y, and therefore also with ¢. In this section, we show that we can modify
the algorithm slightly to ensure that the computation terminates even in the
absence of an upper bound.

The main change required from the previous algorithm is to replace the
conflict clause generator (CCG) with a sound and complete lazy SAT-based
decision procedure for QFP. Since the conflict clauses generated from the CCG
are simply adding more structure to ¢, and not required for completeness, we
only required a sound decision procedure QFP for the previous algorithm.

The new algorithm is identical to the previous algorithm except for step 3
(where we do not compute D,,qz), step 6 and step 7. The new step 6 and step 7
becomes (for simplicity, we ignore the conflict clauses ¢..):

— [Overapproximation]. If ¢, is unsatisfiable, compute the Boolean inter-
polant ¢; of ¢, and BE (¢, D). We construct the formula ¢, which is an
overapproximation of ¢p; as follows:

¢o = ¢I A¢th

We check the satisfiability of ¢, using a lazy SAT-based decision procedure
for QFP. If the decision procedure returns UNSATISFTABLE, the algorithm
returns UNSATISFIABLE. If the decision procedure returns SATISFIABLE,
it also returns D’, the maximum value of any variable in the satisfying as-
signment. If ¢; < ¢y, return SATISFIABLE.

— [Repeat]. Make D = D’ and go to step 4.

Lemma 2. For any two distinct iterations ¢ and j of the above algorithm, let
¢4 and ¢} be the interpolants computed in step 6 of the algorithm in iterations
i and j respectively. Then ¢} 5 ¢7.

Proof. Let us assume ¢} < gb?. Let us assume w.l.o.g. that ¢ < j. Let Dy and
D;. be the value of D at the start of the iterations k (for k € {¢,5}). Let us also
assume that both the iterations reach step 6. This means that QSI; A BE (¢4, Dr,)
(for k € {i,j}) is unsatisfiable. Moreover ¢t A BE (¢, D)) is satisfiable. Since
j > 1, Dj > Dj. Therefore (bjll A BE(¢u,, D;) is clearly satisfiable, and therefore
ngJI- can’t the interpolant during the iteration j. Hence we reach a contradiction.

Theorem 2. The algorithm described in this section that does not precompute
Doz s sound and complete for QFP.

Proof. Since there can only be a finite number of distinct Boolean functions
over |B| variables and ¢, = ¢; for any iteration, Lemma 2 ensures that the
algorithm above terminates. Therefore, by Theorem 1, the modified algorithm
is sound and complete.

In the above algorithm, we have assumed that the decision procedure for QFP
used in the overapproximation step (step 6) can construct a satisfying assignment
(and therefore provide D’). We can relax this restriction and only increase D by
a fixed amount § as before and still obtain termination. This is because, using
the same idea as Lemma 2, we can ensure that if ¢} is the interpolant at step
i, and j > i+ (D, — D;)/6, then % is distinct from ¢%. Although this does
not allow us to bound the number of iterations (without refering D,,...), we can
ensure that in the limit some interpolant ¢; is going to be identical to ¢; for
some finite iteration.

31

[blank page]

32

Using SAT Encodings
to Derive CSP Value Ordering Heuristics

Christophe Lecoutre, Lakhdar Sais, and Julien Vion

CRIL-CNRS FRE 2499,
Université d’Artois
Lens, France
{lecoutre, sais, vion}@cril.univ-artois.fr

Abstract. In this paper, we address the issue of value ordering heuristics in the
context of a backtracking search algorithm that exploits binary branching and the
adaptive variable ordering heuristic dom /wdeg. Our initial experimentation on
random instances shows that (in this context), contrary to general belief, follow-
ing the fail-first policy instead of the promise policy is not really penalis-
ing. Furthermore, using SAT encodings of CSP instances, a new value ordering
heuristic related to the fail-first policy can be naturally derived from the well-
known Jeroslow-Wang heuristic. This heuristic, called min-inverse, exploits the
bi-directionality of constraint supports to give a more comprehensive picture in
terms of domain reduction when a given value is assigned to (resp. removed from)
a given variable. An extensive experimentation on a wide range of CSP instances
shows that min-inverse can outperform the other known value ordering heuris-
tics.

1 Introduction

For solving instances of the Constraint Satisfaction Problem (CSP), backtracking search
algorithms are commonly used. To limit their combinatorial explosion, various im-
provements have been proposed (e.g. ordering heuristics, filtering techniques and con-
flict analysis). It is well known that the ordering used to perform search decisions has
a great impact on the size of the search tree. At each stage, one needs to decide the
value to assign to a variable. So far, such decisions have been performed by choosing
the variable in a first step (vertical selection) and the value to assign in a second step
(horizontal selection).

Many works have been devoted to the first selection step. Variable ordering heuris-
tics that have been proposed can be conveniently classified as static (e.g. deg), dynamic
(e.g. dom [15], bz [6], dom/ddeg [4]) and adaptive (e.g. dom /wdeg [5]). The heuristic
dom /wdeg has been shown superior to the other ones [5,21, 16, 28]. However, value
ordering (the second step of the decision) has clearly been considered for a long time
as potentially of marginal effect to search improvements. The arguments behind this
can be related to the fact that selecting a given value is computationally more difficult
than selecting a given variable, particularly when one considers dynamic selection. The
second reason for considering value ordering as useless is that, when facing unsatisfi-
able instances or when searching all solutions, one needs to consider all values for each

33

variable. As clearly shown by Smith and Sturdy [26], these arguments hold when search
is based on d-way branching but not on 2-way branching. d-way branching means that,
at each node of the search tree, a variable x is selected and d branches are considered
where d is the current size of the domain of : the i** branch corresponds to = = a;
where a; denotes the it" value of the domain of 2. On the other hand, with binary (or
2-way) branching, at each node of the search tree, a pair (z,a) is selected where z is an
unassigned variable and a a value in the domain of z, and two branches are considered:
the first one corresponds to the assignment = = a and the second one to the refutation
x # a. These two schemes are not equivalent as it has been shown that binary branching
is more powerful than non-binary branching [17].

Traditionally, two principles are considered during search: at each step, select the
variable which is the most constrained and select then the least constrained value (e.g.
min-con flicts [12]). These principles respectively correspond to two policies called
fail-first and promise, and one interesting issue is the adherence assessment of
heuristics to both policies [2,29]. In this paper, we focus on value ordering heuris-
tics, and more precisely, we try to determine if value ordering heuristics should adhere
in priority to the promise policy. Of course, one can be surprised that we address this
issue as it is commonly admitted that it should be the case. In particular, a lot of works
support the idea that a value must be chosen by estimating the number of solutions or
conflicts. One has then to prefer the value that maximizes the estimated number of solu-
tions in the remaining network [8, 13, 24, 20] or minimizes the number of conflicts with
variables in the neighbourhood [12, 23].

However, we noticed that most of the experimental results are given when d-way
branching and/or non adaptive variable heuristics (such as dom, bz, dom/ddeg) are
used. This is the reason why we decided to solve a wide range of random CSP in-
stances using the MAC algorithm, i.e. the algorithm that maintains arc consistency
during search [25]. We tested both branching schemes and both dynamic and adap-
tive variable ordering heuristics on 7 classes of binary instances situated at the phase
transition of search. For each class (n,d,e,t), defined as usually, 50 instances have been
generated. More precisely, the number of variables n has been set to 40, the domain
size d between 8 and 180, the number of constraints e between 753 and 84 (and, so
the density between 0.96 and 0.1) and the tightness ¢ (which denotes here the prob-
ability that a pair of values is allowed by a relation) between 0.1 and 0.9. The first
class (40,8,753,0.1) corresponds to dense instances involving constraints of low tight-
ness whereas the seventh one (40,180,84,0.9) corresponds to sparse instances involving
constraints of high tightness. What is interesting here is that a significant sampling of
domain sizes, densities and tightnesses is considered.

In Tables 1 and 2, we can observe the results that we have obtained with the classical
value ordering heuristic min-con flicts and the “anti” heuristic max-con flicts* iden-
tified as con fts. Here min-con flicts corresponds to the heuristic called mc in [12] and
involves selecting the value with the lowest number of conflicts with values in adjacent
domains. Performances are given (on average) in terms of the cpu time (in seconds), the

! The value ordering heuristics considered here are static [23]. It means that the order of values

is computed in a preprocessing step. In any case, we observed similar behaviours with dynamic
versions.

34

dom/ddeg dom/wdeg
Instances min-con flts | maz-confts | ratio | min-confts | max-confts | ratio
cpu 42.0 51.4| 1.22 34.5 41.6] 1.20
(40-8-753-0.1) ccks 22M 27TM| 1.22 20M 24M| 1.20
nodes 43,269 55,558| 1.28 38,104 48,158| 1.59
cpu 30.9 35.0 1.13 29.4 32.71 1.11
(40-11-414-0.2) ccks 26 M 29M| 1.11 26 M 29M| 1.11
nodes 58, 955 70,007 1.18 58, 055 67,905 1.17
cpu 22.1 28.9| 1.30 21.0 26.6| 1.26
(40-16-250-0.35) | ccks 30M 40M| 1.33 30M 37TM| 1.23
nodes 59, 669 83,445| 1.39 56, 036 75,025 1.33
cpu 33.1 37.1] 1.12 28.6 30.0| 1.04
(40-25-180-0.5) ccks 62M 67M| 1.08 55M 57M| 1.03
nodes 85,122 98,519| 1.15 69, 805 78,005 1.11
cpu 25.9 34.6] 1.33 20.0 25.11 1.25
(40-40-135-0.65) | ccks 68 M 89M| 1.30 53M 66M| 1.24
nodes 2,622 74,592| 1.41 36,571 49,211| 1.34
cpu 25.8 52.8| 2.04 15.3 36.3| 2.37
(40-80-103-0.8) | ccks 98 M 193M| 1.96 59 M 133M| 2.25
nodes 29,989 72,841 2.42 16, 163 45,177 2.79
cpu 113.1 121.3| 1.07 40.6 44.6| 1.09
(40-180-84-0.9) ccks 554 M 587M| 1.05 217TM 231M| 1.06
nodes 76, 788 85,482 1.11 20,077 22,557 1.12

Table 1. MAC with d-way branching, dom/ddeg and dom /wdeg

dom /ddeg dom /wdeg

Instances min-confts | max-confts | ratio | minconfts | max-confts | ratio

cpu 29.3 35.8] 1.22 28.9 28.4| 0.98
(40-8-753-0.1) ccks 22M 27TM| 1.22 24M 23M| 0.95
nodes 43,268 55,557 1.28 45,650 46,645 1.02
cpu 23.0 25.9(1.12 26.1 27.3| 1.04
(40-11-414-0.2) ccks 26 M 29M| 1.11 32M 33M| 1.03
nodes 59,002 70,026 1.18 69,111 76,941 1.11
cpu 18.5 24.5| 1.32 23.0 24.4] 1.06
(40-16-250-0.35) | ccks 30M 40M| 1.33 39M 41M| 1.05
nodes 59,773 83,531 1.18 72,555 82,459| 1.13
cpu 28.8 31.9] 1.33 28.5 30.7| 1.07
(40-25-180-0.5) | ccks 62M 67M| 1.08 65M 68M| 1.04
nodes 85, 187 98,548| 1.15 80,017 91,464| 1.14
cpu 21.4 28.6| 1.33 19.8 19.6] 0.98
(40-40-135-0.65) | ccks 68 M 89M| 1.30 65M 64M| 0.98
nodes 52,569 74,544 1.41 44,120 46,573| 1.05
cpu 20.4 42.3| 2.07 12.6 18.6 1.47
(40-80-103-0.8) | ccks 98 M 193M| 1.96 64M 89M| 1.39
nodes 29,931 72,747 1.41 16,168 28,087 1.73
cpu 85.0 92.0] 1.08 26.4 27.1] 1.02
(40-180-84-0.9) | ccks 553 M 587M| 1.06 192M 193M| 1.00
nodes 76, 489 85,255 1.11 15,835 16,566| 1.04

Table 2. MAC with 2-way branching, dom/ddeg and dom /wdeg

35

number of constraint checks (ccks) and the number of nodes of the explored search tree.
What is interesting to note is that while the performance ratio between max-con flicts
and min-con flicts usually lies between 1.1 and 1.3 when one uses d-way branching or
a classical heuristic (here, dom/ddeg), it falls around 1 when one uses binary branch-
ing and dom /wdeg. A noticeable exception is for the class (40,80,103,0.8). One can
also remark that the proportion of constraint checks per visited node is weaker when
max-con flicts is used. This is natural since by selecting in priority conflicting values,
the size of the search space is reduced faster. Finally, our observation suggests that an
analysis as the one performed in [16] deserves to be considered for 2-way branching.

Considering the results of our experience about random instances and the fact that,
for some types of constraints, good value ordering can significantly reduce the search
effort [26], we decided to further investigate value ordering heuristics (assuming, of
course, an underlying 2-way branching scheme). In particular, our attention was at-
tracted by the fact that 2-way branching is the basic scheme in SAT solvers. We thought
that this might be very helpful to map SAT heuristics to CSP ones. Indeed, considering
any SAT encoding of a CSP instance, selecting a pair composed of a variable and a
value corresponds to the selection of a literal in SAT.

In this paper, we propose a new value ordering heuristic that is derived from the well
known Jeroslow-Wang (JW) heuristic [18]. The obtained heuristic, called min-inverse,
exploits the bi-directionality of constraints to give a more comprehensive picture in
terms of domain reduction when a given value is assigned to a given variable and *also*
when a given value is removed from the domain of a given variable. Let us illustrate
this with the following example.

Example 1. Let C be the binary constraint depicted by Figure 1. Note that any value
in the domain of x; occurs in two allowed tuples and is in conflict with two values in
the domain of x5. Consequently, applying a classical value ordering heuristics such as
min-con flicts (or max-con flicts) do not discriminate between the different values
of z; since all the values of z; have the same number of conflicts in z.

Fig. 1. A constraint between x; and x2. Edges correspond to allowed tuples.

This example shows that it is not always sufficient to only consider the number of
conflicts in order to choose the most (or least) promising value. However, considering a

36

binary branching scheme, when the value « is assigned to x:; (decision corresponding to
the first branch), two values are removed from dom(xs), and when a is removed from
dom(z1) (decision corresponding to the second branch) two values are also removed
from dom(zz). On the other hand, when the value b or ¢ is assigned to x 1, two values are
removed from dom(zz), and when b or ¢ is removed from dom(z1) no value is removed
from dom(z2). So, the value a is more constrained than b or c. This illustration shows
that it can be important to consider the impact on both branches when evaluating values
to be selected by an heuristic.

Our heuristic is then related to maz-con flicts, but this last one only gives the esti-
mation of the number of removed values when assigning a value to a given variable (the
assignment labelling the first branch of a binary search). In fact, the estimation of the
number of removed values when eliminating a given value from the domain of a given
variable (the refutation labelling the second branch of a binary search) has not been
(to our knowledge) considered so far when devising value ordering heuristics. Interest-
ingly enough, our approach can be used to derive in more general way a suitable value
ordering with respect to any type of constraint. We also show a direct correspondence
between min-con flicts (resp. max-conflicts) and the maximum number of literal
occurrences in the SAT formula obtained using support (resp. direct) encoding of CSP
instances.

The rest of the paper is organized as follows. After some technical background
about CSP and SAT, SAT encodings of CSP instances are recalled. Our approach is
then presented. Experimental results conducted on a wide range of CSP instances are
described and discussed before concluding.

2 Technical Background

2.1 Constraint Satisfaction Problem

A (finite) Constraint Network (CN) P is a pair (27, %) where 2" is a finite set of vari-
ables and % a finite set of constraints. Each variable z € 2 has an associated domain,
denoted dom(z), which contains the set of values allowed for x. Each constraint C' € ¢
involves a subset of variables of 2", called the scope and denoted vars(C'), and has an
associated relation, denoted rel(C'), which contains the set of tuples allowed for the
variables of its scope. From now on, to simplify and without any loss of generality, we
will only consider binary networks, i.e. networks involving binary constraints.

A solution to a constraint network is an assignment of values to all the variables
such that all the constraints are satisfied. A constraint network is said to be satisfiable
iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint network is satisfiable. A CSP
instance is then defined by a constraint network, and solving it involves either finding
one (or more) solution or determining its unsatisfiability. To solve a CSP instance, one
can modify the constraint network by using inference or search methods. Usually, do-
mains of variables are reduced by removing inconsistent values, i.e. values that can not
occur in any solution. Indeed, it is possible to filter domains by considering some prop-
erties of constraint networks. Arc Consistency (AC), which remains the central one,
guarantees the existence of a support for each value in each constraint.

37

Algorithm 1 MAC(P = (£, %) : Constraint Network) : Boolean
1 if 2 = (then return true

. P’ — AC(P)

if P’ = L then return false

. select a pair (z,a) such that z € 2" and a € dom(zx)

o if MAC(P’|4=c\) then return true

¢ if MAC(P'|44) then return true

. return false

NoghswN R

Definition 1. Let P = (27,%) be a CN, C € ¥ such that vars(C) = {z,y} and
a € dom(x).

— The set of supports of (x, a) in C, denoted supports(C, x,a), corresponds to the
set {b € dom(y) | (a,b) € rel(C)}.

— The set of conflicts of (z,a) in C, denoted con flicts(C, x,a), corresponds to the
the set {b € dom(y) | (a,b) ¢ rel(C)}.

Definition 2. Let P = (27, %) be a CN. A pair (z,a), with z € 2" and a € dom(x),
is arc consistent (AC) iff VC' € €|z € vars(C), supports(C,z,a) # 0. P is AC iff
Ve € 2, dom(z) # 0 and Va € dom(z), (x,a) is AC.

Let us now, briefly describe the well known MAC algorithm [25]. This algorithm
aims at solving a CSP instance and performs a depth-first search with backtracking
while maintaining arc consistency. More precisely, at each step of the search, a variable
assignment is performed followed by a filtering process called constraint propagation
which corresponds to enforcing arc-consistency. Algorithm 1 corresponds to a recursive
version of the MAC algorithm (using binary branching). It returns true iff the given
constraint network P is satisfiable. More precisely, if P can be made arc consistent (i.e.
AC(P) # L) then the search for a solution begins. It involves selecting a pair (x,a) and
trying first x = a and then x # a (if no solution has been found with x = a). After any
consistent assignment, the assigned variable is eliminated from the network and search
is continued (line 5)2. When the current constraint network has no more variables (line
1), it means that a solution has been found.

2.2 Encoding CSP into SAT

Propositional satisfiability (SAT) is the problem of deciding whether a Boolean formula
in conjunctive normal form (CNF) is satisfiable. A CNF formula X' is a set (interpreted
as a conjunction) of clauses, where a clause is a set (interpreted as a disjunction) of
literals. A literal is a positive or negated propositional variable. A truth assignment
of a Boolean formula is an assignment of truth values {¢true, false} to its variables.

2 P|.—, denotes the constraint network obtained from P by restricting the domain of z to the
singleton {a} whereas P|., denotes the constraint network obtained from P by removing
the value a from the domain of x. P\xz denotes the constraint network obtained from P by
removing the variable z.

38

A model of a formula is a truth assignment that satisfies the formula. SAT is one of
the most studied NP-Complete problems because of its theoretical and practical im-
portance. Encouraged by the impressive progress in practical solving of SAT, various
applications ranging from formal verification to planning are encoded and solved using
SAT. CSP instances can also be reformulated as SAT instances.

In this paper, we consider the most commonly used encodings of CSP into SAT,
namely, the direct encoding [7] and the support encoding [14]. In both SAT encodings
of a constraint network P = (2, ¥), a propositional variable x; ,, is associated to each
pair (z;,v) of P with x; € 2 and v € dom(x;). The correspondence is the following:
x;,, 18 true if x; is assigned the value v (i.e. z; = v) and z; ,, is false if v is removed
from dom(x;) (i.e. x; # v).

Direct Encoding The direct encoding [7] of a constraint network P = (27, %) in-
volves two kinds of clauses:

— At least one: for each variable x; € 2" with dom(x;) = {v1,va,...,v4}, a clause
of the form x; ,,, V @i 0, - -+ V i 0, €Xpresses the fact that the variable ; must be
assigned at least one value from its domain.

— Conflict: for each triplet (C,z;,v) such that C € €, z; € wvars(C) and v €
dom(z;), we have, assuming that vars(C) = {x;,z;} a clause —x; ., V ;.4
for each value w € con flicts(C, x;,v).

Support Encoding The idea of encoding support has been first introduced by Kasif
in [19] and expanded on by Gent [14]. In support encoding, two kinds of clauses are
introduced:

— At most one: for each variable z; € 2" and for any pair {v,w} C dom(z;), the
following clause encodes the fact that the variable x; must be assigned at most one
value in {v, w}: =i, V 24 4.

— Support: for each triplet (C,z;,v) such that C € €, z; € wvars(C) and v €
dom(x;), we have, assuming that vars(C) = {x;,z;} aclause —z; , V x4, V
Tjwy V-V Tjw, Where supports(C,x;,v) = {w1,wa,. .., wg}.

Note that the following set of clauses X' (C) is obtained from the constraint C' of
Example 1 using the direct encoding:

— At least: (:Z:l_’a ViV SCLC) A (1‘2@ Vizop V.V xzyd)
— Conflict; (ﬁxl,a vV ﬁ.1’27(:) A (ﬁml,a \2 ﬁ.1’27d) A (ﬁxl,b V ﬁwg,a) A (ﬁml,b vV ﬁ.1’271)) A
(mx1,c V 24) A (1 V TT2p)

The following set of clauses X's(C) is obtained from C' using the support encoding:

— At most: (_‘xl,a \Y —|$17b) A (_‘Il,a V _‘zl,c) A (_‘Il,b \Y —'$173) A (—‘1‘2@ V _‘-TQ_’b) A
(ﬁmg,a V ﬁmg,c) N (ﬁl‘ga V ﬁx27d) A (ﬁ.%‘Q’b \Y ﬁ.1‘27(;) A\ (ﬁCL‘Q,b \Y ﬁx27d) N (ﬁ.%‘Q’c V
ﬁ$2,d)

— Support: (—\1’17,1 VoV xgyb) AN (_‘Il,b Vo,V :L'21d> A (_‘Il,c VeV $27d) A
(m22,6 VX1,0) A (2 VE1,0) A (T2 V1 VE1e) A(Z2q VTV T1c)

39

Remark 1. Let us note that the at most (resp. at least) clauses are not required in direct
(resp. support) encoding for checking satisfiability [30, 14]. One must add such clauses
only if a mapping between SAT and CSP solutions is needed.

Support encoding admits interesting features. In [14], it is shown that encoding
supports enables arc consistency in the original CSP instance to be established by unit
propagation in the translated SAT instances. Last but not least, applying the well known
DPLL algorithm to the obtained SAT instance behaves exactly like the MAC algorithm
on the original CSP instance. We can also mention that support encoding has been ex-
tended to encode non binary constraints in SAT [3]. Interestingly enough, it has been
proved in [9] that support clauses can be inferred from direct encoding using HyperBin
resolution introduced by Bacchus [1]. These nice results open new interesting perspec-
tives for establishing strong connections between SAT and CSP. The results that we
present below on value ordering can be seen as a step in this direction.

3 Value Ordering Heuristicsfrom SAT to CSP

3.1 SAT Branching Heuristics

Many branching heuristics has been proposed in SAT. One can cite the most recent
ones, namely the VSIDS and UP heuristics used in Zchaff [31] and Satz solvers [22].
The first one uses literal occurrences in the set of learned no-goods whereas the second
one measures the effect of unit propagation on the formula when a literal is assigned a
truth value. Previously, CSAT [10] and POSIT [11], among other solvers, used simpler
heuristics. Most of them are variants of the well-known Jeroslow-Wang (JW) heuristic
[18], and evaluate a given literal according to syntactical properties (e.g. occurrence
number of literals, clause length).

In SAT branching heuristics, the score, denoted H (X, x), of a variable = of a CNF
X7 is generally defined as a function f of the weight w associated with its positive and
negative literals, i.e. H(X,z) = f(w(z), w(—x)). The next variable to assign is then
chosen among variables with the greatest score. For example, the two sided Jeroslow-
Wang rule is defined as : Hyw (¥, r) = w(z) + w(-x) where w(z) = > . w(c),
with ¢ € ¥ and w(c) = 271°. JW can be seen as a refinement of the MOMS (Maximum
Occurrences in clauses of Minimal Size) heuristic [10]. Another basic heuristic that we
consider in this paper is Hocco (X,) that can be obtained from F;y by instantiating
w(c) to 1. With Hoc e, we select in priority a variable with the greatest number of
occurrences in the formula.

3.2 Mapping SAT Heuristics to CSP

Using direct and support encodings, we present now the CSP value ordering heuristics
respectively corresponding to Hocc and H jyr SAT branching heuristics. We have to
emphasize that, when a CSP solver is based on a 2-way branching scheme, in order
to simulate SAT branching heuristics, one needs to evaluate the score of n x d pairs
composed of a variable and a value. This can be very time consuming, especially if
such evaluation is done at each node of the search tree. Hence, in the following, we

40

investigate the mapping of SAT branching heuristics to CSP, under the hypothesis that
the CSP solver performs at each step of the search, a vertical selection (the choice of
a variable) followed by a horizontal selection (the choice of a value for the selected
variable). As a consequence, the at least and at most clauses can be omitted in our
analysis since all literals occur the same number of times in such clauses. It is important
to remark that this hypothesis corresponds to the current practice of CSP solvers.

Mapping Hoce Let us show how the basic Hocc SAT branching heuristic on di-
rect (resp. support) encoding corresponds to the CSP value ordering heuristic mazx-
con flicts (resp. min-con flicts).

Property 1. Let P = (27, %) be a constraint network, X', (resp. X's) the CNF formula
obtained from P using direct (resp. support) encoding. For a given variable z; € 2
and value v € dom(z;), we have,

- Hocc(Ep,%iw) =14 X cew|ncvarsc) lconflicts(C, z;, v))|

2
- HOCC(ESVTLU) = (|d0m(ml)|) +ZCE‘K\:CZEUM'S(C)(1+|Supp0rt5(cv Iivv)D

Proof. Indeed, for X'p, the positive literal z; , occurs exactly one time positively (at
least clause) and the negative literal —x; , occurs the same number of times as the
number of forbidden tuples with v in all constraints involving x; (conflict clauses).

For Xg, the negative literal —z; ,, occurs () times in at most clauses and

2
|dom(a;)|
exactly one time in each constraint involving ;. The number of positive occurrences of
x;,,, corresponds to the number of tuples supporting the value v of z; for each constraint
involving z;. O

We can remark that, if the choice is restricted to the values of a given variable (i.e.
if we adopt the current model based on a vertical selection followed by an horizon-
tal one), then Hoc e on direct (resp. support) encoding delivers the same ordering as
max-con flicts (resp. min-con flicts). If it is not the case (i.e. if we perform a global
selection among all pairs of the form (x,v)), then, whereas Hocc and max-con flicts
always correspond with respect to direct encoding, Hocc and min-con flicts may
deliver, with respect to support encoding, different orderings since the number of oc-
currences of a literal in the at most clauses depends on the size of the domains.

Mapping Hyw First, for the direct encoding, as the conflict clauses are all binary,
H jy admits the same behavior as Hocc when the choice is restricted to the values
of a given variable. On the other hand, when considering the support encoding, the
length of the clauses, which depends on the number of supports of a value with respect
to a given constraint, becomes important. Consequently, considering H ;i on support
encoding, we derive a new interesting value ordering that corresponds to maximize the
function ST defined as follows.

41

Definition 3. Let P = (27, %) be a constraint network. For any pair (z;,a), with
z; € Z and a € dom(x;), we define:

SI(PaIivvi> = Z [Wl(cvxiavi)+WT(Cvxiavi)]
ce€|vars(c)={z;,z;}

where,

W (C, x4, v;) = w(l + |supports(C, x;,v;)|) and
Wi (C, i, vi) = > w(l + [supports(C, x;,v;)[)

vj €supports(C,x;,v;))
Here, w denotes any weighting function.

