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Abstract

Empowered by the virtually endless supply of transistors provided by today’s leading-
edge silicon process technology, computer architects seem to have an infinite number of
design possibilities at their disposal. At the same time, the diminishing returns of
instruction level parallelism (ILP) have forced designers to utilize designs embracing
thread level parallelism (TLP). As a result, new CMP designs try to connect multiple
processors using novel memory system designs instead of making larger and more
complex uniprocessors. Unfortunately, these CMPs cannot be easily explored and

evaluated using existing software-only simulations tools.

Historically, software simulation has been the vehicle of choice for studying computer
architecture because of its flexibility and low cost. Regrettably, designers of software
simulators must choose between building simulators that provide either high
performance or detailed hardware emulation. Building actual hardware, in contrast,
provides high performance and accurate results, but lacks the flexibility to explore
multiple designs and is very expensive. These tradeoffs have impeded our ability to

thoroughly explore and evaluate new computer architectures.

This dissertation describes the architecture, implementation and evaluation of a simple
prototype. This proof of concept is implemented on a new hybrid hardware prototyping
platform enabled by integrating a variety of hardware components on a printed circuit
board (PCB) to implement Chip Multiprocessor (CMP) or Multiprocessor (MP) systems.
The Flexible Architecture for Simulation and Testing (FAST) combines the flexibility of
software simulation with the accuracy and speed of a hardware implementation enabling
computer architects to implement new multithreaded, multiprocessor, or CMP
architectures for in-depth evaluation and software development. This is accomplished by
combining dedicated microprocessor chips and SRAMs with Field Programmable Gate
Arrays (FPGAs), enabling FAST to operate at hardware speeds, yet still have the ability to
emulate the latency and bandwidth characteristics of a modern CMP architecture. FAST
provides the foundation for future TLP-focused computer architecture research and
software development that is currently not possible or practical using software-only or

hardware-only solutions.
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Chapter 1

Introduction

In the recent era, computer architects have leveraged increasing transistor density on
microprocessor chips to implement single, large processors that exploit instruction level
parallelism (ILP). However, continued performance gains from ILP are becoming
increasingly difficult to achieve due to limited parallelism among instructions in typical
applications [97]. Likewise, the problems associated with designing ever-larger and more
complex monolithic processor cores are becoming increasingly significant. The increased
design complexity also adds new design problems that compound the normal first-order
design problems that accompany larger designs, i.e., increased bug rates and longer design
and verification. These design problems are exacerbated by including new first-order
effects like wire delay in the design requirements [70]. This reality has spurred great
interest in exploiting thread-level parallelism (TLP) among independent threads of

instructions to continue historical microprocessor performance improvement trends.

Multithreaded microprocessor architectures such as chip multiprocessors (CMPs) are
now ubiquitous in industry and research. These multithreaded architectures effectively
integrate symmetric multiprocessor (SMP) systems onto a single chip.  These
architectures improve the throughput of multi-process applications such as commercial
server or network processing workloads or of multiple independent programs aggregated
on a single system that integrates multiple homogeneous or heterogeneous processors
onto a single chip [30, 63]. The high performance of CMP architectures is achieved by
integrating various forms of multithreading with novel memory systems utilizing large,
on-chip caches that can be shared or not shared. Examples of these architectures are the

UltraSPARC T1 [61] and Montecito processors [71].

Analytical performance models cannot predict complex memory orderings and, as a
result, cannot quantify system performance. Likewise, as on-chip memory performance
begins to dominate system performance, software simulators must maintain and track

memory interactions to predict performance. Also, the majority of software simulators



are single threaded. The combination of simulating large on-chip caches and simulating
multiple processors or threads using a single processor dramatically slows down the
effective speed of the software simulators. As a result, these traditional methods of
performance prediction and software development are impractical for these architectures,

because of the high level of integration of these systems.

This dissertation explores a new hybrid methodology for rapidly investigating the CMP
architecture space by combining dedicated processors with novel memory system designs.
The system that we propose enables highly detailed, rapid prototyping, either emulation
or implementation, of full systems. This system addresses the drawbacks of analytic

modeling, software simulation, and hardware prototyping.

1.1  Architecture, performance, and technology scaling

The CMP is the dominant processor architecture across many domains including
embedded, desktop, laptop, and server processors. Instruction level parallelism and
frequency scaling are no longer viable options for improving processor performance [98].
Furthermore, silicon transistor scaling has reduced the size of even the most complex
processors, facilitating two or more complex cores on a single die with minimal
integration effort [56]. As a result, 2005 was the first year where all major chip

manufacturers introduced CMPs, and current processor roadmaps forecast nothing but

CMPs [3, 57, 58, 77, 85, 92].

The current International Technology Roadmap for Semiconductors (ITRS) continues to
forecast silicon process scaling through 22 nm [58]. This forecast will provide computer
architects with plenty of transistors to develop the CMPs on processor roadmaps [3, 57,
58, 77, 85, 92]. Moving forward into 65 nm silicon process technology, transistors are no
longer increasing in speed, and wire delay dominates critical paths. These trends
reinforce local, short wires and small-area clock domains that are particularly suited for
CMP architectures, which inherently exploit TLP. These restrictions inhibit the design of
structures for ILP, which use high clock frequency, large structures, and several pipeline
stages to issue multiple instructions per cycle. Furthermore, very few applications exhibit

the massive levels of ILP that these (previously monolithic) processors could exploit.



Finally, Sun Microsystems has taken the most aggressive steps in exploiting TLP with its
Niagara processor, which includes 8 processor cores with 4 hardware threads per core for
a total of 32 threads or virtual processors [61]. The Niagara processor also integrates
other system-on-a-chip (SOC) components, like on-chip memory controllers and
cryptography functional units. It is only a matter of time until other industry players

follow this lead.

Current general-purpose and commodity processors integrate hundreds of millions of
transistors on a single chip, at multiple gigahertz clock frequencies. Intel’s Montecito
chip is a two processor CMP with over 1.7 billion transistors, although most of these
transistors are used for two third level caches [71]. Future silicon generations will be able
to exploit these high transistor counts by implementing special processing units rather
than massive on-chip memories. Regardless of the integration of special processing units,
future generations of CMPs will still have many processor cores and several megabytes of

aggregate on-chip memory.

Higher transistor counts, short wires, and a slower rate of increase in clock frequency
combine to reinforce the trend toward CMP architectures. The higher transistor count
can be exploited in CMPs for more processor cores, on-chip cache, or other SOC units
such as cryptography units, memory controllers, or on-chip network controllers. Davis et
al. focused on the core and cache trade-off for commercial server applications [30]. This
design-space study demonstrated that simple cores enabled with fine-grain multithreading
using moderate area for caches (25-40% of the CMP area) garnered maximum
throughput for this application space when compared to CMPs using more complex
superscalar in-order processor cores. Furthermore, when extrapolating these results with
an area model for out-of-order processor core based CMPs, simple scalar in-order fine-
grain multithreaded cores continue to outperform these very complicated ILP-focused
out-of-order cores with respect to thread throughput and throughput oriented

commercial server applications [30].
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Figure 1.1. Previous computer architecture research cycle.

As a result of the advances in transistor scaling technology and the adoption of CMP
architectures, the architecture simulation and validation problem is growing in
complexity. In the past, the research cycle involved the following steps: (1) formulating
an idea, (2) using software simulation to do further investigation of the idea, and (3)
finally, building a hardware prototype to validate that specific idea. Figure 1.1 illustrates
these steps with an arrow transitioning from left to right, dark to white, reflecting the

increased clarity that each step brings to the architecture idea.

1.2 Additional terminology

Before diving into further details, it is beneficial to define some of the more frequently
used terminology. Field programmable Gate Arrays (FPG.As) are digital chips that can be
programmed to provide various digital interfaces and functionality. Morphware refers to
the source code used to describe hardware functionality programmed in the FPGAs.
SRAMs are large, fast storage elements used for implementing memory structures. A
printed circuit board (PCB) is a substrate that provides the interconnectivity for all the
components in the design, both power and ground as well as chip interconnectivity, i.e., a
connection on pin A of chip 1 to pin B on chip 2. The dedicated processors refer to the
central processing unit (CPU) used for integer computation, and the floating-point unit
(FPU) used for floating-point computation. We combine several components, the
dedicated processor, FPGAs, and SRAMs, on the PCB to build an equivalent modern

processor.

Discussion of hardware systems can lead to some confusion with regard to the fidelity
and mapping of the hardware or software tools. For the purposes of this dissertation, the

host machine (for software simulators) or host hardware (the PCB and morphware) are



the platforms that support the execution of the research target system, in this case a
simulator, emulator, or implementation. Generally and historically, the difference
between simulators and emulators are a few shades of gray. Most people use these terms

interchangeably. It is useful to differentiate simulation, emulation, and implementation.

In the case of wimmulation, a software model tries to approximate a target system. This
approximation can vary from a very coarse-grain resemblance to a very detailed fine-grain
model. In some cases, the operating system and applications cannot differentiate
between highly detailed software simulators and real hardware. Today, software
programs are written to model and investigate new systems. The simulation tracks the
state transitions of key characteristics of the system. In the case of computer systems,
this may include memory state changes, instruction interaction, and/or program behavior.
Regardless of the level of detail, certain simplifications and approximations must be made
in the simulation framework. Simulation is an extension of a mathematical model that
uses initial conditions to predict system behavior. For computer systems, simulation
attempts to predict program behavior. However, the simplifying assumptions and
approximations determine the fidelity and validity of the resulting simulation predictions.
Software simulation provides far more transparency than hardware systems, down to the
level of detail that is modeled in software. However, these simulators convert a parallel
machine or process into a sequential process, possibly abstracting away timing and other

timing related interactions.

Emmlation provides the highest level of fidelity when compared to the target system. An
emulator tries to imitate the target system and accepts the same data and executes the
same programs achieving the same results as the target system. Emulators can be
software-based or hardware-based. Both try to maintain the state of the target machine,
whereas simulation is generally only concerned with the program behavior. Emulation
requires extreme detail of both documented and undocumented features, down to
individual clock cycles. In some cases, the emulator must deviate from the original
specification and include bugs. Traditionally, emulation (in software or hardware
systems) has been associated with gate-level simulation of designs. Finally, in the case of
hardware emulation, the entire design executes in parallel, whereas software emulation

and simulation typically executes the system in a well-defined sequential manner.

5



Finally, an zmplementation or prototype of a computer system is an instantiation of the real
system. In general, researchers build hardware prototypes that implement and validate
their design. These prototypes generally compromise on raw system performance, high
clock frequencies, but scale all of the on and off chip latencies in order to validate the
design. Hardware implementations make certain trade-offs with respect to the initial
specification and thus, may not be as cycle accurate for every signal with respect to old
designs or new designs. An implementation provides high fidelity, but it may differ from
the true specification. Simulators and emulators can be built from software, while
hardware can be used to build emulators and implementations, but with varying degrees
of flexibility. Emulation is differentiated from an implementation or a prototype by the
system transparency. Emulation generally provides greater system transparency for
debugging purposes and requires more effort to model every detail. Prototypes generally
have less transparency and real computer systems have far less transparency for system
debugging. External observation, using a logic analyzer, and limited performance
counters are the common methods used for prototype computer system debugging. A
system that can emulate or implement a variety of computer architectures is the goal of

this work.

We introduce a hybrid system that can either emulate or implement target systems. We
define a hybrid prototyping platform as a combination of fixed-function and
programmable hardware and software that yield a system with the benefits of a software
simulator and hardware prototype. This hybrid system emulates computer systems when
it must approximate particular components, i.e., using a simple processor instead of a
more complex processor. Likewise, it can fully implement target systems, but not at the
target frequencies. In the case of implementations, the hybrid system scales all of the
relevant latencies to preserve the ratios, thereby truly implementing the target system.
Implementation and emulation are used interchangeably in this dissertation; the target
fidelity determines which term is appropriate. Thus, our system has the flexibility to
implement many different hardware prototyping systems on the same PCB platform by

changing the PCB using higher-level software.



1.3  Computer systems development

There are three main methods used for developing and validating new computer systems.
These methods range from coarse, back-of-the-envelope, analytical evaluation to building
a hardware prototype. Given the complexity of modern and future systems, it is
beneficial to describe these methods and enumerate the benefits and drawbacks of each
method.  Analytic modeling, software simulation, and hardware prototyping enable
researchers to study and understand computer systems behavior, particularly hardware
and software interaction, at various levels of detail. Regardless of the method used to
understand computer systems, new computer systems development is application driven

and tries to improve the performance of applications on a particular computer system.

1.3.1 Analytic modeling

Analytic models are mathematical models of the system that can be used for the initial
validation of computer architecture ideas. In general, these models are high level. These
models can accurately predict performance of simple uniprocessors with blocking caches.
For these simple systems, a decoupled processor and memory model can be used. These
models can be very basic back-of-the-envelope calculations or very complicated queuing
theory models with many variables. The processor and system performance can be
derived from a simple memory performance model. Regardless of the complexity of the
model, various simplifying assumptions must be made to use these analytic models.
Unfortunately, modern computer systems are too complex for these high-level
abstractions, which produce invalid analytical models. The number of simplifying
approximations increases with hardware and software complexity. Furthermore, software
development is not hardware agnostic, forcing developers and compilers to work together
to improve program petformance. This hardware/software interaction cannot be
predicted with analytical models. As a result, the applicability of analytic models is very
limited and not adequate for modern and future processor architectures. CMP systems
with shared resources, large on-chip caches, and multiple outstanding and interacting
memory reference make these mathematical models even less relevant because of the
number of first and second-order effects that cannot be accounted for with these
approximating models. Furthermore, these complex CMP systems further confound the

analytic models, which cannot quantify the impact of software on these complex
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computer systems or enable software development or tuning. At best, these models
provide gross analysis and potential trends that rely on explicit and implicit

approximations and assumptions.

1.3.2 Software simulation

Software simulation has become the e facto standard for computer architecture research
facilitated by a trio of software simulators: SimOS [81], Simics [68], and SimpleScalar [12].
These simulators provide many benefits. The computer architecture community reuses
these software simulators, using them as the foundation for new research. The flexibility
of these software systems makes them very attractive because software simulators are
modular and easy to extend to encompass additional functionality. Software simulators
provide maximum observability or transparency; all internal components of the software-
simulated system are visible, unlike hardware systems. Software simulators are often
deterministic, making them easier to debug because the results and behavior are
reproducible. As the de facto standard, software simulators have a large user base and
development time is greatly reduced because of the additional software modules provided
by the large developer/user community. Finally, these particular software simulators
have the right price for academia: free. These factors combine to create a foundation for

all current and future research.

In terms of the research cycle shown in Figure 1.1, the software simulators are essential
for initial research, i.e., limit studies or rapid system prototyping, using fast, inaccurate
software simulators. As the software simulators mature, they become more complex,
modeling the system with more detail, which makes the simulator slower, but more
accurate. Using execution-driven simulation or binary translation, full system simulation
can provide highly detailed and accurate results. However, these software-based
simulators allow one to evaluate only small benchmarks or fragments of larger
benchmarks using instruction-level simulation, but are too slow to simulate entire
applications within a reasonable time. Complicated CMP and multiprocessor designs
exacerbate this problem by requiring that many processors be simulated simultaneously
with complicated memory systems. Multiple simulated processors linearly slow down

sequential software simulators, while the complex memory systems require memory



address tracking to correctly simulate memory interactions [22, 33, 39, 48, 66, 76]. As a
result, the complexity of even the most basic multithreaded architectures presently limits
instruction-level simulation to an effective “clock rate” of about 0.05 MHz; most
simulators, especially RTL ones, achieve much less [5, 31, 60]. Simulation speed therefore
limits the scope and effectiveness of research that can be performed in reasonable

amounts of time.

Furthermore, software simulators are inaccurate as shown in the Flash hardware, software
simulator comparison [40] and as a result, suffer from credibility problems. Thus,
software simulators can be used to indicate trends, but not necessarily absolute results
without significant validation effort. Moreover, academia lacks the resources to fully
validate software simulators for machines that exist and software simulator validation is
even more challenging for completely new computer systems or programming paradigms.
Finally, the combination of all of these factors means we cannot use software simulators
to facilitate software development for new computer systems because of the inherent

speed and fidelity trade-offs.

Recent computer architecture research has focused on ILP or instruction throughput on
monolithic processors. In these studies, the applications did not require development or
tuning because the microprocessor designs tried to simultaneously execute as many
instructions as possible. For this type of research, a slow, sequential (single-threaded)
simulator could be run on several machines, with each machine having its own particular
simulated machine configuration as shown in Figure 1.2 A. After all the simulation runs
complete, the best configuration can be selected from the collection of configurations run

for that particular study.

Unfortunately, only industry can afford to explore limited design trade-offs by using large
server farms (on the order of 10,000 or more processors) to evaluate several design
elements simultaneously [30]. However, if we focus on designs that require software
development or application tuning, we transition from a potentially parallel simulation
system to a sequential simulation process that requires application tuning and evaluation
before proceeding to the next iteration, as shown in Figure 1.2 B. This sequential

simulation process is required because recompilation and application tuning is based on

9



simulated results. Thus, the simulation process becomes sequential and can no longer
benefit from multiple simulator instantiations running simultaneously. A single
simulation that takes days, weeks, or months now forces software development to wait
for hardware to be available, further limiting the scope of computer systems research

facilitated solely using software simulators.
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Figure 1.2. (A) Parallel simulation of multiple configurations vs. (B) sequential simulation
required by application development and/or tuning.

1.3.3 Hardware prototyping

Relying solely on software simulation to evaluate performance and develop applications
limits the scope and effectiveness of computer architecture research. Simulators are fast
enough to make basic architectural decisions based on the performance of small sections
of a limited number of benchmarks, but they are too slow for running a wide variety of
complete benchmarks or for analyzing entire applications in detail to determine how to
improve performance. Historically, researchers have built hardware prototyping systems
to validate their designs and enable software development and highly detailed

investigation.

The main advantage of the hardware prototype is its speed when compared to software
simulators. Implementing an architecture flushes out all of the details that are not
described in the architecture. The main disadvantages of building hardware prototypes
are the cost, time required, and the inflexibility. With each successive silicon process

generation, building hardware prototypes is increasing dramatically in cost. Just creating
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the mask set for a 90 nm process has surpassed §1 million, pushing processor hardware

prototypes outside the financial viability of most research projects.

Time-to-market of research ideas is also significantly impacted if a hardware prototype is
required. Building a working hardware prototype is very time intensive and includes
making the hardware and developing all the software to make it operational. Finally,
traditional hardware prototypes were built for one particular idea and cannot be extended
to other ideas. The benefits of building hardware prototypes do not outweigh the
drawbacks because of the inability to amortize the cost or leverage some of the hardware
and software infrastructure across multiple systems. As a result, Figure 1.1 has evolved
into Figure 1.3. The expense of hardware prototyping and its inflexibility force the
research cycle to solely rely on software simulation. Moving forward, software simulators
are becoming more and more inadequate to provide useful information about large
computer systems in a reasonable amount of time, making software development
impossible.

Those that rely entirely on software simulation for computer systems studies as shown in
Figure 1.3, lack the clarity and validation and resulting credibility that come from building
a real system. To break out of this current research cycle, we need a solution that bridges

the gap between slow software simulators and expensive one-off hardware prototypes.

Architecture Software
Idea Simulation

Research Cycle

Figure 1.3. Current computer architecture research cycle.

1.4  Enabling computer systems development

It is clear that new solutions are required to do computer systems research. Many efforts
have been made to overcome software simulator speed limitations using hardware
emulation [6, 10, 80, 115]. Historically, hardware emulation platforms use arrays of Field

Programmable Gate Arrays (FPGAs) to generate rapid prototyping systems that can
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emulate entire designs at an RTL level [9, 32, 33, 96]. Unfortunately, efforts to compile
multiprocessor designs to these systems have been limited by poor FPGA logic
utilization, limited interconnectivity in the FPGA arrays, and poor word-size data
manipulation by bit-width FPGA logic units [96]. However, improving transistor
densities continue to improve FPGA applicability. Furthermore, the integration of hard
processor cores or software-defined processor cores inside the FPGAs has extended
FPGA prototyping system capabilities by providing optimized compute infrastructure

that can run real applications and operating systems.

1.4.1 Flexible hardware

FPGAs are an enabling technology for detailed emulation or implementation of computer
systems. Industry already provides expensive examples of such systems [17, 18, 32, 73,
93].  Unfortunately, these systems have drawbacks similar to normal hardware
prototyping, but they do solve the flexibility problem. These systems are expensive and
require full designs to be partitioned and mapped to the FPGA array. Even with the
recent introduction of hard and software-defined processor cores within the FPGA, the
main limitations still exist: limited on-chip memory and the lack of word-size optimized
datapaths built from combinational logic. Even with two embedded hard processors, the
FPGAs still suffer from limited on-FPGA memory (BRAM) and awkward processor
interface required if the processor cache system is redefined. As silicon technology
improves, another alternative is software-defined processors cores or soft cores.
Researchers are able to leverage existing software intellectual property and modify the
soft cores and surrounding subsystems to fit their research needs. Soft cores become
more and more compelling because of the high number of soft cores that fit on a FPGA
and the availability of operating systems and other software tools. Thus, technology
advances have enabled FPGAs to become the main building blocks of future high
performance flexible prototyping systems. Thus, these prototyping systems are limited by
the FPGA building blocks in terms of memory and FPGA interconnect. These systems
also tend to be application-specific integrated circuit (ASIC) or single chip focused and
not system focused, which further limits their applicability to computer systems research.
Furthermore, once the design is validated, mapped to the array and working, it still

operates at speeds close to that of software simulators, about 50 kilohertz. In their
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current form, these generic arrays only solve one out of three problems associated with
hardware prototyping. Hardware cost and software development are still limited using
this solution. Likewise, these generic FPGA arrays have very limited application for large-
scale computer systems exploration space because they are ASIC focused. Finally, unlike
software simulators, generic FPGA arrays do not leverage previous work, either hardware

or software, which would reduce development time.

1.4.2 Hybrid hardware prototyping platform

We are at the point in the area of multithreaded microprocessor architectures where
turther progress will require the development of a hardware prototype to enable software
development and in depth analysis. This prototype should support more than two
parallel threads and novel memory systems like those for thread level speculation (TLS)
and transactional consistency and coherence (TCC).  Currently, no commercial
microprocessor has these multithreading capabilities and this prevents the serious OS,
compiler, and application development that is required to take full advantage of multiple
threads and other novel memory systems. Without the resulting optimized software, it
will be difficult to understand the true benefits of these techniques or make the
appropriate hardware/software design tradeoffs to achieve the best performance [28].
However, the problem with building a microprocessor is that it requires a large amount of
time and money. The immense task of chip design verification before tape out, in
particular, can make microprocessor design a difficult undertaking in an academic
environment. This is the primary reason why all multithreading and novel CMP memory

system research has thus far relied on software simulation.

Fortunately, by focusing on the multithreading and novel memory system capabilities of
future microprocessor architectures, instead of ILP extraction mechanisms, we do not
need to make modifications to the core CPU pipeline of our base processors. We can
build a hardware prototyping platform around relatively simple processors. Therefore, it
is possible to build a flexible research prototype around those existing processors without
doing any new VLSI design. We can also leverage the flexibility of FPGAs to provide the
digital interfaces and controllers along with specific latencies between the memory

subsystem and the processors. Finally, because FPGAs lack the memory density to create
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large on-chip memories, we can leverage off-chip static random access memories
(SRAMs) to provide the fast access and large capacity that is not available in current or
future generation FPGAs. By combining off-the-shelf dedicated processors, FPGAs, and
SRAMs, we can build a flexible platform for CMP and multiprocessor research at
hardware speeds. Thus, software development is possible because of the hardware
capabilities and speed. However, the hardware is only half of the solution, base software
is required to really make this system useful, modular and expandable, similar to software
simulators. The combined hardware and software solution is called FAST, or Flexible
Architecture for Simulation and Testing. It provides the speed of actual hardware with
the flexibility of a software simulator for emulating or implementing CMP or

multiprocessor designs.
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Figure 1.4. Computer systems hardware implementation spectrum.

We thus bridge the hardware prototype and software simulator gap by combining
programmable hardware (FPGAs), dedicated hardware, and software, making a
heterogeneous hybrid solution. When surveying the hardware landscape, hardware
prototypes exist at one end of the spectrum and FPGA arrays exist at the other end, as
shown in Figure 1.4. We list some inflexible prototyping systems on the left and an
FPGA array solution on the right, all of which were available at the start of this project,
circa 2002. Some hardware prototypes did include FPGAs or other programmable
components, which enable system observation or transparency or provided limited
configurability for narrow investigation around the original design point [5, 40, 60, 66,

96].

A hybrid solution combines the benefits of software simulators with the benefits of
hardware prototyping by leveraging the strengths of the base hardware components and
the modularity of software. Table 1.1 provides a (subjective) qualitative comparison of
software simulators, hardware prototyping systems, and an zdealized hybrid solution.
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Table 1.1 explicitly lists the benefits and drawbacks described in Section 1.3. We
compare software and hardware with an idealized hybrid solution to normalize these
mature systems to a new solution. It should be noted that because the hybrid solutions
contain hardware, the hybrid solution would not have a zero cost as do most software
simulators used in academia. In general, academic hardware projects benefit from the
generous donations of industry to make them possible. This is the only reason why
hybrid system costs are an “A.” Likewise, in the ideal case, development time would be
on par with software development. This would be achieved by hiding the timing
challenges and using high-level languages or system generators to build the target

prototype.

Table 1.1. Software, hardware, idealized hybrid systems trade-offs.

Feature Software |Hardware |[Hybrid
Reuse A+ F A+
Flexibility A+ F A+
Transparency A+ D A+
Reproducibility A+ C A+
Community A D A
Development Time A F A
Cost A+ F A
Credibility F A A
Performance F A A
Software Development F A A

Both academia and industry need tools to enable further investigation of CMPs and
multithreaded architectures. Because of its flexibility, hybrid solutions promise to be the
next method to provide credible validation that can be reused across multiple
architectures. This not only brings hardware emulation or implementation back into the
research cycle, but it has the potential to incorporate hardware into the research cycle far
earlier than building a hardware prototype, as shown in Figure 1.5 when comparing it to

Figure 1.1.
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Figure 1.5. Research cycle with the hybrid solution.

Even in the ideal case, hybrid solutions would not completely replace software
simulation. Hybrid solutions will have some inherent limitations that must be understood
that restrict what can be mapped to these systems. The physical limitations are less
restrictive in software making them ideal for limit studies and rapid hypothesis test beds.
Ideal hybrid solutions do not possess the same level of flexibility compared to software
simulation. Thus, once the idea is initially proven, the hybrid prototyping can start in
parallel with the software simulation effort, both maturing in parallel with the hybrid
prototype drafting the software simulation development. Obviously, we have not built
the ideal hybrid prototyping platform. This dissertation describes the challenges that we

encountered and proposes the next generation hybrid prototyping platform design.

1.5  FAST: A Flexible Architecture for Simulation and Testing

This dissertation introduces a Flexible Architecture for Simulation and Testing (FAST), a
hybrid heterogeneous platform for hardware emulation or implementation. The FAST
project started in 2002 with the goal of building both hardware and software
infrastructure capable of emulating or implementing a variety of CMP and multiprocessor
computer systems. By combining FPGAs, SRAMs, and dedicated processor chips with a
software toolbox, FAST is able to provide the benefits of software simulation and
hardware prototyping, bridging the research gap that inhibits software development and
in depth research. This dissertation details the efforts starting in 2004 with the redesign
and implementation of the printed circuit board and initial software infrastructure
contained in the FAST Software Toolbox. FAST enables full system implementation at
the hardware and software level including a variety of memory levels and structures and

operating system and application development.
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FAST enables hardware implementation or emulation by providing base functionality
with both hardware and software. The hardware leverages the functionality of the base
components. FPGAs provide the flexibility, expandability, and interconnectivity to map
a variety of designs to a single hardware platform. SRAMs provide high speed and high-
density memories for a variety of storage structures and multiple memory levels. The
dedicated microprocessors provide optimized 32-bit datapaths for both integer and
floating-point operations. Combined on to a printed circuit board (PCB), these
components provide the foundation for reusable, modular, and scalable framework for

multiprocessor systems research.

Layered on top of the hardware is the FAST Software Toolbox. This toolbox is
composed of base modules to describe the connectivity and functionality of the PCB.
Additional modules define functionality that can be modified for specific computer
systems, for example, level 1 and level 2 caches or other memory structures, predictors,
or performance counters. FAST also has a predefined “morphware” tool chain for
mapping designs to the FPGAs. The application tool chain is also provided for
application development.  Finally, the base components and in particular the

microprocessors can run a ported, fully functional operating system, like Linux.

FAST Applications
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Base FAST Morphware

FAST PCB

Figure 1.6. FAST system hardware and software stack.

Figure 1.6 illustrates the complete FAST hardware and software stack. The FAST PCB is
at the bottom of the stack with the base functionality and connectivity described in
Verilog for the base FAST morphware. There is also a collection of FAST morphware
modules that can be modified by FAST users to model different systems. These three
components are specific to the FAST hardware and enable morphing FAST to the target

architecture. The next two components are enabled by the hardware. The selected
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dedicated processor supports fully functional operating systems and all applications, no
instruction emulation required. We have not included the hardware or software tool

chains, but they are a crucial aspect of the system as well.

FAST is an initial proof of concept that demonstrates the feasibility of a hybrid hardware
prototyping platform that integrates hardware back into the research cycle, enabling both
software development and in-depth research. In addition to describing the FAST
hardware and software toolbox, this dissertation will discuss the limitations of the current
implementation and propose the next implementation that addresses the shortcomings of
the current system, both on the hardware and software side of a standardized hybrid

hardware prototyping platform for computer system implementation or emulation.

1.6 Dissertation contributions

This research has provided insight into the development of a flexible heterogeneous
hybrid platform that can be used to implement or emulate a class of computer
architectures. The following contributions were made in the process of developing the

working hardware proof of concept:

e Design of the first heterogeneous hybrid platform for full system CMP computer
architecture research.

e Definition of the FAST architecture for CMP emulation and/or implementation.

e Implementation of a working printed circuit board prototype using dedicated
microprocessors, SRAMs, and FPGAs that required no rework.

e Definition and development of the software toolbox used as the base
infrastructure for future research including:

O Base Verilog infrastructure modules
0 Software Toolbox, including tool chains
0 Working FAST 4-way decoupled CMP implementation

O Blueprint for mapping Hydra, a thread-level speculative 4-way CMP, to
FAST

e Definition of the next generation hardware and software hybrid platform
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By combining all of these contributions, significant progress can be made by leveraging
these base building blocks of software and hardware to develop more computer systems

and software support for future research.

1.7  Dissertation organization

This research has addressed the limitations of current and future software simulators and
hardware prototypes by designing, building, and providing the software infrastructure for
FAST, a heterogeneous hybrid platform. The FAST design is separated into two main

categories, the hardware platform and the software toolbox.

Chapter 2 describes the FAST architecture. This chapter details the initial design goals
and connectivity. Chapter 3 details the PCB implementation, including component

selection and architecture compromises required to produce the FAST PCB.

Chapter 4 focuses on the software required to make the PCB functional and useful. The
FAST Software Toolbox is comprised of the hardware tool chain and the normal
software tool chain. The hardware tool chain manages the Verilog infrastructure required
for programming FPGAs. We call these software modules that change the PCB
functionality, morphware. The other component of the FAST Software Toolbox is the
software and software tool chain, which includes the framework for the operating system

and applications development. Chapter 4 describes the morphware to software running

on the FAST PCB.

Chapter 5 describes a simple 4-way CMP mapped to FAST. It shows how a user can
map more complex designs to FAST as well as leverage the base morphware/software
infrastructure. The performance results for the 4-way CMP running the Stanford

Benchmark Suite is also presented in this chapter.

Chapter 6 details the next generation of flexible hardware prototyping systems. Related

work and detailed conclusions are provided in Chapter 7.

Finally, additional FAST details are provided in the Appendices. Appendix A provides an
overview of the FAST PCB development process and detailed PCB fabrication

information. Appendix B details the FAST Software Toolbox, the collection of Verilog
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modules and related constraints and software, with links to the software packages.
Appendix C provides key insights used to make FAST operational and additional details
for designing the next generation prototyping system. Appendix D provides additional
explanation of the results and all of the data in tabular form for the initial prototype

presented in Chapter 5.
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Chapter 2

FAST architecture

This chapter outlines the motivation for building FAST and the FAST architecture. The
tirst part of this chapter describes the impetus for building FAST and the evolution from
hardware prototype to flexible prototyping platform. This section starts by providing a
brief description of FAST’s original target, the thread level speculative (TLS) Hydra CMP.
We then expand the application of FAST to other CMP and multiprocessor systems that

can be mapped to FAST.

The second part of this chapter describes the resulting FAST architecture. The FAST
architecture defines an intelligent flexible interconnect that enables an entire class of
computer architectures to be mapped to the same platform simply by changing the
underlying hardware description. The FAST vision is to amortize the hardware costs and
to leverage software, both for programming FAST and for using the same operating
systems and applications, across multiple projects. The FAST vision and FAST’s
flexibility are demonstrated by describing various architectures that can be mapped to

FAST.

2.1 Motivation and history

The FAST project started in 2002. It started as the Hydra Board Design (HBD). At that
point, Hydra, a four-way thread level speculative CMP [44], was not going to be
implemented as a chip. By combining FPGAs, dedicated processors, and SRAMs, Hydra
could be implemented as a printed circuit board with the correct latency ratios, but an
overall slower processor clock frequency. Because FAST initially started as a hardware
prototype of Hydra, most of the architecture for FAST was derived from the Hydra
design. Extending the Hydra architecture for the PCB implementation added the
flexibility to implement other architectures or computer systems. This converted HBD, a
one-off hardware prototype, to a flexible substrate for multiple system implementations.

After a couple years of stalling, the FAST project started in earnest in January of 2004.
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At that time, CMPs were on the horizon for all computer systems, exacerbating the future
computer systems simulation research problem, with no real alternative to software

simulation in sight.

Software simulation, the driving force behind new computer architectures, traditionally, is
much more limited than hardware because of the impracticality of doing software
development with analytical models or software simulators. FAST bridges the resulting
research gap by providing a platform that enables all types of software development,
from operating system (OS) to user applications. This enables many research areas that
previously were impossible or impractical to do using other methods. Finally, a mature
FAST system provides the benefits of a mature software simulator with respect to
modularity, flexibility, and transparency, along with the high fidelity and speed of

hardware, all at a fraction of hardware’s cost.

2.2  Hydra: A Thread-Level Speculative (TLS) CMP

The base Hydra design is a 4-way CMP with private per-processor L1 data and
instruction caches and a shared on-chip L2 cache. Hydra uses a separate 32-bit Write-
through (write) bus for store traffic from the .1 data cache to the .2 cache and a 128-bit
Read/Replace (tread) bus to fill L1 cache misses. Distributed shared memory controllers
and a central arbitration mechanism manage access to the on-chip L2 cache. The base
Hydra design will be described in more detail in Section 2.2.1. However, Hydra is more
than just a simple CMP, it integrates a very novel memory system that enables thread
level speculation (TLS) [44]. TLS is a technique that can be used to speed up sequential
(single threaded) applications by cutting the application into several threads that can be

optimistically run in parallel. Section 2.2.2 describes the hardware mechanisms for TLS.

Figure 2.1 illustrates the process that maps a single threaded application that runs on
processors 0 (PO) and splits that single thread and maps these threads onto the Hydra
TLS CMP. First, a sequential application is partitioned into threads. Initial research has
focused on loop-level parallelism and partitioning the loops into multiple threads [406].
Next, the threads are mapped, round robin, onto Hydra’s 4 processors. Initially, PO

executes the first non-speculative thread and speculative threads are assigned, using round
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robin, to the other processors, P1, P2, and P3. The hardware memory system handles
data forwarding and enforces logical memory ordering between all of the processors and
speculative threads. If the logical memory ordering is violated, a younger threads reads
the same data before the older thread writes that data, the speculative thread is stopped,
all speculative data is discarded, and then the speculative thread is restarted. Threads
become non-speculative as logically older threads complete and are assigned new threads
in round robin manner. This guarantees forward progress and correct application
behavior. Figure 2.1 illustrates the non-speculative thread assigned to PO, in light, with
speculative threads, in dark, assigned in round-robin order to P1, P2, and P3. Once PO
completes executing, the next speculative thread is assigned to PO and P1 becomes non-
speculative. Thus, TLS enables logically older threads to run simultaneously with logically
younger threads as shown in Figure 2.1. An in depth discussion of TLS can be found in
Lance Hammond’s dissertation, “Hydra: A Chip Multiprocessor with support for

Speculative Thread-Level Parallelization” [44].

2 Oldest —Youngest
Thread Thread
1
PO % g{) PO H H H
2
3

Figure 2.1. Thread level speculation on the Hydra CMP. Processor PO runs normally,
while P1, P2, and P3 run speculatively.

Research in TLS has been limited to application loop-level parallelism because of slow
software simulation. A TLS hardware prototype would enable in-depth application and
operating system research and development. TLS can be implemented on top of an
existing CMP using simple hardware mechanisms. The next sections provide a generic

overview of the Hydra CMP and then Hydra enabled with speculation.
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2.21 Base Hydra CMP

Before diving into the hardware specifics of TLS, it helps to move gently into the base
Hydra design, a 4-way CMP, and build from there. As mentioned in the previous section,
Hydra has four simple processors; each processor has private .1 data and instruction

caches. Figure 2.2 provides a high-level diagram of the entire CMP.

|  Centralized Bus Arbitration Mechanisms |

CPUO CPU 1 CPU 2 CPU 3
L1I% L1DS% L11I% Li1DS L11I% L1DS L1I% Li1DS$
CPU 0 Memory CPU 1 Memory CPU 2 Memory CPU 3 Memory
Controller - Controller . — Controller — Controller
T I T TiWrite-throughT TI T T I
Bus (32b)
Read/Replace Bus (128b)
SDRAM M "o I/0B
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——P
On-chip L2 Cache Interface Interface
DRAM Main Memory I/0 Devices

Figure 2.2. Base Hydra CMP with the major components and buses shown.

The Hydra processors use simple 5-stage pipelined RISC embedded processor cores
similar to a MIPS R3000 [54]. Each processor has a private L1 data cache that is 8 KB, 2-
way associative, write-through, and uses a no-allocate-on-write policy. The private
instruction cache is 8 KB, 2-way associative for each processor as well. Because the
original Hydra processor core used an off-the-shelf embedded core from IDT, the caches
were designed with embedded applications in mind and are too small for typical
workstation application. There is also a special cache-invalidation port used to invalidate
cache lines for cache coherence. A distributed memory controller and two arbiters

manage access to the higher-level memory resources. These arbiters control which
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processor can access which bus and prevent multiple accesses to the same address,

basically enforcing logical memory ordering of all memory requests.

Hydra differs from many other CMP designs by having /o system buses, the wide
Read/Replace (tead) bus and the narrow Write-through (write) bus. These shared buses
carry all the data between the processors’ caches and the higher levels (L2 and beyond) of
memory. The write bus is 32 bits wide and carries all the writes (stores) from any
processor to the on-chip L2 cache. The write bus is the key synchronization point, and as
such, snooping on this bus is responsible for invalidating all older data in the other L1
caches that may be sharing the same data that had been written. The read bus is much
wider, with 128 bits between the on-chip L2 caches and L1 caches and 256 bits between
the on-chip L2 cache and main memory. The different bus widths enable entire cache
line fills in a single cycle. The initial Hydra design envisioned a 128 KB on-chip L2 with

at least 4-way associativity.

Finally, Hydra also has various mechanisms for off-chip communication, both to main
memory and basic I/O operations. A much more complete description of the base

Hydra CMP can be found in Lance Hammond’s dissertation [44].

222 TLS Hydra CMP

The base Hydra architecture is tailored for thread-level parallelism (TLP) because of the
four tightly coupled processors that can exploit the low interprocessor communication
latencies.  Even though traditional parallel programming will map well to CMP
architectures like Hydra, changing sequential programs to a parallel software paradigm is
difficult for programmers. Furthermore, correct, high performance parallel programming
is very challenging because of the lack of tools, programmers, and parallel machines. TLS
was developed to use existing uniprocessor programs and dynamically partition these
single threaded programs into multiple threads that can be run on a multiprocessor with
very little programmer effort. Attacking the software development component is only a
partial solution, the hardware must also be practical. The beauty of Hydra enabled with
TLS is that TLS does not add significant complexity to the base Hydra implementation.
This section provides a brief overview of Hydra with TLS. More details about

speculative thread-level parallelization, the additional low-level software protocol
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handlers, and TLS hardware can be found in Hammond’s dissertation, “Hydra: A Chip

Multiprocessor with support for Speculative Thread-Level Parallelization” [44].

Uniprocessor programs do not consider communication patterns within a program
because everything is computed on the same processor. However, when moving
programs to a multiprocessor, propetly scheduled interprocessor communication is
fundamental to good performance.  Additionally, for TLS, hardware must be
incorporated beyond the normal interprocessor communication mechanisms to support
speculation, a specialized form of coherency that tracks and forwards data shared
between threads. Figure 2.3 provides a high-level overview of the additional hardware
required by Hydra to execute speculative threads. The additional TLS hardware,
highlighted in Figure 2.3, is required to provide speculative memory support and control

the speculative threads.

Centralized Bus Arbitration Mechanisms I
CPU 1 CPU 2 E CPU 3
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Bus (32b)

Read/Replace Bus (128b)

Speculation Write Buffers

SDRAM Memory
Interface

I/0 Bus
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On-chip L2 Cache

DRAM Main Memory I/0 Devices
Figure 2.3. TLS Hydra CMP with additional TLS hardware highlighted in bold.

When in speculation mode, if the correct memory ordering cannot be preserved,

speculative threads must be stopped and all speculative data must be thrown away. There
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are five basic requirements that the memory system hardware must fulfill in order to

speculatively execute threads in parallel.

1. Data must be forwarded between threads. The initial uniprocessor programs had
no concept of communicating data between processors — initially, there was only
a single thread for the program. When running speculatively, data from logically
“older” threads must be forwarded to logically “younger” threads running on a

different processor, thereby maintaining the initial sequential memory ordering.

2. There may be cases when a read by a “younger” thread gets the wrong data
because a write to the same memory by a logically “older” thread occurs after the
read. Hardware must be able to track these dependencies and signal when there is
a violation. In this case, a true dependency exists which prevents running the

speculative threads in parallel.

3. When a violation is detected, hardware must be able to rollback the processor
state by discarding all of the speculative machine state. TFurthermore, no

permanent machine state can be lost as a result of discarding the speculative state.

4. The speculative state that has been successfully executed must be committed,
changing the permanent machine state, in sequential program order. This
requires the hardware to preserve total store ordering (TSO) when retiring the

speculative state.

5. Finally, because there are three speculative threads executing simultaneously in
Hydra, the memory system must maintain multiple memory views. This prevents
logically “older” threads from seeing changes to the memory that logically
“younger” threads make. You want to forward data from “older” threads to
“younger” threads, but it would violate program memory ordering if the

“younger” threads forwarded data to “older” threads.

A combination of hardware and software handlers is used for controlling and sequencing
speculative threads across multiple processors at runtime. In general, software specifies

where the speculative threads exist and hardware is used to quickly spawn threads to be

27



run on the other processors in the Hydra CMP. Selecting the sections in the program to
divide into speculative threads is beyond the scope of this work, but it should be noted
that selection of good speculative sections is critical for application speed-up. The
speculative thread coprocessor, or CP2, in Figure 2.3 is the key additional hardware used

to control the speculative memory system and speculative threads.
The CP2 has four main functions that are required for speculative execution.

1. The CP2 interfaces with the L1 cache and controls all the speculative state that

has been added to the L1 cache.

2. There is interprocessor communication, in the form of interrupts, that is required

for speculation and this communication is coordinated by the CP2.

3. The speculative software handlers are accelerated by specific speculative data

managed by CP2.

4. Finally, like many other processors, the CP2 provides hardware support for a

variety of runtime statistics for speculation.

The other main hardware features required for speculation are associated with the L1 and
L2 memories. Hydra uses private write-through 1.1 data caches and a bus system, which
simplifies the coherence protocols. Ten bits are added to the tag array to indicate and
track the cache state during speculation. Using these additional bits, read-after-write
(RAW) violations can be detected. RAW violations occur when a logically “younger”
speculative thread reads data before it has been written by a logically “older” speculative
or non-speculative thread. This forces the system to stop the “younger” thread, clear all
of its speculative data, and then restart the speculative thread. These additional
speculative state bits differ from normal tag bits because they have to be gang cleared if a
violation or commit of speculation occurs. There is a modified bit that acts like a dirty bit
in a writeback cache. Upon violation, all entries with a set modified bit are invalidated.
There is also a pre-invalidate bit to mark cache lines that have been written by other
processors. This bit enables renaming of a particular cache line or multiple views of a

particular cache line. After speculation, this bit indicates if that cache line needs to be
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updated for the next thread. The remaining number of bits used for the speculative state
in the L1 data cache depends on the L1 data cache specifics. In the case of Hydra, the L1
data cache is four words wide, thus there is 1 read bit and 1 write bit for each word in
each cache line for a total of 8 read/write bits plus the pre-invalidate and modified bits,
for an overall total of 10 bits. These speculation bits are included in that tag array that is

used for coherence invalidations.

Because Hydra uses write-through L1 caches, speculative data must be buffered in the L2
cache and stored until it is ready to be committed to the permanent machine state.
Additional buffers are added, one per core, to store all speculative writes at the 1.2, If the
speculative thread is restarted, all the data in that thread’s L2 write buffer is cleared.
However, if the speculative thread successfully completes, then that data in the 1.2 write

buffer is written to the 1.2 cache.

For performance reasons, Hydra double-buffers the L2 write buffers. This enables the
processor to continue by committing the data in the background while the other buffer is
used to store new speculative data. Each processor has its own L2 write (double) buffer,
as shown in Figure 2.3. However, this double buffer design could be replaced by a single
L2 write buffer per CPU and an additional retire buffer shared among all four processors.
This additional buffer would enable the processor that is committing all of the data in the
L2 write buffer to proceed by using the additional retire buffer to start the next
speculative thread. Otherwise, the processor must wait until all the data in the L2 write
buffer is transferred to the L2 cache before it can continue to run the next speculative
thread. This would reduce the buffering constraints from 2N down to N+1, where N is

the number of processor cores in the CMP.

Finally, when data is requested from the .2 cache during speculation, priority encoders
are used to find the appropriate data version from the L2 cache, non-speculative write

buffer, or speculative write buffers, respectively.

In reality, the TLS Hydra CMP is one example in the spectrum of possible TLS CMPs.
Hydra uses both software and hardware to execute threads speculatively, but designs exist

that are more hardware or software centric, providing a spectrum of TLS solutions [62

bl
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86, 87]. University of Wisconsin’s Multiscalar distributed speculative basic block sized
threads using a dedicated ring that connected the processors. This schema required
centralized resources or complicated cache coherence protocols that made it difficult to
scale [30, 43]. Similar to Hydra, the TLDS project used simple cores and a software
system to manage speculation, making speculative thread violations very expensive [87].
Finally, the University of Illinois started with a tightly coupled system similar to
Multiscalar that was then relaxed to resemble TLDS [62]. Thus, within the TLS
framework, many academic design points exist that could be explored in further detail

and enable software development using a hybrid platform.

2.3 Prototyping targets

CMPs are everywhere. Unfortunately, the ability to contribute software research to this
area is diminished because of the lack and speed of the current tools, mainly software
simulators. The concept of a hybrid prototyping platform grew out of the inability to
build hardware prototypes. In particular, we wanted to build machines with four or more
tightly coupled processors that enabled software and further systems research. Even
though the processor industries’ ITRS roadmap continues to predict higher processor
clock frequencies, we have witnessed the rate of clock frequency increases slowing down
[98]. The increase in external memory speed continues to lag processor frequencies and
this memory wall continues to provide opportunities for improved system performance
enabled by novel memory system design. This new focus on the memory system de-
emphasizes processor centric design methodologies because of the lack of instruction
level parallelism (ILP).  Thus, the investigation of ever-larger and more complex
processors has been throttled and simple processors can be used in place of complex
processors to focus on memory system and overall system design. Fortunately, by
focusing on the multithreading capabilities of future microprocessor architectures, instead
of ILP extraction mechanisms, we greatly simplify the core CPU pipeline of our base
processors. Therefore, it is possible to build a flexible research prototype platform

around existing simple processors without doing any new VLSI design.

The need to build a hybrid hardware prototyping platform grew out of the desire to build
the Stanford Hydra processor [46]. In designing a hybrid prototyping platform, we
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realized that we could prototype a variety of architectures with the same base platform by
simply changing the software that configures the platform. Thus, with this hardware
prototyping platform, we can amortize the cost and development time over multiple
architectures within the CMP and novel memory systems design space. There are several
other architectures that can easily map to this base hybrid prototyping platform that fall

outside the TLS architectures mentioned at the end of Section 2.2.2.

These are just two of the possible architectures that can by mapped, in part or the entire

system, to the hybrid prototyping platform.

e Transactional memory systems like Stanford’s transactional consistency and
coherence (TCC) CMP, which uses similar hardware and a different programming

paradigm to achieve optimistic parallel execution [47].

e Stanford’s Smart Memories project focused on configurable memory structures
within the processor and a hierarchical on-chip network for interprocessor

communication [69)].

Hydra, TCC, and Smart Memories illustrate new architectures that require application
development to realize the architecture’s full potential. Initial research has focused on the
low hanging fruits, scratching the surface with regard to application development and in-
depth studies. For Hydra, research has been limited to loop-level speculation. Likewise,
TCC research has been limited to modifying existing parallel applications, a few targeted
applications and some other components of the software stack, like a JVM [19, 45, 78].
Similarly, Stanford’s Smart Memories project follows suit, like many other academic
computer systems projects that have limited software development capabilities and

limited research depth.

2.4 FAST architecture

The FAST system is a collection of hardware and software components that manage and
configure on-board resources to enable full-system prototyping and software
development. The on-board resources exist as functional layers that together can

prototype multiprocessor hardware systems at high speeds. The layers include: (1) the
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hardware: fixed-function SRAM memories, microprocessors, FPGA devices that can be
“morphed” to provide different system-level functionality using Verilog models
(morphware), and (2) the software, what we call the FAST Software Toolbox: the
morphware, application benchmarks to be evaluated, low-level software and operating
system functionality to manage functions such as program loading and I/O. The FAST
architecture facilitates the combination of these components to prototype a variety of
architectures. FPGAs are the key components that have moved beyond simple glue logic
implementations to more complex system integration implementations due to their high
density, enabling FAST and other FPGA prototyping systems. For the rest of this
chapter, we describe the system architecture and defer discussion of the physical

implementation and FAST Software Toolbox until later chapters.
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Tile 1

Processor
Tile 0

Inter-
connect
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Figure 2.4. FAST high-level architecture.

Figure 2.4 illustrates the high-level architecture for FAST, which was initially based on the
Hydra architecture. Using a PCB substrate, FAST tightly couples four processors and
provides shared memory (SM) and I/O capabilities. We have defined processor tiles and not
just processors because we want to add functionality to the processor, which requires

more chips, like the additional functionality of the speculative thread processor (CP2) in
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Hydra. There is also a PCB interconnect that enables interprocessor and memory system
communication. For the Hydra CMP, this interconnect would include the read and write
buses, as well as some of the control signals for memory arbitration. The shared memory
(SM) provides the L2 cache infrastructure required by Hydra and other CMPs. Finally,
FAST requites I/O capabilities for moving program data and other information on and

off the PCB.

2.4.1 Processor tile

FAST is made up of four processor tiles. As shown in Figure 2.5, the processor tile is
made up of a CPU, Processor FPGA, and L1 memory. The CPU is the base processor
that can perform both integer and floating-point computation. Floating point emulation
is very expensive, thus it is very beneficial to have a processor that is IEEE 754 floating
point compliant to remove any instruction emulation overhead. We include a FPGA in
the processor tile to serve as the L1 memory controller and provide additional
functionality. Finally, .1 memory is included in the processor tile to serve as the L1
cache or other memory structures. The L1 memory structures depend on the
functionality programmed into the Processor FPGA. By adding another level of logic
between the CPU and L1 memory, the FPGA can provide the appropriate interface that
both subsystems expect, thereby enabling the user to create novel memory structures

oblivious to the CPU.
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Figure 2.5. FAST Processor tile.

Figure 2.6 shows the interconnect between the components in the processor tile as well

as components outside of a tile, for example, the top-level interconnect and the
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interprocessor tile (PT) buses. The CPU is agnostic to the FPGA. The CPU provides an
address and expects data, along with a tag to verify that the data is correct. In general, we
designate bi-directional buses with double-headed arrows and unidirectional buses with
single-headed arrows. The CPU generates addresses that must be forwarded to the local
L1 memory to be processed. If there is a memory miss in the LI memory, the address
must be forwarded to the higher memory levels to be serviced. The FPGA provides this
functionality. Furthermore, the FPGA can provide additional functionality, for instance,
instruction set architecture (ISA) extensions and auxiliary compute engines like the CP2
in Hydra. The Hydra coherence protocol also requires cache invalidation by other
processors. In order to invalidate lines in the cache, the FPGA must be able to provide
multiple addresses simultaneously and the L1 memory must be dual ported or time
multiplexed. Thus, there are multiple data and address interfaces between the FPGA and
L1 memory. In a traditional processor configuration, the FPGA would manage data and
tag buses for the instruction and data segments of the .1 memory. This requires a data
and tag array for the data and instructions. In order to snoop or invalidate the cache, the
L1 memory requires two address ports and two data ports for the data and tag arrays for

the data and instruction caches.

PT Buses

" 4 Processor .'
GEY M YTl Address

Interconnect
Bus

Figure 2.6. Processor tile buses.

As a result of the four dual-ported data arrays (i.e., the data and tag arrays for the data and

instruction caches) the FPGA interface requires 8 32-bit bi-directional data buses and 8
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unidirectional addresses to provide any combination of data and address to dual ported
L1 memory. This would enable all possible addressing modes and independent memory

structure within the processor tile.

The FPGA also provides point-to-point buses and a shared bus to the other processor
tiles for rapid interprocessor communications, as shown by the PT Buses at the top of the
FPGA in Figure 2.6. This could be used for global coordination and point-to-point
communication. Likewise, a wide bus from the FPGA to the higher level of memory is
required to model multi-level memory structures and centralized communication required
for coherence. Mapping the interconnect bus in Figure 2.6 back to Hydra, this bus would
include, but not be limited to, the read and write buses, centralized arbitration signals, and

distributed memory control signals.

2.4.2 Interprocessor communication

FAST requires a central or Hub FPGA to orchestrate interprocessor communication and
manage shared resources. The Hub FPGA is shown in Figure 2.7. The Hub FPGA
distributes the read and write buses to all four processor tiles, PT 0 to PT 3. This FPGA
also controls access to the higher-level shared memory and provides an interface to the
off-PCB I/O. An FPGA is fundamental to the FAST design because it has the ability to

implement multiple interfaces using sophisticated logic.
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Figure 2.7. FAST interconnect architecture.
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Input/Ouput

The Hub FPGA also manages the on/off PCB I/O. The PCB requites I/O to service
higher memory misses and file I/O, enable serial terminal communication, and enable
TCP/IP connections to the FAST system. FAST I/O extends the capabilities of the
system by providing more levels of memory and/or the ability to off-load functionality
onto a host machine. For example, FAST I/O can be used to service OS operations like
file I/O by using a host machine to open and close files and service the actual requests.
This reduces the infrastructure development required for a fully functional system,

thereby reducing development time.

Shared memory

FAST has an L2 memory that can be configured using the Hub FPGA memory
controller. This memory can be shared among all four processor tiles as indicated in
Figure 2.7, or the memory could also be partitioned as separate memories, one for each
processor tile. Thus, the FPGA interface to the shared memory must be able to service
four simultaneous memory accesses when the memory is shared. Likewise, multiple
memory accesses can be used to replicate multi-way caches. Finally, significant amounts
of shared memory must be available for a variety of memory structures and to satisfy the
trend of enormous higher levels of cache, like Intel’s Montecito processor with an

aggregate of over 26 MB of cache [71].

2.4.3 Miscellaneous architecture features

Several other FAST architectural features help FAST bridge the gap between hardware
prototyping and software simulators. Most of these architectural features are required to
make the hardware have the same useful characteristics as software simulators. The PCB
management must have fine-grain control over the clocking and reset, as well as the
ability to program the FPGAs on the FAST PCB and debug applications running on
FAST. FAST must also have the same level of transparency or observability as software
simulators. As silicon technology scales, microprocessors are more susceptible to faults.
Thus, FAST must include facilities for fault injection and observation for fault tolerance

studies. Finally, FAST must have scalability in mind for building larger systems or adding
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functionality that was not explicitly defined at FAST’s conception. Given the

configurable building blocks, FAST can have all of these features.

PCB management

Software simulators provide very fine-grain manipulation, and this can also be
implemented in FAST. The PCB management encompasses the ability to reset, distribute
and control the clock, and control the state of the PCB. The state of the PCB changes
from programming the FPGAs on the PCB, running applications, to debugging
applications.  We must define these attributes in the architecture to ensure the
functionality in the FAST System, both hardware and software. Each processor tile has
both an individual reset as well as a system reset signal. This allows both targeted reset
and restart or entire PCB reset and restart. This is useful for sensitivity studies or fault-
injection studies where inputs, i.e., switches, can be changed and the same setup can be
used to rerun the experiment under slightly different conditions. The FPGA and global

reset signals provide fine-grain and coarse-grain control.

The PCB clocking is centrally controlled and distributed. FAST has the option of using
the global clock that is distributed to all the FPGAs or FAST can modify the clocking at
ecach FPGA using clock management hardware in each FPGA. FAST can use a
predetermined clock crystal to set the base clock frequency or use an external clock
source for even more flexibility. In all, there are at least two different clock domains on
FAST. The first clock domain is the frequency of the processors and the second clock
domain is the frequency of the memories. We envision the memories using a higher
frequency than the system clock, enabling time-division multiplexing to create multi-way
set associative caches, control and vary the latency of memory accesses, and create other
novel memory structures. The FPGAs provide the digital interfaces, frequency
synchronization, and clock generation to make the devices and multiple clock domains

work together.

FAST also has multiple ways to program the FPGAs. Having two ways to do the same
thing provides a backup mechanism if something fails. For FPGA programming, we can
trade-off programming speed using a parallel method versus ease of programming using a

serial method. By storing the FPGA programs locally on the board, we can use the
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FPGA parallel programming methodology for rapid FPGA programming. The main
drawback of this technique is the additional intellectual property required and a higher
level of integration. The main benefit is programming speeds of at least 8 times faster.
The secondary FPGA programming methodology uses the JTAG port. JTAG, or Joint
Test Action Group, is the usual name used for the IEEE 1149.1 standard, “Standard Test
Access Port and Boundary-Scan Architecture.” This standard was defined for test ports
on PCBs, but today it is a rich interface that can be used to monitor I/O pins and debug
integrated circuits and their subcomponents [52]. We already use the JTAG port for
visibility and we can also use it to download programs to the FPGA. Thus, we can

leverage the JTAG infrastructure for multiple purposes, which is always a win.

Finally, changing the state of the PCB is required for different functionality. At power-on,
the PCB must start in a state that allows the FPGAs to be programmed. Programming
the FPGAs can be a manual or automated process depending on the underlying
infrastructure. Once the system has the hardware programmed, the PCB transitions to a
ready state that enables it to run experiments with various inputs or applications. When
running applications on FAST, it may be necessary to single-step through the applications
to understand the systems behavior. Enabling a debugging mode initiated by the Hub
FPGA and controlled by either the Hub or Processor FPGAs provides the same
functionality as software debuggers. This would require fine-grain clock control and PCB
mode control to indicate the desired debugging mode. Furthermore, debugging can be
focused on one processor tile or the entire system could be operated in lock-step, single
cycle mode. Finally, debugging mode could also be used to turn on and off tracing and
performance counters based on triggers in the application or other external events. PCB

management and other future functionality require including these control signals.

Transparency

The biggest advantage of using software simulators is the ability to observe the complete
system. All components in the software simulator are transparent to the user either
through pre-defined interfaces or by using a software debugger. This key advantage is
lost with hardware prototypes. However, FAST is transparent because of the use of
FPGAs and the use of JTAG enabled components. The Corelis boundary scan tools can

operate up to 80 MHz, much faster then maximum scan rate of the FPGAs,
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approximately 10 MHz [26]. FAST uses the JTAG interface to observe chip-to-chip
interfaces, making these signals transparent without using a logical analyzer. Moving into
the FPGAs, embedding monitoring Verilog modules enables transparency at the
subcomponent level. Thus, the combination of JTAG and monitoring modules yield the
transparency that approximates that of software simulators. Unlike software simulators,
FAST’s transparency is orthogonal to system performance. There are resource
limitations with respect to the FPGAs that can limit the number of monitoring Verilog

modules and the quantity of data gathered, but external I/O can solve this problem.

Scalability

The Hub FPGA also must have an expandable interface. As silicon technology
progresses, CMP systems will incorporate more and more processor cores. An
expandable interface will enable multiple FAST PCBs to be connected together, thus,
enabling large systems to be mapped to a FAST compute fabric. Because this expandable
interface uses an FPGA, we have the ability to not only scale the FAST compute fabric,
but we can also add other digital interfaces. The base FAST PCB does not include a L3
memory. The expandable interface can be used as a .3 memory interface to DRAM or a
Compact Flash daughter card. This interface could also be used to interface to an IDE

hard drive. In general, FAST provides both system extensibility and scalability.

Fault tolerance

As transistors continue to shrink, they become more susceptible to soft errors. This
phenomenon has forced more and more recovery-oriented solutions into the processort,
like ECC protected memories. Most research has focused on fixing errors once they have
been detected. Far less research has tried to detect faults. FAST gives access to the buses,
memory, and computation for the user to inject deterministic faults to enable further

research into fault tolerance and in particular fault detection and recovery.