The following property establishes the connection between the SAT JW heuristic
and the new derived CSP value ordering heuristic. Note that the factor « which is in-
troduced below is such that for any variable z; € 2" and any pair {a,b} C dom(x;),
we have oy, , = ag, . It sSimply means that this factor can be discarded when a value
must be selected in the domain of a variable (and this is what is done by ST).

Property 2. Let P = (27, %) be a constraint network and X's the CNF formula ob-
tained from P using the support encoding. For any pair (z;,a), with z; € 2 and
a € dom(x;), we have:

Hyw (Xs, i) = ST(P,zi,0) + 0, 0

where «,, ,, corresponds to the score of H ;v applied on at most clauses of X'g involv-
ing —z; ;.

Proof. We have to show that H jy (Xs, %i) — g, .0 = SI(P, x;,v). It simply means
that we do not have to take into consideration the at most binary clauses involving —z; ,,.
Consequently, we only need to consider the support clauses. The proof is a direct conse-
quence of the following fact: for each constraint C' € €’ |vars(C) = {x;, z;}, the nega-
tive literal —z; ,, occurs exactly in one support clause of size 1 + |supports(C, z;, v;)|,
and the positive literal z; , occurs in |supports(C,x;,v;))| support clauses of dif-
ferent length (i.e. for each v; € supports(C,z;,v;) the length of the clause is 1 +
|supports(C,z;,v;)[). Under the same weighting function w(c) = 27, the two
heuristics are equivalent, i.e. compute the same value for a given literal. [J

As a summary, while the direct encoding naturally leads to max-con flicts that
adheres to the fail-first policy, the support encoding also leads to adhere to this
policy. Indeed, we have a correspondence between H juy and SI (maximizing the
score of H yy is equivalent to maximizing ST). In practice (for our experimentation),
we will use a simplified version of SI, denoted SI,, obtained by substituting w(1 +
[supports(C, z;,v;)|) (resp. w(l + |supports(C,x;,v;)|)) by |supports(C, z;,v;)|
(resp. |supports(C, x;,v,)|) in Definition 3. As a result, the new heuristic that we pro-
pose, called min-inverse, corresponds to minimize the value of S1, since instead of
using w(c) = 271, we use w(c) = |c|.

To illustrate this, let us consider again Example 1. Applying the SI; function on the
variable x1, we obtain SI,(C,xz1,a) = 4, SI;(C,21,b) = 6 and SI;(C,x1,¢) = 6.

42

The best value according min-inverse is then a. It is justified as follows. All values in
dom(z1), when assigned to x1, lead to the removal of 2 (arc inconsistent) values from
the domain of z5. The main difference is that, while removing « from the domain of x;
leads to the removal of 2 values from the domain of x5, removing b or ¢ from the domain
of x; does not lead to any inconsistent value in the domain of x5. More generally,
given a constraint C' such that vars(C) = {x;,z;} and v; € dom(z;), minimizing
W (C, z;,v;) (resp. W4 (C, z;, v;)) increases the potential number of values of dom(z;)
that can be made arc inconsistent when considering z; = v; (resp. x; # v;).

4 Experiments

To prove the practical interest of adhering to the fail-first policy for value order-
ing, we have implemented the different heuristics described in the previous sections in
our platform Abscon and conducted an experimentation with respect to some schedul-
ing instances and the full set of 1064 instances used as benchmarks of the first CSP
Competition [28]. The search algorithm that has been employed is MAC equipped with
dom /wdeg. All value ordering heuristics are implemented statically: an ordering is es-
tablished prior to search and remains unchanged during the whole search process[23].

First, we searched to establish a comparison between all heuristics with respect
to series of 100 open-shop scheduling instances randomly generated using Taillard’s
model [27] by fixing 5 jobs and 5 machines. For each instance, the optimal makespan
OPT have been computed. We have considered different sets of instances by setting
different time windows around the optimal makespan. For x < OPT, instances are
unsatisfiable whereas for x > OPT, instances are satisfiable. Note that the hardest
instances are those that are unsatisfiable and such that x is close to OPT'.

Figure 2 shows the proportion of instances that have been solved (the higher, the
better) in a limited amount of time (300 seconds). One can observe that min-inverse is
the most efficient heuristic on the hardest unsatisfiable instances, whereas the classical
min-con flicts is only able to solve a small number of these instances. Note that this
statement is true even on hard satisfiable instances (for 1 < x < 1.01). On easier
satisfiable instances, following the promise policy seems better.

Then, we tested the different heuristics on the 1064 instances of the first CSP Com-
petition. Figure 3 shows the percentage of unsolved instances (the lower, the better)
against search time. Although min-inverse seems better than the other heuristics (in
particular, between 200 and 350 allowed seconds), the difference is quite small.

So, let us zoom on the results obtained for a limited set of hard representative in-
stances (Table 3). Here, the time-out was set to 1,000 seconds. On random instances,
there is no clear winner. In fact, on these instances, there is no structure concerning sup-
ports, and so, heuristics based on these are not very relevant. On academic instances,
results are more spectacular, although sometimes chaotic. On allintervalSeries, pigeons
and queen-knights instances, min-inverse is clearly better while min-con flicts badly
behaves. However, on GolombRuler or BQWH instances, min-con flicts is more effi-
cient (note that these are mainly satisfiable instances, so, the promise strategy may be
more of practical interest in this case). On some real world instances such as FAPP
and RLFAP problems, the impact of value ordering heuristics seems negligible. Finally,

43

% solved instances within 300s CPU time

% unsolved instances

100 fF——————— —— . .
90 L *f:::}?:\ **x i
‘":‘Bé\l;'*\ ‘::]
80 r X\\.‘x‘ :“’/]
70 i j -
60 | .
50 ¢ ¥]
40 i
30 - min-conflicts —— .
max-conflicts --->---
min-inverse -
20 1 1 1
0.85 0.9 0.95 1
Variation x of the Time Window set to x.OPT
Fig. 2. Performance of value heuristics on 5x5 open-shop instances
23 T T T T T T T

1.05

17

min-conflicts
max-conflicts --------
min-inverse -

16

100000 150000 200000 250000 300000 350000 400000 450000 500000

CPU time (in ms)

Fig. 3. Performance of value heuristics on competition’s instances

a4

Instances

[min-con flicts | maz-conflicts | min-inverse |

Random Instances

frb45-21-3 cpu 665 timeout 389
(sat) nodes 896, 278 511,101
frb45-21-5 cpu timeout 243 258
(sat) nodes 313, 356 321,895
frb50-23-4 cpu 244 timeout timeout
(sat) nodes 276,441
random-2-40-19-443-230-9 cpu 641 441 438
(unsat) nodes 904, 470 704,712 706,123
random-3-24-24-76-632-8 cpu timeout 884 931
(sat) nodes 1,537,568 1,558,190
Academic Instances
series-15 cpu 849 59 3
(sat) nodes 2,970,402 213,266 13,972
series-16 cpu timeout 356 15
(sat) nodes 1,074,057 59,314
baqwh-18-141-73 cpu 29 32 26
(sat) nodes 115,916 136, 821 106, 254
bqwh-18-141-84 cpu 40 166 165
(sat) nodes 157,398 685, 424 685, 424
or-44-10 cru 78 189 192
(unsat) nodes 13,213 93, 343 92,454
or-55-10 cpu 25 timeout timeout
(sat) nodes 5,334
pigeons-40 cpu 482 486 167
(unsat) nodes 773,274 773,277 280, 490
pigeons-45 cpu 255 258 98
(unsat) nodes 304, 584 304, 588 119, 820
0k-20-20-5-add cpu timeout 149 40
(unsat) nodes 85,264 23,698
0k-20-20-5-mul cpu timeout 163 62
(unsat) nodes 81,393 31,990
ga-5 cpu 4 2 3
(sat) nodes 17,998 4,956 11,778
ga-6 cpu 245 61 197
(sat) nodes 503, 750 81,764 331,212
QCP-20-30 cpu 119 120 timeout
(sat) nodes 237,759 237,759
QCPp-20-14 cpu timeout timeout 6
(sat) nodes 13,028
Real-world Instances
scenll1-f6 cpu 299 545 354
(unsat) nodes 216, 648 395, 008 262, 696
scen11-f7 cpu 163 344 220
(unsat) nodes 112,952 251,098 164,593
163-TSP-25 cpu 282 530 280
(sat) nodes 121,004 234,098 110, 680
€0ddr1-10-by-5-10 cpu 19 643 timeout
(sat) nodes 51,715 1,524,492
€0ddr1-10-by-55 cpu 304 0 13
(sat) nodes 1,244,563 50 36, 888
enddr1-10-by-5-3 cpu timeout timeout 2
(sat) nodes 1,757

Table 3. MAC with 2-way branching, using different value ordering heuristics

45

some job-shop instances from the competition show very chaotic results. In fact, we
expect these problems to present an heavy-tailed behaviour.

To summarize, although the results must be tempered, we think that our experi-
mentation allows to demonstrate that, with binary branching and an adaptive variable
heuristic such as dom /wdeg, using a value ordering heuristic such as max-con flict
or min-inverse that adheres to the fail-first policy, is not penalizing and can even
outperform the classical min-con flicts.

5 Conclusion

It is well known that the right approach to select values during search is to follow the
promise policy [2, 29] - the objective is to follow a path that maximizes the likelihood
of finding a solution. However, we noticed that most of the experimental studies sup-
porting this intuition have been based on d-way branching or/and non adaptive variable
ordering heuristics.

In this paper, we first show that, on random instances, the anti-promise heuristic
max-con flicts was often as efficient as the standard promise min-con flicts when
2-way branching and the heuristic dom/wdeg were used. Our understanding of this
phenomenon is that, as dom /wdeg is able to efficiently refute unsatisfiable sub-trees,
the overhead of refuting more unsatisfiable sub-trees (as, more often than not, we guide
search toward unsatisfiable sub-trees) is compensated by the benefit of rapidly reducing
the search space.

Then, after studying mappings from CSP to SAT, we devise a new heuristic, denoted
min-inverse, that adheres to the fail-first policy and that corresponds to the SAT
Jeroslow-Wang branching heuristic. This correspondence supports our intuition that
following the fail- first policy for value ordering, in addition to variable ordering, can
pay off. The results that we have obtained when experimenting a large sampling of prob-
lems indicate that min-inverse and max-con flicts can outperform min-con flicts.

As a perspective of this work, we project to study heuristics to perform global selec-
tion of pairs of the form (X ,a) during search as it corresponds to the basic mechanism
of 2-way branching. It means that we do not have anymore to distinguish between ver-
tical and horizontal selection. The challenge is then to make such selections both cheap
to realize and efficient in practice.

References

1. F. Bacchus. Enhancing Davis Putnam with extended binary clause reasoning. In Proceedings
of AAAI’02, pages 613-619, 2002.

2. J.C. Beck, P. Prosser, and R.J. Wallace. Variable ordering heuristics show promise. In
Proceedings of CP’04, pages 711-715, 2004.

3. C. Bessiere, E. Hebrard, and T. Walsh. Local consistencies in SAT. In Selected revised
papers from SAT’03, pages 299-314, 2003.

4. C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake FC (and
CBJ?) on hard problems. In Proceedings of CP’96, pages 61-75, 1996.

5. F.Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, pages 146-150, 2004.

46

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
3L

D. Brelaz. New methods to color the vertices of a graph. Communications of the ACM,
22:251-256, 1979.

J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of IJCAI’89, pages
290-296, 1989.

R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. Arti-
ficial Intelligence, 34:1-38, 1988.

L. Drake, A. Frisch, I. Gent, and T. Walsh. Automatically reformulating SAT-encoded CSPs.
In Proceedings of the RCSP’02 workshop held with CP’02, 2002.

O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. Sat versus unsat. In Second DIMACS
Challenge, pages 299-314, 1993.

J.W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD thesis,
University of Pennsylvania, 1995.

D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction problems. In
Proceedings of 1JCAI’95, pages 572-578, 1995.

P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In Pro-
ceedings of ECAI’92, pages 31-35, 1992.

I.P. Gent. Arc consistency in SAT. In Proceedings of ECAI’02, pages 121-125, 2002.

R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour. In Proceedings
of CP’05, pages 328-342, 2005.

J. Hwang and D.G. Mitchell. 2-way vs d-way branching for CSP. In Proceedings of CP’05,
pages 343-357, 2005.

R.G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals of Mathe-
matics and Artificial Intelligence, 1:167-187, 1990.

S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction networks.
Artificial Intelligence, 45:275-286, 1990.

K. Kask, R. Dechter, and V. Gogate. Counting-based look-ahead schemes for constraint
satisfaction. In Proceedings of CP’04, pages 317-331, 2004.

C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus conflict-
directed heuristics. In Proceedings of ICTAI’04, pages 549-557, 2004.

C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In
Proceedings of 1JCAI’97, pages 366371, 1997.

D. Meetah and M.R.C. van Dongen. Static value ordering heuristics for constraint satisfac-
tion problems. In Proceedings of CPAI’05 workshop held with CP’05, pages 49-62, 2005.
N. Prcovic and B. Neveu. Progressive focusing search. In Proceedings of ECAI’02, pages
126-130, 2002.

D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
Proceedings of CP’94, pages 10-20, 1994.

B.M. Smith and P. Sturdy. Value ordering for finding all solutions. In Proceedings of 13-
CAI’05, pages 311-316, 2005.

E. Taillard. Benchmarks for basic scheduling problems. European journal of operations
research, 64:278-295, 1993.

M.R.C. van Dongen, editor. Proceedings of CPAI’05 workshop held with CP’05, volume I,
2005.

R.J. Wallace. Heuristic policy analysis and efficiency assessment in constraint satisfaction
search. In Proceedings of CPAI’05 workshop held with CP’05, pages 79-91, 2005.

T. Walsh. SAT v CSP. In Proceedings of CP’00, pages 441-456, 2000.

L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient conflict driven learning
in a Boolean satisfiability solver. In Proceedings of ICCAD’01, pages 279-285, 2001.

47

[blank page]

48

Representing Boolean Functions as Linear
Pseudo-Boolean Constraints

Jan-Georg Smaus

Institut fiir Informatik, Universitat Freiburg, Georges-Kohler-Allee 52, 79110
Freiburg im Breisgau, Germany, smaus@informatik.uni-freiburg.de

Abstract. A linear pseudo-Boolean constraint (LPB) is an expression
of the form a1 -li +... 4+ am - lm > d, where each I; is a literal (it assumes
the value 1 or 0 depending on whether a propositional variable z; is true
or false) and the a1, . .., am, d are natural numbers. The formalism can be
viewed as a generalisation of a propositional clause. It has been said that
LPBs can be used to represent Boolean functions more compactly than
the well-known conjunctive or disjunctive normal forms. In this paper,
we address the question: how much more compactly? We compare the
expressiveness of a single LPB to that of related formalisms, and we give
a statement that outlines how the problem of computing an LPB repre-
sentation of a given CNF or DNF might be solved recursively. However,
there is currently still a missing link for this to be a full algorithm.

1 Introduction

A linear pseudo-Boolean constraint (LPB) [1,2,4-7] is an expression of the form
arly + ...+ amly > d. Here each [; is a literal of the form x; or Z; = 1 — x;,
i.e. x; becomes 0 if z; is false and 1 if x; is true, and vice versa for Z;. Moreover,
the aq,...,am,d are natural numbers.

An LPB can be used to represent a Boolean! function; e.g. £y + T3 + 3 > 3
represents the same function as the propositional formula 21 A —z2 A 23 (in the
following we identify propositional formulae with functions). It has been observed
that a function can often be represented more compactly as a set of LPBs than
as a congunctive or disjunctive normal form (CNF or DNF) [4,6,7]. In fact, one
can easily find an LPB which expresses a function that needs more than one
clause to be expressed as DNF, say: 2x1 + T2 4+ x3 + x4 > 2 corresponds to the
DNF 21 V (mxz2 A xz3) V (mxa Azq) V (3 A 24).

The interest in Boolean functions, or propositional logic, comes from count-
less applications in verification and design automation concerning finite state
systems [1-9,13].

Previous works on LPBs [1,4-7] have focused on generalising techniques ap-
plied in CNF-based propositional satisfiability solving [8,9, 13] to LPBs, empha-
sising that this is beneficial because of the compactness of LPB representations:

! We will omit the qualification “Boolean” when it is clear from the context.

49

solving a problem based on such a compact representation can often be more
efficient than based on a CNF or DNF encoding.

But where do the LPBs come from? One possibility is that for some applica-
tion domain, one gives a direct representation of the problems as LPBs and in
addition argues that the alternative representation as CNF would be less com-
pact [1,5,7]. Another possibility is that one considers problem representations
given as propositional formulae and transforms these into compact LPB repre-
sentations. We are not aware that the latter has ever been proposed. In addition,
almost all the arguments that we found in favour of LPBs were not strictly about
LPBs but about cardinality constraints, which are a special case of LPBs.

This raises the question: how can a propositional formula be transformed into
an LPB representation that is as compact as possible? In this paper, we approach
this question from two extreme ends: on the one hand, we analyse, under various
aspects, how much can be expressed by a single LPB. On the other hand, we
consider propositional formulae for which the LPB representation saves nothing.

In fact, one cannot expect that a single LPB could model any useful problem—
in particular, satisfiability of a single LPB is trivial. Our work is, we hope, a step
towards the ultimate aim of representing an arbitrary Boolean function as a set
(usually interpreted as conjunction but also a disjunction is thinkable) of LPBs.

In Sec. 3 we show that there is a strict inclusion chain from clauses to car-
dinality constraints to LPBs to the monotone Boolean functions, provided the
dimension m is not too small. Monotone functions are those which can be rep-
resented by a formula where each variable occurs only in one polarity.

In Sec. 4, we show that in some cases an LPB representation can be expo-
nentially more compact than a CNF or DNF representation, while in other cases
one saves nothing at all.

In Sec. 5 we give a first result addressing the question of how a propositional
formula can be converted to an LPB: if a DNF can be expressed by an LPB,
then the dual CNF can be expressed by a very similar LPB, and vice versa.

In Sec. 6 we propose important components of what could become an algo-
rithm for converting a DNF @ to an LPB if possible. First of all, it is possible
to determine the relative order of the coefficients a;. Then, put simply, one has
to split @ into two subsets and remove the variable with the largest coefficient.
This gives two subformulae for which LPBs can now be computed recursively.
If two LPBs I°, I' can be found which are in a certain sense very similar, then
they can be composed into an LPB for &. The reason why this is not yet an
algorithm is the following: if I°, I'' are not immediately “very similar”, one has
to see if there are I', I'', equivalent to I°, I'', respectively, such that I, I'! are
“yery similar”. It is currently unclear how this can be done systematically.

Some proofs have been omitted here and can be found in [10].

2 Preliminaries

We assume the reader to be familiar with the basic notions of propositional logic.
We write @ to denote exclusive-or and < for equivalence.

50

An m-dimensional Boolean function f is a function Bool™ — Bool. We
say that f properly depends on the ith argument if there exists 8 € Bool ™,
8 Bool™ " with (3,0,) # f(8,1,).

We follow [4]. A 0-1 ILP constraint is an inequality of the form

a1z, + ...+ amTm > d a;,d € R,x; € Bool (Bool = {0,1}). (1)

We identify 0 with false and 1 with true. We call the a; coefficients and d the
threshold.

Using the relation z; = 1 — z; and noting that it is sufficient to consider
integer coefficients, one can rewrite a 0-1 ILP constraint as a linear pseudo-
Boolean constraint (LPB)

atly +...+anl, >d aiEN,dEN,liE{Z‘i,.@;}. (2)

For example, 1 — 0.5z5 — 0.523 > 0 can be written as 2z + To + T3 > 2. An
occurrence of a literal x; (resp., Z;) is called an occurrence of z; in positive
(resp., negative) polarity.

An LPB where a; = 1 or a; = 0 for all ¢ € [1..m] is called cardinality
constraint (e.g. for m = 4: 1xq + 0z + lzz + 0x4 > 1, short 21 + 23 > 1).

Note that I; +...+1,, > 1 corresponds to disjunction and l1 + ...+ 1, > m
to conjunction.

A CNF is a formula of the form ¢; A ... A ¢, where each clause ¢; is a
disjunction of literals. A DNF is defined dually; a conjunction of literals is called
(dual) clause. Formally, CNFs and DNFs are sets of sets of literals, i.e. the order
of clauses or the order of literals within a clause are insignificant. For DNF's and
CNFs, we assume without loss of generality that no clause is a subset of another
clause (the latter clause would be redundant since it is subsumed). Given a CNF,
the dual DNF is obtained by swapping A and V. Any Boolean function can be
represented by a DNF or CNF [12].

An assignment o is a function {z1, ..., %} — Bool. The notion o satisfies
an LPB [is defined as expected [6].

3 Inclusion Results

The results of this section are not difficult but provide some useful insights into
the expressiveness of an LPB or cardinality constraint.
Following [11], we define monotone functions as follows.

Definition 3.1. A Boolean function is monotone (unate [4]) if it can be writ-
ten as V, A-combination of literals, where each variable occurs in only one polar-
ity. A monotone function is isotone if all variables appear with positive polarity.

In this section, we assume that each variable has positive polarity. This is
no loss of generality since the polarity of a particular variable is an issue that is
orthogonal to the inclusion results of this section: each monotone function has
2™ variants obtained by modifying the polarity of each variable.

51

We say that assignment o minimally satisfies the LPB I if o satisfies I and
any assignment obtained from ¢ by changing some variable of I from true to
false does not satisfy I. We say that a dual clause corresponds to an assignment
if it consists of the variables assigned true by o.

Proposition 3.2. An LPB I represents the DNF that consists of exactly those
clauses that correspond to assignments that minimally fulfill 1.

We now give the inclusion results.

Lemma 3.3. Each LPB represents a monotone function. For m > 4, there is
at least one monotone function not represented by any LPB. For m < 3, each
monotone function can be represented as LPB.

Lemma 3.4. Every cardinality constraint is an LPB. For m > 3, there is at least
one LPB not expressible as cardinality constraint. For m < 2, each monotone
function can be represented as a cardinality constraint.

4 Compactness of LPB Representations

4.1 Maximally Compact LPB Representations

Here, we consider the case that an LPB representation is exponentially more
compact than a CNF or DNF representation. More precisely, encoding one car-
dinality constraint as CNF can entail an exponential blowup in formula size
(not considering encodings involving auxiliary variables, encodings which are
not equivalence preserving). Namely, encoding 1 + ... + z,, > k requires
((mfz)ﬂ) = (™)) clauses of length m — k + 1 as CNF [2] and (7}) clauses
of length k£ as DNF (in [6], this is said for CNF but in fact it should be DNF).
Note that (|7,) > 2"/2.

In addition, one can show that the blowup when encoding an LPB as CNF
or DNF is not worse. That is to say, while there are obviously DNF's that can
be expressed by an LPB but not by a cardinality constraint, an LPB cannot,
in general, express bigger DNF's than a cardinality constraint can. This result is
omitted here for space reasons.

4.2 Non-compact LPB Representations

While the focus so far has been to see which Boolean functions can be represented
as a single LPB, the ultimate goal must be to represent any Boolean function
as a set of LPBs that is as small as possible.

Trivially, the LPB representation is at least as compact as a DNF or CNF
representation since l1 V. ..Vl,, can be written as l1+...+1,, > 1l and [A... Al
as 1 + ...+ xy, > m (if one neglects the space taken by “>m” or “> 17).

Here we show that there are Boolean functions for which the LPB representa-
tion is not more compact than the CNF or DNF representation. We believe that

52

to be interesting, this statement must be strengthened: we show that there is a
class of Boolean functions for which the minimal CNF or DNF representation
has an exponential (in m) number of clauses and for which the representation
as LPB set has the same number of LPBs.

Since one LPB can only represent a monotone function, the most straightfor-
ward idea is to use here the most “un-monotone” Boolean functions that exist,
i.e., the functions for which any flipping of an argument will always flip the re-

sult. These are the functions denoted using @ and «: the formula @ie[l_m] x4
is true iff an odd number of variables from w1, ...,z is true, and < ;c[1_mm2; 18
true iff an even number of variables from x1, ..., x,, is true. It is rather straight-

forward to show that for these functions, an LPB representation saves nothing.
We omit the formal statement here.

Much less obvious, we now show the desired result for a class of monotone
functions.

To simplify the exposition, we assume that m is an even number, and we
divide the variables into two equally sized subsets, which can be denoted most
easily by distinguishing the variables with even index from the ones with odd
index.

We take as starting point a class of Boolean functions for which the gain
of compactness in using an LPB instead of a DNF representation is maximal:
the cardinality constraints z1 + ... + x,, > m/2, see Subsec. 4.1. The DNF
representation has (m"/LQ) clauses of length m/2. Now we remove half of the dual
clauses of this DNF. This is of course still an exponential number in m, and
it turns out that the corresponding function cannot be represented any more
compactly as disjunction of LPBs.

Lemma 4.1. Consider variables x1, ..., 2., and let @ be the disjunction of all

dual clauses of the form x;, A ... Axz; ., such that Z;n:/f i; = 0 mod 2, i.e.,
@ has (m’%)/2 clauses of length m/2. Then @ requires (m"/LQ)/Z LPBs of m/2

variables to be represented as disjunction of LPBs.

Proof. The DNF @ corresponds to a disjunction of LPBs in the obvious way. This
disjunction contains exactly one LPB for each assignment making true exactly
a set of variables z;,,...,; , with Z;n:/f i; =0 mod 2.

We now show that there cannot be an LPB representation with fewer LPBs.
Suppose an LPB T is true for two different assignments making true exactly all
x; with ¢ € K and all z; with j € J, respectively, where K, J C [1..m] are index
sets of m/2 elements each such that YK = 0 mod 2 and) ,J = 0 mod 2.
Since there are m/2 variables with even and the same number with odd index,
it cannot be the case that both K, J contain only even indices or that both K, J
contain only odd indices. Thus there exist i € K,j € J with different parity.
W.lo.g. assume that a; > a; (recall that a denotes the coefficients of LPB I).
Then the assignment making true exactly all x; with I € JU{i}\ {j} is a further
assignment that fulfils 7. But >, JU{i}\ {j} =1 mod 2 and hence I cannot be
part of a disjunction of LPBs representing &. a

53

5 Duality

We now return to the question of what functions can be represented by a single
LPB. We show that if a DNF can be represented as an LPB, then the dual CNF
can also be represented as an LPB, and the two LPBs are closely related.

As in Sec. 3, we assume that each variable has positive polarity.

Theorem 5.1. If a DNF can be represented by an LPB I = a1x1+. . .+ amTm >
d, then the dual CNF is represented by the LPB a1x1 +. ..+ amTm > Z:il a; +
1 —d, and vice versa.

Proof. Fora CNF @ =ciA...AcporaDNF @ =c;V...Vcy,, for any ¢, we call
the set of variable indices occurring in c; a horizontal index set of @. Moreover,
we call any set V' C [1..m] such that Vj € [1..n]. 3z; € ¢;. i € V holds a vertical
index set of P.

Assume now the DNF & = ¢; V...V ¢, is represented by I = ayx1 + ...+
AmTm > d. If we make all the variables in one c; true, then @ must be true. If we
make all the variables in a vertical index set false, then @ must be false. Hence
for all horizontal index sets H and all vertical index sets V/, it must hold that:

Z%‘Zd and Zai <d (3)
ieH gV

Let @' be the CNF dual to @. Note that &, &' have the same horizontal and
vertical index sets. If we make all the variables in one ¢; false, then @' must be
false. If we make all the variables in a vertical index set true, then ¢’ must be
true. So if I' = ajz1 + ...al,xm > d is an LPB representing ¢, then for all
horizontal index sets H and all vertical index sets V, it must hold that:

Z a; <d and Z a; > d' (4)
i¢H i€V

We show that by setting a} = a; for i € [1.m] and &’ = >/" a; + 1 — d, (4) is
fulfilled and thus I’ is indeed an LPB representing &’.
Let H be an arbitrary horizontal index set of @. Then we have

Zaz>d:>2a7>d—1:>0<2a1—|—1—d:>2a7<Za7—|—1
i€H i€EH i€H i¢H

thus the first inequality of (4) holds. Now let V' be an arbitrary vertical index
set of @. Then we have

Zal<d:>2al<d—l:>0>Zal+1—d:2al>Zal+1

gV gV ¢V i€V

thus the second inequality of (4) holds.
The proof of the converse is analogous. a

54

Note the border cases: ajx1 + ... + am@m > > a; represents a conjunction
(of literals), a1x1 + ... + amxy > 1 represents a disjunction.