2.4.4 Complete FAST architecture

Putting all of these features together yields the high-level FAST architecture shown in
Figure 2.8. There are four tightly coupled processor tiles composed of the .1 Memory,
CPU, and Processor FPGA connected to the Hub FPGA. There is a very wide bus

between the Hub FPGA and the processor tiles. There are both point-to-point and
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shared buses connecting all of the FPGAs for a variety of data movement and control
signal configurations. There are centralized auxiliary components to provide a base
system clock, PCB management, and transparency. There are also several features that
enable off-PCB I/O and scalability to create a FAST compute fabric and extensibility.
The Hub FPGA is also connected to a second level of memory that can be shared or
partitioned into private blocks. The expandable interface can also be used for a third
level of memory, if desired. Because FPGAs are the flexible building blocks of the FAST

architecture, we are able to morph the hardware into a variety systems, all running at

hardware speeds.
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Figure 2.8. Detailed FAST architecture.

2.4.5 FAST prototyping candidates
Section 2.3 provided a list of initial prototyping candidates for FAST. This section

provides more details on mapping those designs to FAST. Overall, the FAST PCB is a
fixed core CMP platform coupled to highly configurable memory hierarchy. Designs that

are based on multiple processing cores map well to the FAST PCB and all or part of the

design can be implemented. Furthermore, like Tensilica or other designs that augment a
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base instruction set architecture (ISA), FAST can use the FPGAs to implement the ISA
extensions [91]. The CPU ISA can also be completely disregarded if the user wants to
implement a software-defined processor core in the FPGAs and create the related
software infrastructure.  Finally, an abundant number of co-processors can be
implemented because the Processor FPGA decouples the processor memory system,
integer datapath, floating-point datapath, and the coprocessor datapath. As a result, the
memory system can be configured as caches of varying set associativity, FIFOs, or other
interesting memory structures. Furthermore, FAST’s architecture supports sizes of the
L1 and L2 memories that far exceed current and near term available processor on-chip

memory.
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Figure 2.9. Mapping the Hydra architecture on to the FAST architecture.

Hydra motivated the development of the FAST architecture, so it is only appropriate to

show how the Hydra architecture maps onto the FAST architecture. Both FAST and
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Hydra are four processor systems. In each of FAST’s processor tiles, the CPU and L1
caches map to the Hydra equivalent components. Likewise, the processor FPGA
implements Hydra’s speculative coprocessor, CP2, and maintains and manages all of the
speculative bits. A portion of the very wide bus between the processor tiles and the Hub
FPGA is allocated to Hydra’s Write-through and Read/Replace buses. Furthermore, the
Hub FPGA is the point of coherence for the Hydra system and as such, controls the
arbitration over the buses. The Hub FPGA also manages the L2 SRAM’s as an on-chip
L2 Cache with the speculation write buffers residing in the SRAM’s or the FPGA. The
expansion connector can be used as a DRAM interface using an 80-pin daughter card for
a main memory. Finally, the FAST I/O intetface can serve as the Hydra I/O interface.
The mapping of the Hydra architecture onto the FAST architecture is illustrated in Figure
2.9.

A large-scale, networked CMP

Several research projects have proposed architectures composed of multiple “tiled”
processors on a single chip [69, 83, 96]. Since FAST can only prototype four-processor
systems, at most, one might initially conclude that it is not useful for emulating these
architectures. However, FAST can still prove useful. Many insights can still be gained by
prototyping just a four-processor subsection of a larger design. Furthermore, one can use
the expansion connector to implement or emulate larger systems by connecting multiple
FAST boards together. While the expansion connector only has a relatively limited
number of pins, many advanced architectures use a network that limits the number of
long wires needed to connect processors together when they are physically distant from
one another on the chip. Such relatively narrow networks should map well to the
expansion port. If necessary, some of the secondary memory could also easily be used to

support network buffering requirements, if they became too large for on-FPGA buffers.

In order to verify these ideas, we looked closely at the Stanford Smart Memories design
[69] while designing the expansion port. This CMP has 10’s of processor tiles clustered
together into small groups of tiles that share a common network port. A single FAST
board could emulate a group of four processors, while the expansion port could be daisy

chained to additional FAST boards to allow emulation of a large system.
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Emulating more complex cores

The CPU’s external interfaces to both cache and coprocessors provide visibility that can
transform FAST’s simple in-order single-issue cores into a wide variety of other
microarchitectures, because the Processor FPGA in each processor tile has full control
over the data and instruction streams fed into the processor. Auxiliary structures can be
maintained in this FPGA, such as counters and monitors, to make it possible to change
the definition of a “simulated machine cycle” or to adjust or interpret the instruction
streams. With this FPGA, we can define several CPU cycles as one target machine cycle

and thereby gang instructions together into “single-cycle” packets.

Depending on the underlying architecture, these instruction packets could be executed
intra-tile (very long instruction word, I"LLIWV) or inter-tile (single instruction multiple data,
SIMD). We prefer to execute VLIW packets serially, instead of in parallel across the
processor tiles, because simulating the shared register file used by all VLIW issue slots
across processor tiles would require many extra store instructions to make all instruction
results visible to the other Processor FPGAs. This method could use instructions that
mark the VLIW boundaries or a fixed number of clock cycles are allocated for a VLIW
instruction. On the other hand, SIMD packets can be spread across processor tiles
executing identical instruction streams because one instruction specifies the operation for
several parallel data “lanes” of execution, which do not share data between lanes on a
cycle-by-cycle basis. When the number of “lanes” exceeds the number of processor tiles,
both serial and parallel execution methods may be used. Finally, cores with more
complex instruction fetch mechanisms could also be implemented using these techniques
with variable-length “simulated machine cycle” times. Implementing a s#al/ instruction
window in the Processor FPGA could be used to enable fine-grain multithreaded

emulation and/or wide-issue superscalar core emulation.

Embedded SOC architectures

VLSI process scaling has increased the complexity of embedded and application-specific
processor-based designs. FAST enables full or partial system emulation for a wide variety
of these systems by manipulating the memory hierarchy and defining the number of

processor tile cycles per target machine cycle. Simple processor cores are widely used for
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embedded systems and we envision collections of these processors working in concert
for system-on-a-chip (SOC) designs. FAST is an ideal prototyping platform for continued
research in these types of embedded systems [80].

2.4.6 Architectures not suitable for FAST

There is a class of architectures that does not map well to the FAST PCB. This class of
architecture contains a sea of ALUs or other functional units. The FAST PCB has a
restricted number of fixed functional units and a fixed number of synthesized units that
fit in the FPGAs, thus several designs that tightly couple tens to hundreds or more
functional units do not map well to FAST. We have included a scalability port in the
FAST architecture that would enable building a FAST fabric using several PCBs, but it
quickly becomes impractical to build a FAST fabric of more than 16 PCBs given the
technology and connectivity provided in this first generation PCB. Although significant
effort could be used to map portions of these architectures to FAST, it would be
counterintuitive to the FAST PCB architecture and thus present a difficult challenge.
Likewise, because FAST focuses on TLP extraction systems and novel memory system
design, attempting to model complex processors with out-of-order execution and very large
instruction windows would not map to the FAST infrastructure. Limited superscalar and
VLIW designs can be mapped to FAST, but in general, processor pipeline and execution
design falls outside to scope of the FAST system.

2.5  Software infrastructure for FAST

This chapter has described the hardware architecture of FAST. FAST is more than just a
PCB hardware architecture, it is a collection of hardware and software components that
manage and configure on-board resources to run operating systems and user applications.
As shown in Figure 2.10, these resources exist as functional layers that together can
prototype multiple multiprocessor hardware systems at high speeds. The layers include:
several fixed-function memories and microprocessors (hardware), FPGA devices that can
be “morphed” to provide different system-level functionality using a variety of Verilog
memory hierarchy models (morphware), and application benchmarks to be evaluated,
low-level software and a batch operating system to manage functions such as program
loading and I/O (software). These are depicted from the bottom up in Figure 2.10. The
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FAST Software Toolbox is the collection of modules and pre-defined interfaces that
provide the base functionality of the PCB and application benchmarks, along with all of
the software tools required for the development of the morphware and software used
with FAST. Chapter 3 describes the FAST PCB implementation. Chapter 4 discusses
the FAST Software Toolbox, completing the description of the FAST prototyping

system.

SOFTWARE Applications

OS and FAST
Support SW

HW Description SW
MORPHWARE on PLDS\FPGAs

Memory Hierarchy
using SRAM Chips

HARDWARE
Microprocessors

Figure 2.10. All FAST hardware and software components.

2.6 Related work: old and new

Related work fits into three main categories: previous work, on-going solutions, and
future solutions. Reprogrammable logic and FPGAs, in particular, have been used as
prototyping platforms since their inception. Low cost solutions are used in the classroom
and high cost solutions are used in industry [6, 17, 18, 73, 115]. Regardless of the scale,
the purpose is the same: rapid prototyping of a system or component. As silicon
technology has improved, the capacity of reconfigurable devices has dramatically
improved. Today, simple processors can be mapped to a single FPGA [38]. Older
technology required either partial system prototyping or partitioning a design across
multiple FPGAs. Crossing chip boundaries has been a fundamental limitation because
off-chip bandwidth is nowhere near that of on-chip bandwidth. Furthermore, some
interfaces are not amenable to partitioning because of the wide bus interfaces or similar
hard-to-map structures. Moving forward, both FPGA capacity and increased per-pin
bandwidth enable much greater prototyping flexibility. For these next generation
prototyping platforms, the chip boundaries may be able to be erased by the high
bandwidth I/O between chips.
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There have been several research projects that have incorporated reconfigurable hardware
to enable limited design exploration around a single design point. These hardware
prototypes were one-off systems that validated a particular idea [5, 40, 66, 96]. Producing
chips has become so expensive that most research projects can no longer afford to build
systems based on new chip designs. In general, FPGAs have been used for system
observation and not full system prototyping. FAST, as well as some other research
projects, integrates various off-the-shelf components with FPGAs onto a PCB substrate
to build complete systems, pushing FPGAs beyond system observation to system

integration and/or system implementation.

The Rapid Prototyping engine for Multiprocessors (RPM) was an initial hardware
emulator for multiprocessor architectures that moved beyond simply observing system
behavior like bus traffic [9]. RPM was built to prototype Multiple Instruction Multiple
Data (MIMD) multiprocessor machines. The configurable technology available for this
project enabled reconfigurable memory system implementations atop a fixed SPARC
processor. Each processor module was implemented on a single PCB with up to eight
PCBs connected to a backplane and host machine. RPM’s coupling of configurable logic
and fixed processors is very similar to FAST. However, FAST differs from RPM in many
ways. The level of integration is much higher in FAST, as would be expected with newer
technology. Furthermore, RPM focused on the memory system of large multiprocessor
systems, while FAST can prototype the memory system and additional compute engines,
like speculative coprocessors or other off-load engines, in large multiprocessor (MP) or
small, fast CMP systems. As Chapter 5 demonstrates, FAST is able to replicate the
memory latency for both MP and CMP systems, as well as somewhere in between. FAST
also integrates a more complex memory system with multiple levels of memory and
transparency. Like RPM, FAST preserved the memory system transparency all the way

down to the processor.

RPM is a clear predecessor to FAST that provides a similar solution to the
implementation problem for a more narrow class of architectures using much older
commodity parts. FAST is able to implement a broader class of architectures than RPM,
but both lack the software infrastructure to make them easy to use and to be adopted like
free software simulators [12, 68, 81].
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Generic FPGA arrays have also been used to prototype both academic and industrial
projects [9, 17, 18, 32, 73, 93]. These generic FPGA arrays connect a sea of FPGAs with
some peripheral devices on the edges to support ASIC or chip development. These
systems are either developed in-house for research projects, like the RAW FPGA fabric
[9] or else they cost several million dollars and are only affordable for industry [17, 18, 73,
93].

The RAW FPGA fabric enabled researchers at MIT to validate the RAW CMP design
using a network of 64 FPGAs on a single PCB to emulate a network of processors on a
single chip [96]. The FPGAs used for this project had enough capacity to implement
simple MIPS R2000 processors and change how the FPGAs communicated. The
adaptive communication network was a main thrust of this research project. The RAW
FPGA fabric enabled in depth research on RAW, but the RAW fabric lacked the capacity
and the ease of use for mapping other designs. Finally, the design mapping was very
labor intensive because the programming file needed to be composed of all the individual
FPGA programming bit files, which consumed many computer resources and copious
amounts of time. Partitioning designs across 64 very small FPGAs also presented a
significant challenge and considerable communication delays because of pin pressure.
The FPGAs used for RAW are twenty times smaller than the XCV1000 FPGAs used for
FAST [100, 101]. Even though RAW used a commercially available emulation platform,
the difficulty experienced when mapping other designs to this resource-constricted
FPGA array prevented the RAW FPGA array from being used for other research projects
[96].

The cost of industrial solutions puts them outside the grasp of academic projects.
Furthermore, the industrial FPGA arrays are more focused on chip development and not
full system development. Using the FPGA array requires the complete Verilog register
transfer logic (RTL) of a given design, which increases the cost and time required to use
these FPGA arrays. Software is provided with the FPGA array that partitions the
complete RTL design across multiple FPGAs. After the design has been partitioned and
mapped to the FPGAs, the resulting system runs at tens of kilohertz as opposed to tens
or hundreds of megahertz. This platform is sufficient for small diagnostic programs, but

presents the same tedious software development environment available using highly
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detailed software simulators. Thus, this design framework slowly validates the design, but
using FPGA arrays cannot enable software development because of the slow operating

frequency.

Industry now provides an affordable FPGA prototyping platform based upon a single
FPGA. A plethora of single FPGA prototyping boards can be used for class projects and
small research projects [6, 115]. As these prototype boards continue to improve their
capabilities, this enables initial prototyping of academic research [23, 75]. These
prototyping boards, like the MLL310 [115], provide an FPGA with several interfaces for
implementing a wide array of digital devices. The latest prototyping boards include
multiple I/O ports that can be used to build large FPGA prototyping fabrics or process a
wide variety of data. Until recently, these prototyping boards had very limited resources
that could implement simple 16-bit or 32-bit processors. However, the latest prototyping
boards come with embedded hard processor cores that can run real operating systems
like Linux, out-of-the-box. The combined hardware and software broadens the
applicability of these boards, making them a great initial platform for research projects

23, 75].

The BEE2 PCB, initially designed for ASIC and DSP research [21], is an excellent
example of a prototyping platform using the next generation of hardware available after
the FAST 1.0 PCB. A detailed comparison of FAST 1.0, BEE2, and a proposed FAST
2.0 is provided in Section 6.4.

The Research Accelerator for MultiProcessing (RAMP) project is a clear successor to the
FAST project that also validates the FAST concept and methodology [11]. RAMP is a
consortium of schools that are using the BEE2 PCB to develop the software
infrastructure for prototyping a variety of systems. This project faces the same financial
hurdles that face any project trying to distribute a system that is not free, but they also are
trying to conquer the software infrastructure problem by collaborating and creating an
open source like community for the hardware infrastructure. The combination of
hardware and software continues to be essential for the next generation prototyping
platform. The hardware design should be flexible, but the software infrastructure is

crucial for wide adoption.
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Recently, there has been an increase in academic interest for computer architecture
research using FPGAs, as demonstrated by the Workshop on Architecture Research
using FPGA Platforms [1]. These workshops focus on computer architecture research
that is enabled by FPGAs. Many novel approaches have been proposed at the workshop,
including the RAMP project [11].

Computer architecture research will continue to incorporate hardware prototypes given
the increased capacity of FPGAs and the ability to leverage both hardware and software
infrastructure. The ability of configurable hardware causes a shift from historical
practices of building one-off prototypes to utilizing the same hardware prototyping
platform and changing the configurable logic to implement and explore new systems.
This amortizes the hardware and software development and cost across multiple projects
and enables both hardware and software infrastructure leverage. By developing the
hardware and software community, computer architecture research can once again
validate ideas with working hardware, hardware that is easier and cheaper to build.
Furthermore, the hardware enables more thorough system and software investigation and

software development and tuning, completing the once broken research cycle.

Computer architecture research requires a methodology to validate new ideas and designs.
Implementing a design is the final validation step that reveals all the design trade-offs.
The birth and early maturation of reconfigurable logic enabled hardware implementations
to validate and probe around a single design point using real hardware. Now, FPGAs
have reached the point where they can implement multiple designs given an intelligent
framework. RPM, FAST, and BEE2 have demonstrated the ability to build working,
configurable prototyping platforms. The RAMP project validates this methodology and
has already demonstrated that multiple designs can be mapped to the same hardware
substrate [11, 75]. The FAST 2.0 PCB takes this one step further, describing the next
generation hardware prototyping platform that extends the goal of reintroducing

hardware back into the research cycle for a broader class of architectures.
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2.7 FAST vision

The FAST architecture is a flexible prototyping substrate for TLP architecture evaluation.
By building a flexible hardware platform and coupling that platform with a library of
software components, FAST can be a prototyping platform that brings hardware back
into the research cycle. Past computer architecture projects used hardware prototypes at
the end of the project to validate that idea. Increasing hardware costs prevent current
and future computer architecture projects from incorporating one-off hardware
prototypes in the research cycle. Fundamentally, FAST or follow on systems like it have
the ability to bring hardware back into the research cycle much earlier than previous

hardware prototyping systems at a much lower cost.

The FAST architecture provides a flexible substrate using the FPGAs in an intelligent
interconnect. The FPGAs used in the FAST architecture enable it to prototype many
TLP architectures. By configuring the interconnect to match the requirements of the
TLP architecture, FAST can morph into that TLP architecture and implement or emulate
the TLP memory system combined with simple processors. A mature FAST system has
the added benefit of being reusable across multiple designs because the interconnect and
logic can be reconfigured. FAST also is scalable, giving it the ability to build larger
systems. FAST ushers in a new era of computer architecture research that includes
hardware in the research cycle much earlier and enables infrastructure reuse across
multiple projects. This amortization may not be realized with FAST, but FAST
demonstrates this direction for future computer architecture and computer systems

research.
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Chapter 3

FAST PCB implementation
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Figure 3.1. Fully assembled FAST PCB.

The previous chapter describes the FAST architecture, as well as the kinds of
architectures that map well to the FAST platform. We start this chapter with a picture of
the actual FAST printed circuit board (PCB), shown in Figure 3.1, and present the PCB
implementation details that result from instantiating the FAST architecture. As described

in Chapter 2, FAST is a single PCB system comprised of four replicated processor tiles
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and an associated top-level interconnect. Multiple FAST PCBs can be connected
together, creating a larger FAST compute fabric. Each processor tile contains: an integer
and a floating point datapath, over 1 MB of processor local memory, and two FPGAs
that manage the processor tile resources and facilitate reconfiguration. The top-level
interconnect is composed of two larger FPGAs to allow communication between the
four processor tiles. These top level FPGAs also manage several shared resources,
including on/off-PCB 1/O via Ethernet and TCP/IP, an expansion connectot, 64 MB of
second level memory, on-board Flash memory, and hardware to manage these resources

and facilitate reconfiguration.

The FAST PCB was conceived, designed, implemented, and tested at Stanford University.
The PCB manufacturing and assembly was the only outsourced process, done by

Sanmina Corporation’s small volume PCB prototyping facility.

This concise high-level overview of the FAST PCB gives some hints as to FAST’s
possibilities. This chapter starts off by presenting the component selection process,
followed by a top-down description of the FAST PCB implementation. The PCB
implementation is discussed first because of the proximity of this section to the FAST
architecture described in Chapter 2. This section is followed with a discussion of the
hardware limitations and how they evolve with silicon technology. The PCB design
process, describing how to take a concept and build a PCB follows. Finally, we focus on

the fully functional FAST PCB and describe its capabilities.

3.1 FAST component selection

The components must be selected before starting the schematic because the component
connectivity, voltage, and spacing requirements are all determined by the component and
its package. There is often some flexibility in terms of the patt’s core voltage and 1/O
voltage as well as the type of package and number of package pins. The FAST PCB uses
35 unique components, but there are 4260 total components required for each PCB.
Table 3.1 shows the main FAST components, quantities, maximum operating

frequencies, and core voltages.
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Table 3.1. FAST primary components.

Component Quantity Maximum Core
Frequency (MHz) | Voltage (V)
XC2V6000 [111] 2 400 1.5
XCV1000 [101] 38 200 2.5
L1 Memory SRAM [53] 16 100 33
I.2 Memory SRAM [41] 16 200 33
Ethernet Module [79] 1 44 3.3
CPLD [127] 1 100 33
Flash Memory [2] 1 10 3.3
MIPS R3000, R3010 [54] 4,4 33 5

The full parts list and related details can be found in Appendix A. For each component,
the package determines how many control, power and ground, and I/O pins exist.
Unlike other components, FPGAs come in a rich variety of packages. FAST uses the

FPGA packages with the largest number of I/O pins.

Component selection was one of the most difficult parts of the first step after defining
the FAST architecture. The architecture was based on the single-chip Hydra design, but
was then extended in order to map multiple architectures to a single PCB platform.
However, by changing any design from a single chip to a component-based PCB design
required splitting buses, using components based on various trade-offs, and
compromising some requirements for feasibility purposes. This is required because on-
chip properties, like copious amounts of bandwidth, cannot be replicated when single-

chip designs are redesigned and partitioned across multiple components of a PCB.

The key advantage of the FAST hardware was its ability to leverage the hardware
components: FPGAs, SRAMs, and dedicated processors [41, 53, 54, 101, 111]. The
FPGAs provide the connectivity and logic flexibility. FPGAs have moved beyond the
point of implementing simple glue logic, by virtue of very high-density silicon technology.
The FPGAs allow the user to configure the interconnect and complex logic (interfaces
and controllers) required to implement different architectures beyond Hydra. The main
drawbacks of using FPGAs are their lack of on-chip memory and their package pin
limitations or chip bandwidth limitations. Even the next generation FPGAs from Xilinx

or Altera only have a maximum of about 1 MB of on-chip memory [8, 126]. Therefore,
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FAST uses SRAMs to provide fast, large storage that is not available in the FPGAs. This
frees the FPGA memory for use as small, fast supplemental storage elements, instead of

multi-way, multi-ported caches or other large memory structures.

The Processotr

FAST focuses on prototyping thread-level parallel (TLP) or other novel memory and
system-level architectures, not on novel ISA or processor pipelines. This eliminates
processor design from the prototyping system and allows us to use a simple processor
across this entire architecture space. However, FAST required a dedicated processor that
had exposed interfaces for the caches and coprocessors. FPGA densities could support
software-defined processor cores at very slow frequencies, but such cores suffer from
poorly defined external cache interfaces and non-existent coprocessor interfaces. A
variety of hard processors existed at the time of conception, but none provided access or
significant on-chip visibility. Moving back a decade or so to an era when computer
systems were built with multiple discrete components and accelerators, we found the

MIPS R3000 family of processors [54].

The MIPS R3000 CPU and R3010 FPU provided the most benefit compared to all
available processors at design time. No floating-point instruction emulation is required,
because of the CPU and FPU combination. The R3000 also has a predefined co-
processor interface, which enables additional functionality like Hydra’s CP2 or ISA
extensions by overloading or redefining pre-defined coprocessor instructions. Finally, the
MIPS R3000 has an exposed cache interface that makes all memory traffic visible down
to the processor core. This enables the FPGAs to implement any memory system from
the processor core’s L1 cache out to the higher levels because the processor core is
memory system agnostic. We “borrowed” surplus R3000’s and R3010’s from the
Stanford DASH project [66] and used zero-insertion force (ZIF) sockets to hold the
CPU and FPU for FAST’s processor tiles.

The Processor FPGA

The selection of the MIPS R3000 impacted the rest of the FAST implementation. The
R3000 and R3010 use 5 V power. At FAST design time, no contemporary FPGAs had 5
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V tolerant I/O’. This presented an implementation challenge with respect to the
Processor FPGA. There were two options: (1) use current generation FPGAs and place
level shifters between the FPGA and CPU and FPU or (2) use previous generation
FPGAs that are 5 V tolerant to interface to the R3000’s and R3010’s. Adding level
shifters would have increased the complexity of the FAST design by increasing the parts
count and potentially impacting performance because of the delay introduced by the level
shifting transitions. Using a previous generation FPGA removed the need for level
shifters, but these FPGAs are more resource limited than the current generation FPGAs.
Therefore, FAST uses two previous generation FPGAs, instead of one current generation
FPGA with level shifters, in each processor tile. The Processor FPGA has two distinct
operations: local memory controller, e.g. cache controller, and coprocessor interface, e.g.
Hydra’s CP2. These distinct roles map well to the two FPGAs used in the processor tile.
The additional integration and partitioning effort is minimized without compromising
performance or correctness, as would have happened with a delay element (the level

shifters) in the data bus and control signals.

The Hub FPGA

Like the Processor FPGA, the Hub FPGA had two distinct functions, shared memory
controller and interprocessor communication. Thus, we split the Hub FPGA into two
XC2V6000 FPGAs to provide similar functionality and increase the amount of logic,
reducing the resource constraints. In both cases, for the Hub and Processor FPGAs, the
implementation required two reconfigurable components, even though the initial
architecture specified one. Furthermore, parts availability and lead time was also a
concern with some of the newest parts. We intentionally selected available parts instead

of selecting and waiting on parts that were never going to be available, e.g. Virtex II Pro

FPGAs with 4 embedded Power PC hard processor cores.

The Support Components

Once the main components were selected, datasheets and application engineers provided
all the necessary information for the support components. We categorize the decoupling
capacitors and pull-up or pull-down resistors as support components. The support

components are crucial because without these components, the system will not function.
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There are about 2000 capacitors and resistors required for the design. The FPGAs
required a decoupling capacitor, (across multiple decades, e.g., 10 uF, 1uF, 0.1 pF, and
0.01 pf) per power and ground pin pair. The SRAMs and MIPS parts require far fewer
capacitors. Finally, because the FPGAs and SRAMs are ball grid array (BGA) packages
that have no pin access for probes, we added about 2000 test points and headers to
provide full pin visibility in case we were not able to use the JTAG ports to observe

transitions or wanted finer observation granularity provided by a logic analyzer.

3.2 FAST implementation details

Version 10  Jume 2005
John B. Bavis

Figure 3.2. FAST PCB labeled with some of the top-level details.
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Chapter 2 described the FAST architecture in general detail. Given the component
selection process, that actual FAST implementation can be discussed before describing
the PCB development process. In this section, the FAST implementation details are
presented and the differences in initial architecture versus the implementation are
highlighted. First, this chapter starts with a high-level overview of the FAST PCB and
then provides further details. TFor brevity purposes, the complete FAST PCB
connectivity and implementation details can be found in Appendix A. However, this
section provides enough detail to determine what other designs might feasibly map to the

FAST PCB.

FAST uses four different generations of chips requiring four different power supplies.
The oldest chips, the MIPS R3000’s and R3010’s, use 5 V. The Xilinx XCV1000’s use a
core voltage of 2.5 V for internal logic and 3.3 V for all I/O. The SRAM chips use 3.3 V.
The newest chips on the FAST PCB, the Xilinx XC2V6000’s, use a core voltage of 1.5V
and 3.3 V for all I/O. External power supplies provide 5 V and 3.3 V, while the 2.5 V
and 1.5 V are locally generated by DC-to-DC voltage regulators using the 5 V input.
There are two power headers on the PCB to supply all four voltages for reference or to
use for auxiliary components or daughter cards. Figure 3.2 labels the assembled FAST

PCB with all the main components.

The Hub FPGA is comprised of two FPGAs, the read/write controller (RWC) and the
shared memory controller (SMC). The RWC coordinates the interprocessor
communication, arbitration for the higher-level memory, level 2 (L2) and beyond, and
FAST 1/O. The SMC FPGA provides access to the 64 MB, plus parity, of L2 memory
and the 80-pin expansion port. The Processor FPGA is comprised of two FPGAs as
well, the coprocessor 2 (CP2) and the level 1 memory controller (L1C). The CP2 FPGA
provides the system interface to the MIPS R3000, MIPS coprocessor interface, the
interface to the RWC FPGA, and additional interprocessor tile communication. The L1C
FPGA provides the memory interface between the MIPS R3000, coprocessors, and the 1
MB, plus parity, of L1 SRAMs.

The FAST PCB also has a variety of miscellaneous components for FAST 1/0, PCB

management, transparency, and clock distribution. There is an embedded Ethernet
g > p Y,
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daughter card that provides FAST 1/O. The FAST PCB also includes a programmable
logic device (PLD) that retains its programming even with the power off. The PLD
provides the core PCB management. The PLD and the Flash memory can be used to
store FPGA programming files and the PCB operating system (OS). Thus, given a
programmed PLD and the correct contents in Flash memory, the FAST PCB can be
powered on, booted up, and ready to run applications. The PLD can also be used to
control the PCB state, changing it from FPGA programming mode, to running or
debugging user applications. The PLD also has two single-ended clock inputs. The
standard clock input comes from a half-size clock oscillator that fits into a 4-pin socket.
There is also an external clock header that can connect to a frequency generator or other
external clock generator. Finally, various headers and test points provide system
transparency for all chip I/O signals. Figure 3.2 highlights the top-level features of the
FAST PCB.

3.21 Hub FPGA

From Figure 3.2, it is clear that the Hub FPGA is not a single FPGA. Instead, it is two
FPGAs, the read/write controller (RWC) and the shared memory controller (SMC). The
Hub FPGA is implemented as two FPGAs to increase the available system gates on the
PCB and also provide more 1/O pins. Increasing the number of system gates from 8
million using a single FPGA to 12 million using two slightly smaller FPGAs increases the
capabilities of the FAST hardware by more than 50%. By using two FPGAs instead of

one, we ate able to create more logic and utilize more 1/O pins for increased integration.

Looking back at the Hydra specification combined with the FAST architecture, a single
FPGA was too pin limited and could not have connected to all four processors, provide
the read and write buses in the Hydra design, and connect to a shared memory. The
functionality of the RWC and SMC was a clear bifurcation point, which further
reinforced the use of two FPGAs. The RWC and SMC FPGAs provide over 1100 1/O
pins, a maximum operating clock frequency of 400 MHz, and 6 million system gates each.
These 1/O pins are quickly exhausted when mapping the FAST architecture to a single

FPGA. Appendix B provides a link to an online archive containing the user constraint
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files (UCF) that fully specify how each I/O pin is used on the FAST PCB for all the

components.

RWC

The Read/Write Controller (RWC) handles memory hierarchy events that propagate past
the primary caches, such as write-throughs and cache misses. A wide bus permits the
observation of memory traffic to and from all processor tiles on a cycle-by-cycle basis,
making it possible to implement cache coherence protocols using snooping on primary
cache contents in other processor tiles. This controller could also be used for inter-

processor tile messaging in systems that do not use traditional memory coherence [27].

Table 3.2. FAST RWC primary connectivity.

FAST Components Connection |Width
RWC to SMC Point-to-Point| 408

RWC to each CP2 Point-to-Point | 4x140
RWC to all CP2's Shared 44
RWC to PLD Point-to-Point| 35
RWC to all L1C's & all CP2's Shared 33
RWC to RCM3200 & SMC Shared 28

The RWC connectivity details are listed in Table 3.2. The majority of connections exist
between the RWC and SMC with 408 pins between the two FPGAs and the CP2s with
560 pins. Appendix B also points to the UCF files that map Hydra to FAST. These files
give a better understanding of the potential pin mappings and how other architectures

may map to the FAST PCB. Table 3.2 is an abbreviated list of connections to the RWC.

The very wide RWC to SMC bus can be used for a variety of purposes: a low latency,
high bandwidth connection to L2 memory, various control signals, and access to higher
levels of memory, like a Compact Flash daughter card, or off PCB I/O. The RWC
connectivity also illustrates the other important RWC function, processor tile
intercommunication. Each processor tile allocates 140 pins of the CP2 FPGA to

communicate with the RWC FPGA. This connectivity is also illustrated in Figure 3.3.