Ezample 5.2. Consider 5x1 + 229 + 23 + 2x4 > i for ¢ € [1..11]. Note first that
for © = 1,2 the represented function is the same, and the dual of that function
is represented by setting ¢ = 11,10. Similarly one has i = 3,4 vs. i = 9,8. For
i =5, the DNF is x1 V (2 A 23 A 24), and the dual CNF 1 A (22 V 23 V x4) is
represented setting ¢ = 7. For ¢ = 6, the LPB represents (z1 A x2) V (x1 A x3) V
(x1 Axq)V (z2 Axg Axy). According to Thm. 5.1, since 12 — 6 = 6, the dual CNF
is represented by the same LPB, which means that the CNF is equivalent to its
dual. This can easily be confirmed.

6 Representing a DNF as LPB

A reader coming from a SAT solving background might object to assuming a
DNF as input, since satisfiability solving of DNFs is trivial. However, any results
of this section can be applied to CNF's rather than DNF's using Sec. 5. As before,
we assume that each variable has positive polarity.

By Prop. 3.2, there is a naive semi-decision procedure for the problem of
converting a DNF to the LPB it represents, involving enumeration of all LPBs.
In this section we want to see if one can do better.

6.1 Determining the Order of Coefficients

Given a DNF @, one can determine a size order of the potential coefficients of
an LPB representing ¢. That is to say, if & can be represented as LPB at all,
then the coefficients must respect this order.

The following notion is useful for reasoning about the structure of a formula.

Definition 6.1. Variables x and y are symmetric in @ if @ is equivalent to the
formula obtained by exchanging = and y. A set of variables X is symmetric in
@ if each pair is symmetric in @.

Since the clause order and the order within a clause of a DNF or CNF is
insignificant, symmetry is a straightforward syntactic property.
The following lemma relates symmetric variables with identical coeflicients.

Lemma 6.2. If LPB I = a1z + ... + amz, > d represents a DNF &, then
a; = aj, implies that x;, x} are symmetric in @; moreover, there exists an LPB
I' =djz1+ ...+ a,xm > d representing @ such that symmetry of z;, 2y in @
implies a} = a},.

For example, 1 V 22 can be represented by 2x1 + 22 > 1 or &1 + x5 > 1.

We want to measure how often a variable occurs in a DNF, taking the length
of the clauses into account. For this it is useful to consider multisets of natural
numbers. We write multisets as {...J}. We refrain from an exact formalisation,
which is a technicality.

55

Definition 6.3. Let A, B be two multisets of numbers. We write B < A if B
is obtained from A as follows: for each occurrence of a number n in A, either
leave this occurrence in B, or replace it by an arbitrary (possibly 0) number of
occurrences of numbers > n. We write B < A if B < A and A £ B.

Ezample 6.4. We have {2,2,2,2]} > {2,2,2]} - {2,2,3]} >~ {2,3]}.

Note that {2,2,3]} > {2, 3]} can be established in two ways: removing one
occurrence of 2 from {2,2, 3]}, or removing the occurrence of 3 from {2,2, 3]}
and replacing one occurrence of 2 from {2, 2, 3]} by 3.

Definition 6.5. For a DNF &, the multiset OP(®, x) is the occurrence pat-
tern of x if OP(®,z) has an occurrence of n for each clause of length n in @
that contains x.

Ezample 6.6. Consider @ = (x1 Ax2)V (x1Ax3)V (21 Aza)V (21 Axs)V (22 Axg)V
(x2 Axq) V (3 A g Axs). The occurrence patterns are OP(P, z1) = {2,2, 2, 2]},
OP(D,x2) = {2,2,2]}, OP(P,x3) = OP(P,x4) = {2,2,3]}, and OP(P,x5) =
{2, 3]}. @ can be represented by 4x1 + 3z + 223 + 224 + x5 > 5.

The next lemma says that the coefficients of an LPB representing a DNF
must correspond to the order given by the occurrence patterns.

Lemma 6.7. Let @ be a DNF represented by the LPB I = ayz1+. ..+ amTm >
d. Then a; > ay, implies OP(®, z;) = OP(®, x1); moreover, there exists an LPB
I' =diz1 + ...+ al,xm > d representing @ such that OP(P,x;) = OP(P, xy)
implies a} = a},.

Proof. Without loss of generality assume a; > ... > a,,, and consider some
x;, v with @ < k, i.e. a; > ar. We compare OP(®, x;) and OP (P, xy,).

For each clause of length n in @ that contains x; and xj, we have an occur-
rence of n in OP (P, z;) and a uniquely matching occurrence of n in OP (P, zy).

For each clause of length n in @ that contains x;, and for which replacing x;
with zj, gives another clause in @, we have an occurrence of n in OP(®, z;) and
a uniquely matching occurrence of n in OP(®,).

Now consider a clause of length n in @ that contains x;, and for which re-
placing z; with x does not give another clause in @ (the reason for this must
be that the corresponding assignment does not fulfill I). For such a clause, re-
placing x; with xj plus additional variables may give a clause in @, in which
case the occurrence of n in OP(®, z;) is mapped to one or more occurrences of
numbers > n in OP(®, xy) (note however that conversely, an occurrence of such
a number in OP(®,x) is not necessarily uniquely mapped to the occurrence
of n in OP(®,x;)). Or it may be the case that no way of replacing z; with xy
plus additional variables gives a clause in @, in which case the occurrence of n
in OP(®,x;) is mapped to 0 occurrences of numbers > n in OP(®, zy).

Summarising, we have OP(®,x;) = OP(®P, xy), showing the first statement.

In particular, if there exists a clause of length n in @ that contains x;, and for
which replacing x; with x; does not give another clause in @, then OP(®,z;) >

56

OP(®, xy). Therefore OP(®,x;) = OP(®P,x;) implies that for each clause of
length n in @ that contains x;, swapping x; with zj also gives a clause in @. l.e.,
x; and x, are symmetric. Hence an LPB I’ as required exists by Lemma 6.2. O

Ezample 6.8. Consider (x1 Ax2)V (x1 Axs)V (x1 Axg) V (z1 Axs) V (1 Axg) V
(xaANx3)V (xa Axg) V(T2 Axs) V (xa Axg) V (x3 Axg As) V (23 Azg Axg). The
following picture illustrates the occurrence patterns of x; and x5, and thereby
all four cases of the proof of Lemma 6.7:

X : xr1 N\ Z5 x1 N\ Zo xr1 N\ X3 1 N\ Zyg 1 N\ Zg
Ts - 1 N\ T5 To N\ Ts T3 NTg N\ T5

The crucial point is the following: it is not possible that a clause containing x
is mapped to a shorter clause containing x5, since a1 > as.

Occurrence patterns capture in which ways replacing one variable in a clause
of @ yields or does not yield another clause of @. In Ex. 6.6, OP(®,x1) >
OP(®, x9) reflects that replacing x1 by z2 does not always yield a clause of .

The following is a corollary of Lemmas 6.2 and 6.7.

Corollary 6.9. If the DNF & is represented by an LPB I, then @ is also repre-
sentable by an LPB such that x;, z; are symmetric in @ iff z;, x; have identical
occurrence patterns iff z;, z; have identical coefficients.

The results so far can be used to make statements about which DNFs can
definitely not be represented as a single LPB. For example, it has been said
that a single LPB can express an implication [6]. In [7], implications of the
form y — (1 A x2) are expressed as LPB. However, a simple implication like
(x1Vaa) — (y1 Ayz) is beyond what can be expressed by a single LPB. We omit
the general statement of this for space reasons.

6.2 Computing an LPB Recursively

We aim for an algorithm that given a DNF & finds an LPB representing & if
possible. By Lemma 6.7 we can use the occurrence patterns to establish the rela-
tive order of the coefficients. Assume the numbering of the variables is such that
we have OP(P,x1) = ... = OP(®,x,,). Consider now the set X = {x1,...,2;}
such that OP(®,z1) = ... = OP(®,x;) (=: OP(®,X)). It might be that [= 1,
which corresponds to the intuitive explanation in the introduction. If X is not
symmetric in @, we know by Cor. 6.9 that & cannot be represented as LPB and
we can stop. Otherwise, we partition ¢ according to how many variables from X
each clause contains. We then remove the variables from X from each clause and
solve the problem of finding an LPB for each partitition recursively. It turns out
that the LPB for @ can be obtained by combining the LPBs for the subproblems,
although it is not obvious that this combination is an effective operation.

57

Definition 6.10. Given a DNF & and a subset X of its variables, we denote
by Cut(®, X, k) the disjunction of clauses from @ containing exactly k variables
from X, with those variables removed.

Ezample 6.11. Let & = (xa Axg Axq)V (w2 Axs)V (21 Axa) V (x1 Axz Axy) and
X = {x1}. Then Cut(®,X,0) = (x2 Axg Azq)V (2 Axs) and Cut(P, X, 1) =
o V (£C3 A\ {E4).

We illustrate our way of proceeding by giving examples.

Ezample 6.12. Consider the DNF @ = (z1Ax2)V(x1Az3)V(x1Az4)V (T2 AT3ATY)
and X = {x1}. Then Cut(P, X,0) = o AxsAxy, represented by xo+x3+ 14 > 3.
Moreover, Cut(®, X,1) = xo V 23 V x4, represented by zo + x3 + 24 > 1.

Since the coefficients of the two LPBs agree, it turns out that @ can be
represented by 2x1 + x2 + x3 + 4 > 3. The coefficient of x; is given by the
difference of the two thresholds, i.e. 3 — 1.

In the following example, X contains more than one variable.

Ezample 6.13. Consider & = (z1 A x2) V (x1 A x3 Axg) V (x2 A x3 A 24) and
X = {x1,22}. We have Cut(P,X,0) = false, represented by z3 + x4 > 4,
Cut(®,X,1) = x3 A x4, represented by x3 + x4 > 2, and Cut(P, X,2) = true,
represented by x3+x4 > 0. The DNF @ is represented by 2z1 +2x2+x3+x4 > 4.
The coefficient of x1, x5 is given by 4 —2 = 2—0 = 2 (we say that the thresholds
are equidistant).

The previous example shows where the problem for an effective procedure
of combining the LPBs lies: for each subproblem, the LPBs are not always the
simplest ones; one has to be “smart” to find LPBs that agree in their coefficients.

We now give the theorem.

Theorem 6.14. Let & be a DNF in variables x1,...,x, and suppose X =
{z1,..., 2} are symmetric variables such that OP(®, X) is maximal w.r.t. < in
@. Then @ is represented by an LPB a121+. ..+ apmTm > d, where a; = ... = qy,
iff for all k € [0..l], the DNF Cut(®, X, k) is represented by ajt1241 + ... +
AmTm > d—k - aq.

Proof. For an assignment o and a set of variables V', we denote by o \ V' the
assignment that is undefined on V' and else equal to 0. We denote by o U {V
true} the assignment that maps all variables of V to true and is else equal to
o. For a clause ¢, we denote by ¢\ V' the clause obtained from ¢ by deleting the
variables in V.

Since the variables in X are symmetric, the following holds:

If c € Cut(P, X, k), then for every V C X with #V =k, cUV € d. (5)

Throughout, we use Prop. 3.2.

“<”: We assume that each Cut(®, X, k) is represented by aj412141 + ... +
amTm > d — k- a1, and show that the assignments minimally fulfilling a;x; +
...+ amz, > d correspond exactly to the clauses of @.

58

a) Consider an assignment ¢ that minimally fulfils a1z1 + ... + apmz, > d and
makes exactly k variables from X true, say, the set V' C X. Let ¢ be the clause
corresponding to o. Then o \ V minimally fulfils aj;12141 + ... + am@m >
d—k-ay, and hence ¢\ V € Cut(®, X, k). By (5) this implies ¢ € &.

b) Conversely, consider a clause ¢ in ¢ that contains exactly k variables from
X, say the set V' C X. Let o be the assignment that corresponds to ¢. Then
c\V € Cut(P, X, k) and thus o\ V minimally fulfils aj112141 4. . .+ amZm >
d — k - a1, and thus ¢ minimally fulfils a1z1 + ... 4+ amx, > d.

“=": We assume that & is represented by a1x1 + ...+ amxym > d and show
that for each k the assignments minimally fulfilling a;112141 + ... + amTm >
d — k - ay correspond exactly to the clauses of Cut(®, X, k).

¢) For arbitrary k € [1..1], let o be an assignment that minimally fulfils ;1241
4+ ...+ amTm > d—k-a; and c the clause corresponding to o. Then for
any V C X with #V =k, it holds that o U{V + true} fulfils ayz1 + ... +
AmTm > d, and since a1 = ... = a; > a1 > ... > Gm, 0 U{V — true}
fulfils a121 + ... + amoTm > d minimally and hence ¢ UV € & and hence
c € Cut(®,X, k).

d) Conversely, consider a clause ¢ € Cut(®, X, k) and let o be the assignment
corresponding to ¢. Then by (5), for any V C X with #V = k, we have that
cUV € & and thus o U{V — true} is an assignment that minimally fulfils
a121+. ..+ amTy > d, and thus ¢ minimally fulfils aj4 12141+ . . . + @mTm >
d—k-a. O

Unfortunately, Thm. 6.14 does not immediately dictate an algorithm for
deciding whether a DNF can be represented as LPB and if yes, computing the
LPB. The reason is that a DNF might be represented by alternative LPBs, and
so even if the LPBs computed recursively do not have agreeing coefficients and
equidistant thresholds, it might be possible to find alternative LPBs for which
this is the case, a process we call unification of LPBs (see Ex. 6.13).

The unification problem can be divided into the problems of making the
coefficients agree and making the thresholds equidistant. Concerning the second
problem, the idea is to record, for each LPB, to what extent its threshold can
be shifted without changing the meaning. We then try to shift the thresholds of
the LPBs to be unified to make the thresholds equidistant. We have some formal
statements solving this problem, but in this workshop paper, we prefer to focus
on the first problem, for which we have no complete solution yet.

6.3 Making Coefficients Agree

Some adaptations of LPBs are straightforward: disjunctions and conjunctions,
true, and false, can be represented using arbitrary coefficients and choosing d as
mina;, »_ a;, some number < 0, some number > > a;, respectively.

We have the following thesis for how unification of several LPBs works, which
we have confirmed on a dozen examples: if the coefficients of several LPBs can

59

be made to agree, then the coefficients of the resulting LPB can be obtained
by a linear combination of the individual LPBs. Formally, given LPBs I* =

afry + ...+ akx, > d*, for k € [0.0], if ay,...,a, exist such that each I* is
equivalent to I'’* = a1z1 + ... + amxm > d'F, then a1, ..., am,d°,...,d" can be
chosen so that there are numbers p°, ..., u! such that for all j € [1..m], we have

a; = uoag +...+ ulaé». This will be the main focus of our future work.

Ezxample 6.15. Consider @ represented by 7x1+6xo+4xs+4xs+3x5+3x6+3T7 >
15. It turns out that the minimal representation of Cut(®, z1,0)is I® = 2zo+x3+
T4+x5+x6+27 > 5 and that of Cut(®,z1,1) is I'' = 4wy +3x3+3w4+225+ 226+
2x7 > 6. There are alternative LPBs I'0 = 619 +4x3+424+ 325+ 3x6+ 327 > 15,
I'' = 69 + 425 + 424 + 325 + 326 + 327 > 8, and so Thm. 6.14 is applicable.
Note that ths(I"°) = ths(I"') = 1-lhs(I°) + 1 - lhs(I*).

In Ex. 6.15, for I we have a3z = ... = a7, whereas for I' we have a3 = a4 #
as = ag = ay. Generally, given two subproblems Cut(®, X, k), Cut(®, X, k'), it
can happen that we have two variable sets Y, Z with OP(Cut(®,X,k),Y) #
OP(Cut(®,X, k), Z) while OP(Cut(®,X,k'),Y) = OP(Cut(®, X, k'), Z). That
is to say, one subproblem says: Y, Z should have different coefficients, the other
says: Y, Z should have the same coefficient.

This raises the question: how different or how similar must coefficients be?
The following lemma is one key to the answer.

Lemma 6.16. Let & = (\;c;, i Ac)V (A;cyz, wiAc) V... If @ is representable
as LPB I =ajz1 + ...+ amz, > d, then the following hold:

Zai>2ai—{r61(i]r21ai and Zai>2ai—£r€15r11ai. (6)

i€Jy i€Jo i€ Js i€Jy

Proof. We write J. for the set of variable indices in ¢. Then, since /\ieJ1 T ANce
and A\;c s, ¥i A c are clauses of @, the following hold

ZieJcai—l—ZJlai2d>EieJcai—Fleai—minieJlai
ZieJCai—l—Zbai2d>ZieJCai—i—Zbai—miniEhai.

These imply the result. ad

The following two lemmas are consequences. Both can be useful to show how
coefficients must be modified, or show that such a modification is impossible.

Lemma 6.17. Let @ be a DNF and Y and X be sets of symmetric variables of
it. Suppose that @ contains clauses cAcx, cAcy with cx C X, cy C Y, and that
@ can be represented as an LPB I = ayx1 + ... a2z, > d, where all variables
in X (resp., Y) have the same coefficient ax (resp., ay). Then (assuming for
convenience that division by 0 gives co)

ley|=1 ax ey |
lex| ay lex|—1

(7)

60

Example 6.18. Let @ be the DNF such that Cut(®, z1,0) is represented by 10 =
3wo + 33 + 3x4 + 25 + 276 + 277 + 228 > 9 and Cut(P,z1,1) by I' = 4z +
dxs + 4xy + x5 + 6 + 7 + xg > 4. Inspecting those DNFs shows by Lemma
6.17 that Cut(®,x1,0) requires Z—i < 2%1 and Cut(®P, 1, 1) requires 4;11 < Z—i

which is a contradiction, showing that I° and I' cannot be unified in the sense
of Thm. 6.14 and so @ cannot be represented by a single LPB.

Lemma 6.19. Let & be a DNF and X = {z1,...,2;} a set of symmetric vari-
ables of it. Suppose @ is represented by an LPB I with a; > ... > a;. Then for
each k such that @ contains a clause with exactly k variables from X, we have
that Eé:lfk 41 @i > Zi:ll a; (in words, the sum of the k smallest coefficients
must be greater than the sum of the k — 1 greatest coefficients).

Note that the cases k = 1 and k = [are genuine special cases: Zé:l a; >
2?21 a; and Zé:l a; > Zf;i a; are tautologies and thus nothing interesting can
be derived from them. However, if @ contains some clause of at least 2 and at
most [— 1 variables from X, we can conclude a;_1 + a; > a; which is quite a
strong statement.

Consider Ex. 6.15. For Cut(®, {z1},0), one must find ag, as such that 3a5 >
2as3. The coefficients of I', a5 = 2 and as = 3, differ too much. But a5 = 3 and
as =4 of I'°, I'" are close enough.

So we know some points about how unification of LPBs works, and we can
use these to compute LPBs in a more or less ad-hoc way, but we have not solved
the problem of making coefficients agree, in general.

7 Conclusion

Linear pseudo-Boolean constraints have attracted interest because they can be
used to represent Boolean functions more compactly than CNFs or DNFs, and
because techniques applied in CNF-based propositional satisfiability solving can
be generalised to LPBs, which can be more efficient than solving a problem based
on a CNF representation [1,4-7]. What is implicit is that there is a problem from
some application domain, which has a natural encoding as LPB, and for which
the CNF encoding would be larger. There are mainly three points that gave us
the impression that the theoretical understanding of LPBs could be improved.

Firstly, several authors have emphasised that an LPB representation of a
function can be exponentially more concise than a CNF (or DNF) representation
[1,4-7]. However, it is shown in fact that cardinality constraints already can be
exponentially more concise than a CNF. Also the examples are mostly about
cardinality constraints rather than full LPBs. Thus it is not argued convincingly
that the additional expressive power that LPBs have compared to cardinality
constraints is useful.

Secondly, it has been noted en passant that a single LPB can be used to
express an implication [6], but it remains unclear what kind of implications can
or cannot be expressed. In fact, an implication like (z1 V z3) — (y1 A y2) cannot
be expressed.

61

But most importantly, since an LPB representation can be more compact
than a CNF representation, could one not apply the approach of [1,4-7] to
problems that are naturally encoded as CNF, i.e. could one not convert a CNF
to an LPB and then apply [1,4-7]7 And if a CNF cannot be represented as a
single LPB, can one find a relatively small set of LPBs that represents the CNF?
As became apparent in Subsec. 6.3, our answer is not conclusive, but it is here
that we see the potential for practical application of our work.

We add some more evidence to the first point above. Barth [2] mentions that
LPBs arise in artificial intelligence applications [3]. Since he used a solver that
could only deal with cardinality constraints, he proposes a transformation of
LPBs to cardinality constraints.

In [7], LPBs are used for bounded model checking. At one point, an LPB of
the form z1 + x2 + 2y > 2 (which is not a cardinality constraint) is used.

Apart from that, the above works say little about where the problem in-
stances come from, and if anything, then these are in fact cardinality constraints
rather than LPBs. In [1], problems Min-Cover, Max-SAT and MAX-ONEs are
mentioned. E.g., Max-SAT is the problem of finding a variable assignment that
maximises the number of satisfied clauses of an unsatisfiable SAT instance. Fur-
thermore, applications from design automation [4], the pigeonhole problem [5]
and gate level netlists [6] are mentioned as applications.

However, we are not suggesting that our approach of converting a CNF or
DNF to an LPB is the only way to go. If for a problem domain, there is a
natural direct translation to an LPB not going via CNF or DNF, then this
should definitely be considered.

We summarise our contributions to the understanding of LPBs. We demon-
strated that the functions expressible as one LPB constraint are a strict subset
of the monotone functions. We showed that in some cases an LPB representation
can be exponentially more compact than a CNF or DNF representation, while
in other cases the LPB representation has exponential size just like the CNF or
DNF representation. We showed that the problems of encoding a DNF or a CNF
as LPB have a very simple duality. Finally, we outlined a recursive procedure
for computing an LPB representation for a DNF, where the link currently still
missing is the problem of making coefficients agree.

Acknowledgements 1 thank Markus Behle, Martin Frénzle, Marc Herbstritt,
Christian Herde, Bernhard Nebel, and the other colleagues from the AVACS
project, for useful discussions.

References

1. Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic
ILP versus specialized 0-1 ILP: an update. In Lawrence T. Pileggi and Andreas
Kuehlmann, editors, Proceedings of the 2002 IEEE/ACM International Conference
on Computer-aided Design, pages 450-457. ACM, 2002.

62

10.

11.

12.

13.

Peter Barth. Linear 0-1 inequalities and extended clauses. In Andrei Voronkov,
editor, Proceedings of the 4th International Conference on Logic Programming and
Automated Reasoning, volume 698 of LNCS, pages 40-51. Springer-Verlag, 1993.
Peter Barth and Alexander Bockmayr. Solving 0-1 problems in CLP(PB). In
Proceedings of the 9th Conference on Artficial Intelligence for Applications. IEEE,
1993.

. Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver.

In Proceedings of the 40th Design Automation Conference, pages 830-835. ACM,
2003.

Heidi E. Dixon and Matthew L. Ginsberg. Combining satisfiability techniques from
AT and OR. The Knowledge Engineering Review, 15:31-45, 2000.

Martin Frénzle and Christian Herde. Efficient SAT engines for concise logics:
Accelerating proof search for zero-one linear constraint systems. In Moshe Y. Vardi
and Andrei Voronkov, editors, Proceedings of the 10th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, volume 2850 of
LNCS, pages 302-316. Springer-Verlag, 2003.

Martin Frénzle and Christian Herde. Hysat: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design, 2006. To
appear.

Joao P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506-521, 1999.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, pages 530-535. ACM, 2001.

Jan-Georg Smaus. Representing Boolean functions as linear pseudo-Boolean con-
straints. Technical Report 227, Institut fiir Informatik, Universitat Freiburg, 2006.
Vetle Ingvald Torvik and E. Trintaphyllou. Inference of monotone Boolean func-
tions. In Chris A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Opti-
mization, pages 472-480. Kluwer Academic Publishers, 2001.

Ingo Wegener. The Complezity of Boolean Functions. Wiley & Sons,
http://eccc.uni-trier.de/eccc-local/ECCC-Books/wegener_book_readme.html,
1987.

Hantao Zhang. SATO: An efficient propositional prover. In William McCune,
editor, Proceedings of the 14th International Conference on Automated Deduction,
volume 1249 of LNCS, pages 272-275. Springer-Verlag, 1997.

63

[blank page]

64

Dealing with SAT and CSPs in a single framework

Belaid BENHAMOU, Lionel PARIS, and Pierre SIEGEL

Université de Provence,
LSIS - UMR CNRS 6168,
Marseille, FRANCE,
email: {Belaid.Benhamou,Lionel.Paris,Pierre.Siegel} @cmi.univ-mrs.fr

Abstract. We investigate in this work a generalization of the known CNF repre-
sentation which allows an efficient Boolean encoding for n-ary CSPs. We show that
the space complexity of the Boolean encoding is identical to the one of the classical
CSP representation and introduce a new inference rule whose application until satu-
ration achieves arc-consistency in a linear time complexity for n-ary CSPs expressed
in the Boolean encoding. Two enumerative methods for the Boolean encoding are
studied: the first one (equivalent to MAC in CSPs) maintains full arc-consistency on
each node of the search tree while the second (equivalent to FC in CSPs) performs
partial arc-consistency on each node. Both methods are experimented and com-
pared on some instances of the Ramsey problem and randomly generated 3/4-ary
CSPs and promising results are obtained.

1 Introduction

Constraint solving is a well known framework in artificial intelligence. Mainly, two ap-
proaches are well used: the propositional calculus holding the satisfiability problem (SAT)
and the formalism of discrete constraint satisfaction problems (CSPs).

Methods to solve the SAT problem in propositional calculus are former than the CSP
ones. They have been widely studied for many years since the Davis and Putnam (DP
for abbreviation) procedure [Davis and Putnam, 1960] was introduced, and are still a do-
main of investigation of a large community of researchers. Several improvements of the
DP method have been provided recently [Silva and Sakallah, 1996], [Malik et al., 2001]
and [Goldberg and Novikov, 2002]. These new methods are able to solve large scale of
SAT instances and are used to tackle real applications. The advantage of SAT methods
is their flexibility to solve any constraints given in the CNF ! form. They are not sen-
sitive to constraint arity” as it is often the case for CSP methods. One drawback of the
CNF formulation is the loss of the problem structure which is well represented in CSP
formalism.

The discrete CSP formalism was introduced by Montanari in 1974 [Montanari, 1974].
The asset of this formalism is its capability to express the problem and explicitly repre-
sent its structure as a graph or a hyper-graph. This structure helps to achieve constraint
propagation and to provide heuristics which render CSP resolution methods efficient. In

! A CNF formula is a conjunction of disjunction of literals
2 Every SAT solver can deal with any clause length with the same efficiency, except for binary
clause

65

comparison to the propositional calculus, the CSP resolution methods are sensitive to
constraint arity. Most of the known methods [Haralick and Elliott, 1980] apply on binary 3
CSPs. This makes a considerable restriction since most of the real problems (see CSPlib*)
need constraints of unspecified arity for their natural formulation. To circumvent this re-
striction problem, some works provide methods to deal with more general constraints
[Bessiere et al., 2002], but this approach is still not well investigated.

Both SAT and CSP formulations are closely linked. Several works on transformations
of binary CSP to SAT forms exist [Kleer, 1989]. The transformation in [Kasif, 1990] is
improved in [Gent, 2002] and generalized to non-binary CSPs in [Bessiere et al., 2003].
Transformations of a SAT form to a CSP form are described in [Bennaceur, 1996, Walsh, 2000].
Unfortunately, most of the transformations from CSP to SAT result in an overhead of
space and lose the problem structure. Both factors combined may slow the resolution of
the problem. Our aim in this paper is to provide a more general Boolean representation
which includes both the CNF and the CSP formulations and which preserves their ad-
vantages. That is, a representation which does not increase the size of the problem and
which keeps the problem structure. We show particularly how non-binary CSPs are well
expressed in this new formulation and efficiently solved. We propose two enumerative
methods for the general Boolean formulation which are based on the DP procedure. To
enforce constraint propagation we implement a new inference rule which takes advan-
tage of the encoded structure. The application of this rule to the considered problem is
achieved with a linear time complexity. We will show that the saturation of this rule on
the considered problem is equivalent to enforcing arc consistency on the corresponding
CSP. We proved good time complexity to achieve arc consistency for non-binary CSPs.
This allows to maintain efficiently full arc consistency at each node of the search tree.
This makes the basis of the first enumerative method which is equivalent to the known
method MAC [Sabin and Freuder, 1997] in CSP. We also prove that a partial exploita-
tion of this inference rule leads to a second enumerative method which is equivalent to
a forward checking (FC) method for non-binary CSPs. Authors of [Bessiere et al., 2002]
showed that FC is not easy to be generalized for n-ary CSPs, they obtain six versions. In
our encoding, FC is obtained naturally by applying the inference rule to the neighborhood
of the current variable under instantiation.

The rest of the paper is organized as follows: first we recall some background on both
propositional calculus and discrete CSP formalisms. Then we introduce a general nor-
mal form which we use to express both SAT and CSP problems. After that, we define
a new inference rule which we use to show results on arc consistency. We describe two
enumerative algorithms (the FC and MAC versions) based on two different uses of the
introduced inference rule. Next, we give some experiments on both randomly generated
non-binary CSPs and Ramsey problems to show and compare the behaviors of our res-
olution methods. Finally, we summarize some previous related works and conclude the
work.

3 A binary CSP contains only two-arity constraints
* http://csplib.org

66

2 Background

A CNF formula f in propositional logic is a conjunction f = Cy A Cy ... Cj, of clauses.
Each clause C; is itself a disjunction of literals. That is, C; = 1 V 5. ..l,, where each
literal /; is an occurrence of a Boolean variable either in its positive or negative parity.
An interpretation [is a mapping which assigns to each Boolean variable the value true
or false. A clause is satisfied if at least one of its literals [; is given the value frue in the
interpretation I (I[l;] = true). The empty clause is unsatisfiable and is denoted by O. The
formula f is satisfied by I if all its clauses are satisfied by I, thus [is a model of f. A
formula is satisfiable if it admits at least one model, otherwise it is unsatisfiable.

On the other hand a CSP is a statement P = (X, D, C, R) where X = {X1, Xo,..., X,,}
is a set of n variables, D = {D1, Da, ..., D, } is a set of finite domains where D; is the
domain of possible values for X;, C = {C1,Cs,...,Cy,} is a set of m constraints, where
the constraint C; is defined on a subset of variables { X, , X;,, ..., Xi,, } € X. The arity
of the constraint C; is a; and R = {Ry, Ra, ..., R, } is a set of m relations, where R;
is the relation corresponding to the constraint C;. R; contains the permitted combinations
of values for the variables involved in the constraint C’;. A binary CSP is a CSP whose
constraints are all of arity two (binary constraints). A CSP is non-binary if it involves at
least a constraint whose arity is greater than 2 (a n-ary constraint). An instantiation I is
a mapping which assigns each variables X; a value of its domain D;. A constraint C; is
satisfied by the instantiation [if the projection of I on the variables involved in C; is a
tuple of R;. An instantiation I of a CSP P is consistent (or called a solution of P) if it
satisfies all the constraints of P. A CSP P is consistent if it admits at least one solution.
Otherwise P is not consistent. Both propositional satisfiability (SAT) and constraint sat-
isfaction problems (CSPs) are two closely related NP-complete problems. For the sequel
we denote by n the number of variables of the CSP, by m its number of constraints, by a
its maximal constraint arity and by d the size of its largest domain.

Example 1. Let’s consider a simplified form of a car-production problem.
The variables and the variable domains are defined as follows :

Bumper : White

Sliding roof : Red

Hub caps : Pink or Red

Bonnet and Doors : Pink, Red or Black
Body : White, Pink, Red or Black

And the conceptor’s constraints are the following :

— The body must be darker than the bumper,the sliding roof and the Hub caps.
— The doors, the body and the cap must be of the same color.

The constraint network representing the problem is given in Figure 1.

3 An encoding including SAT and CSPs

The idea of translating a CSP into an equivalent SAT form was first introduced by De
kleer in [Kleer, 1989]. He proposed the well known direct encoding and since that Kasif

67

Bumper

Siding Roof

Hub caps

— : Darker than

- : Same color

Fig. 1. The constraint network of the car-producing problem.

[Kasif, 1990] proposed the AC encoding for binary CSPs. More recently Bessiere et al
[Bessiere et al., 2003] generalized the AC encoding to non-binary CSPs. Our approach is
different, it consists in providing a general Boolean form including both CNF (SAT) and
CSP representations, rather than translating CSPs into SAT forms. We describe in this
section, a new Boolean encoding which generalizes the CNF formulation, and show how
n-ary CSPs are naturally represented in an optimal way (no overhead in size in comparison
to the CSP representation) in this encoding.

3.1 The generalized normal form (GNF)

A generalized clause C' is a disjunction of Boolean formulas f; V...V f,, where each f;
is a conjunction of literals, i.e f; = I1 Alo A ... Al,. A formula is in Generalized Normal
Form (GNF) if and only if it is a conjunction of generalized clauses. The semantic of
generalized clauses is trivial: the generalized clause C' is satisfied by an interpretation [
if at least one of its conjunctions f; (i € [1,m]) is given the value frue in I, otherwise
it is falsified by I. A classical clause is a simplified generalized clause where all the
conjunctions f; are reduced to single literals. This proves that GNF is a generalization of
CNF. We show in the sequel that each constraint C; of a given n-ary CSP is represented
by a generalized clause. We reach the optimal size representation by using the cardinality
formulas (+1, L) which means “exactly one literal among those of the list L have to be
assigned the value frue in each model”, to express efficiently that a CSP variable has to
be assigned a single value in its domain. We denote by CGNF the GNF augmented by the
cardinality.

68

3.2 The CGNF encoding for n-ary CSPs

Given an n-ary CSP P = (X, D, C, R), first, we define the set of Boolean variables which
we use in the Boolean representation, and two types of clauses: the domain clauses and
the constraint clauses necessary to encode the domains and respectively the constraints.

— The set of Boolean variables: as in the existing encodings [Kleer, 1989], [Kasif, 1990]
and [Bessiere et al., 2003] we associate a Boolean variable Y,, with each possible
value v of the domain of each variable Y of the CSP. Thus, Y, =true means that
the value v is assigned to the variables Y of the CSP. We need exactly >, |D;]
Boolean variables. The number of Boolean variables is bounded by nd.

— The domain clauses: let Y be a CSP variable and Dy = {vg,v1, ..., v} its domain.
The cardinality formula (£1,Y,, ...Y,,) forces the variable Y to be assigned to only
one value in Dy. We need n cardinality formulas to encode the n variable domains.

— The constraint clauses: each constraint C; of the CSP P is represented by a gen-
eralized clause C¢o, defined as follows: Let R, be the relation corresponding to the
constraint C; involving the set of variables {X,, , X;,,...,X;,}. Each tuple ¢; =
(Vjy s Vjys - - -, 04,) Of Ry is expressed by the conjunction f; = X, AXy, A AXy,,
.If R; contains k tuples ¢1, to, . . . , t; then we introduce the generalized clause C¢, =
fiV fa V...V fi to express the constraint C;. We need m generalized clauses to ex-
press the m constraints of the CSP.

As the domain clauses are encoded in O(nd), the constraint clauses in O(mad®), then
the CGNF encoding of a CSP P is in O(mad® 4+ nd) in the worst case. In fact, it is in
O(mad®) since nd is often negligible. This space complexity is identical to the one of
the original CSP encoding. This justifies the optimality in space of the CGNF encoding.
Authors in [Bessiere et al., 2003] gave a spatial complexity in O(mad®) in the worst case
for the k-AC encoding. As far as we understand, this complexity is rounded and does not
take into account neither the at-least-one nor the at-most-one clauses. This increases the
complexity to O(mad® + nd?).

Example 2. Take the car-producing problem of example 1 :

— We have the following propositional variables :

e Body = By, By, By, By

e Doors = Dy, D,, Dy

e Bonnets = Boy, Bo,, Boy

° ...

— We have two types of clauses :

e The domain clauses :

C'Body = (:I:la By, Bp B, Bb)7
Cpoors = (£1,D, D, Dy) ...

o The constraint clauses : for instance, the constraint linking the Body, the Doors
and the Bonnet is as follows :
CBodyDoorsBonnet = (Bp A Dp A BOp)\/
(BT AND,. A BOT) V (Bb A Dy A BO[))

Now we deal with the correctness and completeness of the CGNF encoding.

69

Definition 1. Let P be a CSP and C its corresponding CGNF encoding. Let I be an
interpretation of C. We define the corresponding equivalent instantiation I,, in the CSP
P as the instantiation verifying the following condition: for all CSP variable X and each
value v of its domain, X = v if and only if I[X,] =true.

Theorem 1. Let P be a CSP, C' its CGNF corresponding encoding, I an interpretation
of the CGNF encoding and I, the corresponding equivalent instantiation of I in the CSP
P. I is a model of C if and only if I, is a solution of the CSP P.

Proof. Let I be a model of C' and I, its corresponding instantiation in P. I satisfies
each clause of C, since it is one of its models. We have to prove that each CSP vari-
able is assigned a single value in I, and I, satisfies all the constraints of . A domain
clause Cp,, = (£1, Xy, Xy, ... Xy,)of C means that one and only one Boolean variable
among {X,, X,, ... X,,} is truein I. By construction X = v in I}, the unity is guaran-
teed since I, is a mapping. Each constraint clause Cc, = f1 V fa V...V f;,, has at least
one f; satisfied in /. This means that the values assigned to the CSP variables involved in
the constraint C; associated to C'¢, form a tuple of the relation R;. Thus, C; is satisfied
by I,, and satisfies all the constraints of P. I}, is a solution of P.

Now, we suppose I, is a solution of P and shall prove that / is a model of C. Because
I, is a solution, each CSP variable X is assigned to a value v of its domain. X = v, then
I[X,] = true and clearly the cardinality formula corresponding to D is satisfied by I.
Beside, each constraint C; of P is satisfied. The projection of I, on the constraint C; re-
sults in a tuple ¢; of the relation Iz;. This implies that the conjunction f; of the constraint
clause C'¢, corresponding to the tuple ¢; is true in I , and the clause C¢; is satisfied by 1.
Thus, I is a model of C.

The CGNF encoding allows an optimal representation of CSPs, however it does not
capture the property of arc consistency which is the key of almost all the enumerative CSP
algorithms. We introduce in the following a simple inference rule which applies on the
CGNF encoding C' of a CSP P and prove that arc consistency is achieved with a linear
complexity by application of the rule on C' until saturation.

4 A new inference rule for the CGNF encoding

The rule is based on the preserved CSP structure represented by both the domain and the
constraint clauses.

4.1 Definition of the inference rule IR

Let P be a CSP, C its CGNF encoding, C¢, a generalized constraint clause, Cp, a
domain clause, L¢ the set of literals appearing in C'c, and L the set of literals of Cp .
If Lc N Lp # () then we infer each negation — X, of a positive literal® appearing in Lp
which does not appear in L. We have the following rule:

IR:if LcNLp #0,X, € Lp and X, ¢ Lo then Cp,, A Cg, F —X,5.

5 The CGNF encoding of a CSP contains only positive literals.
® - denotes logical inference.

70

Example 3. Let’s consider the two following clauses of the car-producing problem :

OBody = (:l:l, Bw Bp Br Bb) and

CBumpe'r‘sBody = (Buw A Bp) V (Buw A BT) V (Buw A Bb)

The application of the rule IR on both clauses infers :~B,,. Thatis, C'ody AC BumpersBody
- By.

Proposition 1. The rule I R is sound (correct).

Proof. Let X, be a literal appearing in Lp but not in Lo and I a model of C, A Cp,.
C¢, is a disjunction of conjunctions f; and each conjunction f; contains one literal of
Lp. At least one of the conjunctions f;, say f; is satisfied by I since I is a model of C¢;.
Thus, there is a literal X,/ (X, # X, since X, ¢ L¢) of f; appearing in Lp, such that
I[X,] =true. Because of the mutual exclusion of of literal of Cp,,, the X, is the single
literal of Lp satisfied by I. Thus, I[-X,,] =true and I is a model of = X,.

4.2 The inference rule and arc-consistency

A CSP P is arc consistent iff all its domains are arc consistent. A domain Dy, is arc
consistent iff for each value v;, of Dx, and for each k-arity constraint C; involving the
variables {Xj,, ..., X, }, there exists a tuple (vj,,...,v;,) € Dx,, X ... x Dx, such
that (v, , vi,, ..., v;,) € R;. We use the inference rule IR on the CGNF encoding C' of
a CSP P to achieve arc-consistency. We show that by applying I R on C' until saturation
(a fixed point is reached) and by propagating each inferred negative literal we maintain
arc-consistency on C'. Since, this operation is based on unit propagation, it can be done in
a linear time complexity.

Proposition 2. Let P be a CSP and C' its CGNF encoding. A value v € Dy is removed
by enforcing arc-consistencyon P iff the negation —Y,, of the corresponding Boolean vari-
able is inferred by application of IR to C.

Proof. Let v be a value of the domain Dy which does not verify arc-consistency. There
is at least one constraint C'; involving Y such that v does not appear in any of the allowed
tuples of the corresponding relation 12;. The Boolean variable Y, does not appear in the
associated constraint clause Cc;, but it appears in the domain clause C'p, associated to
Dy . By applying the the rule I R on both Cp,, and C¢; we infer —Y,.

The proof of the converse can be done in the same way.

Theorem 2. Let P be a CSP and C' its CGNF encoding. The saturation of IR on C' and
the propagation of all inferred literals is equivalent to enforcing arc-consistency on the
original CSP P.

Proof. Is a consequence of proposition 2.

4.3 Arc-consistency by application of IR

To perform arc consistency on C' by applying I R, we need to define some data struc-
tures to implement the inference rule. We suppose that the nd Boolean variables of C' are
encoded by the first integers [1..nd]. We define a table OCC} of size ad for each con-
straint clause C'c;; such that OCC}[i] gives the number of occurrences of the variable 4

71

in Cg,. There is a total of m such tables corresponding to the m constraint clauses. If
OCC;[i] = 0 for some ¢ € {1...nd} and some j € {1...m} then the negation —i of
the Boolean variable ¢ is inferred by I R. This data structure adds to the space complexity
a factor of O(mad). The total space complexity of C' is O(mad® + nd + mad), but the
factors nd and mad are always lower than the mad® factor, and the space complexity of
C remains O(mad®).

The principle of the arc-consistency method consists first in reading the m tables
OCC; to detect the variables i € [1...nd] having a number of occurrences equal to zero
(OCC;[i] = 0). This is achieved by the steps 3 to 9 of algorithm 1 in O(mad), since there
are m tables of size ad. After that we apply unit propagation on the detected variables,
and propagate the effect until saturation (i.e no new variable ¢ having OCCj[i] = 0 is
detected). The procedure of arc-consistency is sketched in Algorithm 1. This procedure
calls the procedure Propagate described in algorithm 2.

Algorithm 1 Arc Consistency
Procedure Arc_consistency
Input: A CGNF instance C

1: var L : list of literals

2. L=0

3: for each constraint clauses Cc; do

4 for each literal s of OCC}; do
5 if OCC}[i] = 0 then

6: addzin L

7: end if

8: end for

9: end for

10: while L # () and O ¢ C do
11: extract! from L

12: propagate (C, [, L)

13: end while

The complexity of the arc consistency procedure is mainly given by the propagation
of the effect of literals of the list L (lines 10 to 13 of algorithm 1). It is easy to see that
in the worst case there will be nd calls to the procedure Propagate. All the propagations
due to the previous calls are performed in O(mad®) in the worst case. Indeed, there are
at most d* conjunctions of « literals for each constraint clause of C'. The total number of
conjunctions treated in line 4 of algorithm 2 can not exceed md® since each considered
conjunction f in line 3 is suppressed in line 4 (f is interpreted to false). As there is a
literals by conjunction f, the total propagation is done in O(mad®). Thus, the complexity
of the arc consistency procedure is O(mad® + mad). But the factor (mad) is necessarily
smaller than mad® and the total complexity is reduced to O(mad®). It is linear w.r.¢ the
size of C.

72

Algorithm 2 Propagate

Procedure Arc_consistency

Input: A CGNF instance C, literal 4, List L
1: if ¢ is not yet assigned then
2: assign 7 the value false

3 for each unassigned conjunction f of C' containing 7 do

4 assign f the value false

5 for each literal j of f such thati # j do

6: withdraw 1 to OCCy[j] {k is the label of the constraint clause containing f}
7 if OCCy[j] = 0 then

8: addjto L

9: end if

10: end for

11: end for

12: end if

5 Two enumerative methods for the CGNF encoding

We study in the following two enumerative methods: the first one (MAC) maintains full
arc consistency during the search while the second (FC) maintains partial arc consistency
as does the classical Forward Checking method in CSPs [Haralick and Elliott, 1980].
Both methods perform Boolean enumeration and simplification. They are based on an
adaptation of the DP procedure to the CGNF encoding.

5.1 The MAC method

MAC starts by a first call to the Arc-consistency algorithm (Figure 1) to verify arc con-
sistency at the root of the search tree. It then calls the procedure Propagate described in
Figure 2 at each node of the search tree to maintain arc consistency during the search.
That is, the mono-literals of each node are inferred and their effects are propagated. The
code of MAC is sketched in Figure 3.

5.2 The FC method

It is easy to obtain from MAC a Forward Checking (FC) algorithm version for the CGNF
encoding. The principle is the same as in MAC except that instead of enforcing full arc-
consistency at each node of the search tree, (FC) does it only on the near neighbors of
the current variable under assignment. This is done by restricting the propagation effect
of the current literal assignment to only the literals of the clauses in which it appears. It
is important to see that finding the FC version in our encoding is trivial, whereas it is not
the case for n-ary CSP where six versions of FC are provided [Bessiere et al., 2002].

5.3 Heuristics for literal choice

Because the CGNF encodings keeps the CSP structure, We can find easily equivalent
heuristics to all the well known CSP variable/value heuristics. For instance, the minimal

73

Algorithm 3 MAC

Procedure MAC

Input: A CGNF instance C'

Output: The satisfiability of the CGNF C
1: Arc consistency(C)
2: if O € C then
3: return unsatisfiable

4: else

5: choose aliteral [€ C

6: if Satisfiable(C, I, true) then

7. return satisfiable

8: elseif Satisfiable(C, [, false) then
9: return satisfiable

10: else

11: return unsatisfiable

12: end if

13: end if

domain heuristic (MD) which consists in choosing during the search the CSP variable
whose domain is the smallest is equivalent to select in the CGNF encoding, a literal ap-
pearing in the shortest domain clause. This heuristic is implemented in both MAC and FC
methods.

6 Experimentations

We experiment both MAC and FC methods and compare their performances on Ramsey
problem, and on 3/4-ary randomly generated CSPs encoded in CGNF. The programs are
written in C', compiled and run on a Windows operating system with a Pentium IV 2.8GHz
processor and 1GB of RAM.

6.1 Ramsey problem

Ramsey problem (see CSPlib) consists in coloring the edges of a complete graph having
n vertices with k colors, such that no monochromatic triangle appears. Tables 2 shows the
results of MAC and FC on some instances of Ramsey problem where £ = 3 and n varies
from 5 to 14. The first column defines the problem: Rn_k denotes a Ramsey instance with
n vertices and k colors, the second and third columns show the number of nodes and the
performances in CPU times of FC respectively MAC augmented by the heuristic (MD)
described previously.

We can see that FC is better in time than MAC for small size instances (n < 6) but
visits more nodes. However, MAC is better than F'C in time and number of visited nodes
when the problem size increases (n > 7). MAC outperforms F'C in most of the cases for
this problem.

74

Algorithm 4 Satisfiable
Function Satisfiable
Input: A CGNF instance C, variable [, Boolean val
Output: Boolean {TRUE or FALSE}
1: var L : list of literals
2. L=0
3: if val = true then
4: assign [the value true
5: Add each literal ¢ # [of the domain clause containing [in L
6.
7
8

while L # () and O ¢ C do
extract ¢ from L
: propagate (C, i, L)
9: end while

10: else

11: repeat

12: Propagate(C,1, L)
13: until L#(@andD ¢ C
14: end if

15: if C = 0 then

16: return TRUE

17: else if O € C then

18: return FALSE

19: else

20: Choose a literal p of C'

21: if Satisfiable(C, p, true) then

22: return TRUE

23: elseif Satisfiable(C, p, false) then
24 return TRUE

25: else

26: return FALSE

27: end if

28: end if

6.2 Random problems

The second class of problems is randomly generated CSPs. We carried experiment on
3/4-ary random CSPs where both the number of CSP variables and the number of values
is 10. Our generator is an adaptation to the CGNF encoding of the Bessiere et al CSP
generator. It uses five parameters: n the number of variables, d the size of the domains,
a the constraint arity, dens the constraint density which is the ratio of the number of
constraint to the maximum number of possible constraints, ¢ the constraint tightness which
is the proportion of the forbidden tuples of each constraints. The random output CSP
instances are given in the CGNF encoding.

Figure 3 (respectively, Figure 4) shows the average curves representing the CPU time
of both MAC and FC, both augmented by the MD heuristic, with respect to a variation
of the tightness on 3-ary (respectively, 4-ary) CSPs. The two curves on the right of Fig-
ure 3 (respectively, Figure 4) are those of MAC and FC corresponding to weak densities:
dens=0,20 for to the curves A (respectively, dens=0.096 for the curves D), the two ones

75

Problem FC + MD MAC + MD
Nodes Times|Nodes Times
R53 12 0s48 us 12 0s85 s
R63 27 0s 231 pus 21 0s 297 ps
R113 237| 0s5039 us| 103| 0s4422 ps
R123 538 0521558 us| 130 05 11564 ps
R133 1210 0528623 us| 164| 059698 us
R14.3 |216491|9 s 872612 ps| 67351 s 752239 us

Fig. 2. Results of MAC and FC on the Ramsey problem

100
FCon B ===

90 N
\\
MAC .G ==

80

70 :

60 :
]

50

CPU Time (sec)

40 i

30 .
i

20 [:

¢

r/ e pER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Constraint Tightness

Fig. 3. Results of MAC and FC on 3-ary CSPs having the densities: A: dens=0,20, B: dens=0,50

and C: dens=0,83.

in the middle are those corresponding to average densities: dens=0,50 for the curves B
(respectively, dens=0.5 for the curves E) and the two ones on the left are those corre-
sponding to high densities: dens=0,83 for the curves C (respectively, dens=0.96 for the
curves F). We can see that the peak of difficulty of the hard region of each problem class
matches with a critical value of the tightness and the hardness increases as the density
increases. The smaller the density is, the greater the corresponding critical tightness is.

We can also see that MAC beats definitely FC on the six classes of problems. These re-
sults seem to compare with those obtained by the generalized FC [Bessiere et al., 2002]

on 3/4-ary CSPs having equivalent parameters (n, d, dens, t).

7 Related works and discussion

We summarize in the following some well known translations of CSPs to SAT and com-

pare their properties.

76

180
FCohD —
MAConD -----
160 A FC.0nE.anux
7t MAC oh E
P FConF —--
MAConF -----

140

120 Rt

100 4

CPU Time (sec)

80 |-t :
Y

60

40

20 4

i : £
ol
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Constraint tightness

Fig. 4. Results of MAC and FC on 4-ary CSPs having the densities: dens=0,096, dens=0,50 and
dens=0,95.

— The direct encoding [Kleer, 1989] is the most used translation of CSPs into SAT. The
basic idea is to associate a Boolean variable X, for each possible instantiation X = v
of the CSP variable X . That is, if I is an interpretation, then /[X,] = true means that
the value v is assigned to the variable X. These Boolean variables will appear in three
types of clauses: the At-least-one clauses, the At-most-one clauses, and the Conflict
clauses. Given a CSP P, its direct encoding has a worst case space complexity of
O(nd + w + mad®) and does not capture arc consistency.

— The AC encoding [Kasif, 1990,Gent, 2002] is defined for binary CSPs. Its particular-
ity is the representation of the arc consistency property in the encoding. It allows to
a SAT procedure to achieve arc consistency by applying only unit propagation. This
encoding differs from the direct encoding by only the conflict clauses which are re-
placed by the support clauses. Its space complexity in the worst case is the same as
the direct encoding.

— The k-AC encoding [Bessiere et al., 2003] is a generalization of the AC encoding to
non-binary CSP. It can represent supports on a subset S of variables of any size in-
volved in a constraint C', for the instantiation of another variable subset T of any size
of the same constraint C, rather than only supports of a single variable on another
single variable as in the AC encoding. Its space complexity is identical to the ones
of both previous encodings, and slightly greater than the one of the CGNF encoding
which is in O(nd + mad®). The k-AC encoding captures a larger family of consis-
tency than both the AC and the CGNF encodings. That is, it encodes the relational
k-arc-consistency [Bessiere et al., 2003]., but the great number of clauses needed to
maintain the encoding in CNF, and the extra variables introduced to express the sup-

ports can in some cases slow a SAT solver.
— Comparison and discussion:

77

Our approach is different from the previous works [Kleer, 1989], [Kasif, 1990] and
[Bessiere et al., 2003], since it is not a translation from CSP to SAT. It consists in
a generalization of the CNF representation which allows a natural and optimal en-
coding for n-ary CSPs keeping the CSP structure. The purpose of this paper is first
to provide a more general framework including both SAT and CSP and which cap-
tures their advantages, then provide promising methods to solve problems expressed
in this framework. We are not interested for the moment in code optimization and
heuristics to compete other optimized methods. We just provide a first implemen-
tation, whose results look to compare well with those of the nFCs for n-ary CSPs
given in [Bessiere et al., 2002]. But, it seems that most of the background (like non-
chronological back-tracking, or clauses recording) added to DP procedure to produce
sophisticated SAT solvers like Chaff [Malik et al., 2001] can be adapted for our meth-
ods. Such optimizations would increase the performance of our methods, this question
will be investigated in a future work.

8 Conclusion

We studied a generalization of the known CNF representation which allows a compact
Boolean encoding for n-ary CSPs. We showed that the size of a CSP in this encoding is
identical to the one of its original representation. We implemented a new inference rule
whose application until saturation achieves arc-consistency for n-ary CSPs expressed in
the Boolean encoding with a linear time complexity. Two enumerative methods are pro-
posed: the first one (MAC) maintains full arc-consistency on each node of the search tree
while the second (FC) performs partial arc-consistency. Both methods are well known in
CSPs and are found easily in our Boolean encoding. These methods are experimented on
some instances of Ramsey problem and randomly generated 3/4-ary CSPs and the ob-
tained results showed that maintaining full arc-consistency in the Boolean encoding is the
best idea. These results are promising, but code optimizations are necessary to compete
with sophisticated SAT solvers. As a future work, we are looking to extend the inference
rule to achieve path consistency in the Boolean encoding. An other interesting point is to
look for polynomial restrictions of the Boolean encoding. On the other hand, detecting
and breaking symmetries in the Boolean encoding may increase the performances of the
defined enumerative methods.