The RWC FPGA also has dedicated point-to-point and shared buses to the PLD, the
processor tiles, and the Ethernet daughter card (RCM3200) [79]. The PLD provides
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access to the Flash memory and the PCB management and clock distribution. There is
also a shared bus between the RWC and all of the processor tile FPGAs. This shared bus
can be used for global communication or broadcasts, synchronization, or time-division
multiplexed point-to-point communication. The RCM3200 provides a TCP/IP interface
to the FAST PCB. This RCM3200 interface is shared with the SMC and there are a few
point-to-point control pins that are not specified in Table 3.2. Furthermore, several low-
level connectivity details have been left out of Table 3.2 and Figure 3.3. The RWC is
connected to four LEDs that can be used for visual debugging or other types of
indicators. The initial test RWC program incremented a counter whose high order bits
controlled the LEDs. The LEDs thus indicated a successfully programmed FPGA. The
RWC FPGA also has a hardwired unique ID. This can be read by modules in the FPGA
to differentiate the RWC FPGA from any other FPGA on the FAST PCB. There is also
a global and local reset pin that can be used as the system requires and a globally
distributed clock signal. The complete connectivity and an example pin mappings are

provided in the UCF files pointed to by Appendix B.

Figure 3.3. High-level RWC connectivity.
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SMC

The Shared Memory Controller (SMC) manages the 16M x 306 bit (including 4 parity bits)
of secondary memory. These synchronous SRAMs can be configured as a secondary
cache or general-purpose, off-chip memory. The entire memory can be shared by all
processor tiles or segmented, e.g., into 4M x 36 bit private partitions assigned to each
processor tile. Furthermore, time-division multiplexing can be utilized to implement
various set associative cache configurations. Table 3.3 specifies the rest of the major
SMC FAST PCB connectivity. To reduce repetition, Table 3.3 specifies how many
connections exist followed by the connection width. For example, there are four SRAM

banks and each bank has a 72 bit bus between the SMC FPGA and the SRAM bank.

The SMC controls an 80-pin expansion connector. This multi-purpose header can be
used to connect multiple FAST prototyping substrates together to create a larger FAST
emulation fabric, to add daughter cards, or to attach additional memory, such as a DRAM
main memory bank or Compact Flash daughter cards. This 80-pin connector can have
two 40-pin IDE interfaces connected simultaneously, used for either a Compact Flash or
a hard drive. The SMC FPGA also connects to the PLLD, which provides access to the
Flash memory. Finally, the SMC shares a 16-bit data bus and a few control signals with
the RWC and the RCM3200, the embedded Ethernet module. This connectivity provides
flexible access to I/O on and off the FAST PCB.

Table 3.3. FAST SMC primary connectivity.

FAST Components Connection |Width
SMC to RWC Point-to-Point| 408
SMC to Expansion Port Point-to-Point] 80
SMC to each SRAM Bank Point-to-Point | 4x72
SMC to each L1C & CP2 Shared 4x45
SMC to each CP2 Point-to-Point | 4x16
SMC to PLD Point-to-Point| 35
SMC to RCM3200 & RWC Shared 28
SMC to all CP2s Shared 19

Figure 3.4 illustrates the high-level connectivity from the SMC to the rest of the FAST
PCB. This figure only illustrates the connectivity of a single SRAM bank because the

other three are the same. Each SRAM bank contains four SRAM chips providing over
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four MB of memory. The SRAMs in a bank share the address and data pins, forcing a
single read or write to occur, or reads and writes to all SRAMs at once, or some subset
depending on the SRAM chip enables and control signals. Time-division multiplexing
can be used to sequentially access multiple SRAMs in a single system clock cycle. The L2
SRAMs are single ported, but can operate at up to 200 MHz, much faster than the MIPS

components’ maximum system clock speed of 33 MHz.
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Figure 3.4. High-level SMC connectivity with a single SRAM bank.

The SMC is also connected by a shared bus to the two FPGAs in each processor tile.
There is an additional point-to-point bus between the SMC and each CP2 FPGA in every
processor tile. This pair of shared and point-to-point buses enable the processor tiles to
bypass the RWC FPGA to communicate directly to the SMC and L2 memory. This
direct connection to each processor tile provides another level of interconnectivity
flexibility. Thus, it is not required to send memory traffic through the RWC, if high

bandwidth is not required. This direct connection also reduces the latency, in addition to
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the ability to “over clock” the SRAMs and FPGAs with respect to the global system

clock.

3.2.2 Processor FPGA

The processor tile is one of the novel aspects of the FAST PCB. The processor tile
integrates a dedicated processor with configurable logic and memory. The Processor
FPGA defined in the architecture has been implemented with two FPGAs in the
processor tile. Two FPGAs are used to reduce the integration complexity due to the high
5 V output voltage of the MIPS components, as explained earlier. Furthermore, each
FPGA in the processor tile serves a clear non-overlapping purpose. The clean
bifurcation made functional separation very easy. The hardwired processor in the tile
enables rapid prototyping because there is no processor design required, only memory
system design. The FAST PCB processor tile also provides the capability to create a
variety of memory subsystems by inserting an FPGA between the MIPS components and
the L1 SRAMs. Thus, the L1 controller (L1C) FPGA can define different interfaces
between the MIPS processor and the SRAMs, and also can create the translation
mechanisms to service memory or cache requests. Thus, the L1C can fake the normal L1
cache interface for the MIPS components, while simultaneously using a completely
different memory structure resident in the .1 SRAMs. The other FPGA, the coprocessor

2 (CP2), can provide additional functionality.

Table 3.4. FAST CP2 primary connectivity.

FAST Components Connection |Width

CP2 to RWC Point-to-Point | 140

CP2 to L1C & CPU Shared 54
CP2 to L1C & SMC Shared 45
All CP2s to RWC Shared 44
CP2 to L1C, CPU, & FPU Shared 43
All CP2s TO all L1Cs & RWC Shared 33
All CP2s to SMC Shared 19

All CP2s Shared 18

CP2 to CP2 Point-to-Point | 6x18

CP2 to SMC Point-to-Point| 16

CP2 to L1C Point-to-Point| 14
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Each processor tile exploits the flexibility provided by its two Xilinx XCV1000 FPGAs.
The main XCV1000 FPGA is the CP2 FPGA that can be used to add instructions to the
MIPS ISA, add new compute engines, maintain statistics counters, or facilitate
interprocessor communication. Figure 3.5 illustrates the connectivity of the CP2 FPGA
defined in Table 3.4. Table 3.4 does not enumerate all six CP2 to CP2 connections that
are required for full point-to-point connectivity nor does it list all the connections to the
CP2. The MIPS-I ISA has a well-defined coprocessor interface that can be exploited by
this FPGA to add instructions to implement software control over cache coherence
protocols, additional functional units, or other features. MIPS defines the FPU as

coprocessor 1, thus the FPGA follows as coprocessor 2.
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Figure 3.5. High-level CP2 connectivity.
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The largest processor tile interface travels between the CP2 and RWC. This interface
handles the higher-level memory traffic and interprocessor tile communication. The CP2
can also utilize either point-to-point or broadcast information to the processor tiles using
the PT Bus, a secondary means of interprocessor tile communication. In general, there
are two control bits and 16 data bits defined for the direct interprocessor tile
communication. The address, tag, and data are distributed to all the components (CPU,
FPU, L1C, and CP2) in the processor tile as inputs, outputs, or both. The CPU generates
addresses, which then can be processed by the cache system controlled by the L1C
FPGA or the memory system in the CP2 FPGA. The FPU or CP2 FPGA can also
process data and coprocessor instructions. The CP2 can also directly access the SMC

FPGA using the shared L2 Memory bus.

The L1C FPGA manages the 256K x 36 bit (including 4 parity bits), dual-ported local
processor tile memory. The L1C serves as the MIPS R3000’s external cache interface,
enabling a wide range of virtual cache configurations, while the morphware fakes the
expected direct-mapped cache behavior. Like the SMC, the L1C can utilize time-division
multiplexing to implement set associative caches or other types of memory systems.
Furthermore, the CPU and FPU always access the local memory through the L1C, giving
it the ability to modify the instruction and data stream on-the-fly, if necessary. Table 3.5

provides the high-level connectivity of the L1C.

Table 3.5. FAST L1C primary connectivity.

FAST Components Connection |Width
L1C to SRAMO & SRAM1 Shared 68
L1C to SRAM2 & SRAM3 Shared 68

L1C to CP2 & CPU Shared 54

L1C to CP2, CPU, & FPU Shared 43

L1C to CP2 & SMC Shared 45

All L1Cs TO All CP2s & RWC Shared 33
L1C to each SRAM Point-to-Point | 4x40

L1C to CP2 Point-to-Point| 14

Besides the L1C interface to the CPU, FPU, and CP2, the L1C’s main function is
providing an interface to the 1 SRAMs. Pin limitations inhibit the flexibility of the

memory system by restricting the L1C FPGA to SRAM connectivity. The SRAM
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connectivity is set up for the canonical instruction and data cache structures. The left
SRAM port provides this interface shown in Figure 3.6 A. The L1C provides a single
address to the SRAMs, in this case SRAM 0 holds the tag array and SRAM 1 holds the
data array. The L1C can then read or write the data and tag arrays simultaneously. Only
two SRAM chips are shown in Figure 3.6 A and B because the interface is the same for
the other pair of SRAM chips. One pair services the data cache and the other pair

services the instruction cache.

Figure 3.6 B illustrates the right port of the SRAMs. This port can be used for snooping
and cache invalidation. Due to the pin limitations of the L1C FPGA, only one of the two
SRAM chips can be accessed at a time because these two chips must share the same data
bus, as shown in Figure 3.6 B. However, time-division multiplexing can be used to access
both chips in a single system clock cycle. Originally, FAST specified independent address
and data buses to each SRAM, but the implementation limitations prevented a fully

flexibly SRAM interconnect.
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Figure 3.6. (A) L1C left port SRAM interface and (B) L1C right port SRAM interface.
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The ability to leverage pre-existing hardware and software reduces the development time
for future projects. The FAST processor tile uses a dedicated processor core to reduce
the design effort by leveraging the design, validation, and functionality of the established
processor, coprocessor interface and external cache interface. Also, limited processor
design is feasible using FAST by manipulating the number of MIPS clock cycles in a
system cycle or using other creative techniques coupled with accurate performance

counters.

However, another processor alternative has emerged over the span of the FAST project.
Several software-defined processor cores or soft cores can be licensed and loaded into the
FPGA as an alternative to hardware processors. This software-based solution is an
attractive alternative as it matures. Currently, a majority of the soft cores are still in their
nascent state. These soft cores do not support modern operating systems and require
application retargeting. At the minimum, these applications require recompilation.
However, soft cores will dominate future platforms because of their additional flexibility

and density.

Some FPGAs also have integrated embedded hard processor cores. These efficient
compute engines are optimal for applications that do not alter any part of the memory
system. If a new memory system, especially one that modifies the processor cache, is
required, these hard embedded cores currently must use awkward processor interface

buses.

3.2.3 PLD

The programmable logic device (PLD) [127] and associated Flash memory [2] are the
system bootstrapping and monitoring devices. The PLD can program the FPGAs using
the Xilinx 8-bit parallel programming ports. There are 8 JTAG groups or zones on the
PCB as well, to provide a secondary system programming and debugging port. The PLD
also acts as the memory controller for the Flash memory chip. This 16M x 8 bit Flash
chip has the capacity to hold all 10 unique FPGA configurations with approximately 5
MB remaining for storing bootstrap software code right on the board [2, 101, 111]. The

PLD also controls the overall state of the board, choosing among FPGA configuration,
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application execution, application debugging, and reset modes. Table 3.6 lists the primary

PLD connections on the FAST PCB.

The PLD can communicate directly with the RWC or SMC FPGAs. These point-to-
point links are predominantly defined to provide access to the Flash memory. The PLD
controls the access to the 16M x 8 bit Flash chip that is used to store the FGPA
programs and that has additional memory reserved for PCB bootstrapping, batch OS

code, or other non-cacheable address space requirements.

Table 3.6. FAST PLD primary connectivity.

FAST Components Connection |Width
PLD to RWC Point-to-Point| 35
PLD to SMC Point-to-Point| 35
PLD to Flash Point-to-Point| 38

PLD to RCM3200 Point-to-Point| 18
PLD to Header Point-to-Point| 12

The PLD also can communicate directly to the embedded Ethernet controller, the
RCM3200. This link provides an interface for the PCB management software to
communicate to the RCM3200, thereby using the embedded Ethernet controller to relay

information between the PLLD and host machine.

The PLD is also responsible for PCB clock distribution. The system clock can be
generated on the PCB using a half-size clock oscillator or using a two-pin header for an
external frequency generator. All ten clock traces, from the PLD to all the FPGAs, are

hand routed, such that all traces are the same length within a 10 mil tolerance.

Finally, the PLD also has an exposed header for adding new functionality not specified at
design time, or for observing specific functionality. Figure 3.7 illustrates the high-level
connectivity between the PLD and the other FAST PCB components described in Table
3.6.

The AMD Flash memory provides the non-volatile memory required to bootstrap the
FAST PCB. Each XCV1000 FPGA requires 6,127,744 configuration bits to program the
device [101]. Likewise, each XC2V6000 requires 21,849,504 configuration bits [111]. To
store unique configuration bit streams for all FPGAs, 8 XCV1000’s and 2 XC2V6000’s,
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consumes 92,720,960 bits. The Flash memory has 256 64K byte sectors [2]. Each
XCV1000’s configuration bit stream consumes 12 64 KB sectors and each XC2V6000’s
configuration bit stream consumes 42 64 KB sectors for a total of 180 sectors for unique
FPGA configuration bit streams. This leaves 4,864 KB of Flash memory reserved for
bootstrap code, batch operating system, or other non-volatile storage purposes. If the
L1C and CP2 processor tile FPGAs use the same configuration bit streams, the amount

of Flash memory increases to 9,472 KB.

FASTI/O

Address

Figure 3.7. High-level PLD connectivity.

3.2.4 Miscellaneous FAST PCB features

As with all complicated projects, there are countless low-level details that impact the
design. Some of these details improve functionality, while other details provide back up
mechanisms. Several headers and test points were added to the PCB because of the large
ball grid array (BGA) components used. The BGA components provide no access to the

pins, so the test points were added in case the design requires a logic analyzer for
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diagnostics. There are two types of headers, those headers connected to the I/O pins
and those headers connected to power and ground. The I/O pin headers and test points
provide the transparency or observation available in software simulators. Over 2000 test
points and I/O header pins were added to the PCB in order to guarantee transparency at

a chip interface level.

Xilinx provides software to do limited monitoring within the FPGA by inserting a
monitoring module using ChipScope [113]. This monitoring module could also monitor
the I/O pins, but these modules have very limited data collection capacity. Thus, the test
points and I/O pin headers enable external data collection between the chips on the
PCB. All of the test points and headers are listed in the support files provided in
Appendix A with respect to the Hydra design for a design reference. The FAST PCB
also has an 80-pin header specifically dedicated for future additional components or new

digital interfaces.

Headers also provide power and ground for external uses by daughter cards or voltage
references. All four voltages, 5 V, 3.3 V, 2.5 V, and 1.5 V, are supplied to two headers
along with ground. These power headers can be used to verify the correct voltage output
by the external power supplies and on-PCB DC-to-DC voltage regulators. The power
headers can also be used to power external daughter cards, e.g., a Compact Flash, or RS-
232 buffer. This is especially useful for add-ons, which require more power than can be
supplied by I/O pins. For example, an RS-232 daughter card powered by the 3.3 V and

ground power header pins facilitated the data collection presented in Chapter 5.

The FAST PCB provides fine-grain and coarse-grain external interrupts to the FPGAs.
Momentarily-on switches can be used to signal a processor tile, SMC, RWC, or the PLD.
The initial intent is to use these switches as a reset or restart signal. Furthermore, the
PLD also distributes a reset signal to all of the FPGAs for global reset or restart. The
headers and test points allow changing inputs or bus conditions, especially for fault
tolerance studies, under the same experimental conditions with respect to the FPGA
programming. Thus, using the reset switches, multiple experiments can be run by

changing the header or test point inputs and resetting the FAST PCB. Targeted reset or
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restart can correct errors that occur during an experiment, or can enable multiple

experimental runs.

Figure 3.8. FAST JTAG zones and corresponding JTAG headers in the upper right

corner.

The FAST PCB incorporates eight JTAG chains as shown in Figure 3.8. These JTAG
chains can program the FPGAs and the PLD, perform memory operations, test PCB
integrity, and statically observe I/O pin transitions. The FAST PCB is broken into eight
JTAG zones to preserve signal integrity in the JTAG chain; making the JTAG chains too

long can cause signal integrity issues. The FAST PCB also groups components with
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similar functionality together on a JTAG chain. The JTAG zones and the corresponding

JTAG headers in the upper right corner are labeled in Figure 3.8.

JTAG zone 1 provides a boundary scan port for the L1 SRAM chips in processor tiles 0
and 1. Likewise, JTAG zone 8 provides a boundary scan port for the L1 SRAM chips in
processor tiles 2 and 3. JTAG zones 2 and 7 provide a boundary scan port to the
corresponding processor tile FPGAs. The L1C FPGA is programmed before the CP2
FPGA. This means that the processor memory system is set up and initialized before the
CP2 FPGA initializes the MIPS R3000. This intelligent JTAG chain layout eliminates the
need to stall the processor initialization. JTAG zone 3 provides a boundary scan port to
the RWC and SMC FPGAs. JTAG zone 4 provides a boundary scan port to the PLD.
The .2 SRAMs are separated into two groups and placed on two separate boundary scan
chains or zones, 5 and 6. Each FPGA boundary (JTAG) scan chain has about 2000
boundary scan cells, while the SRAM boundary scan chains have about 600 boundary

scan cells.

The JTAG interface can be used to program the Xilinx devices on the PCB. The number
of boundary scan cells determines how long it takes to shift serial data in and out of the
JTAG or boundary scan chain. Minimizing the boundary scan chain length reduces the
programming time and also increases the frequency of static JTAG sampling. The JTAG
interface can also be used to program memory devices with JTAG, e.g., all the SRAMs.
The normal memory programming facility uses JTAG enabled devices that are connected
to memory devices, e.g. using the PLD to program the Flash memory. The JTAG
interface can also be used to sample the I/O pin scan cells while the PCB is running
experiments. This is a static sampling process because the sampling rate is lower than the
system clock frequency. JTAG static sampling is very useful for observing steady state
operation. 'This methodology can also be used to latch events that occur with a low
frequency and are hard to visually observe. The JTAG interface can also be used to test
PCB integrity during the bring-up process. Using JTAG to verify PCB integrity will be

discussed in Section 3.5.

The FAST PCB also has 32 LEDs that can be used for a variety of purposes. Initially,

the LEDs were used to indicate that the FPGAs had been programmed correctly. Section
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3.5 will show the initial LED test code for the PLD and RWC. The PLD, RWC, and
SMC each control four LEDs. Each processor tile controls four LEDs with two LEDs
assigned to the CP2 FPGA and two LEDs assigned to the L1C FPGA. The remaining

four LEDs are used for power indicators for the four power planes.

Finally, the FAST PCB was designed with the past and future in mind. The combination
of old MIPS components with the latest available FPGAs motivated the ability to have
replaceable components. For the MIPS components, the FAST PCB uses zero-insertion
force (ZIF) sockets for easy replacement of the old parts. The ZIF sockets also allow the
FAST PCB to run with or without an FPU depending on the desired operation.
Operating the FAST PCB without the FPUs results in about a 5 W power savings. The
DC-to-DC voltage regulators can also be replaced if necessary. By using voltage regulator
headers, the FAST PCB can use improved efficiency regulators, higher current rated
regulators, or even change the voltage output. The latter capability would allow the
FAST PCB to upgrade the FPGAs with pin-compatible next generation FPGAs that use
different core voltages by swapping the FPGAs and the voltage regulators. The voltage
headers also enable limited voltage scaling studies using external power supplies to supply

the FPGA core voltages.

3.3 FAST hardware limitations

The FAST PCB leverages the strengths of its base components, but still has some
hardware limitations. Unlike VLSI design that uses copious amounts of on-chip
bandwidth, the amount of bandwidth on the FAST PCB is limited by the pin constraints
of the FPGAs. The designs mapped to the FAST PCB must be partitioned across
multiple FPGAs, requiring internal buses to be mapped onto the existing FPGA
interconnect. This may force wide on-chip buses to be mapped to much narrower FAST
buses that require double or quad data pumping to create wide virtual buses. Currently,
users must specify and manage these virtual buses. However, Verilog modules are being
developed with these mechanisms, e.g.,, DRAM interfaces [121]. As mentioned in Section
3.2.2, the pin limitations also restricted the flexibility of the memory system design by
forcing shared address and data pins across multiple SRAM chips. Again, time division

multiplexing or similar techniques can be used to regain some memory system flexibility,

73



but this definitely is a limitation. Moving forward, using FPGAs with denser pin
packages would help, but that most likely results in removing the MIPS components from
the design because of the voltage incompatibilities; the Virtex II FPGAs and beyond are

not 5 V tolerant devices.

Similarly, some other structures that are easy to implement in a VLSI environment cannot
be translated well into the FPGA environment. One such example is gang-clearing bits in
cache structures. Gang clearing can occur in a single cycle in a VLSI implementation.
Using FPGAs, gang clearing or gang invalidation requires multiple cycles for normal
cache structures. The gang clearing operation time can be reduced by keeping a table of
the entries that require this operation, but there is no easy way to reduce this time below
Y2 the number of entries that require the gang operation, assuming a dual ported memory
can be used. Other similar operations that require multiple events to happen for a single
structure fall into this category of difficult FPGA implementations. However, the FAST
PCB has complete control of the system clock and performance counters. Thus, the
appropriate counters and system components can be stalled in order to perform the gang
operations and in some cases, the gang or similar operations can be performed in the

background while normal operation continues.

Many VLSI designs are adopting a system-on-a-chip (SOC) configuration, integrating
multiple components with different clocking domains and interfaces. FPGAs have
limited clocking resources making it difficult to generate arbitrary clock frequencies based
on a reference system clock. Likewise, FPGAs require dedicated clock resources for all
unique asynchronous components. Asynchronous clocks are inferred for capturing edge-
triggered events for various performance counters. This limits what can be monitored
inside the FPGA. Furthermore, limited memory in the FPGA restricts the amount of
information or system tracing that can be stored in the FPGA. Thus, performance or
monitoring data must be streamed out of the FPGA for full system traces or monitoring.

Gathering system traces is possible, but requires more infrastructure development.

Finally, using the MIPS R3000 is not without its own challenges. The R3000 was selected
because of its high speed relative to software-defined cores (at the beginning of the

project), transparency, exposed cache and coprocessor interfaces, and integrated FPU.
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No software-defined or hardware processor core offered the same capabilities. Even
four years after starting the FAST project, software-defined cores are still immature and
no commercial general-purpose processor has all the capabilities of the R3000, although
modern processors are much faster.

The R3000 uses dual-phase (two-phase) non-overlapping clocking as shown in Figure 3.9.
The benefit of this clocking scheme is that you can guarantee the system will work if the
clock frequency is slowed down. However, it adds complexity to the clock and processor
interface by enabling events to occur in each phase of each clock. Figure 3.9 is a scale
drawing of the MIPS R3000 clocking scheme illustrating the two phases and the four

edges that occur in each phase.

|— Phase 1 -I— Phase 2 —|

Clk

Clk2XSys

Clk2xRd/Smp

Clk2xPhi

—

Figure 3.9. MIPS R3000 dual-phase clocking.

Over a single clock cycle, eight different events can occur, making the system and
processor integration more difficult due to the precise timing constraints. The Clk2XSys
is used to guarantee an even 50% duty cycle for each phase and is the master system
clock and first positive edge trigger for events in a phase. The second and third positive
clock edges are provided by the read (Clk2XRd) and sample (Clk2XSmp) positive edges
that occur in each phase at the same time. Clk2XPhi supplies the fourth positive edge
transition. The R3000/R3001 Designet’s Guide provides more detail on the clocking
behavior and corresponding processor timing dependencies [54]. The processor tile
FPGAs not only have to generate the various clocks, but the FPGAs are forced to meet
the timing dependencies or the FAST system will not operate. This required explicit

buffer placement to create the MIPS clock phase delay.
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For the system operating frequencies of interest, FAST uses an independent clock
oscillator to generate the system clocking scheme. The PLD distributes the system clock
from the clock oscillator to all FPGAs. The CP2 FPGA in each processor tile is
responsible for generating all four MIPS clocks. The FPGA generates the MIPS clocks
using two delay-locked-loops (DLL’s) linked together to generate a 2X clock and a 2X
clock phase shifted by 90 degrees. Using a system clock between 16 MHz and 25 MHz
requires a delay of 6 ns for the read and sample clocks. Using wire delay in the CP2
FPGA, a pre-routed buffer was placed in the FPGA to produce the desired 6 ns delay.
The post placement and route report provides an approximate delay that was also verified
using an oscilloscope. The 90-degree phase shifted version of the double frequency clock
provided the correct ClkPhi2X signal. As long as the system clock is in the 16-25 MHz
range, the FPGA generated clocking meets the IDT clocking specifications [54].

FPGAs enjoy the same benefits of silicon process scaling as the general-purpose
commodity processors. Each new generation of FPGAs operates faster and has much
larger capacity. However, the device density has far outpaced the package pin growth and
the amount of available on-chip memory. The number of pins on the package is a
physical constraint. While the FPGA designer determines the amount of on-chip
memory, there is a constant struggle between making FPGAs with more on-chip memory
and keeping the FPGAs a general-purpose configurable device. This was evident in
Xilinx’s short-lived “E” line of FPGAs that incorporated far more on-chip memory than
normal [103]. Moving forward, the pin limitations and on-chip memory will continue to
be a problem. The pin limitations can be addressed by using a limited number of high
bandwidth narrow serial links, but the on-chip memory limitations will still exist as a

result of design and functionality decisions.

3.4 Building the FAST PCB

This section changes gears and describes the PCB design process. The FAST PCB is the
result of seven well-defined steps. Chapter 2 and Section 3.1 provide the process for step
one. As Figure 3.10 shows, some of these steps may require some design iteration that

makes the entire process much longer than seven steps.
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Figure 3.10. PCB production process.

Starting with the pre-defined architecture described in Chapter 2, the other part of the
first step in the PCB process starts with parts or component selection, which was
described in Section 3.1. The second step creates a schematic that defines the overall
connectivity of the components on the PCB. The third step creates to-scale drawings of
the packages and places these packages, based on connectivity, onto the PCB. The fourth
step, routing, combines the layout and schematic in order to route the connections of the
components using multiple layers of the PCB. Once the routing is completed, the fifth
step produces Gerber files for PCB manufacturing and assembly. This standard output
file format describes each layer of the PCB. Additional support files are required for the
final two outsourced steps: manufacturing and assembly. The following subsections
provide more detail about these seven steps and how multiple iterations were required in

the FAST PCB production process.

3.4.1 Schematic generation

The second step in the PCB production process is creating the schematic. The schematic
defines the netlist. The netlist defines how the components are connected. The

schematic uses one or more symbols for each component. The schematic symbols have a
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one-to-one mapping between the component package pin names and the schematic
symbol pin names, defining connections between components. The user can define a net
that connects multiple symbol pins of various components together. The schematic can
have multiple levels in a hierarchy containing many pages or just one page or file. The
FAST schematic uses a hierarchy to instantiate the entire board. Furthermore, for each
logical schematic component, we segregate the components into I/O schematics and
power and ground schematics to isolate the architecture connectivity. Thus, some
component packages are defined by multiple schematic symbols. FAST has a top-level
schematic that includes the four processor tiles plus the two FPGAs used for the Hub
FPGA. A second top-level schematic contains all the top-level connectors and
components not associated with any of the FPGAs. The schematics and further details
of the schematics are presented in Appendix A. Once the schematic is complete, the
netlist is generated and exported to the layout tool. The netlist contains a list of

components required for the design along with the component interconnects.

FAST used Cadence Capture CIS, later renamed Design Entry CIS 15.2, to generate the
schematic. This tool had several problems with copying and pasting large symbols,
resulting in crashing the program. FAST also uses very descriptive net names, using more
than 8 characters per net name. This caused problems with exporting the netlist to other
tools because several tools expect no more than 8 characters per net name. These
descriptive nets were also an issue for the tools used to process the Gerber files by

various PCB suppliers.

The lack of verification tools was the major drawback of the schematic tool. Verifying
the schematic was a semi-manual process. The first step in verifying the schematic was
dumping the entire netlist. Cadence Capture CIS provides over 25 output formats for the
netlist. The format may have certain restrictions, like 8 character long netlist names,
requiring judicious output format selection. Once the output format is selected, the
schematic netlist can be compared to the expected netlist. For components that were
replicated, like the processor tiles, simple scripts could be used to compare all four
processor tiles to make sure that the connectivity was consistent. Once the processor tile
consistency was confirmed, another script compared an individual processor tile netlist

with the expected netlist. There were minor netlist variations that required some manual
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intervention during the process, as well as some preprocessing before using the compare
scripts.  Unfortunately, the Cadence Orcad suite of tools did not have any predefined
method to insure schematic correctness. This made creating the schematic very prone to
user error. The FAST schematic contained over 4200 nets in the netlist. A single netlist
error, like inadvertently connecting 3.3 V to ground, would be catastrophic and can be
detected in the layout tool, but other connections or lack of connections can be more
difficult to track down because of the manual verification process of the schematic, which

percolates the errors to the later tools.

3.4.2 PCB layout

In the third step, a layout tool transforms the connectivity defined by the netlist into a
physical PCB design, by placing all the component packages. The layout imports the
netlist that defines all the parts and all the connections. Package footprints are created
for each unique component. The footprint is the physical design of the component’s
package. Component datasheets provide the physical dimensions and pin or ball grid
array dimensions required to generate a footprint. The connectivity and footprints are
used for component placement on the PCB. The PCB itself is just a substrate that

enables multiple components to be connected in a wide variety of ways.

Layout can enforce space constraints between components and place components on
different layers, as well as many other sophisticated features. For the FAST PCB, many
features like embedded resistors and capacitors and blind vias were not used because of
the high manufacturing costs. Components are placed on both the top and bottom layers
of the FAST PCB. This reduces parts clutter and provides a clear separation between the

main components and the support components, capacitors, resistors, and test points.

All 4260 components were placed by hand to insure well-defined placement. This was
especially important for the test points and capacitors. For the test points, we defined
arrays of test points in the schematic that then could be placed on the PCB. These arrays
provided predefined net placement that was difficult to achieve using the grid placement
functionality in the Cadence LayoutPlus tool. By creating arrays of test points, we
minimized the silk screen labeling required to define the test point net name and reduced

the effort required to identify a test point on the actual PCB. The capacitors presented a
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different layout challenge. Capacitors are most efficient when placed as close as possible
to the point of use, in this case the power and ground pins of the device; the smaller the

capacitance, the more critical the placement proximity.