References

[Bennaceur, 1996] Bennaceur, H. (1996). The satisfiability problem regarded as constraint satis-
faction problem. Proceedings of the European Conference on Artificial Intelligence (ECAI’96),
pages 155-159.

[Bessiere et al., 2003] Bessiere, C., Hebrard, E., and Walsh, T. (2003). Local consistency in sat.
Selected revised papers from SAT’03, LNCS 2919, Springer, pages 299-314.

[Bessiere et al., 2002] Bessiere, C., Meseguer, P., Freuder, E. C., and J.Larrosa (2002). On forward
checking for non-binary constraint satisfaction. Journal of Artificial Intelligence, 141:205-224.
[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A computing procedure for quantifi-

cation theory. Journal of ACM 7, pages 201-215.

[Gent, 2002] Gent, I. P. (2002). Arc consistency in sat. Proceedings of the European Conference

on Artificial Intelligence (ECAI’02), pages 121-125.

78

[Goldberg and Novikov, 2002] Goldberg, E. and Novikov, Y. (2002). Berkmin: A fast and robust
sat solver. Proceedings of the 2002 Design Automation and Test in Europe, pages 142—149.

[Haralick and Elliott, 1980] Haralick, R. and Elliott, G. (1980). Increasing tree search efficiency
for constraint satisfaction problems. Journal of Artificial Intelligence, 14:263-313.

[Kasif, 1990] Kasif, S. (1990). On the parallel complexity of discrete relaxation in constraint sati-
safaction networks. Journal of Artificial Intelligence, 45:275-286.

[Kleer, 1989] Kleer, J. D. (1989). A comparison of atms and csp techniques. Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI'89), pages 290-296.

[Malik et al., 2001] Malik, S., Zhao, Y., Madigan, C. F.,, Zhang, L., and Moskewicz, M. W. (2001).
Chaff: Engineering an efficient sat solver. Proceedings of the 38th conference on Design automa-
tion (IEEE 2001), pages 530-535.

[Montanari, 1974] Montanari, U. (1974). Networks of constraints : Fundamental properties and
application to picture processing. Journal Inform. Sci., 9(2):95-132.

[Sabin and Freuder, 1997] Sabin, D. and Freuder, E. (1997). Understanding and improving the mac
algorithm. Proceedings of International Conference on Principles and Practice of Constraint
Programming (CP’97), pages 167-181.

[Silva and Sakallah, 1996] Silva, J. and Sakallah, K. (1996). Grasp — a new search algorithm for
satisfiability. Proceedings of International Conference on Computer-Aided Design (IEEE 1996),
pages 220-227.

[Walsh, 2000] Walsh, T. (2000). Sat v csp. Proceedings of International Conference on Principles
and Practice of Constraint Programming (CP’00), pages 441-456.

79

[blank page]

80

Interval Constraint Solving Using
Propositional SAT Solving Techniques

Martin Frinzle!, Christian Herde!, Stefan Ratschan?,
Tobias Schubert?, and Tino Teige!*

! Dept. of CS, Carl von Ossietzky Universitit Oldenburg, Germany
{fraenzle|herde|teige}@informatik.uni-oldenburg.de
2 Inst. of CS, Academy of Sciences of the Czech Republic, Prague
stefan.ratschan@Qcs.cas.cz

3 FAW, Albert-Ludwigs-Universitit Freiburg, Germany
schubert@informatik.uni-freiburg.de

Abstract. In order to facilitate automated reasoning about large Boolean
combinations of non-linear arithmetic constraints involving transcenden-
tal functions, we extend the paradigm of lazy theorem proving to interval-
based arithmetic constraint solving. Algorithmically, our approach devi-
ates substantially from “classical” lazy theorem proving approaches in
that it directly controls arithmetic constraint propagation from the SAT
solver rather than completely delegating arithmetic decisions to a subor-
dinate solver. From the constraint solving perspective, it extends interval-
based constraint solving with all the algorithmic enhancements that were
instrumental to the enormous performance gains recently achieved in
propositional SAT solving, like conflict-driven learning combined with
non-chronological backtracking.

1 Introduction

Within many application domains, e.g. the analysis of programs involving arith-
metic operations or the analysis of hybrid discrete-continuous systems, one faces
the problem of solving large Boolean combinations of non-linear arithmetic con-
straints over the reals, where solving means to find a satisfying valuation or to
prove nonexistence thereof. This gives rise to a plethora of problems, in par-
ticular (a) how to effectively and efficiently solve conjunctive combinations of
constraints in the in general undecidable domain of non-linear constraints in-
volving transcendental functions, and (b) how to efficiently maneuver the large
search spaces arising from the rich Boolean structure of the overall formula.
While promising solutions for these two individual sub-problems exist, it
seems that their combination has hardly been attacked. Arithmetic constraint
solving based on interval constraint propagation [5,4, 3], on the one hand, has

* This work has been partly supported by the German Research Council (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

81

proven to be an efficient means for solving robust combinations of otherwise
undecidable arithmetic constraints [22]. Here, robustness means that the con-
straints maintain their truth value under small perturbations of the constants
in the constraints. Modern SAT solvers, on the other hand, can efficiently find
satisfying valuations of very large propositional formulae (e.g., [20,17]), as well
as —using the lazy theorem proving paradigm— of complex propositional com-
binations of atoms from various decidable theories (e.g., [10,8,1,9]).

Within this paper, we describe a tight integration of the paradigm of lazy the-
orem proving with interval-based arithmetic constraint solving, thus providing a
lazy theorem proving approach that reasons over the undecidable arithmetic do-
main of Boolean combinations of non-linear constraints involving transcendental
functions. Within our approach, a DPLL-based propositional satisfiability solver
traverses the proof tree originating from the Boolean structure of the constraint
formula, as is characteristic for the lazy theorem proving approach. Yet, in con-
trast to traditional lazy theorem proving approaches ranging over some decid-
able theory T, we do not pass a corresponding conjunctive constraint system
over the respective theory T' to a subordinate decision procedure serving as an
oracle for consistency of the constraint set. Instead, we exploit the algorithmic
similarities between DPLL-based propositional SAT solving and constraint solv-
ing based on constraint propagation for a much tighter integration, where the
DPLL solver has full introspection in and direct control over constraint prop-
agation within the theory T rather than completely delegating theory-related
decisions to a subordinate solver. This tight integration has a number of ad-
vantages. First, by sharing the common core of the search algorithms between
the propositional and the theory-related, interval-constraint-propagation-based
part of the solver, we are able to transfer algorithmic enhancements from one
domain to the other: in particular, we thus equip interval-based constraint solv-
ing with all the algorithmic enhancements that were instrumental to the enor-
mous performance gains recently achieved in propositional SAT solving, like non-
chronological backtracking and conflict-driven learning. Second, the introspec-
tion into the constraint propagation process allows fine-granular control over the
necessarily incomplete arithmetic deduction process, thus enabling a stringent
extension of lazy theorem proving to an undecidable theory. Finally, due to the
availability of learning, we are able to implement an almost lossless restart mech-
anisms within an interval-based arithmetic constraint propagation framework,
thus being able to substantially accelerate incremental proof searches, where the
individual constraint propagations are depth-constrained, yet incrementally less
depth-constrained proof searches are iterated until a solution is found (or ab-
sence of such is proved). Such iteration is essential to quasi-completeness, i.e.
termination on all constraint formulas that are robust in the sense that their
truth value does not change under some small variation of constants [22].

Structure of the paper. We start our exposition in Section 2 with a description
of the syntactic structure and the semantics of the arithmetic satisfiability prob-
lems we are going to address. Section 3 provides a brief introduction to the
technologies that our development builds on. Thereafter, we provide a detailed

82

explanation of our new algorithm (Section 4) and benchmark results (Section
5). We conclude with an overview over ongoing work and planned extensions.

2 Logics

Aiming at automated analysis of programs operating over the reals, e.g. bounded
model checking of hybrid systems, our constraint solver addresses satisfiability
of non-linear arithmetic constraints over real-valued variables plus Boolean vari-
ables for encoding the control flow. The user thus may input constraint formulae
built from quantifier-free constraints over the reals and from propositional vari-
ables using arbitrary Boolean connectives. The atomic real-valued constraints
are relations between potentially non-linear terms involving transcendental func-
tions, like sin(x + wt) +ye~t < 2z + 5. By the front-end of our constraint solver,
these constraint formulae are rewritten to quantifier-free constraints in conjunc-
tive normal form, with atomic propositions ranging over propositional variables
and arithmetic constraints confined to a form resembling three-adress code (cf.
the primitive constraints of interval constraint propagation, see Section 3). Thus,
the internal syntax of constraint formulae is as follows:

formula := {clause N}* clause
clause ::= ({bound V}*bound) | (bound V equation)

bound ::= variable > rational_const | variable > rational_const
| wariable < rational_const | variable < rational_const
variable ::= real_variable | boolean _variable
equation ::= triplet | pair
triplet ::= real_variable = real_variable bop real _variable
pair ::= real_variable = wop real_variable
bop =+ |—1|x*]|/|...
uop = — | sin | exp | ...

Such constraint formulae are interpreted over valuations o € (BV tota) B) x

total

(RV —= R), where BV is the set of Boolean and RV the set of real-valued
variables. B is identified with the subset {0, 1} of R such that any rational-valued
bound on a Boolean variable v corresponds to a literal v or —v. The definition of
satisfaction is standard: a constraint formula ¢ is satisfied by a valuation iff all its
clauses are satisfied, i.e. iff at least one atom is satisfied in any clause, where the
term atom refers to both bounds and equations. Satisfaction of atoms is wrt. the
standard interpretation of the arithmetic operators and ordering relations over
the reals. We assume all arithmetic operators to be total and therefore extend
their codomain (as well as, for compositionality, their domain) with a special
value U ¢ R. It is understood that U does not satisfy any inequation, i.e. U ¢ ¢
for any constant ¢ and any relation ~.

Instead of real-valued valuations of variables, our constraint solving algorithm

manipulates interval-valued valuations p € (BV tota] Ig) x (RV tota) Ir), where

83

Iz = 28\ 0 and Iy is the set of non-empty convex subsets of R.# Slightly abusing
notation, we write p(I) for pr, (1) when p = (p, p1) and I € BV, and similarly
p(x) for pr, () when & € RV. If both ¢ and 7 are interval assignments then o
is called a refinement of n iff o(v) C n(v) for each v € BV U RV. We call an
interval valuation p weakly satisfying for a constraint formula ¢ iff each clause
of ¢ contains at least one weakly satisfied atom. Weak satisfaction of atoms is
defined as follows:

pEvz~c iff pla) C{ulueRu~c} forz € RVUBV,ceQ
pEwr=yoziff p(x) D p(y)ép(z) for z,y,2 € RV, 0 € bop
pEwz =0y iff p(x) D op(y) for x,y € RV, o € uop

where 6 is a conservative interval extension of operation o, i.e. satisfies i16i5 O
{xoy | x € i1,y € iz} for all intervals i1 and iy [19]. Note that equality is
interpreted as set inclusion rather than set equality in the interval interpretation.
This is motivated by the fact that under appropriate side-conditions, inclusion
is sufficient for deciding real-valued (un-)satisfiability, as expressed in Lemma 1
below. In order to formalize these side conditions, we call p strongly satisfying
for ¢, denoted p =5 @, iff there is a finite family aq,...,a, of atoms such that
the following three conditions hold:

1. Each clause in ¢ contains at least one atom a that matches some atom a;
in {ai,...,a,} in the following sense: a; is a reshuffling of a obtained by
using partial inverses of the operation entailed in a, e.g. a being x = y + =
and a; being z = x — y. Note that such a reshuffling has no impact on real-
valued satisfiability, yet yields additional freedom for interval satisfaction,
as it allows to reorder the directions of the set inclusions.

2. The atoms a; to a, are weakly satisfied by p.

3. If a; is a triplet x = y o z or a pair x = oy then z is interpreted by a point
interval (i.e., |p(z)| = 1), or & does neither occur in any a; with j > ¢ nor
on the right-hand side of a; (i.e., # y and x # z).

Due to the ordering condition on equality constraints that are satisfied by non-
point intervals, we obtain the following tight correspondence between strong
interval satisfiability and real-valued satisfiability:

Lemma 1. Assume that the interval extensions of the operations are tight on
point-interval arguments, i.e. that {a}6{b} = {a o b} for each a,b € R and each
binary operation o, and analogously for unary operations. Then

1. If 0 = ¢ for some real-valued valuation o then p = ¢ for some interval
valuation p with Vv € BV U RV.o(v) € p(v).

2. If p =s ¢ then there exists a real-valued valuation o such that o = ¢ and
Yv € BV U RV.o(v) € p(v).

4 Note that this definition covers the open, half-open, and closed non-empty intervals
over R, including unbounded intervals.

84

Proof. 1. Take p(v) = {o(v)} for each v € BV U RV. Due to tightness of the
interval extensions on point intervals, o |= ¢ implies p =y ¢, which in turn
implies p =5 ¢ due to all intervals assigned by p being point intervals such
that strong and weak satisfaction coincide.

2. If p =5 ¢ then we can recursively define a real-valued valuation o exploiting
the structure of the family of witnesses a; as follows:
(a) For each v € BV and for each v € RV not occurring on the left hand

side of any equation in {a1,...,a,}, select o(v) € p(v) arbitrarily;
(b) For i =n downto 1, process the constraints a,, to a; in reverse sequence
as follows:

i. if @; is a triplet v = x o y then take o(v) = o(x) o o(y),

ii. if @; is a pair v = ox then take o(v) = oo (x).
Note that solutions to the equation system in (b) do exist because the hier-
archical order of variable dependencies in a1 to a, enforces that each o(v)
either is subject to at most one defining equation or is picked from a point in-
terval p(v) 2 p(x)dp(y) or p(v) 2 6p(y), respectively. Furthermore, o(v) # U
as U & p(v) 2 p(x)ép(y) 3 o(x) o a(y) and U & p(v) 2 6p(y) > oo(y), re-
spectively. It is straightforward to check that o |= ¢. 0O

When solving satisfiability problems of formulae with Davis-Putnam-like pro-
cedures, we will build interval valuations incrementally by successively contract-
ing intervals.

We say that an interval valuation p is weakly (or strongly) consistent with a
formula (or clause or atom) ¢ iff there exists a refinement n of p that weakly
(strongly, resp.) satisfies ¢. Otherwise, we call p weakly (strongly, resp.) incon-
sistent with ¢. Note that deciding weak consistency of an interval valuation with
a single bound is straightforward, as is deciding weak satisfaction of an arbitrary
atom. If p is neither weakly satisfying for ¢ nor weakly inconsistent with ¢ then
we call ¢ inconclusive on p.

3 Algorithmic Basis

Our constraint solving approach builds upon the well-known techniques of inter-
val constraint propagation, propositional SAT solving by the DPLL procedure
plus its more recent algorithmic enhancements, and lazy theorem proving.

Interval constraint propagation (ICP) is one of the sub-topics of the area of
constraint programming where constraint propagation techniques are studied
in various, and often discrete, domains. For the domain of the real numbers,
given a constraint ¢ and a floating-point box B, so-called contractors compute
another floating-point box C(¢, B) such that C(¢, B) C B and such that C(¢, B)
contains all solutions of ¢ in B (cf. the notion of narrowing operator [2]).
There are several methods for implementing such contractors. The most basic
method [5,4] decomposes all atomic constraints (i.e., constraints of the form
t > 0ort =0, where t is a term) into conjunctions of so-called primitive
constraints (i.e., constraints such as x + y = z, zy = 2, z € [g,al, or z > 0)

85

by introducing additional auxiliary variables (e.g., decomposing x +siny > 0 to
siny = vy Az+wv1 = v2 Avg > 0). Then it applies a contractor for these primitive
constraints until a fixpoint is reached.

We illustrate contractors for primitive constraints using the example of a
primitive constraint z + y = z with the intervals [1,4], [2, 3], and [0, 5] for z, y,
and z, respectively: We can solve the primitive constraint for each of the free
variables, arriving at t = z —y, y = z — x, and z = x + y. Each of these forms
allows us to contract the interval associated with the variable on the left-hand
side of the equation: Using the first solved form we subtract the interval [2, 3]
for y from the interval [0,5] for z, concluding that x can only be in [—3,3].
Intersecting this interval with the original interval [1,4], we know that x can
only be in [1,3]. Proceeding in a similar way for the solved form y = z — x does
not change any interval, and finally, using the solved form z = = + y, we can
conclude that z can only be in [3, 5].

Contractors for other primitive constraints can be based on interval arith-
metic in a similar way. There is extensive literature [21,13] providing precise
formulae for interval arithmetic for addition, subtraction, multiplication, divi-
sion, and the most common transcendental functions. The floating point results
are always rounded outwards, such that the result remains correct also under
rounding errors. There are several variants, alternatives and improvements of
the basic approach described above, e.g. [14,2,18,12,16].

Propositional SAT solving. The Propositional Satisfiability Problem (SAT) is a
well-known NP-complete problem, with extensive applications in various fields
of computer science and engineering. In recent years a lot of developments in
creating powerful SAT algorithms have been made, leading to state-of-the-art ap-
proaches like BerkMin [11], Mira [17], and zChaff [20]. All of them are enhanced
variants of the classical backtrack search DPLL procedure [6,7]. In contrast to
local search strategies only such complete algorithms are able to prove the un-
satisfiability of a problem instance, which is often the final objective in many
applications, e.g. circuit verification and automated theorem proving.

Given a Boolean formula ¢ in Congjunctive Normal Form (CNF) and a partial
valuation p, which is empty at the beginning of the search process, a backtrack
search algorithm incrementally extends p until either p = ¢ holds or p turns out
to be inconsistent for ¢. In the latter case another extension of p is tried through
backtracking.

Extensions are constructed by performing decision steps, which entail se-
lecting an unassigned variable and assigning a value to it. Since the days of
the original DPLL procedure many variable selection strategies have been in-
troduced, among them the Variable State Independent Decaying Sum (VSIDS)
heuristic from zChaff [20]. The main idea of VSIDS is to prefer those variables
that often occur in recently deduced conflict clauses.

Each decision step is followed by the deduction phase, involving the search
for unit clauses, i.e. clauses that have only one unassigned literal left while all
other literals are assigned incorrectly in the actual valuation p. Obviously, unit
clauses require certain assignments in order to preserve their satisfiability, where

86

the execution of the implied assignments itself might force further assignments.
In the context of SAT solving such necessary assignments are also referred to
as implications. To perform the deduction phase in an efficient manner zChaff
introduced a lazy clause evaluation technique based on Watched Literals (WL):
for each clause two literals are selected in such a way, that they either are both
unassigned or at least one of them is satisfying the clause. So, if at some point
during the search one of the WLs is getting assigned incorrectly, a new WL for
the corresponding clause has to be found. If such a literal does not exist and
the second WL is still unassigned, the clause is forcing an implication. As a
consequence of this method there is no need to check all clauses after making a
decision step, but only those ones, where a WL is getting assigned incorrectly.

However, deduction may also yield a conflicting clause which has all its liter-
als assigned false, indicating the need for backtracking. In order to avoid repeat-
ing the same unsatisfying valuation p multiple times, modern SAT algorithms
incorporate conflict-driven learning to derive a sufficiently general reason (a com-
bination of variable assignments) for the actual conflict. Based on that ideally
minimal number of assignments that triggered the particular conflict, a conflict
clause is generated and added to the clause set to guide the subsequent search.
Additionally, the conflict clause is used to compute the backtrack level, which is
defined as the maximum level the SAT algorithm has to backtrack to in order to
solve the conflict. This approach often leads to a non-chronological backtracking
operation, jumping back more than just one level and making conflict-driven
learning combined with non-chronological backtracking a powerful mechanism
to prune large parts of the search space [24].

4 Integrating interval constraint propagation and SAT

By combining interval constraint propagation with an interval splitting scheme
to obtain a branch-and-prune algorithm, as shown on the left of Table 1, a con-
straint solving algorithm for constraints over the reals incorporating transcen-
dental functions can be achieved being based on interval splitting over real-valued
intervals as a branching step and on ICP as a forward inference step, it does
closely resemble the core algorithm of DPLL SAT solving. In fact, DPLL-SAT
can be viewed as its counterpart over the Boolean intervals Iy, where again inter-
val splitting is the decision step and Boolean constraint propagation in the form
of unit propagation provides the forward inference mechanism, cf. right-hand
side of Table 1. This similarity motivates a tighter integration of propositional
SAT and arithmetic reasoning than in classical lazy theorem proving, cf. Fig. 1.
This tight integration shares the common algorithmic parts, thereby providing
the SAT solver with full control over and full introspection into the ICP pro-
cess. This way, recent algorithmic enhancements of propositional SAT solving,
like lazy clause evaluation, conflict-driven learning, and non-chronological back-
jumping carry over to ICP-based arithmetic constraint solving. In particular,
we are able to learn forms of conflicts that are considerably more general than

87

Interval constraint solving DPLL SAT

Given: |Constraint set C' = {c1,...,¢n}, Clause set C' = {c1,...,¢n},
initial box B C Rlfree(@) initial box B C Blfree(©)]

Goal: |Find box B’ C B containing satisfying valuations throughout
or show non-existence of such B’.

Alg.: 1.|L := {B} L :={B}
2.|]If L # 0 then take some box b :€|If L # () then take most recently added
L, otherwise report “unsatisfiable” and|box b :€ L, otherwise report “unsatis-

stop. fiable” and stop.
3.|Use contractor C' to determine subbox|Use unit propagation to determine sub-
b’ C b containing all solutions in b. box b’ C b containing all solutions in b.

4.1t b" = 0 then set L := L\ {b}, goto 2. [If b’ = 0 then set L := L\ {b}, goto 2.
5.|Check whether b’ strongly satisfies all|Check whether all clauses in C' are sat-
constraints in C; if so then report b’ as|isfied throughout ¥’; if so then report b’

satisfying and stop. as satisfying and stop.

6.[If & C b then set L := L\ {b} U {b'},|If b’ C b then set L := L\ {b} U {b'},
goto 2. goto 2.

7.|Split b into subintervals b1 and bz, set|Split b into subintervals b1 and b2, set
L:= L\ {b} U {b1,b2}, goto 2. L := L\ {b}U{b1,b2}, goto 2.

Table 1. Interval constraint solving (left) vs. basic DPLL SAT (right).

classical as well as generalized nogoods [15] in search procedures for constraint
solving.

Interval constraint solving as a multi-valued SAT problem. The underlying idea
of our algorithm is that the two central operations of ICP-based arithmetic con-
straint solving —interval contraction by constraint propagation and by interval
splitting— correspond to asserting bounds on real-valued variables v ~ ¢ with
v € RV, ~e {<,<,>,>} and ¢ € Q. Likewise, the decision steps and unit
propagations in DPLL proof search correspond to asserting literals. A unified
DPLL- and ICP-based proof search on a formula ¢ from the formula language
of Sect. 2 can thus be based on asserting or retracting atoms of the formula
language, thereby in lockstep refining or widening an interval valuation p that
represents the current set of candidate solutions:

1. Proof search on ¢ starts with an empty set of asserted atoms and the interval
valuation p being the minimal element wrt. the refinement relation on inter-
val valuations, i.e. all intervals being maximal ({false,true} for Boolean
variables and R or —if the variable has a bounded range— a maximal sub-
range thereof for real-valued variables) .

2. It continues with searching for unit clauses in ¢, i.e. clauses that have only
one inconclusive (on p) atom left and all other atoms being weakly incon-
sistent with the current interval valuation p. If such a clause is found then
its unique unassigned atom is asserted. The asserted atom stems from the
formula ¢ or some learned nogood and may thus be an arbitrary bound,
triplet, or pair.

88

arithmetic

constraint system 3

DPLL-SAT i i
e consistent: Arithmetic
+ conflict-driven leaming g yes/no reasoner
+ non-chronol. backtrack.
S pinaion ~
“~._ (minimal) infeasible

. subsystem

_-enters /removes constraints &
‘riggers individual constraint propagations

Boolean : DPLL-SAT Arithmetic
A control flow .
constraint : X . . constraint
: + conflict-driven learning

propagation : 1 non—chronol. backirack. - propagation

Mghtened bounds

Fig. 1. Classical lazy theorem proving (top) vs. iSAT’s tight integration of interval
constraint solving and propositional SAT (bottom)

Step 2 is repeated until all unit clauses have been processed.

3. If there is an asserted atom a that is not weakly satisfied by the current
interval valuation p then the contractors corresponding to a are applied to p.
In the case of triplets and pairs, these contractors are the usual contractors
for the primitive constraints of ICP, as explained in Sect. 3. For bounds
a = v ~ ¢, contraction amounts to replacing p(v) with p(v)N{z € R | z ~ ¢},
no matter whether they are literals or bounds on real-valued variables. In
case of triplets and pairs, the contractions obtained are in turn asserted as
bounds (this is redundant for contractions stemming from bounds, as the
asserted atoms would be equal to the already asserted bound which effected
the contraction).

This step is repeated until no further contraction is obtained,® or until con-
traction detects a conflict in the sense of some interval p(v) becoming empty.
In case of a conflict, some previous splits (cf. step 4) have to be reverted,
which is achieved by backtracking —thereby undoing all assertions being
consequences of the split— and by asserting the complement of the previous
split. Furthermore, a reason for the conflict can be recorded as a nogood,
thus pruning the remaining search space (see below).

If no conflict arose then, if new unit clauses resulted from the contraction,
the algorithm continues at step 2, otherwise at 4.

4. The algorithm checks whether p strongly satisfies ¢ and stops with result
“satisfiable” if so, as this implies real-valued satisfiability by Lemma 1. Oth-
erwise, it applies a splitting step: it selects a variable v € BV U RV that is
interpreted by a non-point interval (i.e., |p(v)| > 1) and splits its interval
p(v) by asserting a bound that contains v as a free variable and which is
inconclusive on p.% Thereafter, the algorithm continues at 2. If no such vari-

5 In practice, one stops as soon as the changes become negligible.
6 Note that the complement of such an assertion also is a bound and is inconclusive
on p too.

89

able v exists then the search space has been exhausted and the algorithm
stops with result “unsatisfiable”.

By its similarity to DPLL algorithms, this base algorithms lends itself to
all the algorithmic enhancements and sophisticated data structures that were
instrumental to the impressive recent gains in propositional SAT solver perfor-
mance.

Lazy clause evaluation. In order to save costly visits to and evaluations of dis-
junctive clauses, we employ the lazy clause evaluation scheme of zChaff [20] to
our more general class of atoms as follows: within each clause, we select two
atoms which are inconclusive wrt. the current valuation p, called the “watched
atoms” of the clause. Instead of scanning the whole clause set for unit clauses in
step 2 of the base algorithm, we do only visit the clause if a free variable of one
of its two watched atoms is contracted, i.e. a bound assigning a tighter bound is
asserted. In this case, we evaluate the atoms truth value. If found to be incon-
sistent wrt. the new interval assignment, the algorithm tries to substitute the
atom by a currently unwatched and not yet inconsistent atom to watch in the
future. If this substitution fails due to all remaining atoms in the clause being
inconsistent, the clause has become unit and the second watched atom has to be
asserted.

Maintaining and compactifying an implication graph. In order to be able to
tell reasons for conflicts (i.e., empty interval valuations) encountered, our solver
maintains an implication graph akin to that known from propositional SAT solv-
ing [24]: all asserted atoms are recorded in a stack-like data structure (unwound
upon backtracking, when the assertions are retracted). Within the stack, each
assertion not originating from a split, i.e. each assertion a originating from a
contraction (including unit propagations), comes equipped with pointers to its
antecedents. In this case, a is a bound, i.e. a literal or a real-valued inequation
v ~ c¢. The antecedent of a is an atom b containing the variable v plus a set of
bounds for the other free variables of b which triggered the contraction a. As ICP
often gives rise to long linear chains of contractions originating from mutually
contracting via reshuffles of the same constraint, we compactify the implication
stack by removing such chains, replacing them by their initial and final chain
elements.

Conflict-driven learning and non-chronological backtracking. By following the
antecedents of a conflicting assignment, a reason for the conflict can be ob-
tained: reasons correspond to cuts in the antecedent graph, and such reasons
can be “learned” for pruning the future search space by adding a conflict clause
containing the disjunction of the negations of the atoms in the reason. We use
the unique implication point technique [24] to derive a conflict clause which is
general in that it contains few atoms and which is asserting upon backjumping to
the last decision level contributing to the conflict, i.e. upon undoing all decisions
and contractions younger than the chronologically youngest decision among the
antecedents of the conflict, as shown in Fig. 2.

90

¢ (r>4Vvy<0vVvbd)

ca: A (0bV h=z-x)

Ll hy > 2.8
V%

hy < -8

c3: A (0bV hg=-2-y)

cg: A (2b V hy=hy+hy)

cs: A (0b V hy >6.2)

c3

Fig. 2. Conflict analysis: Let the clause set c1,...,cs be a fragment of a formula to
be solved. Assume x > —2 and y > 4 have been asserted on decision levels k1 and ko,
resp., and another decision level is opened by asserting < 3. The resulting implication
graph, ending in a conflict on hs, is shown on the right. Edges relate implications to their
antecedents, dashed ellipses indicate the propagating clauses. Following the implication
chains from the conflict yields the conflict clause =(z > —2)V—=(z < 3)V-(y > 4) which
becomes unit after backjumping to decision level max(k1, k2), propagating = > 3.

Note that, while adopting the conflict detection techniques from propositional
SAT solving, our conflict clauses are still more general than those generated
in propositional SAT solving: as the antecedents of a contraction may involve
arbitrary atoms, so do the conflict clauses. In order to save us from being forced
to generate (and handle in constraint propagation) negated triplets and pairs,
we decided to allow those to occur only in the guarded form of a binary clause
(bound V equation) in our formulae (cf. syntax in sect. 2). Therefore, we can
always replace a negated triplet or pair in a reason by a corresponding bound,
to be found among its antecedents. Furthermore, in contrast to nogood learning,
we are not confined to learning forbidden combinations of value assignments in
the search space, which here would amount to learning disjunctions of interval
disequations x ¢ I with = being a problem variable and I an interval. Instead,
our algorithm may learn arbitrary combinations of atoms x ~ ¢, which provides
stronger pruning of the search space: while a nogood = ¢ I would only prevent
a future visit to any subinterval of I, a bound x > ¢, for example, blocks visits
to any interval whose left endpoint is at least ¢, no matter how it is otherwise
located relative to the current interval valuation.

Enforcing progress and termination. The naive base algorithm described above
would apply unbounded splitting, thus risking nontermination due to the den-
sity of the order on R. It traverses the search tree until either no further splits
are possible due to the search space being fully covered by conflict clauses or
until a strongly satisfying interval interpretation is found. In contrast to purely
propositional SAT solving, where the split depth is bounded by the number vari-
ables in the SAT problem, this entails the risk of non-termination due to infinite
sequences of splits being possible on each real-valued interval. Even worse, by
pursuing depth-first search, the algorithm risks infinite descent into a branch
of the search tree even if other branches may yield definite, strongly satisfying
results.

91

We tackle this problems by either limiting the splitting width or the maxi-
mum number of splits a priori, later on refining it if necessary. L.e., we exclude
a variable x from further splitting if the width of its interval p(x) falls below a
certain threshold ¢, or if its predefined number of splits has been exhausted. If
no further splitting is possible due to the bound having been reached for each
variable, the solver derives a “pseudo-conflict clause” from that situation which
—exactly as a true conflict clause would— causes the engine to backtrack and
address another part of the search space, thereby abandoning the branch it has
investigated previously. Besides guiding backtracking, the pseudo-conflict clause
serves as a witness for the existence of an undecided branch, i.e. a branch which
has not been fully explored. Note that we can re-open that branch simply by
deleting the associated pseudo-conflict clause.

Achieving almost-completeness through restarts. With a given bound § on split
width or a fixed number k of maximum splits, the above procedure may terminate
with inconclusive result: none of the visited boxes may be strongly satisfying, yet
undecided branches in the search space —corresponding to inconclusive interval
interpretations— remain. In this case, the solver simply is restarted with smaller
splitting width or number of splits greater than k, respectively. Before restarting,
all “pseudo conflicts” are removed from the clause database such that only the
“real” conflict clauses are preserved from the previous run. These learned conflict
clauses prevent the solver from re-visiting failed boxes such that the restart incurs
a very low penalty: essentially, it does only visit those interval interpretations
that were previously left in an inconclusive state, and it extends the proof tree
precisely at these inconclusive leafs.

By iterating this scheme for incrementally smaller split-widths converging to
zero, we obtain an “almost-complete” procedure determining the truth values
of robust constraint formulae. I.e., it is able to determine the truth of a formula
provided it is robust in the sense that the truth value does not change under
some small variation of the constants in the formula.

5 Benchmark results

In order to demonstrate the potential of our approach, in particular the benefit
of conflict-driven learning adapted to interval constraint solving, we compare
the performance of our tool “iISAT” to a stripped version thereof, where learning
and backjumping are disabled (but the optimized data structures, in particular
watched atoms, remain functional). The benchmark results cover search for con-
flicts up to a given split width, yet omit the justification of conflict-free valuations
thus found by checking for strong satisfaction, as the latter is not implemented
yet. The benchmarks were performed on a 2.5 GHz AMD Opteron machine with
4 GByte physical memory, running Linux.

We considered bounded model checking problems, i.e. proving a property of
a hybrid discrete-continuous transition system for a fixed unwinding depth k.
Without learning, the interval constraint solving system failed on every moder-
ately interesting hybrid system due to complexity problems exhausting memory

92

100000

10000

1000

without learning

without leaming [s]

.
0.001 0.01 0.1 1 10 100 1000 04 1 10 100 1000
with learning [s] with learning

Fig. 3. Performance impact of conflict-driven learning and non-chronological back-
tracking: runtime in seconds (left) and number of conflicts encountered (right)

and runtime. This could be expected because the expected number of boxes to
be visited grows exponentially in the number of variables in the constraint for-
mula, which in turn grows linearly in both the number of problem variables in
the hybrid system and in the unwinding depth k. When checking a model of an
elastic approach to train distance control [9], the version without learning ex-
hausts the runtime limit of 3 days already on unwinding depth 1, where formula
size is 140 variables and 30 constraints. In contrast, the version with conflict-
driven learning solves all instances up to depth 10 in less than 3 minutes, thereby
handling instances with more than 1100 variables, a corresponding number of
triplets and pairs, and 250 inequality constraints. For simpler hybrid systems,
like the model of a bouncing ball falling in a gravity field and subject to non-ideal
bouncing on the surface, the learning-free solver works due to the deterministic
nature of the system. Nevertheless, it fails for unwinding depths > 11, essen-
tially due to enormous numbers of conflicting assignments being constructed
(e.g., > 348 - 10% conflicts for k = 10), whereas learning prevents visits to most
of these assignments (only 68 conflicts remain for ¥ = 10 when conflict-driven
learning is pursued). Consequently, the learning-enhanced solver traverses these
problems in fractions of a second; it is only from depth 40 that our solver needs
more than one minute to solve the bouncing ball problem (2400 variables, 500
constraints). Similar effects were observed on chaotic real-valued maps, like the
gingerbread map. Without conflict-driven learning, the solver ran into approx.
43 - 105, 291 - 10°, and 482 - 106 conflicts for kK = 9 to 11, whereas only 253,
178, and 155 conflicts were encountered in the conflict-driven approach, respec-
tively. This clearly demonstrates that conflict-driven learning is effective within
interval constraint solving: it does dramatically prune the search space, as wit-
nessed by the drastic reduction in conflict situations encountered and by the
frequency of backjumps of non-trivial depth, where depths of 47 and 55 decision
levels were observed on the gingerbread and bouncing ball model, respectively.
Similar effects were observed on two further groups of benchmark examples: an
oscillatory logistic map and some geometric decision problems dealing with the

93

intersection of n-dimensional geometric objects. On random formulae, we even
obtained backjump distances of more than 70000 levels. The results of all the
aforementioned benchmarks (excl. random formulae) are presented in Fig. 3.

6 Discussion

Within this paper, we have shown that a tight integration of DPLL-style SAT
solving and interval constraint propagation can canonically lift to interval-based
arithmetic constraint solving the crucial algorithmic enhancements of modern
propositional SAT solvers, in particular lazy clause evaluation, conflict-driven
learning, and non-chronological backtracking. First benchmarks on a prototype
implementation demonstrate significant performance gains up to multiple or-
ders of magnitude. Equally important, the performance gains were consistent
throughout our set of benchmarks, with only one trivial instance incurring a
negligible performance penalty due to the more complex algorithms.

The development of our constraint solver “iISAT” still is in an early phase,
with some parts of the algorithm still under implementation. Of the algorithm
described above, this does in particular apply to the justification of a solution
by checking the interval valuation for strong satisfaction. Plans for future ex-
tensions do, furthermore, deal with three major topics: first, we will extend the
base engine with specific optimizations for bounded model checking of hybrid
systems, akin to the optimizations discussed in [9] for the case of linear hybrid
automata. Second, we will use linear programming on the linear subset of the
asserted atoms, i.e. on bounds and linear equations, to obtain stronger forward
and backward inferences, including additional size reduction of conflicts to be
learned. This would lower the overhead when reasoning over timed and (par-
tially) linear hybrid automata, where polyhedral sets provide a more concise
description of state sets than the rectangular regions provided by intervals. Fi-
nally, we are addressing native support for ordinary differential equations via
ICP-based reasoning over safe numerical approximations of the solution in the
interval domain, as pursued in [23].

References

1. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A SAT-
based approach for solving formulas over boolean and linear mathematical proposi-
tions. In A. Voronkov, editor, Proc. of the 18th International Conference on Auto-
mated Deduction, volume 2392 of LNCS, subseries LNAI, pages 193-208. Springer-
Verlag, 2002.

2. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited.
In International Symposium on Logic Programming, pages 124-138, Ithaca, NY,
USA, 1994. MIT Press.

3. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer and
Boolean constraints. Journal of Logic Programming, 32(1):1-24, 1997.

4. J. G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125-149, 1987.

94

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. Davis. Constraint propagation with interval labels. Artif. Intell., 32(3):281-331,
1987.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394-397, 1962.

M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(3):201-215, 1960.

L. de Moura, S. Owre, H. Ruess, J. Rushby, and N. Shankar. The ICS decision
procedures for embedded deduction. In 2nd International Joint Conference on Au-
tomated Reasoning (IJCAR), volume 3097 of Lecture Notes in Computer Science,
pages 218-222, Cork, Ireland, July 2004. Springer-Verlag.

M. Frénzle and C. Herde. Efficient proof engines for bounded model checking of
hybrid systems. Formal Methods in System Design, 2006.

H. Ganzinger. Shostak light. In A. Voronkov, editor, Automated Deduction —
CADE-18, volume 2392 of LNCS, pages 332-346. Springer-Verlag, 2002.

E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In Design,
Automation, and Test in Europe, 2002.

T. J. Hickey. Metalevel interval arithmetic and verifiable constraint solving. Jour-
nal of Functional and Logic Programming, 2001(7), October 2001.

T. J. Hickey, Q. Ju, and M. H. van Emden. Interval arithmetic: from principles to
implementation. Journal of the ACM, 48(5):1038-1068, 2001.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis, with Ex-
amples in Parameter and State Estimation, Robust Control and Robotics. Springer,
Berlin, 2001.

G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In
F. Rossi, editor, Principles and Practice of Constraint Programming — CP 2003,
volume 2833 of LNCS, pages 873-877. Springer-Verlag, 2003.

Y. Lebbah, M. Rueher, and C. Michel. A global filtering algorithm for handling
systems of quadratic equations and inequations. In P. Van Hentenryck, editor,
Proc. of Principles and Practice of Constraint Programming (CP 2002), number
2470 in LNCS. Springer, 2002.

M. Lewis, T. Schubert, and B. Becker. Speedup Techniques Utilized in Modern SAT
Solvers — An Analysis in the MIRA Environment. In 8th International Conference
on Theory and Applications of Satisfiability Testing, 2005.

O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic optimization of interval nar-
rowing algorithms. Journal of Logic Programming, 37(1-3):165-183, 1998.

R. E. Moore. Interval Analysis. Prentice Hall, NJ, 1966.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In Proc. of the 38th Design Automation Conference
(DAC’01), June 2001.

A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,
Cambridge, 1990.

S. Ratschan. Continuous first-order constraint satisfaction. In J. Calmet, B. Ben-
hamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelligence,
Automated Reasoning, and Symbolic Computation, number 2385 in LNCS, pages
181-195. Springer, 2002.

O. Stauning. Automatic Validation of Numerical Solutions. PhD thesis, Kgs.
Lyngby, Denmark, 1997.

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver. In IEEE/ACM International Confer-
ence on Computer-Aided Design, 2001.

95

[blank page]

96

Nogood Recor ding from Restarts

Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal

CRIL (Centre de Recherche en Informatique de Lens)
CNRS FRE 2499
rue de I’université, SP 16
62307 Lens cedex, France
{l ecoutre, sai s, tabary, vidal }@ril.univ-artois.fr

Abstract. In this paper, nogood recording is investigated for CSP within the ran-
domization and restart framework. Our goal is to avoid the same situations to oc-
cur from one run to the next one. More precisely, nogoods are recorded when the
current cutoff value is reached, i.e. before restarting the search algorithm. Such
a set of nogoods is extracted from the last branch of the current search tree and
managed using the structure of watched literals originally proposed for SAT. In-
terestingly, the number of nogoods recorded before each new run is bounded by
the length of the last branch of the search tree. As a consequence, the total number
of recorded nogoods is polynomial in the number of restarts. Experiments over a
wide range of CSP instances demonstrate the effectiveness of this approach.

1 Introduction

Nogood recording (or learning) has been suggested as a technique to enhance CSP
(Constraint Satisfaction Problem) solving in [9]. The principle is to record a nogood
whenever a conflict occurs during a backtracking search. Such nogoods can then be
exploited later to prevent the exploration of useless parts of the search tree. The first
experimental results obtained with learning were given in the early 90°s [9, 13, 27].

Contrary to CSP, the recent impressive progress in SAT (Boolean Satisfiability Prob-
lem) has been achieved using nogood recording (clause learning) under a randomiza-
tion and restart policy enhanced with a very efficient lazy data structure [24]. Indeed,
the interest of clause learning has arisen with the availability of large instances (en-
coding practical applications) which contain some structures and exhibit heavy-tailed
phenomenon. Learning in SAT is a typical successful technique obtained from the cross
fertilization between CSP and SAT: nogood recording [9] and conflict directed back-
jumping [25] have been introduced for CSP and later imported into SAT solvers [2,
21].

Recently, a generalization of nogoods, as well as an elegant learning method, have
been proposed in [18, 19] for CSP. While standard nogoods correspond to variable as-
signments, generalized nogoods also involve value refutations. These generalized no-
goods benefit from nice features. For example, they can compactly capture large sets of
standard nogoods and are proved to be more powerful than standard ones to prune the
search space.

As the set of nogoods that can be recorded might be of exponential size, one needs
to achieve some restrictions. For example, in SAT, learned nogoods are not minimal

97

and are limited in number using the First Unique Implication Point (First UIP) concept.
Different variants have been proposed (e.g. relevance bounded learning [2]), all of them
attempt to find the best trade-off between the overhead of learning and performance im-
provements. Consequently, the recorded nogoods can not lead to a complete elimination
of redundancy in search trees. An original alternative [29] to combine search scattering
and redundancy avoidance involves performing random jumps in the search space. It is
particularly relevant when an allotted time is given.

In this paper, nogood recording is investigated within the randomization and restart
framework. The principle of our approach is to learn nogoods from the last branch of
the search tree before a restart, discarding already explored parts of the search tree
in subsequent runs. Roughly speaking, we manage nogoods by introducing a global
constraint with a dedicated filtering algorithm which exploits watched literals [24]. The
worst-case time complexity of this propagation algorithm is O(n2+) where n is the
number of variables and ~ the number of recorded nogoods. Besides, we know that - is
at most ndp where d is the greatest domain size and p is the number of restarts already
performed.

This approach, so-called nogood recording from restarts, can be seen as the CSP
adaptation of the search signature technique [1] introduced for SAT. Indeed, this tech-
nique involves recording the explanations (as clauses) of the search path before restart-
ing, while discarding all clauses inferred (if any) during the last run. Nogood recording
from restarts presents some interesting features. First, when search is stopped before
finding a solution, one can run later the CSP solver with the guarantee of not exploring
the same portion of the search space. Secondly, it can be used as a complementary ap-
proach of the classical learning schemes which extract and record nogoods each time a
conflict occurs.

2 Technical Background

A Constraint Network (CN) P isa pair (£, ¢") where 2 is a set of n variablesand ¢ a
set of e constraints. Each variable X € 2" has an associated domain, denoted dom(X),
which contains the set of values allowed for X. Each constraint C' € ¥ involves a
subset of variables of 2, denoted vars(C), and has an associated relation, denoted
rel(C'), which contains the set of tuples allowed for vars(C).

A solution to a CN is an assignment of values to all the variables such that all the
constraints are satisfied. A CN is said to be satisfiable iff it admits at least one solution.
The Constraint Satisfaction Problem (CSP) is the NP-complete task of determining
whether a given CN is satisfiable. A CSP instance is then defined by a CN, and solving
it involves either finding one (or more) solution or determining its unsatisfiability. To
solve a CSP instance, one can modify the CN by using inference or search methods
[10].

The backtracking algorithm (BT) is a central algorithm for solving CSP instances.
It performs a depth-first search in order to instantiate variables and a backtrack mecha-
nism when dead-ends occur. Many works have been devoted to improve its forward and
backward phases by introducing look-ahead and look-back schemes [10]. Today, MAC
[26] is the (look-ahead) algorithm considered as the most efficient generic approach

98

to solve CSP instances. It maintains a property called Arc Consistency (AC) during
search. When mentioning MAC, it is important to indicate which branching scheme is
employed. Indeed, it is possible to consider binary (2-way) branching or non binary (d-
way) branching. These two schemes are not equivalent as it has been shown that binary
branching is more powerful (to refute unsatisfiable instances) than non-binary branch-
ing [17]. With binary branching, at each step of search, a pair (X,v) is selected where
X is an unassigned variable and v a value in dom(X), and two cases are considered:
the assignment X = v and the refutation X # v. The MAC algorithm (using binary
branching) can then be seen as building a binary tree. Classically, MAC always starts
by assigning variables before refuting values. Generalized Arc Consistency (GAC) (e.g.
[4]) extends AC to non binary constraints, and MGAC is the search algorithm that main-
tains GAC.

Although sophisticated look-back algorithms such as CBJ (Conflict Directed Back-
jumping) [25] and DBT (Dynamic Backtracking) [14] exist, it has been shown [3,5,
20] that MAC combined with a good variable ordering heuristic often outperforms such
techniques.

3 Reduced nld-Nogoods

From now on, we will consider a search tree built by a backtracking search algorithm
based on the 2-way branching scheme (e.g. MAC), positive decisions being performed
first. Each branch of the search tree can then be seen as a sequence of positive and
negative decisions, defined as follows:

Definition 1. Let P = (%2',%) be a CN and (X,v) be a pair such that X € %2’
and v € dom(X). The assignment X = v is called a positive decision whereas the
refutation X # v is called a negative decision. =(X = v) denotes X # v and —(X #
v) denotes X = wv.

Definition 2. Let X = (61,...,d;,...,0m) be a sequence of decisions where ¢; is a
negative decision. The sequence (41, ..., d;) is called a nld-subsequence (negative last
decision subsequence) of X. The set of positive and negative decisions of 3. are denoted
by pos(X) and neg(X), respectively.

Definition 3. Let P bea C'N and A be a set of decisions. P| 4 is the CN obtained from
P s.t., for any positive decision (X = v) € A, dom(X) is restricted to {v}, and, for any
negative decision (X # v) € A, v is removed from dom(X).

Definition 4. Let P be a CN and A be a set of decisions. A is a nogood of P iff P|
is unsatisfiable.

From any branch of the search tree, a nogood can be extracted from each negative
decision. This is stated by the following property:

Proposition 1. Let P be a CN and X' be the sequence of decisions taken along a
branch of the search tree. For any nld-subsequence (41, ...,d;) of X, the set A =
{6y,...,78;} is anogood of P (called nld-nogood)®.

! The notation {41, ..., —d; } corresponds to {§; € X | j < i}U{~d;} reduced to {81 } when
i =1.

99

Proof. As positive decisions are taken first, when the negative decision ¢; is encountered,
the subtree corresponding to the opposite decision —¢; has been refuted. O

These nogoods contain both positive and negative decisions and then correspond
to the definition of generalized nogoods [12, 19]. In the following, we show that nld-
nogoods can be reduced in size by considering positive decisions only. Hence, we ben-
efit from both an improvement in space complexity and a more powerful pruning capa-
bility.

By construction, CSP nogoods do not contain two opposite decisionsi.e. bothz = v
and = # v. Propositional resolution allows to deduce the clause » = (a V) from
the clauses = V « and —x Vv 3. Nogoods can be represented as propositional clauses
(disjunction of literals), where literals correspond to positive and negative decisions. For
example, a nogood A = {X; = vy, X5 #,v9, X3 = v3, X4 # v4} Can be represented
by the clause ¢ = (X1 # v1 V X5 = vy V X3 # v3 V X4 = v4). Consequently, we
can extend resolution to deal directly with CSP nogoods (e.g. [23]), called Constraint
Resolution (C-Res for short). It can be defined as follows:

Definition 5. Let Pbea CN,and Ay = I'U{x; = v;} and Ay = AU {x; # v;} be
two nogoods of P. We define Constraint Resolution as C-Res(A;, As) = I'U A.

It is immediate that C-Res(A;, As) is a nogood of P.

Proposition 2. Let P bea CN and X be the sequence of decisions taken along a branch
of the search tree. For any nld-subsequence X’ = (41,...,d;) of X, the set A =
pos(X’) U {—=4;} is a nogood of P (called reduced nld-nogood).

Proof. We suppose that X' contains &£ > 1 negative decisions, denoted by d, , ..., dg,., in
the order that they appear in X. The nld-subsequence of X’ with k negative decisions is
X1 ={61,...,0gy5---,0g.). Its corresponding nld-nogood is Ay = {d1,...,04,---,
Ogi_1s -+, 70g, }1 0g,, being now the last negative decision. The nld-subsequence of
X with k—1 negative decisions is X'y = (d1,...,dg,,...,dq, ,). Its corresponding nld-
nogood is Ay = {61,...,dg,,..., 704, _, }. We now apply C-Res between A; and A,
and we obtain A} = C-Res(A1, Az) = {61, ..., 815+ 0gc 55+ 0gc_1—150gi 1415

.., 704, }. The last negative decision is now d,, ,, which will be eliminated with the
nld-nogood containing & — 2 negative decisions. All the remaining negative decisions

are then eliminated by applying the same process. O

One interesting aspect is that the space required to store all nogoods corresponding
to any branch of the search tree is polynomial with respect to the number of variables
and the greatest domain size.

Proposition 3. Let P bea CN and X be the sequence of decisions taken along a branch
of the search tree. The space complexity to record all nld-nogoods of X is O(n2d?) while
the space complexity to record all reduced nld-nogoods of X' is O(n2d).

Proof. First, the number of negative decisions in any branch is O(nd). For each negative
decision, we can extract a (reduced) nld-nogood. As the size of any (resp. reduced) nld-
nogood is O(nd) (resp. O(n) since it only contains positive decisions), we obtain an
overall space complexity of O(n2d?) (resp. O(n%d)). O

100

4 Nogood Recording from Restarts

In [15], it has been shown that the runtime distribution produced by a randomized search
algorithm is sometimes characterized by an extremely long tail with some infinite mo-
ment. For some instances, this heavy-tailed phenomenon can be avoided by using ran-
dom restarts, i.e. by restarting search several times while randomizing the employed
search heuristic. For constraint satisfaction, restarts have been shown productive. How-
ever, when learning is not exploited (as it is currently the case for most of the academic
and commercial solvers), the average performance of the solver is damaged (cf. Section
6).

Nogood recording has not yet been shown to be quite convincing for CSP (one no-
ticeable exception is [19]) and, further, it is a technique that leads, when uncontrolled,
to an exponential space complexity. We propose to address this issue by combining
nogood recording and restarts in the following way: reduced nld-nogoods are recorded
from the last (and current) branch of the search tree between each run. Our aim is to ben-
efit from both restarts and learning capabilities without sacrificing solver performance
and space complexity.

Fig. 1. Area of nld-nogoods in a partial search tree

Figure 1 depicts the partial search tree explored when the solver is about to restart.
Positive decisions being taken first, a ¢; (resp. —d;) corresponds to a positive (resp.
negative) decision. Search has been stopped after refuting 4;; and taking the decision
—d11. The nld-nogoods of P are the following: Ay = {81, =d2, —d6, ds, 09, 011 },
AQ = {51, _‘52, _'56;58759}i Ag = {51, _'52;56}1 A4 = {51,52}. The first reduced
nld-nogood is obtained as follows:

A} = C-Res(C-Res(C-Res(A1, Az), As), Ay)

= C'ReS(C-ReS({él, _|52, _'56; 587 511}, Ag), A4)
= C'ReS({(Sl, _|52, 587 511}, A4)
= {517 68, 611}

101

Applying the same process to the other nld-nogoods, we obtain:

A/Q = C-ReS(C-ReS(AQ, Ag), A4) = {(517 s, 69}

Ag = C-RES(A3, A4) = {51,66}.

Ay = Ay = {01,062}

In order to avoid exploring the same parts of the search space during subsequent
runs, recorded nogoods can be exploited. Indeed, it suffices to control that the decisions
of the current branch do not contain all decisions of one nogood. Moreover, the negation
of the last unperformed decision of any nogood can be inferred as described in the next
section. For example, whenever the decision §; is taken, we can infer -6, from nogood
Al and =d6 from nogood Aj.

Finally, we want to emphasize that reduced nld-nogoods extracted from the last
branch subsume all reduced nld-nogoods that could be extracted from any branch pre-
viously explored.

5 Managing Nogoods

In this section, we show how to efficiently exploit reduced nld-nogoods by using the
SAT technique of watched literals [24, 30, 11]. We present an efficient propagation al-
gorithm enforcing GAC on all learned reduced nld-nogoods that can be collectively
considered as a global constraint. It is important to note that, reduced nld-nogoods will
be stored under the form of propositional clauses only involving negative literals.

5.1 Data structures

First, we introduce three basic types that will be useful for defining our data structures.
The first one, denoted Literal, identifies any positive or negative decision (i.e. any
variable assignment or value refutation). It then corresponds to a structure including
three fields as follows:

— wvariable is a reference to a variable
— walue is an integer that belongs to the initial domain of the variable
— positive is a Boolean that indicates if the decision is positive (true) or not (false)

The second one, denoted Flement, associates a nogood with two watched literals.
It then corresponds to a structure including three fields as follows:

— nogood is an array of Literal references (whose size is at least 2)
— watchl is an integer which gives the position of a first watched literal in nogood
— watch?2 is an integer which gives the position of a second watched literal in nogood

The third one, denoted Link, allows to build linked lists of Element references.
These links are used to access nogoods recorded in the base. It corresponds to a structure
including two fields as follows:

— element is an Element reference
— next is a Link reference (whose value is nil if it is not followed by another link)

102

X #a Y £b Z4c W£d

nil

nil

,4,‘ nil

Fig. 2. Partial view of the nogood base

We can now introduce the following global structure:

— watches is an array of Link references, which gives, for each literal 4, the head of
a list containing all nogoods A such that ¢ is watched in A.