Finally, high-density BGAs were the other main driving force behind parts placement.
The large XC2V6000 FPGAs required at least 6 layers to route the I/O pins out from
under the chip. The escape routing strategy for these FPGAs presented a significant part
placement and routing challenge. These parts were placed far enough apart to facilitate
routing, which required larger PCB dimensions. Figure 3.11 shows the component

placement on the top layer (A) and the bottom layer (B).

B)
Figure 3.11. FAST PCB layout showing the (A) top and (B) bottom layers using inverted

colofs.

The layer definitions are created in the layout tool. Cadence LayoutPlus can manage up
to 32 layers having the following pre-defined roles: sixteen layers map to actual electrical
(trace, power, and ground) layers on the board. Thirteen other layers are non-electrical
and used for documentation and PCB specifications, and the remaining three layers are

undefined, but can be used for additional user-defined documentation.

Initially, FAST had four power layers and one ground layer. The four power layers
corresponded to the 5V, 3.3V, 2.5V, and 1.5 V power planes. (FAST uses 3.3 V for all
1/0O pins. This enables communication between the XCV1000 processor tile FPGAs and
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the R3000 and R3010. Using a lower voltage output, i.e., 2.5 V or 1.5 V, would not
guarantee that the FPGA high output would be translated as a logic high signal by the
MIPS parts.) We also had defined 14 signal layers for routing the traces (wires) between
the chips for a total of 19 electrical layers: 5 power and ground layers plus 14 signal/trace
electrical layers. This required us to use the three undefined layers as electrical layers
because LayoutPlus only defines 16 electrical layers including power and ground planes,
as discussed above. The result, after using six ground planes, was a 24 layer FAST PCB.
After completing this initial design, we found that LayoutPlus cannot export more than
16 electrical layers, which includes power, ground, and I/O layers. The extra three
undefined layers can only be used for additional documentation or other non-electrical

layer purposes.

Figure 3.12. Outer 5 V plane, middle 2.5 V plane, and central 1.5 V plane on compressed
power layer.
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As a result, the 5V, 2.5V, and 1.5 V power layers were compressed into one layer that
resembles a bull’s eye pattern, as shown in Figure 3.12. This convenient layer
compression was a result of premeditated parts placement. The result of the layer
compression provided one ground layer, two power layers (one for 3.3 V and one for 1.5
V, 2.5V, and 5 V), and 13 signal layers. The ground layer was replicated to produce 5
layers for signal and power plane shielding resulting in a total of 20 layers. Further layout

details can be found in Appendix A.

Changes to the initial layout can require back annotation of the design to synchronize the
schematic with the layout. Back annotation generally occurs when new parts or

connections are added to the layout that were not initially in the schematic.

3.4.3 PCB routing

The fourth step, PCB routing, takes the output of the layout and creates wires (traces)
and holes (vias) on the various layers of the PCB, thereby connecting all of the
components and pins defined for each net for the entire board. The signal layers connect
pin A on chip 1 to pin B on chip 2, while the power and ground planes provide the
ground plane and the I/O and core voltages. The FAST PCB was too complicated for
the routing software that is tightly bundled with the LayoutPlus software. Therefore, we
exported the design to SPECCTRA, Cadence’s high-end routing tool. The initial route
took 7 days of compute time using diagonal routing. The diagonal routing had given
SPECCTRA too much flexibility and slowed the routing process down dramatically. We
then used orthogonal layer routing, which dramatically reduced the route time from 7
days down to 3 days. Bundling bus wires together and routing the difficult buses first,
followed by the easy-to-route buses, also reduced routing time. Figure 3.13 illustrates the
PCB routing steps used for FAST. There are seven steps, once the trace width and
spacing constraints are defined. Each component’s BGA spacing and the design for
manufacturing rules used by the PCB fabrication house determine the trace width and

spacing [84, 102].

Once the PCB is completely routed, the 90-degree angles in the routes are rounded with a
mitering step. Mitering converts a 90-degree angle into two 45-degree angles, thereby

reducing the EMI radiation caused by electrons turning sharp corners. With the mitering
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complete, the full PCB can use a design rule checker (DRC), step 6 in Figure 3.13, to
verify that the PCB meets all the constraints and is fully routed. SPECCTRA does not
have the capability to directly export the resulting fully routed PCB. Instead,
SPECCTRA generates a file that is imported back into LayoutPlus, which re-runs the
DRC on the fully routed board. The translation process can place traces off-grid,
breaking previously connected components. An additional clean-up step must be done

before creating the Gerber files.

Define trace width
and spacing
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*| Bus Bundle
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Figure 3.13. FAST PCB routing process.

3.4.4 Gerber file generation

FAST is a 20 layer PCB with 13 signal layers and 7 power and ground plane layers. Fach
layer is independent of all others, thus the layer stack can be specified with respect to
arbitrary electrical constraints. The layer stack describes how the PCB layers will be
sandwiched together. The PCB routing is really a 3D problem because each via, the
connection that connects two layers together, must not interfere with any other trace or
object on any other layer. We used additional ground planes to shield the power planes

and separate various signal layers, as shown in Figure 3.14.
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Figure 3.14. 20-layer stack up for the FAST PCB.

The two signal layers clustered below the top layer contain the clock and reset signals.
The clock traces have the most frequent oscillations and FAST separates these traces
from the rest of the design to reduce cross talk. The additional ground plane below these
two signal layers isolates these traces from the rest of the design. The 5V, 2.5V, and 1.5
V power plane is placed near the top of the board to reduce the voltage drop for the
lower voltages by locating the power plane close to the components. More ground layers
could have been used to separate the rest of the signal layers, but that would dramatically

increase the PCB manufacturing costs.

There are two other purposes of the Gerber file translation. First, GerbTool manipulates
the Gerber files and removes all the unused pads associated with each via. In order to
maintain the trace spacing requirements for a via, SPECCTRA places a pad on each layer.
This prevents a trace from being routed too close to the via. The pad is the connection
point between the via and the trace and is only necessary in the (typically) two layers that
are being connected. The second purpose of the Gerber files translation is the ability to
reconstruct the netlist from the Gerber files and compare that with the layout netlist to
verify the correct connectivity. Figure 3.15 shows all the layers superimposed on the PCB

in the GerbTool. GerbTool is a third party tool licensed by Cadence and included in the
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PCB tool chain. The black areas in Figure 3.15 are void of traces, components, or silk

screens. The center of the FAST PCB has the highest trace density.

Figure 3.15. Routed FAST PCB in GerbTool with the black areas void of traces and
parts.

3.4.5 PCB manufacturing

The PCB complexity resulted in two PCB manufactures unable to bid on the project
because the FAST PCB exceeded the manufacturers’ capabilities of a maximum of 16
layers and 14” X 17” dimensions. The first FAST PCB specification had design for

manufacturing (DFM) issues. First, the trace spacing between the traces and the vias was
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too close and required rerouting. With 30,000 vias, rerouting was more efficient than

moving traces around each via.

Second, the FAST PCB routed two traces between the vias of the large BGAs of the
XC2V6000 FPGAs. This reduced the number of layers required to escape the BGA, but
the tight spacing was not feasible given Sanmina’s DFM guidelines. The last major issue
with the FAST PCB was the high aspect ratio. The aspect ratio is defined as the board
thickness divided by the smallest drill hole size. The fine BGA FPGAs forced FAST to
use a very small drill hole size of 6.5 mils. The tolerance on these drill holes was also very
tight, only 2 mils on a side. Using standard layer thicknesses, a 24-layer FAST board
would have been in the range of 120 mils or about 1/8 of an inch. This produced an
aspect ratio of about 18.5. This high aspect ratio made it more difficult to produce
reliable vias using the standard PCB manufacturing processes. Normal PCBs have an
aspect ratio of about 10. By reducing the layer thicknesses, reducing the number of layers
to 20, and increasing the smallest drill hole size to 8 mils, the FAST PCB has a total
thickness of just under 100 mils and a resulting aspect ratio of less than 12, not including
the top and bottom solder masks. This change in aspect ratio made this project have a
much higher yield from a manufacturing perspective, resulting in the bare PCB shown in

Figure 3.16.

There are several other PCB manufacturing details that are addressed in the PCB
specification documentation that was sent to Sanmina. The FAST documentation
includes contact information, version number and date, general PCB specifications, layer
stack-up and associated Gerber files, and a description of all the files required to produce

the PCB. The PCB specifications and layer stack-up can be found in Appendix A.
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Figure 3.16. Top of bare FAST PCB.

3.4.6 PCB assembly

Although there are only 35 unique building blocks used to make the FAST PCB, there are
4260 individual parts. There are 43 large BGA components that require specialized
multi-stage baking ovens that solder the BGA components to the PCB. There are about
2000 test points, each only 40 mils by 105 mils. These small components would have
been both difficult and tedious to solder to the FAST PCB by hand. There are also about
1200 surface mount (SMT) capacitors that are in a 0402 package with similar dimensions
as the test points. Thus, the BGA components combined with the copious quantities of

very small devices made the PCB impossible to assemble outside a PCB assembly plant.
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For assembly, the top and bottom assembly layer Gerber files specify where each
individual component is placed on the top and bottom layers. PCB dimensions and
mount hole dimensions are provided in the fabrication Gerber file. Additional fiducial
marks are placed near the large high-density XC2V6000 FPGAs to help the optical
machines align the device placement and are specified in the fabrication Gerber file as
well. The final result is Figure 3.1, the fully assembled FAST PCB. There are a few
devices in Figure 3.1 that are socketed rather than placed during the assembly process.
The embedded Ethernet module, the three DC-to-DC voltage converters, and the MIPS
R3000s and R3010s all used sockets for easy replacement or upgrade purposes,
depending on the device. The ability to replace components was especially important
when using the 15-year-old MIPS components. The full component list and relevant

assembly deals are provided in Appendix A.

3.4.7 The FAST PCB realized

The FAST PCB design, manufacturing, and assembly process took 18 months, from
January 2004 to June 2005 (also see Section 3.6 and Figure 3.19). The PCB design took
the first year and included the schematic, layout, routing, and Gerber file generation and
validation. The last 6 months included one month of gathering estimates, 3 months of
DFM routing revisions, and 2 months of manufacturing and assembly. There are several
parts of this process that could have been reduced from 18 months down to 8 months or
so by outsourcing step 3 (Layout) through 7 (Assembly) in Figure 3.10. Regardless of the
extended PCB timeline, the resulting FAST PCB has required no additional rework.
There were a few minor mistakes. Out of about 2000 capacitors, two SMT capacitors
had the wrong package specified and were not placed on the PCB. Furthermore, the
silkscreen pin 1 designator for PT3_HDR is misplaced. Finally, by mistake, the spacing
tor FPU1 and R3K1 in processor tile 1 is different from all the other processor tiles. This
prevented the symmetric placement of the ZIF sockets for this particular processor tile.
However, unlike most prototype PCBs, the FAST PCB has NO PCB rework and has
not faced any issues that inhibit FAST PCB functionality.
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3.5 See FAST run

When the FAST PCB was first delivered, several tests were performed before power was
applied to the PCB. The initial step is a visual inspection of the PCB. This checks that all
the correct components are present and have the correct orientation. There are several
headers on the PCB, but only the FPGA mode headers need to have the correct jumpers
set. Finally, components with visible solder joints are inspected to verify that there are no
solder bridges. Solder bridges are inadvertent connections caused by adjacent solder
combining. The FAST PCB has over 4000 components that were visually inspected.
There are 43 BGA components that cannot be visually inspected. Sanmina used X-ray
inspection to verify the solder ball integrity and the lack of solder bridges under the BGA
package.

Using a digital multimeter (DMM), the PCB is checked for shorts between the various
power and ground layers and the I/O pins by measuring the resistance without applying
power to the PCB. The resistance of the same network varies, but is generally below 5
Ohms. The measured resistance increases when the distance between the two measured
points on the same network increases. The measured resistance between two different
networks, e.g. 5V and 1.5 V, depends on the devices used between the two networks, but
is generally at least an order of magnitude higher, above 50 Ohms. If passive
components like capacitors, resistors, or inductors connect two networks together, the
resistance could be lower than 50 Ohms. This resistance measurement process is
generally referred to as Bugz out. 'The FAST PCB examined the following networks using
the Buzz out procedure: 5V, 3.3V, 25V, 1.5V, Ground, JTAG headers, clock network,

and reset network, producing a large Cartesian product of combinations.

The next phase of the PCB bring up process applies power to the PCB using current-
limited power supplies to prevent excessive current draw and potential PCB damage.
With power applied to the PCB, the JTAG chain integrity was verified by reading all the
devices on each chain and comparing the device count and device IDs to the number of
devices on the PCB and the JTAG device ID listed in the datasheets [41, 54, 55, 101, 111,
127]. FAST uses GSI Technology GS832436B SRAM chips that actually contain two
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SRAM chips in a single package [41]. When probed by JTAG hardware and software,
each GS8832436B actually appears as two devices on the JTAG chain and not one device.

Once the integrity of all the JTAG chains was verified, the entire PCB interconnectivity
and integrity was verified using third party software and hardware from Corelis [20].
Corelis makes hardware and software packages that can verify the connectivity and
integrity of PCB’s using the JTAG chains. The JTAG interface daisy-chains devices
together and serial-shifts data in and out of the devices. The Corelis JTAG hardware
provides 8 JTAG ports for simultaneous testing and probing. Thus, one JTAG zone can
be tested and the interface between it and another JTAG zone can be probed and verified
simultaneously.  The Corelis interconnectivity testing verified the chip interface

functionality.

The Corelis tools can also be used to test various memory interfaces. The initial memory
tests were done with the Corelis tools. Traditionally, memory tests use a JTAG-enabled
device, like an FPGA, to read and write a Flash memory or SRAM. However, this
memory test infrastructure was modified to interface directly to the JTAG-enabled SRAM
chips to verify the SRAM functionality. All JTAG tests using the Corelis tools were
performed at 5 MHz, although the FPGAs can operate the JTAG interface at up to about
10 MHz.

PLD LED counter Verilog:

assign CFG_LED = count[23:20];

module PLD_LED(SYS_CLK, CFG_LED);
input SYS_CLK; endmodule
output [3:0] CFG_LED;

PLD LED UCF pin mapping:

reg [31:0] count;

reg [31:0] next_count;

NET "CFG_LED<O0>" LOC = ''p208";

always @ (posedge SYS_CLK) begin NET "CFG_LED<1>" LOC = "'p207";

count [31:0] <= next_count NET "CFG_LED<2>" LOC = "'p206';

[31:0]; NET ""CFG_LED<3>" LOC = "p205";
next_count [31:0] NET "SYS_CLK'"™ LOC = *"'p183";

<= count [31:0] + 1%bl;

end

Figure 3.17. FAST PLD LED counter Verilog and UCF file with pin mapping.

Finally, with the initial bring-up test complete, the programmable devices can be tested.
The first test program downloaded to the FAST PCB used the clock oscillator and a
counter in the PLD to activate the 4 LEDs connected to the PLD. Figure 3.17 provides
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the Verilog code and accompanying user constraint file (UCF) required to create the
configuration bit stream for the PLD. The UCF file provides the net or port name
mapping to the device pin name. This simple test blinks the LEDs at a human

perceptible rate and demonstrates the correct programming of the PLD.

Figure 3.18 provides the extended PLD Verilog that distributes the clock to the other
FPGAs including an LED counter for the RWC FPGA. These simple tests were done
the first day the FAST PCB was powered on. From there, the software infrastructure was
built and every time the FPGAs are programmed, some small counter that activates some
LED:s is used to verify that the FPGA is programmed and operational. By extending the
PLD UCEF file with the clock distribution pins and creating a similar UCF file for all of
the FPGAs, all the LEDs on the FAST PCB came to life once they were programmed
with their configuration bit stream. All the Verilog code and corresponding UCF files

used for the LED counters can be found in Appendix B.

PLD LED counter and clock distribution (-1 (SYS_CLK), .0(CP2_GCLK[11)):
Verilog: BUF clk_bufg4
(-1 (SYS_CLK), .0(CP2_GCLK[2D)):
module PLD_LED(SYS_CLK, CFG_LED, BUF clk_bufg5
CP2_GCLK, L1C_GCLK, MEM_GCLK, RWC_GCLK, (-1 (8YS_CLK), .0(CP2_GCLK[3D):
CFG_M, CFG_PROGB, CFG_INITB); BUF clk_bufg6
input SYS_CLK; (-1(SYS_CLK), .0(L1C_GCLK[OD)):;
output [3:0] CFG_LED; BUF clk_bufg7
output [3:0] CP2_GCLK; (-1 (8YS_CLK), .0(L1C_GCLK[1D);
output [3:0] L1C_GCLK; BUF clk_bufg8
output MEM_GCLK; (-1(SYS_CLK), .0(L1C_GCLK[2D)):;
output RWC_GCLK; BUF clk_bufg9
output [2:0] CFG_M; (-1 (8YS_CLK), .O(L1C_GCLK[3D)):;
output CFG_PROGB;
output CFG_INITB; endmodule
reg [31:0] count; RWC LED counter Verilog:

reg [31:0] next_count;
module RWC_LED(SYSCLK,LED);

always @ (posedge SYS_CLK) begin input SYSCLK;
count [31:0] <= next_count [31:0]; output [3:0] LED;
next_count [31:0] reg [31:0] count;
<= count [31:0] + 1"b1; reg [31:0] next_count;
end wire [3:0] LED;

wire MY_CLK;
assign CFG_LED = count[23:20];
always @ (posedge MY_CLK) begin

//distribute the system clock to FPGAs count [31:0] <= next_count [31:0];
next_count [31:0]

BUF clk_bufg <= count [31:0] + 1%b1l;
(-1 (8YS_CLK), .O(MEM_GCLK)) ; end

BUF clk_bufgl
(. 1(SYS_CLK), .O(RWC_GCLK)); assign LED [3:0] = count[23:20];

BUF clk_bufg2 BUFG clk_bufg (.1(SYSCLK), .O(MY_CLK));
(-1 (8YS_CLK), .0(CP2_GCLK[OD):

BUF clk_bufg3 endmodule

Figure 3.18. FAST PLD clock distribution and LED counter Verilog and RWC LED
counter Verilog.
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Hardware technology convergence made it possible to integrate a variety of components
to build a flexible four-processor emulation and prototyping system called FAST. Both
the architecture and implementation also provide the capability to extend the system,
building a larger prototyping fabric. This chapter has described the PCB implementation
process and successful functioning. The FAST PCB was demonstrated to be functional
and ready for the FAST Software toolbox to be built because building the PCB hardware
is a small fraction of the required functionality. Without software, the PCB is useless.
The next chapter will cover the software development and resulting FAST Software

toolbox.

3.6 FAST hard lessons learned

The FAST project has run into several problems along the way that have stalled the
eventual success of the project. Project staffing was the first major FAST roadblock.
The initial graduate student responsible for designing, layout, and routing the PCB design
left the project in December of 2003, after a year of no progress. Unfortunately, from
this point forward, it was easier to restart the project and move forward than to try to use

the incomplete work that existed.

The initial time scheduled for the project was one month for the schematic, 3 months for
the layout and routing and 2 months for manufacturing and assembly. Two major factors
compromised the completion of this project and resulted in a much longer schedule.
First, it was recommended that we use the mid-grade Cadence tools to design the PCB.
The main reason was that these tools had a much shorter learning curve and thus could
produce results much faster. However, inherent limitations to the tools made them
inadequate for the FAST PCB. The FAST PCB project broke every tool in the PCB tool
chain. In some cases, saving the files frequently or not copying and pasting large section
in the schematic tool could work around the problems. However, there were problems
with the layout and routing tools that stopped all forward progress. Unfortunately, each
time this happened, the problem would have to be escalated through the customer service
process until it was routed to the development team to fix the bug, provide a work
around or reject as an unsupported tool feature. This customer service cycle required 1-2

months added to the PCB development time.
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Figure 3.19. FAST PCB and software timeline.

Figure 3.19 provides a timeline for the FAST PCB and software development. This
timeline starts when the FAST project was restarted in January 2004. The work from the
prior two years, starting in 2002, was redone. This figure also shows the delays incurred
from CAD software problems. The PCB layout and routing was extending by about 5
months due to CAD tool problems. The request for a project quote (RFQ) required 6
weeks to send out the design and select a PCB prototyping vendor. Because of the
complexity of the PCB, only four out of the six original vendors could produce the FAST
PCB. About 10 weeks were required to redesign the PCB to meet Sanmina Corporation’s
Design for Manufacturability (DFM) guidelines. There were three iterations and each
iteration took 2 weeks to get feedback from Sanmina before the next iteration could
begin. Once the FAST PCB was manufactured and assembled and tested, the rest of the
time after July 2005 was spent on building the software required to make the PCB

functional. The FAST software development is discussed in Chapter 4. Initial software
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development ramped up until June 2006. In June, all systems of the FAST 4-way CMP
were partially working with sporadic successful results. Thus, from June until September
2000, all major software development focused on system robustness, loading programs

successfully all the time and code clean up.

To provide some insight into some of the broken CAD tool issues, as mentioned
previously in this chapter, the initial FAST PCB design had 24 layers, using 10 power and
ground layers and 14 signal layers. Three of the signal layers could not be exported as
Gerber files from LayoutPlus. Unfortunately, the 16 electrical layer limitation was not
prominently described in the tool documentation. Furthermore, it took over a month to
promote the problem to the development team, while at the same time trying various
workarounds to solve the problem locally. Once the development team looked at the
problem, they rejected fixing the problem or providing a workaround. This forced the

layer redesign and re-layout.

There were a few other problems that were similar in terms of additional time added to
the project: LayoutPlus router failure and Gerber file netlist comparison failure. On
several occasions, the project tried to upgrade to the high-end Cadence tools, but the
conversion tool failed and the process would have required starting completely over from
the beginning, including a very long learning curve. As a result, future large-scale PCB
projects, more than 10 layers and larger than 57 X 87, should be outsourced for timely
delivery and reduced tool problems. Outsourcing the PCB layout and routing would
have kept the FAST PCB phase on target with regard to the time schedule and
accelerated the time to research for this and future projects. As Figure 3.19 illustrates,
five months could have been saved in the layout and routing process and another 10
weeks could have been saved because there would be no redesign for DFM. Overall, that
accounts for almost eight months that could have been shaved off the timeline presented
in Figure 3.19. Finally, if more resources were available, the software development could
have been done in parallel as well, further reducing the time required to produce a fully

functional FAST system.

94



Chapter 4

FAST software architecture

The previous chapters describe the motivation, architecture, and hardware
implementation of the FAST PCB. The result of these chapters is a fully functional PCB
that functioned correctly, out of the box, with no rework. Unfortunately, hardware is
not the complete answer. Truly to be useful, the FAST system must include software that
enables kernel and application development. The FAST software architecture is the other
half of the system equation. The PCB was designed to have very few software
limitations. The complete hardware and software stack is shown in Figure 4.1. Chapter 2
and 3 described the hardware architecture and implementation. This chapter describes
the FAST software architecture from the FAST Verilog Abstraction Layer (VAL) up to

the application layer.

The FAST software architecture encompasses many levels of software and tools, from
low-level software that makes the PCB functional (morphware), to applications running
on the prototype system. This chapter presents a bottom-up view of the software
components and tools required to make FAST functional. These tools and software
components apply to all similar flexible prototyping systems. This chapter will describe

all of the software layers that build on top of the FAST PCB, as shown in Figure 4.1.

Applications
Software
TLP Operating System
TLP Architecture
Morphware

FAST Verilog Abstraction Layer

FAST PCB }Hardware

Figure 4.1. FAST complete hardware and software stack.

First, we present FAST VAL. The FAST VAL is the software that describes and

implements the base hardware functionality. These base Verilog modules provide the
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MIPS interface for all designs. Similarly, additional Verilog modules are built on top of
the FAST VAL and provide the prototype or thread level parallel (TLP) architecture
definition. There are also hardware definitions that provide hooks for profiling and
performance counter definition. FAST also has the ability to run fully functional
operating systems (OS). However, the OS must be ported and auxiliary software must be
provided to start up FAST and support the OS operations. For simplicity, we group the
low-level boot software and OS together. There are also additional drivers and (TLP)
APD’s that provide prototype specific functionality. Finally, building software using
common widely available tools, applications are compiled for the FAST or TLP
prototype target. The following subsections present the tools and software components
of Figure 4.1 in a bottom-up approach. This presentation basically follows how the

software was developed for the FAST PCB.

4.1 Building software on top of hardware

Working hardware does not exist unless the software exists to make it work! The FAST
PCB is nothing without software to support system prototyping. The FAST Verilog
Abstraction Layer (VAL) manages the basic functionality of the FAST PCB. The FAST
VAL is a collection of Verilog modules that defines interfaces that every prototyping

system will use. This section describes the various layers of the FAST VAL.

There are two basic components to VAL, the Verilog modules and the corresponding
User Constraint Files (UCF). The Verilog files define the hardware functionality and are
part of the higher-level morphware. Morphware is all Verilog or other code that defines the
FPGA functionality. Because FAST is built with configurable hardware, the hardware
configuration software morphs the hardware into a virtually unlimited number of
configurations, thus, transforming “software” to a more aptly named “morphware,” as
shown in Figure 4.1. The UCF files map port names of the Verilog modules to pins on
the PCB devices. The UCF files can also define hardware parameters, timing constraints,
and initial values for internal registers. The Verilog files and modules are managed,
compiled, and synthesized using the Xilinx Integrated Software Environment (ISE)
because the FAST PCB uses Xilinx programmable devices [116]. However, other

development systems exist [90]. First, we describe the tools used to create the FAST
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VAL. The Verilog development environment is followed by a discussion of the actual

FAST VAL.

4.11 Xilinx development tools

As mentioned in Chapter 3, the FAST PCB uses Xilinx programmable devices to
facilitate the flexible system prototyping substrate. Xilinx provides a set of development
tools that enable system development and testing. There are two tool packages that are
available: the Embedded Development Kit (EDK) [120], primarily for Virtex II Pro with
embedded PowerPC 405 processors; and the Integrated Software Environment (ISE)
[116]. The FAST VAL uses the ISE tools because we are not using FPGAs with
embedded hard cores or other Xilinx IP that requires the EDK tools. The ISE tools
bundle a development environment, compilation, logic synthesis, placement and routing,
bit file generation, FPGA programming tools, and simulation tools in one graphical user

interface framework.

The primary function of the ISE tools is to transform synthesizable Verilog for a
particular FPGA into an FPGA programming file that realizes the intended function of
the Verilog code. This is accomplished by a collection of tools that are invoked within
the ISE framework. The ISE framework bundles Xilinx devices with all the relevant files
and support information. There are two main components required for each
programmable device, the Verilog code and the user constraint file (UCF). The Verilog
code defines the hardware function to be implemented on the FPGA. The UCF file
defines the port to device pin mapping, initialization values, signal and clock timing
constraints, and a variety of other user specified values. A list of the possible constraints

can be found in Xilinx’s Constraints Guide [100].

There are three main steps that take place within the ISE framework: design synthesis,
design implementation, and programming file generation. Once the device and its
associated files go through these steps, the ISE framework provides a design summary of
device utilization, performance score, and failed constraints. In each case, there are

reports that provide detailed information for all the individual steps in the process.
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Design synthesis processes the structural Verilog and converts the code into Boolean
logic. The design implementation phase translates the Boolean logic into structures that
map to the Xilinx logic building blocks. In the case of the FPGAs, these structures are
four input look-up tables or 4-LUTs. After translation and mapping, the most
complicated process happens: the design is placed and routed in the target devices. This
phase of the process is referred to as PAR and determines the device’s design operating
frequency. The design’s operating frequency is a function of the design complexity,
where the logic is placed in the device, and how wires are routed in the device. For the
XCV1000’s, the maximum chip operating frequency is 200 MHz and for the
XC2V6000’s, the maximum chip operating frequency is 400 MHz. Needless to say,
implemented designs have an operating frequency that is less than the previously stated
maximum device operating frequencies. The final stage in this process generates the
programming or bit file that is downloaded to the Xilinx device and that then molds the

flexible FPGA substrate into complex logic.

There are specific tools in the ISE framework that were repeatedly used to improve
correctness and performance. Unlike software simulators, hardware must meet the
device timing. FAST uses dedicated processor cores that enforce specific timing
requirements on the FPGA interfaces. If the FPGA interfaces are too slow or too fast,
the system will not work. There are three steps that were used to produce the correctly
functioning FAST VAL framework. First, the device placement and correct routing
defines the functional correctness. Second, the FAST VAL used Verilog simulation to
prove the implementation correctness. Finally, the internal and external FAST
observation tools are presented and demonstrated both implementation and functional

correctness.

Placement and routing (PAR)

An FPGA is basically a sea of gates, wires, and memory blocks. FAST must meet the
timing requirements of the MIPS R3000 and R3010. If these hard timing constraints are
not met, the system will not function because the processors cannot get correct data. The
logic placement and wire routing in the FPGA affects the timing of FPGA. The location
of the logic block and the length and type of wires used dramatically impacts the signal

propagation time. The FPGAs must capture and supply data at specific times based on
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MIPS timing diagrams [54]. If the logic is placed too far away from the signal source or
the wires used to route signals are very long, the data will not reach its destination in time.
The best example of this is the fixed placement of the delay buffer used to generate the
phase delay for the Clk2XSmp signal. For repeatable results, it was best to fix the buffer

placement and routing as opposed to using a timing constraint.

The Xilinx FPGA Editor can display logic placement and wire routing. This tool can also
dump the placement and routing of particular signals and complex logic and wire routes.
By combining the information from the FPGA Editor with the post PAR timing report,
the timing dimension can be resolved. Post PAR, the FPGA Editor provides timing
information about individual segments, whereas the timing report provides pin-to-pin
timing information for signals, with the latter generally begin more useful. If logic and
routes are manually placed in the FPGA Editor, the FPGA Editor no longer provides

credible timing information for the manual routes.

In order to tackle difficult timing problems, user-timing constraints are specified in the
UCF file. A timing report provides the information on signals that do and do not
meeting the timing constraints. Using the FPGA Editor, the signals that meet timing
constraints are recorded and added to the UCF as a fixed placement and route of the
logic and wires. The signals that do not meet timing are re-routed in the next PAR
iteration.  As each individual signal is successfully routed, it is fixed in the UCF file.
Fixing the routing also has the side benefit of reducing the amount of time it takes to do
the PAR. Once all the signals meet the timing constraint, the iterative process is
complete. Sometimes, just placing a particular logic cell can improve signal timing and
enable the tools to meet the timing constraints. Section 4.1.3 discusses design timing in

more depth.

Simulation

Simulation is used to verify the correctness of the Verilog code. The FAST project used
ModelSim to verify its structural Verilog [72]. There are two ways to simulate Verilog
modules. The simplest method simulates the module functionality without regard to
timing. The second method incorporates signal timing using post PAR and device

information. FAST uses the device models and libraries supplied by Xilinx.
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Furthermore, the SRAMs also had Verilog modules supplied by the SRAM providers that

we used in our memory simulations.

In general, the FPGA libraries and related Xilinx libraries were mature and provided
accurate results. However, for some of the SRAM simulations, the simulation would
produce functionally correct waveforms, but the programmed FPGAs had certain
problems, like bus contention, that were not exposed in the simulation environment. As
a result, implementation and observation on the PCB was the top priority with
simulation-based validation taking a back seat in the development process, unlike a

normal development cycle.