We will consider that the indexing of any array ¢ of size s ranges from 1 to s and
that size(t) denotes s. Also, remark that references must be considered as pointers
(following the Java model), and that nil is used for empty references. Initially, watches
is an array such that, for each literal §, we have watches|[d] initialized to nil. Here, to
simplify the presentation and without any loss of generality, we consider watches as
a kind of associative array (map) which gives for each literal §, the reference to the
first nogood (via an Element reference) currently involving § as watched literal. In
practice, to guarantee a constant time access to this first element, we can either use a
three-dimensional array or some specific encoding of literals.

Figure 2 illustrates the data structures that we have introduced. In a partial view,
one can observe two recorded nogoods. The first one contains the two watched literals
X # aand Z # c whereas the second one contains X # a and W # d.

5.2 Recording Nogoods

Nogoods derived from the current branch of the search tree (i.e. reduced nld-nogoods)
when the current run is stopped can be recorded by calling the store N ogoods function
(see Algorithm 1). The parameter of this function is the sequence of literals labelling
the current branch. As observed in Section 3, a reduced nld-nogood can be recorded
from each negative decision occurring in this sequence. From the root to the leaf of the

103

Algorithm 1 storeNogoods(branch : array of Literal)
1: positiveLiterals : array of size(branch) Literal
2: nbPositiveL.iterals < 0
3: for i ranging from 1 to size(branch) do

4: if branch[i].positive then
5: nbPositiveLiterals < nbPositiveLiterals + 1
6: positiveLiterals[nbPositiveL iterals] < branch[i]
7. dse
8: if nbPositiveLiterals = 0 then
9: remove branch[i].value from branch[i].variable for all subsequent runs
10: else
11: nogood : array of nbPositive Literals + 1 Literal
12: for j ranging from 1 to nbPositiveLiterals do
13: nogood[j] < positiveLiterals[j]
14: nogood[j].positive < false
15: end for
16: nogood[nbPositiveLiterals+1] « branch[i]
17: addNogood(nogood)
18: end if
19: endif
20: end for

Algorithm 2 addNogood(nogood : array of Literal)
: element : Element

. element.nogood < nogood

. element.watchl «— 1

: insertWatch(nogood[1],element)

: element.watch2 < size(nogood)

. insertWatch(nogood[size(nogood)], element])

SO hE WN P

current branch, when a positive literal is encountered, it is recorded in an array (lines 5
and 6), and when a negative literal is encountered, we build a nogood from this literal
and all recorded positive ones (lines 11 to 16). It is important to remark that, here,
the nogood is considered as a clause (disjunction of literals), this is the reason why
we modify the phase of the literals (see line 14). If the nogood is of size 1, it can be
directly exploited by reducing the domain of the involved variable (line 9). Otherwise,
it is recorded, by calling the add N ogood function, into the base (line 17).

To record a new nogood, the add N ogood function (see Algorithm 2) is called. We
select as watched literals the first and last literal of the nogood. To do this, we have to
call the function insertWatch (see Algorithm 3). A new link is used to become the
first link of the list of nogoods (via elements) involving the given literal as watched
literal.

We can show that the worst-case time complexity of storeNogoods is O(A,Ay)
where A\, and \,, are the number of positive and negatives decisions on the current
branch, respectively.

104

Algorithm 3 insertWatch(literal : Literal, element : Element)
1: link : Link

2: link.element < element

3: link.next «— watches[literal]

4: watches[literal] < link

5.3 Exploiting Nogoods

Inferences can be performed using reduced nld-nogoods while establishing (maintain-
ing) Generalized Arc Consistency. We show it with a coarse-grained GAC algorithm
based on a variable-oriented propagation scheme [22, 8, 6]. The Algorithm 4 can be
applied to any CN (involving constraints of any arity) in order to establish GAC. At
preprocessing, propagate must be called with the set S of variables of the network
whereas during search, .S only contains the variable involved in the last positive or neg-
ative decision. At any time, the principle is to have in @ all variables whose domains
have been reduced by propagation.

Algorithm 4 propagate(.S : Set of variables) : Boolean
1. QS
2: while@ # () do

3: pick and delete X from @
4: if| dom(X) | =1then
5: let a be the unique value in dom(X)
6: if checkWatches(X # a) = false then return false
7: endif
8: foreach C'| X € vars(C) do
9: foreachY € Vars(C) | X #Y do
10: if revise(C,Y) then
11 if dom(Y') = 0 then return false
12: dse@ — QU{Y}
13: end while

14: return true

Initially, @ contains all variables of the given set .S (line 1). Then, iteratively, each
variable X of @ is selected (line 3). If dom(X) corresponds to a singleton {v} (lines
4 to 7), we can exploit recorded nogoods by checking the consistency of the nogood
base. This is performed by the function checkW atches (described below) by iterating
all nogoods involving X # v as watched literal. For each such nogood, either another
literal not yet watched can be found, or an inference is performed (and the set @ is
updated).

The rest of the algorithm (lines 8 to 12) corresponds to the body of a classical
generic coarse-grained GAC algorithm. For each constraint C' binding X', we perform
the revision of all arcs (C,Y’) with Y # X. A revision is performed by a call to the
function revise, specific to the chosen coarse-grained arc consistency algorithm, and

105

Algorithm 5 checkWatches(literal : Literal) : Boolean
1: previous < nil
2: current < watches[literal]
3: whilecurrent = nil do
4: position «— canFindAnotherWatch(current.access)
5: if position # -1 then
6: if previous = nil then watches[literal] < watches[literal].next
7
8

else previous.next «— current.next
if literal = current.element.nogood[current.element.watchl] then

9: current.element.watchl < position
10: else
11: current.element.watch2 < position
12: let newWatchedL.iteral be current.element.nogood[i]
13: tmp < current.next
14: current.next < watches[newWatchedL.iteral]
15: watches[newWatchedL.iteral] < current
16: current « tmp
17: dse
18: if literal = current.element.nogood[current.element.watchl] then
19: inferredLiteral < current.element.nogood[current.element.watch2]
20: else
21: inferredLiteral < current.element.nogood[current.element.watch1]
22: let X be inferredLiteral.variable and v be inferredLiteral.value
23: if v.e dom(X) then
24: remove v from dom(X)
25: if dom(X) = () then return false
26: dse@ — QU {X}
27: end if
28: previous «— current
29: current « current.next
30: endif
31: end while

32: return true

entails removing values that became inconsistent with respect to C. When the revision
of an arc (C,Y") involves the removal of some values in dom(Y"), revise returns true
and the variable Y is added to @. For more information about this algorithm and some
of these optimizations, see [6] The algorithm loops until a fix-point is reached.

The principle of Algorithm 5 is to iterate the list of elements (nogoods) involving
as watched literal the literal given in parameter. For each such element, denoted by
current at each turn of the main loop, we have to look for another watched literal. This
is done by calling the function can F'ind AnotherW atch (see Algorithm 6). If we can
find a literal which is not currently watched (see line 2) and which can be watched then
its position is returned. Otherwise, —1 is returned. When a new watched literal has been
found, we have to update (i.e. remove an element) the list watches|literal] (lines 6 and
7), update a watched literal position (lines 8 to 11) and update (i.e. add an element)
the list watches[newW atched Literal] (lines 13 to 15). When no other literal can be

106

Algorithm 6 canFindAnotherWatch(element : Element) : integer
1: for 4 ranging from 1 to size(element.nogood) do

2 if element.watchl = 7 or element.watch2 = 4 then continue

3: et X be element.nogood[i].variable and v be element.nogood[i].value

4: ifv ¢ dom(X)or|dom(X) |>1thenreturni

5

6

. end for
T return —1

watched, we can then infer that the second watched literal must be verified. Remember
that we only record reduced nld-nogoods. Hence, the inference is necessarily of the
form X # a. Taking into account this inference when a still belongs to dom(X), we
can remove o from dom(X), which can yield an inconsistency or an update of the set
Q.
The worst-case time complexity of checkW atches is O(ny) where «y is the number
of reduced nld-nogoods stored in the base and n is the number of variables?. Indeed,
in the worst case, each nogood is watched by the literal given in parameter, and the
time complexity of dealing with a reduced nld-nogood in order to find another watched
literal or make an inference is O(n). Then, the worst-case time complexity of propagate
is O(er2d” + n2~) where r is the greatest constraint arity. More precisely, the cost of
establishing GAC (using a generic approach) is O(er2d") when an algorithm such as
GAC2001 [4] is used and the cost of exploiting nogoods to enforce GAC is O(n27).
Indeed, checkW atches is O(n+y) and it can be called only once per variable.
The space complexity of the structures introduced to manage reduced nld-nogoods
in a backtracking search algorithm is O(n(d + +)). Indeed, we need to store -y nogoods
of size at most n and we need to store watched literals which is O(nd).

6 Experiments

In order to show the practical interest of the approach described in this paper, we have
conducted an extensive experimentation (on a PC Pentium IV 2.4GHz 512Mo under
Linux). We have used the state-of-the-art algorithm MAC [26] and studied the impact
of exploiting restarts (denoted by MAC+RST) and nogood recording from restarts (de-
noted by MAC+RST+NG). Concerning the restart policy, the initial number of allowed
backtracks for the first run has been set to 10 and the increasing factor to 1.5 (i.e., at
each new run, the number of allowed backtracks increases by a 1.5 factor). We used
three different variable ordering heuristics: the classical brelaz [7] and dom/ddeg [3]
as well as the adaptive dom /wdeg that has been recently shown to be the most efficient
generic heuristic [5, 20, 16, 28]. Importantly, when restarts are performed, randomiza-
tion is introduced in brelaz and dom/ddeg to break ties. For dom /wdeg, the weight
of constraints are preserved from each run to the next one, which makes randomization
useless (weights are sufficiently discriminant).

In our first experimentation, we have tested the three algorithms on the full set of
1064 instances used as benchmarks for the first competition of CSP solvers [28]. The

2 In practice, the size of reduced nld-nogoods can be far smaller than n (cf. Section 6).

107

time limit to solve an instance was fixed to 30 minutes. Table 1 provides an overview of
the results in terms of the number of instances unsolved within the time limit (#time-
outs) and the average cpu time in seconds (avg time) computed from instances solved
by all three methods. Figures 3 and 4 represent scatter plots displaying pairwise com-
parisons for dom/ddeg and dom /wdeg. Finally, Table 2 focuses on the most difficult
real-world instances of the Radio Link Frequency Assignment Problem (RLFAP). Per-
formance is measured in terms of the cpu time in seconds (no timeout) and the number
of visited nodes. An analysis of all these results reveals three main points.

Restarts (without learning) yields mitigated results. First, we observe an increased
average cpu time for all heuristics and fewer solved instances for classical ones. How-
ever, a close look at the different series reveals that MAC+RST combined with brelaz
(resp. dom/ddeg) solved 27 (resp. 32) less instances than MAC on the series ehi. These
instances correspond to random instances embedding a small unsatisfiable kernel. As
classical heuristics do not guide search towards this kernel, restarting search tends to
be nothing but an expense. Without these series, MAC+RST would have solved more
instances than MAC (but, still, with worse performance). Also, remark that dom /wdeg
renders MAC+RST more robust than MAC (even on the ehi series).

Nogood recording from restarts improves MAC performance. Indeed, both the num-
ber of unsolved instances and the average cpu time are reduced. This is due to the fact
that the solver never explores several times the same portion of the search space while
benefiting from restarts.

Nogood recording from restarts applied to real-world instances pays off. When
focusing to the hardest instances [28] built from the real-world RLFAP instance scen-
11, we can observe in Table 2 that using a restart policy allows to be more efficient by
almost one order of magnitude. When we further exploit nogood recording, the gain is
about 10%.

MAC
+ RST | + RST + NG
#timeouts| 365 378 337
dom/ddeg avg time |125.0] 159.0 109.1
brelaz #timeouts| 277 298 261
avg time | 85.1 121.7 78.2
#timeouts| 140 123 121
dom/wdeg |7/ ime | 47.8 56.0 43.6

Table 1. Number of unsolved instances and average cpu time on the 2005 CSP competition
benchmarks, given 30 minutes CPU.

Finally, we noticed that the number and the size of the reduced nld-nogoods recorded
during search were always very limited. As an illustration, let us consider the hardest
RLFAP instance scenll — f1 which involves 680 variables and a greatest domain size
of 43 values. MAC+RST+NG solved this instance in 36 runs while only 712 nogoods
of average size 8.5 and maximum size 33 were recorded.

108

8

MAC+RST
MAC+RST+NG

10

s
8

MAC+RST+NG

1 10 100 1000
MAC+RST

Fig. 3. Pairwise comparison (cpu time) on the 2005 CSP competition benchmarks using the
dom/ddeg heuristic

1000

=

00 F

8

MAC+RST
MAC+RST+NG

1000 1000

,a
8

MAC+RST+NG

1 10 100 1000
MAC+RST

Fig.4. Pairwise comparison (cpu time) on the 2005 CSP competition benchmarks using the
dom/wdeg heuristic

109

MAC

TRST| T RST T NG

~ cpu 0.85 0.84 0.84
Seenll-f12 | Ces| 695 477 445
~ cpu 0.95 0.82 1.03
Senll-f10 | Cies| 862 452 636
~ cpu 14.6 1.8 1.9
scenll-f8 |, des| 14068 1359 1401
; cpu 185 9.4 8.4
scenll-A7 1, des| 207K 9530 8096
~ cpu 260 21.8 16.9
scenll-f6 |, des| 302k | 22002 16423
~ cpu 1067 105 82.3
seenll-fs | Cdes|1327K| 117K 90491
; cpu 2494 367 339
scenll-fd | des|2826K| 419K 415K
j cpu 9498 1207 1035
scenll-f3 |, Cdes| 12M| 1517K 1286K
j cpu 29K 3964 3378
senll-f2 | des| 37M| 501K 4087K
- cpu | 69K| 9212 8475
scenll-fl |, Ddes| o3n| 12Mm 10M

Table 2. Performance on hard RLFAP Instances using the dom /wdeg heuristic (no timeout)

7 Conclusion

In this paper, we have studied the interest of recording nogoods in conjunction with a
restart strategy. The benefit of restarting search is that the heavy-tailed phenomenon ob-
served on some instances can be avoided. The drawback is that we can explore several
times the same parts of the search tree. We have shown that it is quite easy to eliminate
this drawback by recording a set of nogoods at the end of each run (similarly to the
search signature technique proposed [1] for SAT). For efficiency reasons, nogoods are
recorded in a base (and so do not correspond to new constraints) and propagation is per-
formed using the 2-literal watching technique introduced for SAT. One can consider the
base of nogoods as a unique global constraint with an efficient associated propagation
algorithm.

Our experimental results show the effectiveness of our approach since the state-of-
the-art generic algorithm MAC-dom/wdeg is improved. Our approach not only allows
to solve more instances than the classical approach within a given timeout, but also is,
on the average, faster on instances solved by both approaches.

References

1. L. Baptista, I. Lynce, and J. Marques-Silva. Complete search restart strategies for satisfiabil-
ity. In Proceedings of SSA’' 01 workshop held with 1JCAI’ 01, 2001.

2. R.J. Bayardo and R.C. Shrag. Using CSP look-back techniques to solve real-world SAT
instances. In Proceedings of AAAI’97, pages 203-208, 1997.

3. C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake FC (and
CBJ?) on hard problems. In Proceedings of CP’ 96, pages 61-75, 1996.

4. C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc consis-
tency algorithm. Artifi cial Intelligence, 165(2):165-185, 2005.

110

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’ 04, pages 146-150, 2004.

F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the Constraint
Satisfaction Problem. In Proceedings of CPAI’ 04 workshop held with CP’ 04, pages 29-43,
2004.

D. Brelaz. New methods to color the vertices of a graph. Communications of the ACM,
22:251-256, 1979.

A. Chmeiss and P. Jégou. Efficient path-consistency propagation. International Journal on
Artifi cial Intelligence Tools, 7(2):121-142, 1998.

R. Dechter. Enhancement schemes for constraint processing: backjumping, learning and
cutset decomposition. Artifi cial Intelligence, 41:273-312, 1990.

R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

N. Eén and N. Sorensson. An extensible sat-solver. In Proceedings of SAT’ 03, 2003.

F. Focacci and M. Milano. Global cut framework for removing symmetries. In Proceedings
of CP’01, pages 77-92, 2001.

D. Frost and R. Dechter. Dead-end driven learning. In Proceedings of AAAI’ 94, pages 294—
300, 1994.

M. Ginsberg. Dynamic backtracking. Artifi cial Intelligence, 1:25-46, 1993.

C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. Journal of Automated Reasoning, 24:67-100, 2000.

T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour. In Proceedings
of CP’05, pages 328-342, 2005.

J. Hwang and D.G. Mitchell. 2-way vs d-way branching for CSP. In Proceedings of CP’ 05,
pages 343-357, 2005.

G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In Proceedings
of CP’03, pages 873-877, 2003.

G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings of AAAI’ 05,
pages 390-396, 2005.

C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus conflict-
directed heuristics. In Proceedings of ICTAI’ 04, pages 549-557, 2004.

J.P. Marques-Silva and K.A. Sakallah. Conflict analysis in search algorithms for proposi-
tional satisfiability. Technical Report RT/4/96, INESC, Lisboa, Portugal, 1996.

J.J. McGregor. Relational consistency algorithms and their application in finding subgraph
and graph isomorphisms. Information Sciences, 19:229-250, 1979.

D.G. Mitchell. Resolution and constraint satisfaction. In Proceedings of CP’ 03, pages 555—
569, 2003.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. In Proceedings of DAC’ 01, pages 530-535, 2001.

P. Prosser. Hybrid algorithms for the constraint satisfaction problems. Computational Intel-
ligence, 9(3):268-299, 1993.

D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
Proceedings of CP’ 94, pages 10-20, 1994.

T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint satisfaction
problems. International Journal of Artifi cial Intelligence Tools, 3(2):187-207, 1994.
M.R.C. van Dongen, editor. Proceedings of CPAI’ 05 workshop held with CP’ 05, volume I,
2005.

H. Zhang. A random jump strategy for combinatorial search. In Proceedings of Al& M’ 02,
2002.

L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Proceedings
of CADE’' 02, pages 295-313, 2002.

111

[blank page]

112

Automata for Nogood Recording
in Constraint Satisfaction Problems *

Guillaume Richaud!, Hadrien Cambazard?, Barry O’Sullivan2, and Narendra Jussien®
I Fcole des Mines de Nantes — LINA CNRS FRE 2729
4 rue Alfred Kastler — BP 20722, F-44307 Nantes Cedex 3, France

{guillaume.richaud, hadrien.cambazard, narendra.jussien}@emn.fr

2 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
b.osullivan@cs.ucc.ie

Abstract. Nogood recording is a well known technique for reducing the thrash-
ing encountered by tree search algorithms. One of the most significant disadvan-
tages of nogood recording has been its prohibitive space complexity. In this paper
we attempt to mitigate this by using an automaton to compactly represent a set
of nogoods. We demonstrate how nogoods can be propagated using a known al-
gorithm for achieving generalised arc consistency. Our experimental results on a
number of benchmark problems demonstrate the utility of our approach.

1 Introduction

Nogood recording is a well known technique for reducing the level of thrashing experi-
enced by tree search algorithms as they repeatedly rediscover the same inconsistencies.
A nogood can be regarded as an assignment to a subset of the variables that cannot
be extended to a solution [9]. Nogood learning was initially proposed as a Constraint
Programming (CP) technique [9,21], but without leading to significant performance
improvements due to its worst-case exponential space complexity. However, it quickly
became a successful technique in SAT [2]. SAT solvers seem to successfully manage
the space and time requirements of nogoods. Inspired by success in SAT, several recent
attempts have been made to reconsider nogoods in CP [13, 14].

There are two fundamental questions to be addressed in the context of discovering
and exploiting nogoods. Firstly, how should we compute nogoods? Ideally one wishes
to compute nogoods that rule out large parts of the future search space. Since nogoods
have mostly been used to support intelligent backtracking and dynamic CSP [21], they
always refer to the decision path and may be not very useful for filtering. A number of
works, both in the SAT and CP community, provide some answers to this problem and
we will review them in the next section. Secondly, how should we process the nogoods
we have learned? In CP, nogoods have mostly be used to check whether the current
search node can be extended to a solution or not. SAT solvers go a step further and use

* This work was supported by the Ulysses Ireland-France Travel Programme, funded in France
by EGIDE (Grant Number 12476YG) and by Enterprise Ireland (Grant FR/2006/29).

113

a simple, but efficient, form of inference called unit propagation over the learned no-
goods. Moreover, by keeping a nogood at each failure during search, one must address
the problem of storing an exponential number of nogoods. The SAT community have
designed clever and efficient data structures to store and propagate a very large number
of clauses or nogoods. The two watched literals scheme [17] is one of the most success-
ful schemes. It has also been applied in CP [13]. However the design of well suited data
structures for recording nogoods in a CP context is still an open question. As a result, it
is still not clear if nogood recording really pays off in CP.

We present a novel technique for storing nogoods in a compact way using an au-
tomaton. In Section 2 we recall how to compute nogoods and show how they can be
propagated. In Section 3 we present our solution to store and to perform the propaga-
tion phase over a large set of tuples using an automaton. We present some preliminary
experimental results in Section 4. Some concluding remarks are made in Section 5.

2 An Overview of Nogood Recording in CP

A constraint satisfaction problem (CSP) is defined by a triple (X, D, C') where X =
{x1,...,x,} is a set of variables, D = {Dq, ..., D, } is the set of domains, where D;
is the domain of variable z; and d is the maximum size of any domain. We denote by
D79 the original domain of x;, and D; is the current domain of x; at a specific point
of interest in the resolution process. Finally, C' denotes the original set of constraints
of the problem. Solving a CSP is achieved by interleaving search with propagation.
Search can be regarded as the dynamic addition of constraints (decision constraints).
For simplicity, we restrict ourselves to decision constraints that are of the form z; = a,
i.e. assignments of values to variables.

2.1 Computing Nogoods

A nogood is computed by analysing why a failure occurs during search. A nogood
can be regarded as a subset of the assignments made so far that caused a failure. We
introduce the basic definitions we require throughout the paper.

Definition 1 (Deduction) A deduction (x # a) is the determination that a value a
should be removed from the domain of variable x.

Definition 2 (Generalised Explanation) A generalised explanation, g_expl(z; # a)
for the deduction (x; # a) is defined by two sets of constraints: C° C C and A, a set
of deductions, such that C' N A A (x; = a) is globally inconsistent.

The set A associated with a generalised explanation, g_expl(z; # a), is denoted by
g-expla(x; # a). Any deduction is itself, generally, due to others deductions. The in-
ferences made during propagation can be traced back to the decision constraints added
by the search algorithm. Therefore, we can compute explanations from generalised ex-
planations. An empty A for a deduction x; # a represents the deduction that is either
directly due to a decision performed on x; such as z; = b or performed at the root
node. Explaining a deduction only with respect to decisions made during search is the
purpose of classical explanations.

114

Definition 3 (Explanation) A (classical) explanation, expl(x; # a) for the deduction
x; # a is defined by two sets of constraints: C° C C and DC, a set of decision
constraints (assignments), such that C° N DC A (x; = a) is globally inconsistent.

Intelligent backtracking techniques usually store an explanation for each deduc-
tion [12]. Such explanations are computed on-the-fly by each constraint.

Example 1 (Explanations) Ler x and y be two variables such that D, = {0,...,6}
and Dy = {0,2,3,4,6}. Values 1 and 5 were removed from the domain y so an expla-
nation is already available for these deductions. Imagine that expl(y # 1) = {x4 = 2}
and expl(y # 5) = {xo = 3,25 = 1} and consider the constraint |x — y| = 2. The
value 3 of x is removed by applying the filtering algorithm on |x — y| = 2. A gener-
alised explanation is simply g_expla(x # 3) = {y # 1,y # 5}. An explanation is, for
example, expl(x # 3) = expl(y # 1) Ueapl(y #5) = {xa = 2,20 = 3,28 = 1}. A

Explanations are designed for intelligent backtracking algorithms and, therefore,
they always refer to a decision path. By explaining every value that is removed, one
can explain a contradiction (an empty domain D;) by computing the union of the
explanations for each value removed from D;"". The explanation that one obtains,
expl(D; = 0) = U;cpeoria expl(z; # j), is often called a contradiction explanation
and meets exactly the classical notion of nogood, i.e. a set of assignments that cannot
be extended to a solution.

Generalised nogoods [14] enhance the pruning power of nogoods by keeping in-
termediate reasons for the removal of a value instead of always projecting them onto
the current decision path and postponing the computation of the nogood when a failure
occurs. Following [12, 14], one can define a generalised nogood as follows.

Definition 4 (Generalised Nogood) A generalised nogood is a set of constraints C' ,,
a set of deductions A and a set of decision constraints DC such that C° N AN\ DC' is
globally inconsistent.

By storing generalised explanations, one keeps in memory the logical chain of in-
ferences made during search; in SAT this is referred to as the implication graph [4,23].
From a contradiction due to an empty domain D; of a variable z;, one can compute
several generalised nogoods (whereas only one nogood is available with the classical
technique). The general scheme for computing a nogood® is given by Algorithm 1.
Line 1 starts by computing the generalised nogood expressing the fact that the domain
of variable x; has been wiped-out and has raised a contradiction. Any deduction can
be replaced by its generalised explanation to get a new (and maybe more informative)
nogood. A generalised explanation whose A set is empty (line 6) is due to a decision
made on that variable so we use the corresponding decision*. A generalised nogood is
finally made of deductions as well as assignments. We can implement any SAT record-
ing scheme by choosing the stopping criterion appropriately. For example, we can im-
plement the Unique Implication Point [4] criterion if we wish to stop when we find a
single reason that implies the conflict at current decision level.

3 This is equivalent to the computation of a cut within the implication graph introduced in SAT.
The implication graph is known in CP as a proof-tree [8].
* The explanation itself may be empty if the deduction is performed at the root node.

115

Algorithm 1 computeGeneralisedNogood(Var z;)

1: GeneralisedContradictionExplanation e «— Uje porig Ti #7;
2: while stopping criterion not met do

3 xr # k < choose a deduction from e;

4: if g_expla(zk # k) is not empty

5: e—eUgexpl(zr # k) — {xx # k};

6: elsee «— eUexpl(zyr #k) — {zr #k};

7: end while

8: return e;

2.2 Propagating Nogoods

The propagation of nogoods is generally limited to the unit propagation approach used
by SAT solvers. Consider as a literal, a variable/value pair (x;, 7). A positive literal will
refer to x; = j whereas a negative literal refers to x; # j. A positive (resp. negative)
literal is said to be satisfied as soon as x; is instantiated to j (resp. j removed from z;),
falsified in the opposite case and free otherwise. A generalised nogood (A, DC') can
be seen as a constraint, i.e. a clause over the corresponding literals (\/,, ;e Tk =
)V (Vyup=jepc @k # J), that must be satisfied in the remaining search. A nogood
is free as long as two literals are free, satisfied as soon as one literal is satisfied and
falsified once all literals are falsified. Moreover, the nogood is said to be unit when only
one literal is free whereas all others are falsified. In this case, unit propagation enforces
the free literal to be satisfied. The two watched literals scheme [4, 17] is recognised as
the best way to propagate SAT clauses. We sketch this technique briefly here, since it is
our baseline for nogood propagation.

The status of a nogood (free, satisfied, falsified or unit) can be determined by
watching only two literals; each nogood is watched by two pointers on two free lit-
erals. Two lists of nogoods are, therefore, watched for each literal: the positive list,
pos_watch(x;, j) is the list of nogoods with the positive literal z; = j, and the negative
list, neg_watch(x;,) denotes the list of nogoods where x; # j. The list pos_watch(x;, §)
is iterated once value j is removed from the domain of z; (i.e., x; # j) and neg_watch(x;, j)
is considered in case of an assignment (i.e. ; = j). For each nogood in the list, the
watched literal (now falsified) needs to be updated and several cases are considered:

1. The other watched literal is already satisfied, the pointer of the falsified literal is
left unchanged;

2. Another free or satisfied literal is found and the watched list is updated accordingly;

3. Otherwise, all other literals are falsified. The nogood is unit and the other free literal
is propagated. The falsified literal is left unchanged.

When using this scheme we leave the pointers to falsified literals that would remain
valid upon backtracking. Indeed, the scheme ensures that as soon as a nogood is free,
it is watched by two free literals. Adding a nogood dynamically at a leaf of the search
tree is done by setting the pointers so that, again, the nogood will be watched correctly
after backtracking. An advantage of the watched literals scheme is that it is well suited
to applications where a large amount of memory is required for nogoods, since there is
no need for complex data-structures that must be restored after backtracking.

116

Nogoods may still require an exponential amount of memory. It is, therefore, manda-
tory to forget some of the nogoods learned periodically during search. Several strategies
have been introduced for forgetting nogoods such as i-order bounded learning [21] or
i-order relevance bounded learning [1, 18]. Essentially these methods propose to only
remember nogoods of a maximum size ¢ or only those that are still relevant with the cur-
rent decision path (that do not differ for more than ¢ elements from the decision path).
The space complexity of the previous schemes is O(n x d*). However this tradeoff does
not generally pay off [13, 15] and lots of nogoods may need to be recorded to make the
learning worthwhile.

Efficient propagation schemes and optimised space management of nogoods are,
therefore, the limiting factors of nogood recording techniques. To tackle the space bot-
tleneck of nogoods, in this paper we propose to store them in a compiled form such
as an automaton. Our assumption is that nogoods may share a lot of literals when they
are learned in the same sub-tree. Based on the automaton representation we show that
propagation can be performed efficiently. We discuss both of these issues below.

3 Encoding Nogoods using Automata

Generalised nogoods can be regarded as tuples. Specifically, since we consider finite
domains, a deduction (x; # v;) on domain D; can be seen as szkeDi\{vj} (z; = vg).
A set of tuples over n variables can be encoded in an acyclic automaton with [=
(n + 1) layers corresponding to each variable and a final state F'. A deterministic finite
automaton is a tuple (Q, X, 0, qo, F') where @ is a finite set of states and ¢ € Q is a
starting state. The alphabet 3 corresponds to the union of all domains of the variables
and X* to the set of all words. Each variable z; is associated with the i*" layer of
the automaton and outgoing transitions of nodes belonging to layer 4 are labelled with
values of the domain D7"". § is a transition function from @ x X' — @ and 6(g, val)
denotes the state reached by applying the transition val in state ¢ and the pair (g, val)
denotes the corresponding edge. §* extends ¢ such that

. [6*(8(q,x),y) f w=zywithz € Yandy € I*,
0 (q’w)_{é(q,w) ifwe X.

We denote by v(q1, ¢2) the transition values that permit moves from state ¢; to state ¢s.
We will denote by |A| the number of states of the automaton A and by |A;| the number
of states of the i*" layer. An example of such an automaton is given in Figure 1.

This representation has already been used in the context of constraint satisfaction
problems [22]. An automaton is a generic way of representing a set of tuples and, there-
fore, to define a constraint in an extensional manner. For a given set, S, of tuples over a
finite sequence of variables X, we will refer to:

— A the automaton recognising the feasible tuples corresponding to .S. That is to say,
L(A) ={w e X*/5*(qo,w) = F} = 8.

— A the automaton recognising the infeasible tuples corresponding to S. In other
words, L(A) = {w € X'/w ¢ L(A)} where X! denotes the words whose length
is .

117

Ty I €9 I x3

Fig. 1. An example of an automaton for three variables x1, x2, x3 of domain {a, b, ¢} encoding
the tuples (a,a,a), (a,a,b), (b,b,a), (b,b,b), (b,c,a), (b,c,b), etc.

— A(X) the automaton projected onto the current state of the domains of variables X
i.e. that all edges (g, 7) for a state ¢ located on layer i such that j ¢ D; are removed.

When the automaton is minimised (for a given ordering of the variables) it is unique,
i.e. it has a canonical form. An automaton is minimal if there are no equivalent states.
Two states are equivalent iff they define the same right language: Z, i.e. they have the
same set of strings that enable us to reach the final state. As we consider a layered
automaton, we can efficiently minimise the automaton using bottom-to-top methods
based on a recursive definition of right language of a state:

L) = L6 a)/ae Zns.a) £ Ly { TS E

Interestingly, in a minimal automaton, encoding the infeasible or feasible tuples does
not matter in terms of the size of the automaton. One can easily prove that the numbers
of states of A and A differs by at most [states.

Property 1 If A and A are minimal then abs(|A| — |A|) < L.

Proof. (Sketch) One can show how to build A from A (see Figure 2). First, change
the final state of A into a garbage state so that all valid tuples of A become forbidden.
Second, invalid tuples of A have to be recognised and all missing transitions (those
going implicitly towards the garbage state) have to be added (bold edges on Figure 2).
Atmost (I—1) states are removed (dashed edges on Figure 2). Indeed a state is removed
if all its transitions lead to the old final state, and only one state per layer may have such
a property (otherwise the two states would have been equivalent). Again, at most one
state is added per layer (because, again, of minimality only one state may have all its
outgoing transitions leading to the new final state). O

Considering a set of nogoods S (infeasible tuples), we choose to maintain the au-
tomaton A corresponding, therefore, to the set of feasible tuples. Adding a nogood
within such an automaton means removing the corresponding word from the language
recognised by the automaton. While this does not really matter for the automaton’s size,
it is easier to reason on A when propagating the automaton.

118

Fig. 2. Switching from A (normal and dashed edges) to A (normal and bold edges).

3.1 Incremental Minimisation of the Automaton

We briefly describe two strategies for incrementally minimising the automaton. The
goal is to incrementally maintain the automaton of feasible tuples. We must be able
to add nogoods (remove the corresponding word from the language recognised by the
automaton) incrementally as we discover new ones [11].

a b, c b
wo w1 woy
1) T3

Fig. 3. Chain automaton recognising the generalised nogood (z1 = a) A (z2 # a) A (3 = b)
with ¥ = {a, b, c}.

We consider a finite X so each deduction (z # v) of the nogood can be replaced by
{z € X\ v}. We denote by w the word corresponding to the nogood to be removed from
the allowed tuples of £(A). Removing w from £(A) involves building a new automaton
ANW with W the chain-automaton recognising w (see Figure 3). W is built using the
same variable order of A such 6*(wo, w) is the final state.

The algorithm proceeds in two steps (depicted Figure 4). Firstly, we compute A N
W: the main differences with other methods used to incrementally construct minimal
acyclic automata is that we try to remove a string instead of adding it and that a gener-
alised nogood can represent more than one string. Secondly, we incrementally minimise
the new automaton by taking into account the new added states; using the fact that our
automaton is layered we can minimise it efficiently. The time complexity of the removal
and minimisation is O(|W| + |X| x |[W]).

Adding a nogood w can add at most |w| states to the automaton even if no min-
imisation occurs (see Step b of Figure 4). This is, however, not true for generalised
nogoods. We find the incremental compilation of nogoods difficult for the following
three reasons. Firstly, in the case of generalised nogoods, the automaton can be larger
(in number of states) than the sum of the number of states of chain automata correspond-
ing to the nogoods. This is due to the fact that a generalised nogood represents several
tuples. A chain automaton is already a kind of compact representation. Moreover this

119

¢) The new automaton after minimization.

b) The new automaton A N V.

Fig. 4. The minimisation process.

behaviour is difficult to predict as it is hard to predict the size of the automaton for a
given language. In the worst case, adding one generalised nogood to the automaton can
add 22;12 |Aj| new states. Secondly, the size of the automaton is related to the order
of the variables. As tuples are discovered during search, the dynamic computation of
the automaton would imply we re-order it dynamically. Thirdly, by adding the nogoods
dynamically one by one in the order in which failures are encountered in search, the size
of the automaton may increase quickly and will only decrease when enough nogoods
have been learned so that they share a sufficient number of assignments.

We are currently investigating how to delay the compilation of nogoods in the hope
that, as the nogoods are known, it would be possible to: select a subset of nogoods that
may give a compact automaton; find a good order on the variables by applying some
heuristics (based on similar ideas than for ROBDD [5]) before compilation; optimise the
order in which nogoods are added to the automaton during the incremental minimisation
phase to avoid large intermediate sizes [16].

3.2 The Filtering Algorithm

Pesant [19] provides a filtering algorithm for a global constraint defined by a regular
language. We use this algorithm to enforce arc-consistency using our automaton A.
The idea behind the algorithm is to maintain the set (J;; of states acting as supports for
each variable-value pair (z;,v;). A state ¢ of the ith layer is considered as a support of
(x;,v,) as long as there exists a path from gy to ¢ and from d(g, v;) to F' in A. Once
Q;; is empty, value j is removed from the domain of variable ;.

120

In Figure 1, for example, we have Q1, = Q15 = Q1. = {90}, Q20 = {¢1, 42},
Q20 = Qac = {q2}, Q30 = Q3p = {43, 94} and Q3. = {qa4}. Incremental propagation
is performed by storing in a “backtrackable” data-structure the incoming and outgoing
edges of each node as well as their in and out-degree. Each time a value j is removed
from the domain of variable 7, the degree of the states within ();; are decremented
accordingly. If some degree reaches zero, this information is propagated to all connected
nodes (predecessors if the out-degree is null and successors in case of the in-degree) by
decrementing their degree and maintaining the ();; lists accordingly.

In the example in Figure 1, if values a and b are removed from the domain of =3, the
out-degree of g3 falls to zero, so its ingoing edges are considered. The states ¢; and ¢
are removed from Qo,, Q2 and Q2. while iterating over the ingoing edges. As Qo5 and
Q2. are updated to (), values b and c are removed from z5. Moreover, the out-degrees
of ¢ and g5 are decremented and the process continues as the degree of ¢; reaches zero
so that value a is finally removed from z; .

Explaining Automaton-based Filtering. As stated in Section 2.1, each filtering al-
gorithm has to be explained in order to be able to generate generalised nogoods. Each
time a value is removed, a generalised explanation must be associated with the deduc-
tion. It is, therefore, mandatory to explain the pruning that comes from the nogoods
compiled in the automaton. Explaining the pruning of the automaton is done by, firstly,
explaining why a state cannot reach F' (Algorithm 2) and, secondly, explaining why a
state can not be reached from ¢y (Algorithm 3). An explanation expl(q) and a back-

Algorithm 2 explainOut(State q, int 1) Algorithm 3 explainIn(State g, int i)

1: Explanation e « (; 1: Explanation e « (;
2: if is_explained(q) is false then 2: if is_explained(q) is false then
3: for all j such that (g, j) # null do 3: forall (p, j) such that 6(p, j) == ¢ do

4: ifj € D; thene «— eUexpl(d(q,7)); 4 if j € D;_1 then e — e U expl(p);
5: else ¢ — e Uexpl(x; # 7); 5 else e — eUexpl(xi—1 # J);

6: end for 6: end for

7: is_explained(q) < true; 7: is_explained(q) < true;

8 expl(q) «— ¢ 8 expl(q) «— ¢

9: end if 9: end if

trackable boolean, is_explained(q), are associated with each state g of the original
automaton. expl(q) records why ¢ is invalid, i.e why it cannot be on a path from ¢y to
F. is_explained(q) is true if the invalidity of ¢ has already been explained and a valid
expl(q) is available in the current branch of the tree. Since many explanations exist it
is mandatory to avoid overriding an existing valid explanation, because the explanation
itself is not restorable upon backtracking.

A value j from a variable x; is pruned because (Q;; is empty. We can explain the
pruning because for each state g that was part of the original list of supports of (z;, v;)
(denoted Qinit;;), either g is itself invalid or §(g, j) is invalid (Algorithm 4).

121

Algorithm 4 prune(int i, int j)

: Explanation e < {);

: for all ¢ in Qinit;; do
if is_explained(q) then e¢ < e U expl(q);
else e — e Uexpl(d(q,7));

end for

remove value j from z; due to e;

AN

expl(q) is computed for each state ¢ in the following way. Firstly, to explain why
a state gy at layer ¢ cannot be reached from ¢, we divide its predecessors into two
sets rpred and rpred. The predecessors rpred, that can be reached from ¢g, and those,
rpred, that are unreachable. For each predecessor p of g, either it belongs to rpred
and we use the explanation expl(p) attached to p, or it belongs to rpred and the values
of transitions leading to ¢; from p (v(p, ¢x)) have been removed from the domain of
x;—1. Algorithm 3 is called each time the in-degree of q; reaches zero and computes

expl(qr):

capl(qr) = expl(qo # @) = | J eapl(wia #7(p)V |J expl(p).
pErpred pErpred

Secondly, in a similar way, the state g, cannot reach I’ because either its successor
cannot reach F’ or the value leading to a state that could reach F' is missing. Algorithm 2
is called each time the out-degree of g reaches zero and computes expl(qy):

eapl(qr) = expl(qr » F) = |J ewpl(ai #v(ar,s)U) eapl(s).

sErsucc sErsucc

Lightweight Filtering Algorithms. The aim of the automaton is to compile large sets
of nogoods and, therefore, to be able to mitigate the large space consumption of classical
approaches. The incremental propagation algorithm is, in a sense, very greedy in mem-
ory as it needs two doubly-linked lists (incoming and outgoing arcs) and two integers
(in-degree and out-degree) per state that are restorable upon backtracking. It also uses
a backtrackable list ();; of states per variable-value pair. First, we give up maintaining
doubly-linked lists for ingoing and outgoing edges. If the number of outgoing edges is
bounded by the alphabet size (the maximum domain size), the number of ingoing edges
can be equal to the number of states of the previous layer which seems unreasonable
in our case. This algorithm is denoted by Aut0 in the following. Moreover, we investi-
gate the following tradeoff which looses the constant time update at each variable-value
removal: firstly, explained by Pesant [19], one does not need all the state-supports and
only one can be kept in memory; secondly, one does not really need the exact degree of
each state but only whether the degree is null or not.

One strength of watched literals precisely lies in the fact that nothing needs to be
restored upon backtracking. We tried, based on this principle, to spare memory by keep-
ing an outgoing and ingoing edge per state that are updated only when the edge is lost
instead of storing the degree. A valid edge at depth k in the tree search is also valid

122

at depths less than k. The filtering based on Aut0 with the previous improvement is
denoted Autl. Finally, we store only one support-state for each value (x;,v;). When
this support become invalid, we look for an other one among edges of Qint,;. Autl
combined to this improvement is called Aut2.

4 Empirical Evaluation

We present experiments that study two aspects of the problem studied in this paper. In
Section 4.1 we investigate the value of storing a large table of tuples in an automaton to
perform filtering compared to generalised arc-consistency [3]. In Section 4.2 we report
our experience of nogood recording with watched literals. For the reasons presented
in Section 3.1, the dynamic compilation of nogoods was far too costly to be compet-
itive. Experiments for the automaton remain to be done once the questions raised in
Section 3.1 have been addressed. Crossword puzzles and RLFAP are our benchmark
problems. All experiments are performed on a Pentium 4 3GHz with 1 GB of RAM
under Linux with the choco constraint solver (choco-solver.net).

4.1 The Automaton: Storing and Filtering

Crossword puzzles problems involve filling a given grid using words from a reference
dictionary such that each word is used at most once. Our interest here is that constraints
have to store large tables of tuples corresponding to allowed words of the dictionary.

A variable x; with domain D(z;) = {a,b,...,z} is associated with each free
square of the puzzle. A constraint is stated per word, i.e., per contiguous sequence
of letters in the puzzle. The allowed tuples of the constraint are defined by all words of
the corresponding length from a reference dictionary. A word can only be used once in
the puzzle so a not-equal constraint is also added between any pairs of words with the
same size. We studied two approaches to enforcing GAC on the problem:

1. The propagation scheme described above. Each dictionary of size k (all words of
size k) is compiled within a minimal automaton called autoy (ij denote the set
Q;j for autoy,).

2. The GAC schema introduced by [3]°. A direct access to the supports of each
variable-value pair is given within a shared data-structure among constraints. Linked-
lists of words of size k that have a letter [at a given position p are stored in a
three dimensional array called supports[1] [p] [k]. GAC is then achieved with
a GAC2001 algorithm by storing the current support (an integer restorable upon
backtracking denotes the index of the word in the supports data structure).

We considered the benchmark of [7] which is made of instances from size 5 x 5 to
23 x 23 and comes from the Herald Tribune Crosswords. We use the dictionary words
that collects 45000 words. Table 1 summarises the results (time limit is set to 1 hour).
The initial propagation of the automaton is costly (initialisation of the @);; lists).
GAC2001 is, therefore, faster on instances that are solved in a few nodes. However,

5 Multidirectionality is not implemented in our GAC schema.

123

Table 1. Automaton and GAC filtering for crossword puzzles.

Mac-Aut0 Mac-Autl Mac-Aut2 Mac-GAC
Instances | Time(s) Node | Time(s) Node|Time(s) Node|Time(s) Node
05.01(dico:words) 0,2 30 0,2 30 0,3 30 0,3 30
15.01(dico:words) 1,3 75 1,3 75 1,3 75 0,9 75

15.02(dico:words) 12,1 872 13,7 872 16,6 872 25,5 872
15.07(dico:words)| 321,2 22859| 366,44 22859| 554,1 22859 9234 22859
19.02(dico:words) 83,8 17511 95,2 17511 214,6 17511 2532 17511
19.05(dico:words)| > 1h 1213314 > 1h 1066428 > 1h 728579| > 1h 500871
21.03(dico:words) 63,6 13017 73,2 13017| 203,5 13017| 248,7 13017
21.06(dico:words)| > 1h 494848| > 1h 416718 > 1h 261107 > 1h 131916
21.07(dico:words) 20,2 1825 234 1825 345 1825 49,5 1825
23.07(dico:words)| > 1h 256456| > 1h 227168| > 1h 118092| > 1h 102668

on hard instances, the automaton tends to be between two and three times faster than
GAC2001. This is due to the fact that words are a “structured” set of tuples (that share
a lot assignments), i.e |Q’;l\ < |supports[1] [p] [k]|. The result is that the function
seekNextSupport which is the basis of any GAC algorithm is faster on Q];l than on
supports([1l] [p] [k].

Table 2. Average memory consumption (in Mbytes) for the four approaches.

instance Aut0|Autl|Aut2|GAC
15.07(dico:words)| 31.8| 21.1| 16.1] 19.7
19.02(dico:words)| 37.2| 25.2| 17.6] 19.1
21.03(dico:words)| 51.6| 33.9| 22.2|23.7

In terms of memory, the automaton is more compact (1,70 Mbytes) than the suppo-
rts[1l] [p] [k] data structure (3,98 Mbytes) for storing all words of size 8 of the
dictionary words. However, the data structure needed to filter the automaton consumes
more memory than the GAC. Every 500 backtracks we measure the amount of memory
used for the four approaches and report the average (Table 2). Among the three ver-
sions, the best compromise for space and time requirements seems to be Autl. Notice
that Aut2 is a little faster than GAC but requires less memory.

4.2 Nogood Recording

We studied the following three approaches on the Crossword puzzles problems and
RLFAP (Radio Link Frequency Allocation Problems): MAC-CBJ [20] is an intelligent
backtracking technique that involves in backtracking to the latest decision involved in
the conflict when a failure occurs; MAC-CBIJ + S is MAC-CBJ combined to standard
nogood propagated by watched literals; MAC-CBJ + G is MAC-CBJ combined to gen-
eralised nogoods propagated by watched literals. The variable ordering heuristic used
was min(dom/deg).

Crosswords puzzles. We again study crossword puzzles. The time limit was set up
to 2 hours and autl is used for the constraints stated per word. Results are reported

124

Table 3. The use of watched literals implies a little overhead so MAC-CBJ remains
faster on easy instances. However, we were able to find the results reported in [14], so
generalised nogoods do effectively pay off on this problem. The next step will be to see
the utility of the automaton for storing such nogoods.

Table 3. Nogood recording for crossword puzzles.

MAC-CBJ |MAC-CBJ + S|MAC-CBJ + G
tps(s) node|tps(s) node|tps(s) node
15.02(dico:words)| 29,7 314 46,2 314 438 303
15.07(dico:words)| 841,6 18182|1255,6 17918| 894,3 11172
19.02(dico:words)| 10,8 264 15,6 264 14,1 219
19.05(dico:words)| 110,6 2104 64,2 1182 47,9 727
21.03(dico:words)| 11,8 292| 184 292| 183 281
21.06(dico:words)| 177,0 2707| 265.8 2677| 164,8 1879
21.07(dico:words)| 44,9 1168| 72,6 1157| 63,5 957
21.04(dico:words)| >2h 87677| >2h 73342| >2h 47527
23.07(dico:words)| 45,3 954| 74,7 892| 61,7 584
21.05(dico:words)| > 2h 176226 > 2h 102057| 722,8 9407
21.10(dico:words)| > 2h 74718 > 2h 47346| > 2h 43440
15.04(dico:words)| > 2h 171029 > 2h 105069|1268,6 16315
15.06(dico:words)| > 2h 150552| > 2h 94936|5529,1 50554
15.10(dico:words)| > 2h 153260| >2h 99929|1634,6 14153
19.03(dico:words)| > 2h 123770| > 2h 88461| >2h 58632
19.04(dico:words)| > 2h 303559| > 2h 222910 55,2 2294
19.07(dico:words)| > 2h 462297| > 2h 289966| 131,9 4312
21.01(dico:words)| >2h 86857| >2h 53418| >2h 36336
23.03(dico:words)| >2h 80810| >2h 50998| >2h 42919
23.04(dico:words)| >2h 74641| >2h 37265| >2h 23723
23.05(dico:words)| 11,7 239| 17,1 2541 15,7 226

Radio Link Frequency Allocation Problems. Our second experiment is based on real
world frequency allocation problems coming from the FullRLFAP archive [6]. The
problem involves finding frequencies (f;) for different channels of communication so
that interferences are minimised. We followed the approach described in [10] to gener-
ate hard satisfaction instances. Therefore, scenXX-wY—-£Z corresponds to the original
instance scenXX where constraints with a weight greater than Y are removed, as well
as the Z highest frequencies. Generalised nogoods are much more effective on those
problems again (Table 4) however the results of [10], using a different conflict-based
heuristic to ours, remain better.

Figure 5 shows the size of the automaton after the addition of each of the first 300
generalised nogoods taken from scen03-05-11. The basic compilation approach
is dyn in which nogoods are compiled as they are discovered, using an ordering for
the variables in the automaton based on the variable ordering from the nogoods them-
selves. We study two independent enhancements to the basic scheme. Firstly, denoted
by +Is, we use a local search to optimise the variable ordering before compiling a set
of nogoods; for example, when compiling k nogoods we try to find an ordering for the
automaton that minimises its size having compiled the k& nogoods. Secondly, denoted
by +s, we compile the k nogoods in lexicographically order (instead of compiling them
in the order given by the failures during search). Notice that +Is affects the final size

125

Table 4. Nogood recording for RLFAP problems.

MAC-Cbj MAC-Cbj + S |MAC-Cbj + G
tps (s) node|tps (s) node|(tps(s) node
scen02-05-24 0,3 104 0,9 104 0.4 104
scen02-05-25 3,0 610 52 610 3,1 360
scen03-05-10(1659,2 572507 > 2h 343927| 123,8 11575
scen03-05-11| > 2h 3506415 > 2h 776095| > 2h 155008
scenll-05-00 6,4 1207 83 1207 3,8 622
scen06-02-00| 73,9 68669| 164,2 61866 53 1854
scen07-01-04 0,1 202 0,2 202 0,2 201
scen07-01-05 0 26 0,1 26 0,1 26
graph08-05-10| > 2h 1722485| > 2h 491970 > 2h 175079
graph08-05-11| > 2h 1300390| > 2h 494286| 46,6 6906

80000 T
dyn -
70000 dyn+ls -- -
dyn+s
60000 - dyn+s+ls
» 50000 -
g
© 40000 -
2
30000
20000
10000 [)
0 goastzmn i L L 1
0 50 100 150 200 250 300

#nogoods

Fig. 5. Size of the automaton (#states) after the addition of each nogoods for scen03-05-11.

of the automaton, since it affects the variable ordering, whereas +s affects only its
intermediate size.

In Figure 5 we see two pairs of curves: one pair corresponds to the nogood-based
variable ordering, while the other used local search. Within each pair of curves, while
each one converges on the same size automaton having compiled all the nogoods we
considered, the intermediate size is determined by the order in which the nogoods were
compiled. Interestingly, a lexicographic ordering of the nogoods does not ensure that
the automaton is more compact than the ordering based on how the nogoods themselves
were discovered. Clearly, the variable ordering in the automaton is critical to ensure
an overall compact representation, but the order in which nogoods are incrementally
compiled is also important in order to avoid a large intermediate automaton.

5 Conclusion

This paper investigates a novel approach to storing and propagating nogoods. The ap-
proach uses an automaton to overcome the exponential memory requirements of no-
good recording. We demonstrate the advantages and limitations of the approach. We
show that the dynamic compilation of nogoods is certainly very difficult to achieve in
practice but we show interesting computational results using an automaton to achieve
arc-consistency over large and structured tables of tuples.

126

References

1.

2.

10.

12.

13.

19.

20.

21.

22.

23.

R. J. Bayardo and D. P. Miranker. A complexity analysis of space-bounded learning algo-
rithms for the constraint satisfaction problem. In AAAI-1996, pages 298-304, 1996.

R. J. Bayardo and R. Schrag. Using CSP look-back techniques to solve exceptionally hard
SAT instances. In Proceedings CP 1996, pages 46—60, 1996.

. C. Bessiere and J.-C Régin. Arc consistency for general constraint networks: Preliminary

results. In IJCAI’97, pages 398—404, 1997.

. L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfiability and constraint program-

ming: A comparative survey. Technical Report MSR-TR-2005-124, 2005.

. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. /EEE Trans-

actions on Computers, 35(8):677-691, 1986.

. B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners. Radio link frequency assign-

ment. Constraints, 4(1):79-89, 1999.

. X. Chen and P. Beek. Conflict-directed backjumping revisited. Journal of Artificial Intelli-

gence Research, 14:53-81, 2001.

. R. Debruyne and al. Correctness of constraint retraction algorithms. In FLAIRS 03, pages

172-176, 2003.

. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and

cutset decomposition. Artificial Intelligence, 41:273-312, 1990.
C. Lecoutre F. Boussemart, F. Hemery and L. Sais. Boosting systematic search by weighting
constraints. In ECAI’04, pages 482—486, 2004.

. B. Watson J. Daciuk, S. Mihov and R. Watson. Incremental construction of minimal acyclic

finite state automata. Computational Linguistics, 26(1):3-16, 2000.

N. Jussien and P. Boizumault. Dynamic backtracking with constraint propagation — ap-
plication to static and dynamic CSPs. In CP Workshop: Theory and Practice of Dynamic
Constraint Satisfaction, 1997.

G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In Proceedings
CP 2003, pages 873-877, 2003.

. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In National Conference on

Artificial Intelligence (AAAI-2005), pages 390-396, 2005.

. L. Lynce and J. Marques-Silva. The effect of nogood recording in MAC-CBJ SAT algorithms.

Technical Report RT/04/2002., 2002.

. S. Mihov. Direct building of minimal automaton for given list. In Annuaire de I’ Université

de Sofia St. KI. Ohridski, volume 91. Sofia, Bulgaria, 1998.

. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proceedings of DAC’01, 2001.

. S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for constraint programming.

In FLAIRS 03, pages 192-196, St. Augustine, Florida, USA, 2003.

G. Pesant. A regular language membership constraint for finite sequences of variables. In
CP 2004, volume LNCS 3258, 2004.

P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed backjumping.
Technical Report /95/177, University of Strathclyde, 1995.

T. Schiex and G. Vertaillie. Nogood recording for static and dynamic constraint satisfaction
problem. 1JAIT, 3(2):187-207, 1994.

N.R. Vempaty. Solving constraint satisfaction problems using finite state automata. In AAAI,
pages 453-458, 1992.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning
in boolean satisfiability solver. In ICCAD, pages 279-285, 2001.

127

128