JTAG programming and observation

The Xilinx devices are programmed with the Xilinx tool iMPACT [108]. This tool
interfaces with a Xilinx programming cable and the JTAG headers on the FAST PCB.
The FAST project uses the Xilinx parallel IV cable and a JTAG header cable to program
the Xilinx devices [119]. iMPACT can also be used with JTAG chains that have non-
Xilinx devices on the chain. Any device on the JTAG chain can be bypassed. When the
FAST PCB was first powered on, IMPACT was used to verify the JTAG chain integrity
and download each device ID code. This initial verification step enabled relatively rapid

testing and development using the JTAG ports.

The JTAG interface can also be used to monitor other Verilog modules or events inside
the programmed Xilinx devices. Xilinx provides ChipScope, an infrastructure to embed
Verilog modules that can monitor signals or other Verilog modules and collect a limited
amount of data using the JTAG port[113]. The main advantage of ChipScope is its ability
to monitor internal signals and events, but it can also perform limited monitoring of 1I/O
pins and record a limited amount of samples. As mentioned in Chapter 3, we can also
use JTAG hardware and software to statically monitor I/O pins and chip intetfaces. The
FAST project primarily used J-SCAN from Macraigor Systems [67]. This tool samples
the values on the input or output boundary scan cells and shifts them out to a GUI This
static monitoring enables sampled steady state observation of the FAST PCB and related

software.
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Updating bit files

Bit files define how the FPGA is programmed to instantiate the collection of Verilog

modules.

The initial FAST prototype system, to be described in Section 4.2.2, relied on the Xilinx
specified FPGA-resident block RAM or BRAM. The L1 and L2 memories were
instantiated using these Xilinx defined primitives. Using these memory primitives
reduced the integration effort and enabled rapid progress because all the design efforts
focused on the FPGAs and no other components. The BRAMs stored the program
information, both instructions and data. The actual data format is discussed in Section
4.3. Thus, given a fully functional bit file, the only thing that needs to change to load

different programs is the contents in the BRAMs.

Xilinx provides the Data2Mem tool that can replace the contents in BRAM with new
data, producing a new bit file containing a different application program (benchmark)
than the original bit file. The other logic specified in the bit file remains unchanged. This
is the perfect solution to changing the bit file to load new test programs or rapidly create
multiple bit files for a variety of applications. The Data2Mem tool reduces the bit file
generation time from hours to a few minutes. The FAST PCB uses two different FPGAs
from two different generations, each with its own BRAM primitive. The transition from
Virtex I to Virtex II ushered in a new, larger BRAM primitive. This also requires two
different Data2Mem wrappers to process the memory contents and push it into memory.
Using Data2Mem to swap out BRAM contents is a multi-step process that is different for

Virtex I and Virtex II FPGAs.

A batch file invokes various scripts and tools that generate new bit files for the caches in
the L1C FPGA. This enables L1 cache preloading. By preloading the L1 cache, same
application and/or diagnostic tests can be executed without a higher-level memory

system.

The BRAM update process is outlined in Figure 4.2. As Figure 4.2 illustrates, updating

the contents of BRAM and creating a new bit file has three basic steps. The first step
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uses gawk to convert a disassembled binary text file into a memory image file (MEM) that
contains an address followed by a user defined number of values after each address. For
the scripts used in this example, each line contains 8 32-bit words. Figure 4.3 provides a

snippet of the memory image file for bubble sort.

Next, in step 2, Xilinx’s Data2Mem tool uses an old bit file, a bit file memory map
(BMM), and a new memory image file (MEM), and creates a new bit file. Unfortunately,
for Virtex I FPGAs, Data2Mem cannot generate the correct checksum for the new bit
tile, requiring another step. Furthermore, the Xilinx tools cannot ignore the checksum in

the Virtex I bit file, resulting in a bit file that cannot yet be used for programming.

Old BIT File
BMM File

Disassembled
Binary Text
File

Data2Mem Bitpatch

@ ®

Gawk +

Filter MEM File New BIT File

®

Figure 4.2. Virtex I BRAM bit file modification script.

The final step takes the new bit file and reads through it to create the correct checksum
and modifies the bit file by adding this correct checksum. By reading through the Xilinx
bit file specification, one can derive this bitpatch script functionality for Virtex I FPGAs.

A user from the fpga.arch news group supplied our bitpatch script [25]. Leveraging
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software like bitpatch from the FPGA community saved several days of development

time, resulting in using Data2Mem with Virtex I FPGAs.

Start.s :

nop

nop

nop

nop

la $1, Setup #setup jump address

Jjr $1 #jump to cacheable kernel space, ksegO

nop
Setup:

la $gp,_ap # setting up the GP using Macro

nop

lui $sp,0x8002 # setting up SP at 8000 8000

ori $sp, $sp, 0x0000

nop

addiu  $sp,$sp,-8 # making some room on the stack

sw $sp,0($sp) # storing SP

move $fp,$sp # setting up FP

nop

move $sp, $fp # restoring SP

jal main # jumping to main
MEM File for Start.s :
@00000 00000000 00000000 00000000 00000000 3C018000 24210020 00200008 00000000
@00020 3C1C8001 279CBFFO 00000000 3C1D8002 37BDO0O00 00000000 27BDFFF8 AFBDOO0O
@®00040 03A0F021 00000000 03COE821 0CO00080 00000000 00000000 00000000 00000000

Figure 4.3. Start.s assembly code followed by the memory image file snippet for bubble
sort that jumps into cacheable kernel address space and sets up the stack and global
pointer.

The L2 memory was specified in the RWC FPGA using Virtex II BRAM primitives.
Instead of directly interfacing to the underlying BRAM primitive, the L2 memory was
specified with the Xilinxk CORE Generator™ tool [114]. This is a GUI that specifies the
memory size, memory primitive, hand shaking signals, area or speed optimizations, and
memory initialization file. With this information, CORE Generator™" creates the Verilog
wrapper and the other support files required for the memory block. In our case, 32 KB
of L2 memory was instantiated with sixteen 2 KB BRAM blocks for the example
architecture presented in Section 4.2.2. Each BRAM block has four additional bits for
parity and uses a 512 entry by 36-bit BRAM block primitive. Thus, for this memory
configuration, multiplexers are required to route the data to and from the appropriate
BRAM block. This could present a performance bottleneck because we are not bit slicing
the BRAMs, but the maximum operating frequency of the RWC using this memory
configuration was reported to be about 275 MHz, over an order of magnitude higher

than the global system clock.
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The Virtex II BRAM modules use a coefficient file to initialize the BRAM modules. The
coefficient files (COE) are very similar to the memory images files. An example COE file
is shown in Figure 4.4 for the same start.s code shown in Figure 4.3. Comparing the two
tigures, the main difference between the COE file and MEM file is the header

information and lack of address in the MEM file.

memory_initialization_radix=16;

memory_initialization_vector=

00000000,00000000,00000000, 00000000, 3C018000,24210020,00200008,00000000,
3C1C8001,279CBFF0O, 00000000, 3C1D8002,37BD0O000, 00000000, 27BDFFF8, AFBDO00O,
03A0F021,00000000,03C0E821,0C000080,00000000,00000000,00000000,00000000,

Figure 4.4. Memory coefficient (COE) file for initializing Virtex II BRAM.

I
Old BIT File Data2Mem

BMM File @

COE File

Gawk +

Filter MEM File

New BIT File

Figure 4.5. Virtex II BRAM bit file modification script.

The Data2Mem tools require less manipulation for Virtex II BRAM data updating than
their older Virtex I BRAM modules. As shown in Figure 4.5, creating new bit files with
updated BRAM contents only takes two steps. First, a gawk script converts the COE file
to a MEM file by removing the header and adding the explicit address mapping. Second,
Data2Mem is used with an old bit file, bit file memory map (BMM) file and a MEM file

to create a new bit file.
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Data2Mem, operating on Virtex II FPGA bit files, does not suffer from the same
checksum update error as for Virtex I FPGA bit files. Thus, bitpatch is not required and
the Data2Mem bit files can be loaded immediately to the Virtex II FPGA. Regardless of
the number of steps, using Data2ZMem reduces the bit file generation from a minimum of
20 minutes to a maximum of 2 minutes. For some of the larger FPGAs, the bit file build
time can extend to several hours without using fixed routing. By using Data2ZMem to
eliminate the bit file build process, significant time savings are realized for updating

BRAM contents.

Building bit files

Building bit files for FPGAs or jed files for PLDs is very straight forward. Jed files define
the functionality of PLDs much like bit files define the functionality of FPGAs. PLDs
are a different devices and thus use a different programming file format. The previous
subsections were presented because they deviate from the normal programming file
generation process. Using the ISE project navigator, the device type is selected and the
particular Verilog and UCF files are loaded. The user must associate the UCF file with
the top-level Verilog file. When the user selects the “Generate Programming File” in the
Process View window, all the relevant Xilinx tools are invoked and, if successful, a bit file

is generated for IMPACT to download to the programmable device.

4.1.2 FAST VAL

The FAST Verilog Abstraction Layer (VAL) provides the basic functionality of the FAST
PCB. The FAST VAL includes: UCF files to define the overall connectivity; Verilog port
name wrappers for all FPGAs; clock distribution and generation; MIPS R3000
initialization and handoff code; and the MIPS R3000 cache and memory interface in the
processor tile. The base Verilog modules that make up the Verilog Abstraction Layer
(VAL) are shown in Figure 4.6, with the development order shown moving from the

bottom PCB layer up to the top cache and system interface layer.
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R3000 Cache/System Bus Interfaces
R3000 Handoff Code R3000 Initalization FAST
Clock Distribution & Generation VAL
FAST Connectivity: UCF & Verilog Wrappers

FAST PCB

Figure 4.6. The FAST PCB with the Verilog Abstraction Layer components on top.

The FAST VAL is a crucial part of the FAST Software Toolbox because it provides an
abstract interface to the user. By maintaining an abstraction layer, the underlying VAL
and PCB implementation can change without breaking the software built on top of the
FAST VAL. Moving forward, leveraging as much software as possible reduces the
software development time and effort of next generation hardware projects. Thus, the
next generation FAST can leverage both the advances in silicon technology realized in
FPGAs and SRAMs, as well as take advantage of the pre-existing software built on top of
the VAL.

FAST connectivity

The FAST PCB has 11 configurable devices with almost 6500 I/O pins that are mapped
to various components on the PCB. The fixed function components like the SRAMs and
Flash chips have no configuration to manage. For each FPGA and PLD on the FAST
PCB, a generic user constraint file (UCF) maps the device pin name to the Verilog port
name. Also, a Verilog wrapper for each FPGA provides the top-level port list that
corresponds to the names used in the UCF file. This is the base infrastructure required to
use the FAST PCB. By bundling the UCF file with a supplied Verilog FPGA wrapper,
the end user can use all or a portion of the UCF file and Verilog wrapper to implement a
particular architecture. Furthermore, the Verilog wrappers in combination with the UCF
files provide some initial guidelines on mapping new prototype architectures to FAST by
guiding prototype design partitioning across the FPGAs and defining the inter-FPGA

buses.

FAST system clock

The FAST PCB has two global clock sources, a half-size clock oscillator and a header for
an external frequency generator, both driving inputs of the PLD. The PLD takes the
clock inputs and distributes the system clock to all FPGAs using matched, hand-routed
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traces that minimize clock skew at the FPGAs. The PLD uses global buffers to distribute

and drive the clock outputs to the FPGAs as shown in Figure 4.7. Figure 4.7 also shows

the internal clock (SYS_CLK) generated for all PLD internal logic.

module PLD_LED(CRYSTAL_CLK, CFG_SPARE, CP2_GCLK, L1C_GCLK, MEM_GCLK,
RWC_GCLK);

BUFG clk_bufg (.1(CRYSTAL_CLK), -O(MEM_GCLK));

BUFG clk_bufgl (.I(CRYSTAL_CLK), -O(RWC_GCLK));

BUFG clk_bufg2 (.1(CRYSTAL_CLK), .0(CP2_GCLK[OD));

BUFG clk_bufg3 (.1(CRYSTAL_CLK), .0(CP2_GCLK[1]));

BUFG clk_bufg4 (.1(CRYSTAL_CLK), .O0(CP2_GCLK[2]1)):

BUFG clk_bufg5 (.I(CRYSTAL_CLK), -0(CP2_GCLK[31)):;

BUFG clk_bufgé (.1(CRYSTAL_CLK), .0O(L1C_GCLK[OD);

BUFG clk_bufg7 (.1(CRYSTAL_CLK), .0O(L1C_GCLK[1]));

BUFG clk_bufg8 (.I1(CRYSTAL_CLK), .0(L1C_GCLK[2]1));:

BUFG clk_bufg9 (.I(CRYSTAL_CLK), -0O(L1C_GCLK[31)):

BUFG clk_bufgl0 (.I1(CRYSTAL_CLK), -O(SYS_CLK));
endmodule
PLD UCF file:
NET "CRYSTAL CLK™ LOC = "p183"; # static CRYSTAL_CLK [CLOCK1,3] [PLD,183]
NET "CP2_GCLK<O>" LOC = "p54"; # dynamic CP2_GCLKO [CP2_0,A20] [PLD,54]
NET "'CP2_GCLK<1>" LOC = "p55"; # dynamic CP2_GCLK1 [CP2_1,A20] [PLD,55]
NET "CP2_GCLK<2>" LOC = "p56™; # dynamic CP2_GCLK2 [CP2_2,A20] [PLD,56]
NET ""CP2_GCLK<3>" LOC = "p57"; # dynamic CP2_GCLK3 [CP2_3,A20] [PLD,57]
NET "L1C_GCLK<O>" LOC = "p61"; # dynamic L1C_GCLKO [L1CO,D21] [PLD,61]
NET "L1C_GCLK<1>" LOC = "p60™; # dynamic L1C_GCLK1 [L1C1,D21] [PLD,60]
NET "L1C_GCLK<2>" LOC = "p59"; # dynamic L1C_GCLK2 [L1C2,D21] [PLD,59]
NET "L1C_GCLK<3>" LOC = "p58"; # dynamic L1C_GCLK3 [L1C3,D21] [PLD,58]
NET "MEM_GCLK'™ LOC = "p52"; # dynamic MEM_GCLK [MEM1,AP21] [PLD,52]
NET "RWC_GCLK" LOC = "p53"; # dynamic RWC_GCLK [RWC1,AP21] [PLD,53]

Figure 4.7. PLD global buffers used to drive the clock to all FPGAs.

Each FPGA uses a global clock pad for the clock input. There are a limited number of
I/0O pins on each FPGA that can be explicitly used for clock distribution.  Associated
with each global clock pad is a clock buffer and some type of clock management unit.
For the Virtex I, this is a delay locked-loop (DLL) and for the Viretx II, a more
sophisticated digital clock management unit (DCM) [109, 122, 123]. Figure 4.8 illustrates
the clock distribution from the PLD to all the FPGAs, including the processor tiles (PT)

on the FAST PCB.

The interesting thing to note from Figure 4.8 is that the CP2 FPGA generates the four
MIPS double frequency clocks (Clk2XSys, Clk2XSmp, Clk2XRd, and Clk2XPhi) and the
R3000 uses a DLL to lock onto the supplied clocks and generates the system clock that is

distributed back to all of the components in the processor tile. The Verilog modules for
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generating the double frequency clocks and the related UCF files are provided in

Appendix B.

CLK

PTO

PT1

SMC

CLK CLK

Figure 4.8. FAST clock distribution.

The MIPS R3000 Designer’s Guide specifies the delay for all four clocks with respect to
the double frequency system clock [54]. For 16 MHz - 25 MHz, there is a constant 6 ns
delay between the system clock and the read and sample clocks. A delay line is used in
the FPGA to generate the appropriate phase shift. This delay line required both a
synthesis primitive to keep the signals from being optimized away, as well as fixed
placement of the buffer in the UCF file. The phase clock (Clk2XPhi) used a 180-degree
phase shift to generate the appropriate delay required for the system clock frequency
range. Thus, a combined hardware (buffer placement and DLL’s) and Verilog solution

generates the processor tile clocking.

FAST processor initialization

At power-on or system reset, the MIPS R3000 must be initialized. First, the R3000 must
lock the clocks generated by the CP2 FPGA and output the MIPS system clock. This
requires about 4000 cycles in the FAST initialization phase. Five additional cycles are
used at the end of this period to initialize the R3000. The initialization uses the interrupt
pins to set the data block refill size, extended cache size, byte order, output tri-state,
cacheless operation, data/tag bus drive control, additional phase delay, instruction

streaming, CPU mode (R3000 or R2000), partial stores, and multi-processor support [54].
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Once the processor is initialized, it jumps to the reset vector address at hexadecimal
physical address OxbfcO_0000. This physical address is in the uncacheable kernel space,
ksegl. Figure 4.9 shows how the MIPS memory space is divided into four segments:

kuseg, kseg0, ksegl, and kseg2.

Virtual Address Physical Address
fEEf £EEF fEff £EFF

Kernel Mapped
(kseg2)

Any

c000 0000

beff £££f | Kernel Uncached

a ksegl
0009999 (ksegl) Physical
Offf fEff Kernel Cached Memory
(kseg0) 3548 MB
User Mapped
Cacheable Any
(kuseq)
Memory 1fff ££fff
0000 0000 + 512 MB 0000 0000

Figure 4.9. 4 GB MIPS address space divided into 4 segments with the initial target
memory region, kseg0, highlighted and the physical and virtual address mappings.

Both kuseg and kseg2 enable the translation lookaside buffer (TLB), an address
translation mechanism that requires handlers to manage the TLB entries. The processor
automatically starts in ksegl, the kernel uncached memory space. In this mode, the
processor uses its system bus to fill all memory requests. Each memory request from this
space takes at least four cycles to fill, dramatically degrading system performance. The
kseg0 memory segment highlighted in Figure 4.9 can use the caches without requiring a
TLB. This address space is the most attractive for the initial working prototypes because
of the reduced software handler development. Finally, as Figure 4.9 shows, the MIPS

R3000 supports protected and unprotected memory accesses by segregating the memory
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space into kernel and user space. This allows the R3000 and the FAST system to run
modern, multi-tasking operating systems, an option still unavailable to current software-

defined processor cores from Altera and Xilinx [7, 117].

Building FAST systems
The MIPS R3000 and R3010 use a shared data and tag bus that serves as the cache and

system bus interface. This shared bus also services two different transactions per clock
cycle. The instruction address is supplied during phase two of the clock and the
instruction comes back on the bus during the subsequent phase one. The R3000 overlaps
the data request by providing the data address during phase one and then reading or
writing on the bus during the next phase two. If a cache miss occurs, the R3000 holds
the address constant and enters at least one stall cycle while it waits for the memory
request to be filled. Once the data is presented to the R3000, it transitions to a fix up
cycle before continuing to the normal run cycle. Thus, at least four cycles are required to

service a cache miss.

The split transaction, dual-purpose tag and data buses provide the external and internal
interface to the R3000 and all the coprocessors. It is crucial for this interface to work,
but its operation and complexity should be abstracted from the system. For all cache
transactions, the L1C FPGA services the requests. When a cache miss occurs, the CP2

handles the memory request by forwarding the address to the higher levels of memory.

The LL1C FPGA latches the instruction and data addresses in order to provide a full clock
cycle to fulfill the cache request in the correct phase. As mentioned in Section 4.1.3, even
though the R3000 operates at a relatively low frequency, meeting its timing requirements
was challenging, regardless of using the BRAM or SRAM cache implementation. The
CP2 FPGA services all non-cache memory requests for the processor tile, while the
R3000 stalls, waiting for the data. Thus, given these predefined interfaces, the FAST user
only needs to provide the higher-level memory implementations and interface to a data
and address bus with a few control signals for transaction handshaking. An example
implementation is provided later in Section 4.2.2 and the corresponding FAST VAL is

provided in Appendix B.
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4.1.3 Timing, an added dimension of complexity in FAST software

There are two components to a correct design using a hardware prototype: functional
correctness and timing correctness. The functional correctness can be validated using a
Verilog simulator like ModelSim [72]. To some degree, the timing correctness can be
verified using the same simulator, but more detail and timing information must be
specified in the model. Unfortunately, not all the details of the FAST PCB are easily
specified in the Verilog modules. Furthermore, by specifying copious amounts of timing
information, the Verilog modules become part of two different branches of code. The
first branch specifies the normal structural Verilog of the design. The second branch
specifies all the additional timing information for simulation purposes. These two
branches of code add to the system complexity and provide a potential point of
inconsistency in the two code branches. Finally, for a large PCB design like FAST, an
extreme amount of effort is required to capture all the timing information solely for

simulation purposes.

Creating the structural Verilog modules for the FAST PCB is only half of the solution.
The FAST Software Toolbox also includes the base user constraint files (UCF) that
define the device pin name and port name mappings. The UCF files can also define a
wide array of other design constraints ranging from register initialization values to timing
constraints. The FAST PCB primarily uses the UCF files to define the connectivity, as
provided by the base UCF files, and to define timing constraints by setting the various
clocking constraints and signal timing constraints. All four MIPS clocks are defined in
the UCF files and then timing groups are used to bundle signals into buses and define

timing requirements with respect to the particular MIPS clock of interest.

During the place and route (PAR) phase of building the FPGA bit file, the timing
constraints are used to determine if the placement and routing are successful. Any signals
or paths that do not meet timing are reported on the automatically generated design
summary page and in the timing report. Using the FPGA Editor, the routes that meet
the timing constraints can be output to a temporary file that can then be copied into the

UCEF as a fixed signal placement and route. Fixing the placement and routing makes this
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phase of the FPGA bit file build process much faster. This process is done iteratively

until all the routes for a particular bus meet their timing constraints.

Adding timing constraints to the UCF files, particularly for the CP2 and L.1C FPGAs,
presented a challenge that doesn’t exist in software simulators. Timing convergence is an
added dimension of complexity that was not expected, given that the FPGAs can operate
at an order of magnitude higher frequency than the MIPS components. Timing still
presented a challenge that had to be addressed outside of the functional correctness of
the structural Verilog. Furthermore, timing constraints change depending on whether the
design uses internal BRAMs for caches and other memory structures or the external
SRAMs for caches. Thus, one set of memory constraints does not fit all applications.
Examples of the timing constraints and UCF files can be found in Appendix B for the

simple motivating example that will be discussed in Section 4.2.2.

4.2  Prototyping new systems with FAST

TLP/Prototype
Architecture

FAST PCB
Figure 4.10. Some of the additional Verilog modules required to define a prototype
architecture on FAST.

The FAST Software Toolbox provides the interfaces to map TLP or other architectures
to the FAST PCB. The FAST VAL provides the minimal FAST functionality.
Additional Verilog modules are required to prototype TLP architectures. The FAST
Software Toolbox includes these other FAST components built on top of the VAL, as
illustrated in Figure 4.10. Only some of these prototype architecture modules were

implemented. These modules are provided in Appendix B. In general, the structural
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Verilog is very modularized. However, there are some aspects like the performance
counters that are implemented in many FPGAs and associated with many Verilog
modules, close to the point of use for that counter. Likewise, there is a lot of flexibility
with respect to the memory system implementation. Thus, only a simple motivating
example is presented that provides the base implementation for future architecture
prototypes. The next subsection describes the API that is required to define new TLP
architectures. This is followed by a simple example of a 4-way decoupled CMP

architecture.

4.2.1 Prototyping TLP architectures on FAST

The FAST VAL provides the base interface to the MIPS R3000 and memory interfaces,
both the local caches and the higher levels of memory. However, computer architecture
is more than just the processor and primary cache. Thus, FAST provides PCB
infrastructure to implement the entire system, enabling full system prototyping. The
majority of development for the architecture resides in additional structural Verilog
modules for the memory system and additional compute engines. These additional
modules provide architecture specific implementations that can be amortized across
multiple projects. The small collection of modules in Figure 4.10 scratches the surface
with respect to the possible architecture modules for the FAST Software Toolbox. The
FAST architecture modules fall into two different categories: PCB specific modules and
architecture specific modules. The SRAM interfaces defined in the LL1C and SMC are
examples of PCB specific Verilog modules. Snooping, coprocessor, and performance
counters are examples of architecture specific modules. By developing the FAST
Software Toolbox, a software repository is created that can be leveraged across multiple

projects and multiple teams.

There are three PCB specific Verilog interfaces that are defined for the FAST Software
Toolbox, described from the bottom-up and labeled in Figure 4.10. The first interface is
defined in the processor tile, where the L1C FPGA implements the interface between the
R3000 and the SRAMs or BRAMs used for local memory. The FAST VAL defines the

R3000 to L1C interface and the architecture defines the interface between the 1.1C and
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the SRAMs, as well as any additional translation logic that is required to communicate

between the architecture-specific local memory and the R3000 cache interface.

The second interface, labeled “2 — RWC Interface” in Figure 4.10, partially defines the
higher level memory interface and the interprocessor communication. The RWC FPGA
interface communicates with the processor tiles” CP2 FPGAs to facilitate interprocessor
communication and forward memory traffic to the appropriate source. The CP2 FPGA
also facilitates additional coprocessor and snooping functionality that is specific to the
prototype architecture. The RWC FPGA communicates with the SMC FPGA for access
to the L2 SRAMs. Thus, the RWC FPGA can coordinate memory traffic and arbitrate
access to the L2 SRAMs via the SMC FPGA. The RWC FPGA can also facilitate
interprocessor communication by monitoring and tracking memory addresses and values.
This enables implementations of fully coherent multiprocessor systems with the point of

coherence managed by the RWC FPGA.

The final PCB specific interface, labeled “3 — SMC Interface” in Figure 4.10, manages the
higher levels of memory and expandability. The SMC FPGA controls four banks of L2
SRAMs that can be used as a large shared 64 MB memory or cache. Alternatively, the
four banks can be partitioned into processor tile private memory. The SMC also has an
80-pin expansion header that can be used for a variety of purposes. This expansion
header can be used for additional levels of memory using a 40-pin connector for up to
two Compact Flash daughter cards or IDE hard drive interfaces. Alternatively, the
expansion header could be used for a DRAM interface using an adapter daughter card.
This expansion header can also be used to create larger FAST compute fabrics by daisy
chaining multiple FAST PCBs together. Inter-PCB communication is accomplished use a
64-bit data bus with 16 control bits. Using a simple 1-hot control protocol, 16 FAST

PCB’s can communicate to create a 64-processor system.

Finally, there are several test suites for reading and writing the L1 and L2 SRAM chips.
By using the L1C FPGA for the L1 SRAMs and the SMC FPGA for the .2 SRAMs, the
memory chips were tested and the functionality verified. The memory test consisted of
writing every memory location with a known value and reading back the value from

memory and comparing it to the expected value. This is the first step in defining the
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actual interface between the FPGAs and SRAMs. Thus, by testing the SRAMs, all
components on the FAST PCB were determined to be functional, even though the actual
interface has not been implemented for the L2 SRAMs, only the L1 SRAM cache

interface has been implemented.

4.2.2 FAST 4-way decoupled CMP

In order to demonstrate FAST’s abilities, a simple 4-way decoupled CMP (FAST CMP
4W-NC) was developed as part of the FAST Software Toolbox. This base functionality
demonstrates the potential of FAST as an architecture prototyping platform. Before the
rest of the FAST Software Toolbox is described, it is useful to present this motivating
example that the rest of the software components build upon. This simple FAST CMP
4W-NC was the result of 10 man-months of software infrastructure development, mainly

FAST VAL development.

CPUO CPU1 CPU 2 CPU3
L11I% L1D$% L1 1% L1DS L1 I% L1DS L1 I$J L1D s
CPU 0 Memory CPU 1 Memory CPU 2 Memory CPU 3 Memory
Controller Controller Controller Controller
L2 Memory L2 Memory L2 Memory L2 Memory

Figure 4.11. High-level architecture of the FAST CMP 4W-NC.

Most of the developed FAST CMP 4W-NC infrastructure can be reused for other
projects. Thus, the development time can be amortized over multiple prototypes. The
FAST CMP 4W-NC is a simple 4-way CMP, with each processor having a private L1 data

and instruction cache and a private L2 memory, shown in Figure 4.11. This subsection

provides a bottom-up description of the FAST CMP 4W-NC.
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The processor tile contains the majority of this decoupled system. This base
implementation has key components that would exist in most other architectures. Given
the FAST VAL layer, the FAST CMP 4W-NC required a local data and instruction cache.
The first cache implementations used block RAMs (BRAMs) in the L1C FPGA. Using
the small amount of memory in the FPGA reduced the integration effort and accelerated
the FAST CMP 4W-NC development time. The LLIC FPGA has 128 Kb (bits) of
BRAM. FAST CMP 4W-NC required 4 memory arrays to implement the data and
instruction caches for each processor tile, 1 memory array for the data portion and 1
memory array for the tag portion of each cache. The Virtex I provides 4096 bit BRAM
primitives that can be arranged in a variety of configures. The data and instruction caches

contain 1024 32-bit words.

Address 9, 1024 x 4 bit BRAM Bit Sliced Data Array
h'3FF

h'000

3..0 31..28|27..24 |23..20 |19..16|15..12|11..8] 7.4 | 3..0

Parity | 32-bit word }

Figure 4.12. The cache data array using 9, 1024 X 4-bit BRAMs, including 4 bits for
parity.

In order to minimize performance penalties, the memory arrays are composed of multiple
4-bit wide BRAMs, as shown in Figure 4.12. Thus, no multiplexing is required to address
the BRAMs for reading or writing data because each BRAM in the memory array
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contributes a 4-bit portion of the data. As Figure 4.12 shows, the cache memory array
implementations included an additional 4 bits for parity. The memory array primitive was
used for each data and tag array in each cache. This very simple array supported a direct
mapped cache that provides single cycle memory access latency. These cache sizes are
fine for embedded processor research, but not for general purpose or scientific

workloads.

The second stage of the cache development involved using SRAM chips, instead of
BRAM arrays, to implement the L1 caches. By using the SRAM chips, the L1 cache
capacity for the data and tag arrays increases by two orders of magnitude, to 256 KB plus
parity bits. Again, a single SRAM chip Verilog interface was implemented and used for
both the data and instruction caches. As would be expected, the timing and control
signals are the only Verilog interface definitions required for the SRAM data and

instruction caches.

» ' »
Instruction
Cache
L2 0 L2 2
L21 L23
Data Cache

Figure 4.13. FAST 4-way decoupled CMP.

The next component of the FAST CMP 4W-NC is the private per-tile L2 memory. The
L2 memory is implemented in the RWC using four BRAMs blocks, one block for each
processor tile. Each BRAM block is generated using Xilinx Core Generator™. This tool
specifies all the configuration details for BRAMs including: BRAM width, BRAM number
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of entries, handshaking, BRAM primitive, and initialization file, to name a few. Each 1.2
memory is 40 KB or 8096 x 36 bits. The BRAM blocks use the 512 X 36 bit primitive,
which requires multiplexers to select the BRAM primitive for reading or writing. This
BRAM configuration is not optimized for performance, but it allows the memory block
to use the parity bits in the primitive. If it were an issue, bit slicing could be used for

better performance.

By developing a simple motivating example for FAST, as illustrated by the FAST CMP
4W-NC mapping in Figure 4.13, the full potential of the system can be demonstrated.
Chapter 5 describes the performance and behavior of applications running on this simple
architecture. 'This simple system integrates the L1 SRAMs, CP2 FPGA, L1C FPGA, and
RWC FPGA. Even though this system is not cache coherent, communication between
the CP2 and the RWC demonstrates that the additional coherence functionality is
possible to implement. Thus, time and software implementation effort are the only

limiting factors to mapping new architectures onto the FAST system.

4.3 FAST OS, drivers & APIs

Moving up a level in the FAST Software Toolbox moves out of the structured Verilog
modules into assembly language and higher-level languages. Once the prototype
architecture is well defined and implemented in Verilog, software development is required
to make the whole system work. Figure 4.14 shows the FAST software stack up to this
point. Before applications can be run on the prototype architecture, the operating system

(OS) or at least some portion of the OS must work to run the applications.

The MIPS R3000 contains all the necessary components to run a multitasking operating
system (OS). This factor is currently missing from the Xilinx and Altera software-defined
processor cores [7, 117]. However, the LEON software-defined processor core is
SPARC V8 compliant [38] with all the necessary components to run an OS, like Linux
[94]. Getting applications to run on FAST was the top priority. As a result, porting a
complete OS like Linux was not on the critical path of getting applications running on

FAST because it is very time consuming. Having an OS running on FAST would create a
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tipping point for future architecture and subsequent software development, making the

system much more attractive to future development.

TLP Operating System

itecture

FAST VAL

FAST PCB

Figure 4.14. FAST software stack up to the operating system.

Given the limited resources, only minimal OS functionality has been implemented for
FAST. First, the software development environment is presented, followed by the OS
support functions required for FAST to run simple applications. Potential OS’s that can
be ported to run on FAST and be part of the FAST Software Toolbox follows this

discussion.

4.3.1 FAST software development tools

The FAST software development environment changes when moving from structural
Verilog to assembly language or higher-level languages like C. The text editor is the main
instrument of choice, followed by a series of free tools combined with scripts to generate
memory images for the FAST system. Three steps are required to build applications for
FAST: the compiler, linker, and post processing tools create the memory image that is

downloaded to the FAST PCB.

There are a few options to use for the software tool chain. Because FAST is based on the

MIPS R3000 and the MIPS I instruction set architecture (ISA), the natural tool choice is
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the native tools running on MIPS-based SGI machines. Using various compiler and
linker flags, the resulting binaries can run natively on the SGI or, with some minor

address mapping modifications, on FAST.

The other alternative is using a cross-compilation environment. MIPS Technologies,
Inc. provides a software development environment (SDE) [74] that works with Cygwin
[35], a Linux emulation environment, for developing MIPS embedded applications. This
environment supplies a compiler (gcc), linker (Id), and various other tools required for
building MIPS applications. The FAST Software Toolbox uses gcc to build the object
files for applications targeting the MIPS R3000 and the MIPS I ISA.

The linker combines all of the object files and sets the starting address of the application.
The MIPS SDE had the greatest flexibility with regard to setting the starting address and
not compiling with libc or other startup files like crt.o. The FAST Software Toolbox
contains its own start and ext routine, discussed later in this section. The linker starts all
applications at hexadecimal physical address 0x8000_0000, in the cacheable kernel space.
The linker combines all of the object files and partitions the memory space for the data

and instruction or text segments.

Post processing is the final stage in creating a memory map of the application for FAST.
The memory image is loaded into the highest level of the memory hierarchy, I.2 memory
for the FAST CMP 4W-NC, to be demand missed into the L1 cache. The binary created
by the linker is disassembled and then processed with some text processing utilities like

sed and awk.

Figure 4.15 shows the process used to build the memory map file for the L2 memory in
the FPGA. First, the binary is created using gcc and 1d, labeled “1” in Figure 4.15. Next,
the objdump utility disassembles the binary into the hexadecimal representation and the
ASCII instructions. In step 3, Sed is used to filter out everything but the hexadecimal
instructions. Finally, in step 4, Gawk, a variant of awk, is used to create the COE format
file. Alternatively, step 4 can produce a Verilog initialization file formatted for the older
Virtex I BRAM modules, if desired. The resulting COE file can be added to the Xilinx
build environment to initialize the L2 BRAM memory or used with Data2Mem to update

the BRAM contents of an existing FPGA programming bit file.
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Figure 4.15. Make script for building FAST memory map files or COE files.
4.3.2 FAST OS support

There are two essential components required to run applications, a start routine and an
exit routine. The start return sets up the memory space and processor to run
applications. The exit routine signals successful completion of the application and can
also be used to undo the state setup in the start routine. Together, these routines enter
and exit the main function of the application and are linked at compile time by the linker.

The start routine is described first, followed by the exit routine.
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la $1, Setup # load address of Setup label
jr $1 # Jump to Setup address in ksegO
nop

Setup:
la $gp._gp # setting up the GP using Macro
nop
lui $sp,0x8002 # setting up SP at 8002 8000
ori $sp ., $sp,0x0000
nop
addiu  $sp,$sp,-8 # making some room on the stack
sw $sp,0($sp) # storing SP
move $fp,$sp # setting up FP
nop
move $sp,$fp # restoring SP
jal main # jumping to main

Figure 4.16. R3000 handoff code for initializing pointers and jumping to the start of a
program at main().

The R3000 uses a small sequence of assembly code to jump from its default start location
in uncached kernel space, ksegl, to kseg(, where the local cache can fill instruction and
data requests without any system performance degradation. Thus, each processor
running in kseg) memory space can execute up to one instruction per cycle (IPC). Figure
4.16 provides the annotated assembly code that jumps into kseg0, initializes the stack and
global pointers, and jumps to the beginning of main(). The linker sets the base address of
the application to hexadecimal physical address 0x8000_000, the start of ksegO. Thus,
when the application is linked with this start code, all the addresses are resolved and set

when the binary is created.

The exit routine jumps to a particular address in ksegl to halt the processor. The jump
address depends on the successful completion of the application. The main application
passes a “1” upon successful completion of the application or “-1” if the application
computes the wrong answer. The routine in Figure 4.17 builds a loop in the target
address space and then jumps to that loop address. If the program executes successfully,
it jumps to hexadecimal physical address Oxaff8_2ffc and results in the processor halting
at that address. If the program exits with an incorrect solution, it jumps to hexadecimal
physical address Oxaff8_34fc and the processor halts. Using the JTAG static observations
tools, the halted processor and the address on the data bus can be observed to find out if

the program executed successfully.
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nop
addiu  $sp,$sp, -16 # setting up stack
sw $s8,8($sp)
move $s8,%sp
sw $a0,16($s8) #storing function argument on stack
1w $v0,16($s8) #loading argument into local register
nop
sw $v0,0($s8) #swap registers
Iw $v1,16($s8)
li $v0,1
bne $v1,$v0,BadEx # compare exit argument for success
nop
lui $vl, Oxaff8 # jumping into uncached kernel space
ori $v1,$vl,0x2ffc # construct address to stall on
lui $v0, 0x1000 # construct branch back 1 instr
ori $v0,$v0,OxFFFF
sw $v0,4($v1) # store near jump target
Jjr $vi # Jump to Address that stalls the processor
nop
BadEx:
li $v0,-1
sw $v0,0($s8)
lui $vl, Oxaff8 # jumping into uncached kernel space
ori $v1,%$v1,0x34Ffc # construct address to stall on
lui $v0, 0x1000 # construct branch back 1 instr
ori $v0, $v0,OxFFFF
sw $v0,4($v1) # store near jump target
Jjr $vi # Jump to Address that stalls the processor
nop

Figure 4.17. R3000 exit code with jump target address determined by program execution.

4.3.3 FAST OS options

There are several operating system (OS) options for the FAST PCB. The options range
from a batch OS like PMON to a fully functional OS like Linux or Irix. Because the
R3000 has been used as an embedded processor, there are many real-time OS and
cooperative OS options. PMON and Linux are most appealing because they are open
source, well documented and, as a result, more easily ported because similar ports for

other MIPS processors exist.

The PMON system monitor produced by LSI Logic and Algorithmics can provide low-
level OS support for applications executing on the FAST PCB [15]. PMON provides
application monitoring and debugging for MIPS-based evaluation boards; batch operating
system functionality can be added to FAST by modifying PMON [15]. PMON provides
the gdb-like interface for application debugging that makes FAST’s processor state and
memory state visible to the user in interactive execution mode. The FAST PCB would
also use PMON to provide limited OS support for libc functions when any of the MIPS
processors execute SYSCALL instructions. If I/O with the host workstation is

necessary, PMON drivers could use Ethernet through the embedded microcontroller
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(RCM3200) on the FAST PCB to handle the TCP/IP protocol details. The RCM3200
transmits messages from the FAST PCB to the host using both simple terminal-style I/O
and using special messages when OS functionality requires external support for functions
like file I/O. These “OS” messages reduce the complexity of the on-board FAST OS
significantly while still enabling simulation of real-world applications that require
significant OS support. For example, in the case of file I/O, the on-board OS only needs
to communicate file handles and buffers associated with read() and write() calls between
the application and host interface, while leaving the details of disk management solely to

the host’s operating system.

Conversely, the FAST system could be completely independent of a host system by
porting a full service OS like Linux. There are MIPS ports to Linux for older SGI
machines that could be leveraged for the FAST system. Porting Linux to the FAST PCB
requires more effort, particularly with regard to driver porting and the console.
However, it may be possible to leverage pre-existing memory controllers and hard drive
controllers, making the FAST system a full system prototyping platform. Previous
versions of the MIPS Linux kernel for SGI Indy’s required less than 3 MB of memory,
easily fitting in the Flash memory. By porting Linux to the FAST PCB, the FAST PCB
would have no application restrictions. FAST’s 32-bit processors do, however, restrict

the use of large applications or the use of a large address space.

4.4 FAST applications

The FAST Software Toolbox applications fall into two categories: small directed
diagnostics and regular applications. The small diagnostics allow focused and repeated
activation of a particular function in the FAST system. Initially, the directed diagnostics
were used to verify the memory system operation. Using characteristics that normally a
computer architect would try to avoid, like address aliasing, to test the memory system
operation, directed diagnostics are very small snippets of assembly code, generally 2-8

instructions.

The regular applications come from the Stanford Small Benchmark Suite. These are

simple, well-understood benchmarks that come from the same era as the MIPS R3000.
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Together, these directed diagnostics and applications complete the FAST Software
Toolbox. A mature FAST system is the combination of the Verilog modules, OS
functionality, and the applications. Together, this combination makes a turnkey system
that minimizes the effort to create new prototyping systems by leverage pre-existing

hardware and software.

The directed diagnostics range from 2-8 assembly instructions. These small programs
test particular FAST functionality, from jumping between address spaces to testing loads
and stores. There are about 20 small directed diagnostics used to test various scenarios
with respect to the R3000 and the memory subsystems. The directed diagnostics fall into
three broad categories: control flow instructions (branches and jumps), instruction cache

tests, and data cache tests.

The control flow was tested first. Simple branch instructions were used to verify the loop
address running on the processor. Once branch instructions were verified, the simple
tests moved on to more complex jump instructions. The R3000 starts off in uncacheable
ksegl space and, based on a register value address, the processor can jump into any other
address space, in particular cacheable kseg0 space. By jumping to another address space,
the processor was able to access the cache, facilitating cache interface testing and not just
the system interface testing that occurred in ksegl. The final control flow test related to
function calls and the jump and link (ja/) instruction. This test had two loops in the test,
the first loop would execute if the ja/ instruction failed, thereby falling through to execute
the first loop. If the ja/ instruction succeeded, the second loop would be executed at a
different address location that could be observed using the J-SCAN tool. Thus, the static
observation of infinite loops determined that all the control flow in the FAST system

worked.

The instruction cache directed diagnostic tests were the next set of tests to develop and
use. The instruction cache functionality could be tested once the processor executed in
an address space that actually used caches, like kseg0. The instruction fetch was tested
both from the L1 cache interface perspective and the system interface. From the control
flow tests, it was clear that instructions could be fetched using the system bus. For some

of the instruction cache tests, L1 cache aliasing was used to force valid entries out of the
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L1 cache and thus make the CPU swap out instructions via the system interface. These
simple diagnostics leveraged self-modifying code segments to construct instructions in

memory that are later fetched based on the control flow of the diagnostic.

Once the instruction cache interface was established, the data cache interfaces could be
tested. There are two components to the data cache. The first component verifies that
data is written and read to the data cache. The second component exercises the write-
through nature of the data cache. The data cache interface was tested using the
diagnostics that constructed addresses or data in the data cache to direct the control flow
of the processor. Data values could be used for branches or used to jump into particular

address spaces.

The FAST Software Toolbox also includes the Stanford Small Benchmark Suite [49].
The Stanford Small Benchmark Suite is a small benchmark suite that was assembled by
John Hennessy and Peter Nye around the same time period of the MIPS R3000
processors. The benchmark suite contains ten applications, eight integer benchmarks and
two floating-point benchmarks. The original suite measured the execution time in
milliseconds for each benchmark in the suite. The Stanford Small Benchmark Suite

includes the following programs:

e DPermute A tightly recursive permutation program.
e Towers The canonical Towers of Hanoi problem.
e Queens The eight Queens chess problem solved 50 times.

e Integer MM  Two 2-D integer matrices multiplied together.

e I'PMM Two 2-D floating-point matrices multiplied together.
e Puzzle A compute bound program.
e  Quicksort An array sorted using the quicksort algorithm.

e Bubblesort An array sorted using the bubblesort algorithm.
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e Treesort An array sorted using the treesort algorithm.

e FIIFT A floating-point Fast Fourier Transform program.

For simplicity, the FAST Software Toolbox focused on using integer programs that did
not require libc or floating-point support because that would require more FAST

infrastructure development time.

4.5 Putting all the FAST software together

This chapter has presented 4 out of the 5 software layers presented in Figure 4.1. The
fifth layer, the driver and API layer, is specific to the particular architecture being mapped

to the FAST system and therefore, was not discussed in this chapter in any detail.

The results to be presented in Chapter 5 are based on the simple FAST CMP 4W-NC
that demonstrates FAST’s potential as a system prototyping platform. Before moving to
Chapter 5, it is beneficial to summarize the steps required to build and run applications
for the FAST CMP 4W-NC on the FAST prototyping substrate. These steps apply to
any system mapped to FAST. There are five steps required to run an application on the
FAST PCB. These five steps are illustrated in Figure 4.18 with boundaries defined in the

figure to clearly demarcate the steps.

The first step is to develop the application to run on FAST. In the example shown in
Figure 4.18, the Towers of Hanoi application is used. This is a simple ANSI C
application that can be validated on another system to make sure it operates correctly.
Porting it to the FAST CMP 4W-NC requires removing any system calls and libc

functions, like malloc or file 1/O.

The second step compiles and links the application with any other object files. The
FAST Software Toolbox supplies the makefile and various helper object files shown as
shaded documents in Figure 4.18. Using the MIPS SDE, a binary is created that will be
executed on the FAST CMP 4W-NC.
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FAST
Verilog
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Xilinx ISE objdump, Towers
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Figure 4.18. Five steps required to run and observe applications on FAST: (1) Develop
the application, (2) Build the application binary, (3) Build the FPGA programming bit
files, (4) Program the FAST FPGAs, and (5) Observe the steady-state application
behavior.

The third step combines the FAST VAL, UCF files, and TLP architecture Verilog files,

with the memory map file to produce a collection of FPGA programming bit files. The
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application binary created in step 2 must be disassembled and transformed into a memory
map file that the Xilinx tools use to initialize the BRAM memory structures. For the
FAST CMP 4W-NC, only three FPGA programming bit files were required: CP2, L1C,
and RWC. This 4-way decoupled system had fast on-chip L2 memory latencies like a
CMP, but could be easily changed to model the slower off-chip latencies of

multiprocessor systems.

The fourth step takes the FPGA programming bit files and uses the Xilinx iMPACT tool
to download the bit files to the FPGAs using a parallel port driven JTAG controller. The
RWC FPGA is programmed first to set up the .2 memories and their contents. These
memories use active-high logic and handshaking to communicate. Next, the L1C FPGA
is programmed with either blank BRAM L1 cache modules or an SRAM L1 cache
interface. With the memory systems set up, the final FPGA to be programmed is the
CP2. Once the CP2 FPGA is programmed, the R3000 is initialized. This takes
approximately 4000 clock cycles. After initialization, the instructions are demand missed

into the L1 cache from the L2 Memory in the RWC FPGA.

The fifth step uses the JTAG tools or RS-232 interface to observe the steady-state
behavior of the application. The application uses an exit routine that jumps to a
particular address in ksegl. This address begins an infinite loop; furthermore, the L2
memory system is programmed to stop fulfilling in memory requests for that particular
address range. Thus, the application steady state is either a halted processor waiting for a
memory request to be completed, or an application in an infinite loop. Initially, the
infinite loop was used because it required no hardware support. However, halting the
processor is much easier and enabled a mechanism to start and stop the statistics

collection for the applications.

These five steps apply to all applications and architectures that are mapped to the FAST
substrate. If a collection of FPGA programming bit files exists and only the BRAM
contents needs to be updated, step 3 can be replaced with the Data2Mem scripts,
updating the BRAM memory contents, but nothing else. For more details, all of the

scripts and wrapper files for the FAST Software Toolbox are provided in Appendix B.
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4.6 FAST soft lessons learned

The software development for FAST falls into three categories: morphware, software,
and tools. In general, the morphware and software development is not difficult. Creating
Verilog code for the FAST VAL is straightforward and not conceptually complex. The
interfaces for the FAST VAL are well defined. Unfortunately, the MIPS R3000 is not
always well documented resulting in some implementation ambiguity, which has not
dramatically hindered progress [54]. The FAST CMP 4W-NC Verilog demonstrated
FAST’s system prototyping potential. The FAST CMP 4W-NC development was much

easier because of the initial infrastructure development for FAST VAL.

The simple FAST CMP 4W-NC provided a hardware platform for running standard
MIPS I ISA applications. The main software development limitation is no sophisticated
FAST application debugging capabilities similar to GDB [13]. Applications must be
debugged on a MIPS-based machine first. Simple ANSI C applications run on FAST by
removing all OS supported application components such as library functions and system
calls. Even though FAST currently cannot be used for application debugging, other
systems exist that can be used, such as MIPS-based emulators. Software development
follows normal practices and is done on other available MIPS-based system and then
recompiled for the FAST system. The applications are rather rudimentary because of the
lack of an OS running on FAST. FAST is theoretically able to run multitasking OS’s, but

there has been no OS porting effort yet.

There is a large learning curve for the Xilinx tools beyond doing any Verilog
programming. Most of the Verilog development time is dominated by FPGA and tool
configuration issues. FPGAs have another layer of configuration that maps FPGA
resources to Verilog components or modules. Furthermore, timing constraints are also
required in order to meet the timing requirements of the MIPS R3000. Finally,
depending on the resource utilization, sometimes the Xilinx tools will automatically add
components, like buffers, to the design that improve performance. Unfortunately, as the
FPGA device utilization increases, no components are automatically added, resulting in a
broken design that previously worked. This provides many hours of hardware debugging

that results in FPGA constraint updates. This can affect non-critical path circuits that
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operate as slow as 10 KHz, making the timing dimension a crucial additional design
dimension. However, it should be noted that providing better tools and various software
libraries for new designs would dramatically decrease the learning curve and development

time.

The software infrastructure for FAST faces the normal software development hurdles.
FAST requires software development from Verilog to assembly language and higher-level
languages. The software development tools, like emacs or other text editors, are pretty
mature for the software development. Unfortunately, the additional FPGA tools required
to meet timing are still immature and require significant effort to track down timing
errors. An easy to use FPGA constraint and timing tool that post-processes the FPGA
design could greatly reduce design effort and hardware debugging. With this type of tool,
FPGA development will become much easier. Designing and building a PCB is difficult.
Likewise, mapping designs with timing constraints to an FPGA or collection of FPGAs is
equally challenging. The FAST design effort has been dominated by manipulating the
tools to meet the modest timing constraints and not actual software development, be it

Verilog, assembly language, or ANSI C.
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Chapter 5

FAST Prototype Results

This chapter outlines the performance of the FAST CMP 4W-NC running real
benchmarks. Previous chapters have described all of the foundational building blocks,
but FAST is not useful unless it can run and characterize applications. This chapter
describes the various facets of collecting data from FAST using the FAST CMP 4W-NC

as an example.

CPUO CPU1 CPU 2 CPU3
L11I% L1D$% L1 I$J L1DS L1 I% L1DS L1 I$J L1D s
CPU 0 Memory CPU 1 Memory CPU 2 Memory CPU 3 Memory
Controller Controller Controller Controller
L2 Memory L2 Memory L2 Memory L2 Memory

Figure 5.1. 4-way decoupled FAST CMP 4W-NC.

The FAST CMP 4W-NC is a decoupled 4-way CMP with private L1 data and instruction
caches and private L2 memory. Figure 5.1 provides a high-level overview of the FAST
CMP 4W-NC architecture. The FAST CMP 4W-NC can use 4 KB BRAM L1 data array
caches or 256 KB SRAM L1 data array caches. In either L1 cache size case, the caches
were direct-mapped and used a write-through policy. All of the data reported in this
dissertation used the four 256KB SRAM chips for the data and tag arrays in the
instruction and data caches. The private L2 memories are 32 KB (although 72 KB was
available). The level of integration in the FAST CMP 4W-NC demonstrates that a variety

of other more complex architectures can be mapped to FAST.
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Before diving into the results, it is useful to understand the visibility, flexibility,
performance architecture and performance counters in the FAST system. This provides a
framework for understanding what is possible and not possible using FAST for data
collection. The visibility refers to one of the most important aspects of any prototyping
system, the ability to record or observe a number of events based on triggers. Software
simulators traditionally provide the most visibility and one of the goals of FAST is to
mimic that level of transparency. Second, the flexibility of the FAST system to collect
data is also an important aspect of any prototyping system. Combining the visibility and
flexibility creates a performance architecture that defines what and how data can be
collected. Finally, actual FAST performance counters are presented with a description of
other performance counter implementation options. With the framework defined, the
results of running the Stanford Small Benchmark Suite on the FAST CMP 4W-NC are

presented, followed with conclusions.

51 FAST data collection

FAST provides some data collection primitives that can be instantiated as Verilog
modules that count synchronous events in any FGPA. This is very useful, but FAST is
not limited to this sort of data collection. FAST can also stream data off the PCB to be
stored on a host system. Furthermore, data collection is not limited to simple counters.
FAST was designed to be flexible with respect to the performance monitor because of
the amount of system visibility. The FPGAs enable visibility inside any FPGA structure
or interface, facilitating FAST data collection across several domains, from canonical
processor architecture performance counters to component and system power
monitoring. FAST combines visibility and flexibility to create a performance architecture
suitable for a variety of applications and only limited by the user’s imagination and of

course, FPGA resources.

5.1.1 FAST visibility

Software simulators provide the gold standard with respect to transparency or visibility
within a system. Anything within the software simulator can be probed, monitored, or
saved in a file for post processing. Furthermore, events that cannot be observed on real
hardware can be observed or synthesized using software simulators. FAST brings this
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high level of detail back into the hardware prototyping systems. Projects like RPM [9, 33]
spurred on the visibility in real systems by adding FPGAs in order to increase system
transparency. The FPGAs were programmed to monitor bus traffic, particular events or
combinations of events in the system. These initial systems increased visibility down to
the level of the processor, while the processor or other components in the system still

remained opaque.

FAST illuminates the hardware prototype by enabling visibility at all levels of the system,
save the simple processors. Thus, performance counters can be placed at the point of use
and interfaced with the system, or can be completely external to the system. System
performance counters are counters that can be accessed by the system software, like the
operating system (OS) or other APIs. External performance counters monitor or record
information that can only be accessed by software or hardware agents that are external to
the system prototype. Examples of the latter are service processors used as system
monitors or JTAG interfaces for diagnostics. By programming the FPGAs in FAST, the

user has the option of adding complex monitors as they see fit.

Ideally, the visibility exists at multiple levels with a particular focus on increasing visibility
at run-time and making it accessible through the system interface. As a mature system,
FAST would provide these mechanisms through the OS much like modern-day
processors. However, this would require significant infrastructure development in the

structural Verilog and higher software layers like the OS and other drivers and APD’s.

More likely, and as we will show, it is much easier to implement performance counters
that provide the same visibility, but are accessed by external agents. The downside is that
the system cannot use the data on a real-time basis, but must incorporate performance
data much like current profiling is done, in an iterative tuning process. FAST uses
external agents like ChipScope from Xilinx to monitor various FPGA-internal modules
[113]. ChipScope provides the visibility via the JTAG interface to record and observe
events. Likewise, the chip boundaries can be observed using a logic analyzer for very
fine-grain dynamic observations. If this level of detail is not required, static JTAG
observation tools like ]-SCAN can provide steady-state application behavior at a coarse

granularity [67]. Finally, simple bi-directional interfaces like RS-232 can be implemented
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as an interface to internal counters. This provides a simple, fast, and easy way to collect

single events or to stream low bandwidth data from the FAST system.

With regard to the memory system or any other component that uses the FPGA as an
interface, FAST provides levels of visibility similar to software simulators. FAST does
not provide a window into the simple R3000, but many of the R3000 performance
statistics can be derived from the FPGAs that interface to the R3000. The only other
major restriction is the limited logic and storage on the FPGA. Simulation time is the
major limitation of using software simulators to generate data, given the copious amounts
of disk space available. FAST must use an external interface if it is used to generate 100’s
or 1000’s of MB of data because the PCB, without a DRAM or Compact Flash interface,
cannot store all of the data. Finally, software simulators have the ability to generate data
that normal hardware does not contain because of the global knowledge that exists in a
software simulator. FAST has clear FPGA functional boundaries that make some global
data gathering difficult, but post data processing and aggregation are possible. For
example, each processor tile gathers data with respect to its components. The RWC and
SMC FPGAs could aggregate the processor tiles’ data if the infrastructure was there to
transmit the data to the SMC or RWC FPGAs. Similarly, all the processor tiles’ data

could be collected and then aggregated and processed.

In the end, FAST can only provide visibility for structures built in the FPGA or data that
flows through the FPGA. As a result, the FAST system does provide transparency
similar to software simulators, but this visibility requires much more collaborative
hardware/software support compared to hardware prototype systems. FAST is a true
hybrid of hardware and software, providing the visibility of software simulators by

integrating both software and hardware FAST components.

5.1.2 FAST flexibility

Modern hardware systems can provide copious amounts of data, but only with respect to
predefined hardware and API’'s. FAST breaks this mold by allowing the user to add
arbitrary monitoring at various levels in the system. There are some restrictions with
regard to synthesized logic size and complexity, but partitioning and post processing data

may address these issues.
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Performance counters or other monitoring engines easily integrate into the FPGA fabric.
Furthermore, RS-232 or other bi-directional communication protocols can be used to
retrieve the data from FAST. System monitoring flexibility provides the visibility found
in software simulators. This is key because FAST is a system that can be used to develop
systems targeting a wide range of metrics, from raw performance to power savings and
computational efficiency. These systems have different monitoring requirements that are
only limited by the user and not the framework. Like software simulators, the user can

add monitoring infrastructure that suits their needs.

Monitoring software and hardware is added to FAST at the point of observation. This
observation point can be inside the processor tile for processor performance purposes,
inside the RWC FPGA to monitor coherence or interprocessor communication, or inside
the SMC FPGA to monitor memory utilization, I/O traffic or memory tracking. Thus,
performance metrics are added at the point of use, much like software simulators.
Furthermore, after the application runs on FAST, the data across many FPGAs can be

aggregated and post processed to synthesize or derive other data.

There are hard limitations of fixed FPGA logic resources and on-chip memory that
reduces the amount of data that can be collected. If the system is symmetric and
homogeneous, monitoring can be divided among the FPGAs with each FPGA in the
processor tile collecting mutually exclusive data that can later be aggregated. Likewise,
multiple experimental runs can be performed using a different suite of monitors for each
run to collect the necessary data. Running multiple experiments also may solve the
limited on-chip memory constraints that all FPGAs have. Another alternative is to
develop the infrastructure to stream high bandwidth data off FAST to accommodate any
performance monitoring that is required. FAST is not as flexible as a software simulator
with regard to adding numerous monitors or performance counters, but it does bridge the

gap between inflexible hardware and flexible software simulators.

5.1.3 FAST performance architectures

Combining the visibility and flexibility of FAST monitoring and performance creates a
performance architecture. This performance architecture defines the association between

FAST’s flexible components and the type or function of the performance monitors. This
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architecture provides some structure to building data collection systems on top of the

FAST substrate.

Figure 5.2 illustrates a high-level view of the FAST performance architecture. In this
case, performance is a user defined metric that spans canonical processor performances
like cycles per instruction (CPI) to performance per watt or watt per instruction, to name
a few. Power estimates can be derived from logic transition monitoring, similar to
methods used for Wattch [14]. Regardless of the metric used, the performance
architecture directs FAST users to the correct component or components used to
implement the monitor. Figure 5.2 is an incomplete list of all of the possible statistics or
monitors that can be created for the FAST system. Furthermore, some monitors can be
implemented in any one of multiple FPGAs, giving the system designer some freedom.
Similarly, some of the metrics like power, shown in all FPGAs in Figure 5.2, might need

to be aggregated to derive total system power.

L1C CP2

Coprocessor Statistics:
Cycle count
Instruction frequency
Instruction tracking
Coherency traffic
Coprocessor utilization
Intertile communication
Power

Cache Statistics:
Access frequency
Data tracking
Instruction tracking
Coherency traffic
Structure utilization

Power

RWC

Read/Write Statistics:
Read/Write traffic
Coherency traffic
Address tracking
Arbitration policies
Bandwidth
Power

SMC

Shared Memory Statistics:
File I/O
L2 miss statistics
Memory locality
Chip/Bank utilization
Memory Space profile
Power

Figure 5.2. FAST non-exhaustive FPGA performance monitor architecture.
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Conversely, other performance counters are very FPGA specific and can only be
collected in the FPGA that has access to the signals of interest. Cache statistics are an
example of performance counters that can only be collected in the L1C FPGA because
the appropriate signals from the MIPS R3000 are only routed to that FPGA. Finally, not
all FPGAs have to collect the same data. There are four sets of processor tile FPGAs
and each FPGA could collect different data that could stand on its own or be aggregated

with other data from the other processor tile FPGAs.

Section 5.2 provides more details about the performance counters implemented for the
FAST CMP 4W-NC prototype and some discussion about other types of statistics

counters or monitots.

5.2 FAST performance counters

The FAST CMP 4W-NC has several performance counters associated with the memory
system. All of the performance counters are synchronous with respect to the system
clock. FPGAs have limited clock resources that can be easily exhausted if multiple
asynchronous performance counters are instantiated within the FPGA. Figure 5.3
provides an example of a structural Verilog module that counts the number of signal (Sig)

transitions.

module perfcntrCIK(CIK, Sig, Reset, countery;

input CIk; wire CIk;

input Sig; wire Sig;

input Reset; wire Reset;

output [31:0] Counter; reg [31:0] Counter;
reg loHi;

always @ (posedge Clk) begin
iT (Reset) begin
Counter <= 0O;
lIoHI <= 0;
end
else begin
// Only want to count once per transition
if(Sig & 'loHi) begin
Counter <= Counter + 1;
loHI <= 1;
end
// Signal low know, go back to check for the edge
if(1Sig) loHi <= 0;
end
end
endmodule

Figure 5.3. Synchronous transition counting Verilog performance module.
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In Figure 5.3, there is a guard signal, IOHI, that prevents the synchronous signal
transition from being counted more than once per transition. The 32-bit counter size

could also be a user-configured parameter, making the counters any size.

Referring back to the FAST CMP 4W-NC shown in Figure 5.1, performance counters
can monitor a variety of components in the CMP. Figure 5.4 illustrates where some of
the performance monitors (PMs) would be placed in the FAST CMP 4W-NC and the
corresponding FPGAs to collect statistics. The left side of Figure 5.4 illustrates the PM
placement in a single FAST CMP 4W-NC processor, while the right side of Figure 5.4
illustrates where these PMs reside in the FPGAs on FAST. PMs for the processor and
cache reside in the processor tile FPGAs, L1C and CP2. The L1C FPGA interfaces to
the L1 caches and thus can provide statistics on cache behavior (PM2). The CP2 FPGA
not only monitors and collects statistics for the processor (PM1), but the CP2 FPGA also
collects data for part of the memory controller (PM3). The memory controller statistics
(PM3) are also collected in the RWC FPGA where the .2 memory resides. Furthermore,

more in depth L2 memory statistics can also be monitored in the RWC controller (PM4).

PM1 CPUO

|

L11$ | PM2 L1D$ PM1 PM3
PM3 | “comoter *
PMa [ L2 Memory = %

FAST Processor FAST PCB FPGAs

Figure 5.4. Performance monitors (PMs) in the FAST CMP 4W-NC and corresponding
FAST FPGAs.

The FAST CMP 4W-NC has a variety of performance counters implemented for
program behavior statistics. Performance counters similar to those shown in Figure 5.3

are implemented in the RWC FPGA to collect L2 read and write frequencies. Moving
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into the CP2 FPGA, total program execution cycles, number of stall cycles, and the
number of dynamic instructions executed are collected in PM1 counters. Finally, the L1C
FPGA provides a window into cache performance. The numbers of reads and writes, as
well as cache misses, are counted for the data and instruction caches. Thus, for every
application that is run on the FAST CMP 4W-NC, the PM data verifies correct
application behavior and correct FAST CMP 4W-NC model behavior. Simple back-of-
the-envelope calculations or application statistics from other MIPS-based SGI machines
can also validate application behavior. Interestingly, all of the performance monitors
presented in Figure 5.4 can also be implemented in the CP2 FPGA by forwarding or
capturing the relevant signals in the CP2 FPGA.

Performance counters provide data for application and/or architecture performance.
Changing aspects of the architecture can affect system behavior and not necessarily the
correct program execution, once the new prototype has been debugged. For example,
changing the 1.2 memory latency increases program execution time, but does not hamper
the correct application execution. PMs also have intuitive locations in the FAST system,
but these PM locations are flexible and user-defined. Section 5.3 presents data for all the
benchmarks run on FAST CMP 4W-NC with six different .2 memory latencies, as well

as the normal performance statistics discussed eatlier in this paragraph.

5.3 FAST results

There are two categories of data that have been collected with the FAST system. The first
category of data characterizes the application and architecture and the second category of
data reflects system sensitivity to a particular changing parameter. These two categories
illustrate the versatility of the FAST system and how FAST can produce a variety of data
very rapidly. For each set of data, it is also useful to describe how the system setup

changed in order to derive the data and how the data was collected.

5.3.1 FAST data collection

Before diving into the results, it is useful to describe the data collection process. There
were two methods for observing data on the FAST system. The first method used

unassigned I/O pins on the FPGAs as an output for the counter values. Using tools like
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J-SCAN, the JTAG static observation tool, the performance counters could be read once

the application had completed and the processor was stalled.

Figure 5.5 is an example of using J-SCAN to read processor local performance counters
from the CP2 FPGA. J-SCAN is set up to read the FPGA boundary scan chains for
processor tiles 0 and 1 or processor tiles 2 and 3. Thus, Figure 5.5 shows J-SCAN
reading the results for processor tiles 0 and 1, with the circles on the right of the figure
over the two performance counters for each processor tile. The total cycle count appears

just above total number of stall cycles, both displayed in 32-bit hexadecimal numbers.
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Figure 5.5. Two sets of CP2 performance counters for total number of cycles executed
and total number of stall cycles running Quicksort.

Figure 5.5 also illustrates the plethora of data that J-SCAN provides. Inside the CP2
FPGAs, the two large devices on the right, J-SCAN displays the contents of the tag and
the address bus. In this case, the processor has jumped to 0X0£f83000, the stall address

location for successfully executed programs. The data bus is also shown in Figure 5.5.
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The data bus for processor tile 0 is located at the top of the figure with hexadecimal value
0x1000 FFFF. Likewise, processor tile 1’s data bus display is located at the bottom of
Figure 5.5 with the same 32-bit hexadecimal value. Finally, the .2 memory is word
addressed and the address bus is shown in Figure 5.5 for the two-processor tiles. The
upper left hand corner of Figure 5.5 shows the processor tile 0 L2 address bus with
hexadecimal value 0xO3FEOCO00. Likewise, the bottom left hand corner provides the 1.2

address bus with the same data for processor tile 1.

There is another alternative for streaming data out of the FAST PCB. FAST uses a
daughter card with an RS-232 buffer to stream data off the FAST PCB using the
additional FPGA header pins that most of the FPGAs have; only the L1C FPGAs do not
have physical header pins on the PCB. However, the L1C FPGA does have unassigned
additional pins between each pair of L1C and CP2 FPGAs that can be used to relay
information through the CP2 FPGA. Power to the RS-232 buffer is supplied by one of
the FAST power headers. Initial RS-232 development used a 9600-baud data rate.
However, this is an arbitrarily set data rate that can easily be changed. Furthermore, the
performance counters can be daisy-chained together using the interprocessor tile buses if
only one point of data streaming is desired. A host machine using a perl script initiates
the RS-232 communication with the FAST PCB and prints the performance counter
information to a terminal window. The perl script opens the host machine’s COM port
with the appropriate settings and data rate. When the host machine’s “enter” key is hit,
the RS-232 module in the target FPGA sends back the performance counters to the host

machine. The data is displayed on the host terminal.

5.3.2 Building FAST applications

The FAST system is still in its infancy with respect to software development. There are
many software components that requite development and/or additional refinement.
Fortunately, FAST can leverage native MIPS-based machines for software development.
The native MIPS environment allows the software to be developed, compiled, and
debugged, rapidly [64]. Similar software tools could be used to develop and debug
software on FAST if the software infrastructure was available. Likewise, cross-platform

development tools also enable software development for FAST [35, 74]. By leveraging a
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host environment to produce correctly running programs, FAST is able to rapidly run full
applications. New prototyping platforms suffer from the same software development
problems: while development and debugging are possible on the prototyping system,
initial software development on the prototyping platform is cumbersome or near
impossible because the OS, software libraries, and compilers do not exist or are very

immature.

FAST can run applications compiled for the prototyping system at hardware speed. This
yields rapid system and application results. By leveraging native or cross-development
environments, application development can be completed faster because the software
development and debugging is done at current hardware speeds, 2 orders of magnitude
faster than the FAST system. As outlined in Section 4.4 FLAST applications, once the initial
FPGA programming bit file has been created, it only takes a few minutes to update the
L2 memory with a new program and download the FPGA bit files to the FAST PCB.
This assumes that a host environment is used to do the initial software development,
compiling, and debugging. Further software development can be done on FAST using
the current software infrastructure, but at the granularity of a single instruction. Likewise,
prototype system development can be monitored at the application level or single
instruction level. As the FAST software system matures, the software development and
debugging process will become much easier than it currently is, enabling the same rich

environment available using current tools like gcc and gdb [13, 65].

It should be noted that without native systems or a cross-development environment,
FAST would not be able to run applications rapidly because of the lack of required tools.
Mapping other architectures to FAST requires the same ability to leverage a development
environment, either native or emulated, for rapid software development and application
run-time [35, 64, 74]. Moving forward, FAST requires developing or porting an OS,
compiler, and debugger to enable a full-system prototyping substrate. FAST’s goal is to
provide rapid feedback for application and system tuning. In the process of creating that
infrastructure, FAST would also be able to natively compile and debug applications using

the full-system software infrastructure.
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5.3.3 FAST CMP 4W-NC running Stanford Small Benchmark Suite

FAST ran 6 out of 8 integers benchmarks from the Stanford Small Benchmark Suite to
demonstrate its utility [49]. The remaining two out of the eight integer benchmarks
would have required additional FAST software infrastructure development before they
could be executed on the FAST system. Using FAST, data was collected that provided
detailed application behavior, along with data collected for an L2 memory latency

sensitivity study.

As discussed in Section 5.2, the FAST CMP 4W-NC has performance counters in each
FPGA to monitor program behavior. The L1C FPGA monitors data and instruction
cache statistics including: read and write frequencies and cache miss statistics. The CP2
FPGA monitors the processor execution time including: total number of program
execution cycles, total number of memory stall cycles, and total number of instructions
executed. These three separate counters have the well-defined relationship that the total
number of executed cycles equals the number of stall cycles plus the number of
instructions executed. This provides another quick and easy check of the performance
counters. Finally, the RWC FPGA contains a small L2 memory for each processor tile
and monitors L2 memory statistics including: the number of reads and writes. The RWC
FPGA can also be used to implement the other performance counters shown in Figure

5.2.

Figure 5.6 shows the L1 instruction cache read and write statistics for all six benchmarks
using a SRAM L1 cache with the program information loaded into the 32 KB L2
memory. As this graph shows, the instruction reads far out number the instruction
writes. As would be expected with non-self modifying code, all the writes to the L1
instruction cache are due to cold demand misses. The instruction working set fits inside
the L1 cache, therefore, no conflict or capacity cache misses exist for these small
benchmarks. The number of instruction cache writes determines the static instruction set
for the application. The static instruction set is the number of unique instructions
executed at least once during the program’s execution. As one would expect, the

program does not execute all of the compiled instructions, as shown in Table 5.1.
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Similarly, the number of instruction cache reads indicates the dynamic number of

instructions executed during the lifetime of the program.
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Figure 5.6. Instruction cache read and write frequencies for the Stanford Benchmark
Suite.

Figure 5.7 provides the same data for the L1 data cache. The applications have been
compiled with no optimizations. The lack of code optimization results in a large number
of data cache writes. Furthermore, all data for these applications is generated at runtime.
Thus, every load or data cache read in the program is preceded by a store or data cache
write. The data cache reads and writes are very similar in number as a result of running
unoptimized code. Furthermore, the number of data cache reads and writes is far less
than the number of instruction cache reads, shown in Figure 5.6. Comparing Figures 5.6
and 5.7 derives the ratio of memory operations to instructions executed for each

benchmark.
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Figure 5.8. Instruction cache misses for the Stanford Benchmark Suite.
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Rounding out the cache statistics, Figure 5.8 tallies the number of instruction cache
misses for the Stanford Small Benchmark Suite. Because there are no conflict or capacity
misses in the instruction count, the number of instruction misses is equivalent to the
number of instruction cache writes. This makes it very easy to validate the performance
numbers generated in the L1C FPGA. Finally, there are no data cache misses because all
of the data is generated at runtime, so there is no data to demand miss from the L.2
memory, if the L1 data cache is present. Likewise, there are no conflict or capacity misses

in the data cache because of the small data working set size.

The performance counters instantiated in the CP2 FPGA correspond to PM1 in Figure
5.4, the processor performance monitors. There are eight performance counters
implemented in the CP2 FPGA, and these are listed in Table 5.1, along with a summary
reduction of information from all the performance counters. As seen in Table 5.1, the
number of dynamic instructions dwarfs the number of stall instructions due to instruction
misses in the instruction count. Furthermore, as previously mentioned, these three
independent performance counters have the relationship that the total cycles equal the
stall cycles plus the dynamic instruction count. Thus, the counters are validated against
one another. Similarly, the CP2 performance counters can be verified by comparing to
the results from the L1C FPGA performance counters. In this case, the number of
instruction cache reads is equal to the number of dynamic instructions and the number of

stall cycles equals the number of instruction cache misses times the .2 memory latency.

Table 5.1. Total number of program execution cycles, total number of instructions
executed, and total number of stall cycles counted in the CP2 FPGA.

L1 Data Cache L1 Instr.Cache L1 Cache Total Total Total Dyn. | Compiled L2 Memory
Applications Reads Writes Reads Writes D Miss | Miss Cycles Stalls Instr. Cnt Instr. L2 Reads L2 Writes
Bubble 219,630 32,888 960,577 209 0 209 969,647 9,070 960,577 301 218 32,887
Intmm 12,433 3,252 53,271 327 0 327 68,133 14,862 53,271 355 336 3,251
Permute 807,149 [ 518,930 | 3,495,775 199 0 199 3,496,814 1,039 3,495,775 254 208 518,929
Queens 662,753 | 185,809 | 2,230,110 302 0 302 2,231,664 1,554 2,230,110 358 311 185,808
Quick 28,375 7,182 105,020 354 0 354 114,819 9,799 105,020 376 363 7,181
Towers 725,319 | 450,769 | 3,372,684 408 3 408 3,374,783 2,099 3,372,684 468 405 450,765

Table 5.1 provides a detailed view of all the performance counter results for all the
benchmarks. Because the number of stall instructions are so small, presenting the data in
Table 5.1 as a graph provides no insight because of the extreme difference in magnitude

between the overall program execution time and the number of stall cycles.
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Figure 5.9 shows the reduction in stall cycles over time during the development of the
memory system. In this case, the performance counters are used to verify the correctness
of the memory subsystem implementation. Moving from left to right in Figure 5.9, the
stall cycles decrease because the .1 SRAM data cache is being added to the design. The
far left bar illustrates performance with no L1 data cache and the far right bar illustrates a
fully functional .1 SRAM data cache. The bar in the middle shows an instantiated L1
SRAM data cache structure that is not fully functional because of timing constraint
violations. When the I.1 data cache fails, the CPU treats the failure as an I.1 data cache
miss. The L2 then supplies correct data, all at the cost of extra stall cycles. As Figure 5.9
demonstrates, performance counters can aid in the hardware development cycle by
indicating correct hardware operation. In all cases in Figure 5.9, the program calculated
the correct result, thus, correct program execution does not necessarily imply correct

hardware operation.
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Figure 5.9. The performance of Bubblesort using no L1 cache vs. a fully functional

working I.1 cache. The middle bar is an instantiated, partially working I.1 cache with
unmet timing constraints.
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Finally, the RWC FPGA contains the four private L2 memories, one for each processor
tile. For these studies, the programs are preloaded into the RWC FPGA’s L2 memorties
and when a cache miss occurs, the CP2 FPGA relays the cache miss request to the RWC
FPGA, which fulfills the request. The L2 memory performance counters can also be
implemented in the CP2 FPGA because the CP2 FPGA relays the memory miss to the
RWC FPGA. However, 1.2 memory specific data is easier to track in the RWC FPGA
and implement in the RWC FPGA, e.g., L2 memory tracking data.

Because the RWC FPGA holds the program data, only the RWC FPGA programming bit
file needs to change in order to run the 6 applications presented. The LL1C and CP2
FPGAs remain unchanged across all of the experiment runs required to collect the data
for Figures 5.6 to 5.9 and Table 5.1. Using Data2Mem [107], new RWC FPGA
programming bit files are created by replacing the RWC BRAM contents to reflect the
new application stored in the BRAMs. Thus, there are a total of 8 FPGA programming
bit files: the L1C, the CP2, and six RWC bit files, one per Stanford Small Benchmark

Suite application.

The data presented thus far demonstrates how the FAST system can collect application
and architecture behavior data. It should be stressed that the FAST system is not limited
to just the performance statistics shown in Figures 5.6 to 5.9 and Table 5.1. Nor are the
performance statistics restricted to the short list of possible statistics or instrumentation
provided in Figure 5.2. Like software simulators, FAST has the ability to collect both

system and application statistics at run time.

Sensitivity studies are possible using the FAST system. FAST targets TLP architectures
with an emphasis on novel memory system designs. Techniques to hide memory latency
are fundamental to TLP architectures and any processor that operates at several orders of
magnitude faster than the main memory subsystem. In order for the FAST system to
investigate TLP architectures, FAST must be able to implement the novel memory
system and alter the memory latency for various memory levels in the system. Figure 5.10
illustrates an L2 memory latency sensitivity study for the FAST CMP 4W-NC system

implementation.
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The L2 memory sensitivity study increases the L2 memory latency from 5 cycles up to
257 cycles. As expected, the program execution time and number of stall cycles increases
linearly with the 1.2 latency, as shown in Figure 5.11. By extrapolating the 1.2 latency, the
cold instruction cache misses are correlated to the static instruction set of the application.
The y-axis intercept for a one-cycle L2 latency corresponds to the number of static
instructions executed by the application, or cold instruction cache misses. The program
fits in the instruction cache; thus if the L2 latency were one cycle, the number of stall
cycles would be equal to the number of static instructions. This observation was an easy
validation mechanism for this sensitivity study. However, in depth investigation was

necessary to explain the div-mflo additional latency.

The other interesting observation from the L2 latency sensitivity study is that the L2
memory latency spans the range from a very aggressive L2 memory latency all the way to
an off-chip memory latency. As Figures 5.10 and 5.11 demonstrates, the FAST system is
able to implement CMP or MP systems spanning the range of on-chip and off-chip
memory latencies. The FAST system does have a lower limit of 4 cycles required to fulfill
a cache miss. The MIPS R3000 enforces this lower cache miss latency because the R3000

requires 4 cycles to request and fulfill a cache miss [54].

Figure 5.10 requires further explanation for the lack of consistency in the data. Permute,
Queens, and Towers generate data that matches the increase in L2 latency. The lines are
parallel with the same slope. Bubble, Intmm, and Quick use a random number generator
that injects more latency because of the instruction sequence: div-bnez-nop-mflo
[54]. During the initialization of the 250 element arrays, the divide latency adds
significant stall cycle overheard that must be subtracted in order to observe the same
behavior as Permute, Queens, and Towers. If the extrapolation takes into account ISA
features that produce data, one’s intuition is preserved. The complete dataset for this

chapter and the L2 stall cycle validation discussion can be found in Appendix D.
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The L2 memory sensitivity required far more FPGA programming bit files for the
experimental runs. The L2 memory latency was defined and changed in the CP2 FPGA.
There were six L2 latencies requiring six CP2 FPGA bit files. Likewise, there were six
RWC bit files, one for each Stanford Small Benchmark Suite application. Finally, the L1C
FPGA was unchanged across all the configurations. The resulting Cartesian product of
experimental runs is manageable, only 36 data points, but for large sensitivity studies [30],
the number of experimental runs could spiral out of control. This is important because
unlike software simulators, the FAST infrastructure has not been developed for
automating the experimental process. However, it should be noted that the Flash
memory controlled by the PLD can implement and manage such sensitivity or other
studies that require experimental iteration using several FPGA bit files. The PLD could
be used to monitor each iteration of the large study. When the iteration completed and
the data was collected, the PLD could reprogram the FPGAs with the FPGA bit files
stored in the Flash for the next iteration. Only a small number of FPGA bit files need to
be stored in the Flash memory, which enable multiple iterations for sensitivity or other

studies.

Fundamentally, the hardware infrastructure exists for a wide variety of system
development and a variety of data collection methods. Unfortunately, the modular and
reusable software systems require more development, thereby creating a system software
library. This FAST software library would be similar to software simulator modules and
APIs. As a result of the software library, development of prototype TLP architectures

would be dramatically accelerated.

5.4 FAST performance conclusions

The FAST system is able to sustain 10’s of MIPS with peak performance of about 133
MIPS, four processor tiles running at 33 MHz. FAST’s high performance enables rapid
software development for prototype systems. The FAST CMP 4W-NC was used as a
simple motivating example that illustrates the power and flexibility of the FAST system.
The FAST CMP 4W-NC demonstrated the ability to collect application and hardware

performance data. The memory system is also highly configurable and the L2 memory
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latency study further demonstrated FAST’s ability to implement this key aspect of any

system used to study and prototype TLP architectures.

FAST’s performance results demonstrate its utility and potential. The FAST prototyping
system is fully functional, with no PCB rework. The simple FAST CMP 4W-NC
motivating example demonstrates both the utility and the potential. The FAST system
met its initial design goals and is able to prototype new TLP systems. Furthermore,
FAST is able to implement a variety of performance or monitoring counters at various
levels in the system providing transparency similar to software simulators. The
transparency yields rapid application and system behavior analysis. Likewise, sensitivity
studies are also part of the FAST prototyping toolbox as demonstrated by the L2

memory latency results.

The performance results of the FAST CMP 4W-NC allude to many other aspects of the
FAST system. Overall, FAST provides the capabilities that bridge the gap between
software simulators and one-off hardware prototypes with respect to observing
application and system performance. Furthermore, this initial work just scratches the
surface of FAST’s potential. The multiple memory levels implemented in the FAST CMP
4W-NC demonstrate that coherent memory designs can be implemented with FAST.
Most importantly, FAST provided a nascent rapid software development environment
that inherently provides high fidelity. FAST demonstrates the flexibility of the PCB
design, and with further software development, FAST provides even more functionality.
More detailed system and application analysis and improving FAST’s ease of use all
require more software development to produce a software library for computer architects.
Unfortunately, most of the software library development is beyond the scope of this

work.

Producing the initial FAST results was accelerated and made possible by leveraging
MIPS-based systems and a cross-development environment [35, 64, 74].  This
significantly reduced the software development effort because there was an environment
to run, debug, and estimate the application performance. This produced performance
result estimates that validated the FAST CMP 4W-NC performance results. The

performance counters further validated system performance. All of the applications ran
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self-checks to verify correctness, but the performance counters are required to verify

system correctness, as demonstrated in Figure 5.9.

As shown in Figure 5.9, specifying timing constraints and having the design meet timing
is one of the most critical Verilog development procedures. Overall, providing better
tools to specify, track, and modify the design timing will reduce the hardware design time.
Once the FAST PCB was tested, most of the VAL and TLP Verilog effort was spent
meeting the design time constraints. This required physical placement of buffers, latches
and iterative placement and routing of the design. Once timing was met, the placement
and routing for the design was fixed. As a result of the fixed placement and routing,
future design modification will need to be carefully added to maintain design timing.
Creating the FAST system has demonstrated that a FAST software library is not the sole
solution for the Verilog portions of the designs. Tools that make timing easier to

understand, specify, and achieve are required to make the prototype system work.

Overall, building a hybrid prototyping platform is difficult, with significant software
development still required to truly make this system easy to use. As this work has shown,
by leveraging existing systems, some or all of the software development can be
circumvented, accelerating the prototyping process. Likewise, leveraging a larger
community, like the open source community, will also accelerate system prototyping by
building a large software library used as the foundation for future work. The results
presented here provide the proof that flexible hardware prototyping systems are useful,
provide system and application insight, and enable rapid full-system prototyping. Moving
forward, building new systems with FAST will be easier given the initial building blocks
presented in this work. Ultimately, with a mature infrastructure, FAST or systems like it
would be able to implement prototype systems with the same effort required to create
new architectures with mature software simulators like SimpleScalar, Simics, or SimOs [4,

12, 28, 34, 50, 68, 81].
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Chapter 6

FAST 2.0: The next generation hybrid platform

This chapter takes the concepts and lessons from the FAST 1.0 system and proposes the
next generation flexible hardware prototyping platform, FAST 2.0. Like FAST 1.0, FAST
2.0 is a combination of hardware and software. The combination of the FAST 1.0
research and related work provide the insight for producing a much improved
prototyping platform. Previous work has laid the foundation for FAST 1.0, while
successors to FAST 1.0 define the technology trajectory, thereby improving the FAST 2.0
proposal [9, 11, 20, 21, 29, 31, 33].

The next generation PCB will leverage advances in hardware, both in terms of device
speed and device density. However, FAST 2.0, or systems like it, will only succeed if the
research community embraces it. And the community will embrace it only if it leverages
a well-developed software base. This software foundation can be developed two ways.
First, the software development becomes part of the successful open source movement,
similar to Linux [94, 95]. Creating an open source software library accelerates research
and development of the FAST 2.0 system by increasing the available resources to the
project. An alternative approach is to leverage industry to develop the hardware and
software required for the hardware prototype combined with a rich collection of APIs,
much like Simics [68]. Regardless of the method used to develop the FAST 2.0 system
software, this system software base was absent from FAST 1.0 and similar early projects
[9, 20, 31], prolonging development and limiting usage. Learning from the FAST 1.0
experience, given an intelligent design combined with software libraries, FAST 2.0 can

implement a wider variety of architectures.

Creating a truly useful system also requires easy to use tools and configuration processes
that abstract away the complexity of the hardware. Thus, FAST 2.0 requires the
development of configuration tools and auto generated Verilog and support files.

Combining all of these components results in the FAST 2.0 system.
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6.1 Building the next generation hardware prototyping platform

The next generation hardware prototyping platform will provide improved performance,
flexibility, and capability. Improvements in device speed and density guarantee the
superiority of the next generation system, but will only yield two out of the three
improvements. An intelligent hardware architecture and design are required to capture all
three benefits simultaneously. FAST 2.0 is a proposal for the next generation hardware
prototyping platform that leverages existing hardware and software to implement a

broader class of new computer architectures, enabling full-system prototyping.

6.1.1 Leverage existing hardware

FPGAs and SRAM devices continue to run faster with greater device density. The
operating frequency of FPGAs may not increase as quickly as that of general-purpose
processors, but increases in device density appear to be unabated. FPGAs in 65-nm
technology represent three generations of technology advances beyond the FPGAs used
in FAST 1.0. This translates into much faster and much denser FPGAs from both Xilinx
and Altera [8, 126]. The Virtex-5 from Xilinx and the Stratix II from Altera provide
about 3 times the BRAM density and 2.5 times the logic density found in the largest
Virtex-II FPGA. These FPGAs also have a number of other improvements: lower core
voltage, 6-input LUTSs, higher device density, improved clock management, more DSP
blocks, faster DSP blocks, and high speed serial links, to name a few of the features [126].
These FPGAs also have more user-defined 1/O pins, increasing the available 1/O pins
from 1100 up to 1200. Unfortunately, over the last two generations of FPGAs, the
amount of on-chip BRAM has stagnated. The combined SRAM and BRAM in a FAST
1.0 processor tile still exceeds the amount of BRAM in these new FPGAs [8, 1206].

FAST 2.0 must integrate the latest generation FPGA, SRAM, DRAM, vatious I/O
mechanisms, and have expansion interfaces to provide a complete hardware foundation.
Further details about leveraging existing hardware are provided in Appendix C. FAST 2.0
requires PCB integration skills beyond the technical scope of an in-house small research
project. FAST 2.0 presents new technical design challenges related to high-speed PCB
design. The FPGA interconnect, as well as the high-speed serial links, require special

design rules to accommodate the high-speed signaling, to reduce signal skew and to
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minimize noise. The FAST 1.0 PCB did not require such attention to detail because of its
low frequency operation, at tens of megahertz. FAST 2.0 will operate in the hundreds of
megahertz with some high-speed signals operating in the low gigahertz, requiring special

high-speed PCB signal design rules.

6.1.2 Leverage existing software

Software is required in order to make the system functional. Without a developed
software infrastructure, FAST 2.0 is basically useless. It is essential for FAST 2.0 or
projects like it to provide functionality out-of-the-box. This is the key enabler for making
FAST 2.0 adopted by the rest of the research community. FAST 1.0 leveraged existing
software infrastructure in the form of tools, like compilers and Verilog synthesis tools.
However, FAST 1.0 lacked a software code base that could be leveraged, inhibiting the
system usage and/or prolonging prototype development. In essence, there was an uphill
battle to produce the PCB infrastructure for the FAST 1.0 Verilog Abstraction Layer
(VAL) while, at the same time, building and mapping the prototype architecture to the

new system.

FAST 2.0 proposes to solve this problem by re-using some of FAST 1.0’s Verilog, the
code that interfaces to the VAL, and by building a software open source community
similar to the community using Linux. For FAST 2.0, leveraging existing software is not
limited to the VAL or other Verilog used to program the FPGAs. The software
developed by the open source community also incorporates: the architecture prototyping
layer, operating system (OS) [94], drivers and APIs, and applications and benchmarks.
With a mature FAST 2.0 system in a perfect world, FAST 2.0 would leverage all layers of
the software stack, accelerating FAST 2.0’s adoption as a de facto prototyping platform.

Further details about leveraging existing software are provided in Appendix C.

The key to any hardware prototyping platform is leveraging the open source development
community, thereby providing a development, distribution, and maintenance
methodology and platform. Unifying the FAST VAL through the application layer, at
one source instead of across multiple sources, also reduces coordination effort.
Currently, there are the GNU tools, Verilog open source cores, and third party Verilog

tools that are all freely available, but scattered over the Internet [13, 38, 65, 94, 95].
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Creating a central repository for the FAST 2.0 hardware and related software would
leverage the strengths of the entire community, enabling research far beyond the abilities

of any one university or organization.

6.1.3 Implement new architectures

FAST 2.0 is not just an FPGA upgrade to FAST 1.0, but an evolution in the rapid
prototyping platform space. FAST 2.0 combines all of the advantages from FAST 1.0
and related systems, while at the same time removing as many prior disadvantages as
possible. The result is a prototyping platform that can implement a broader class of
architectures than previous prototyping platforms. FAST 2.0 combines an intelligent

FPGA interconnect, design for expansion, and intelligent device placement.

Finally, FAST 1.0 was designed as a scalable compute fabric. FAST 1.0 used an
expansion header for expanding the system, up to 16 PCBs. FAST 2.0 continues this
trend by incorporating dedicated PCB and FPGA communication links. Enabling both
FPGA-to-FPGA and board-to-board communication expands the scope of architectures
that FAST 2.0 can prototype, both in terms of system complexity and system scalability.
By enabling high bandwidth FPGA-to-FPGA communication, the functional boundaries
between chips, on the same PCB or across multiple PCBs, can be virtually eliminated,
creating “super” FPGAs capable of implementing very complex logic and subsystems.
Likewise, board-to-board communication can be used to provide a logical boundary or
unit in a communication hierarchy. These logical and functional boundaries provide
intuitive cleavage points in the system. However, because of the high bandwidth board-
to-board communication, PCB boundaries can be abstracted away. In this way, we can
create very large-scale systems, on the order of one thousand compute nodes, perhaps
using a rack-mounted system for large scale research. FAST 2.0 places components on
the PCB with building large scale PCB systems in mind. As a result of the intelligent
interconnect, daughter card expandability, and flexible high bandwidth communication,
FAST 2.0 can implement small or large scale digital systems from a wide array of

compute domains.
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6.2 FAST 2.0 building blocks

Thus far, this chapter has discussed the hardware and software components required for
building the next generation hardware prototyping platform. Before a large community
can adopt FAST 2.0, or systems like it, tools or building blocks are required to make it
easy to use. The building blocks are the tools that transform the code, Verilog, assembly
language or some higher-level language, into FAST system components, FPGA
programming files or software executables or software libraries. These building blocks
range from the Verilog development environment, software development environment

and software tools, to the overall system design framework.

The Verilog and FPGA development tools are specific to the FPGA components used
for the system. FAST 1.0 used Xilinx’s ISE tool chain to develop the FAST VAL and
FAST 4W-NC prototype. The ISE tools can leverage some of Xilinx’s pre-defined
Verilog modules, but they are not intended for use with the embedded PowerPC 405
processor cores and thus would not necessarily be useful in next-generation designs [1206].
There are also some JTAG features that are more easily integrated in Xilinx’s Embedded
Development Kit (EDK) tool chain than the ISE tools. These JTAG features are
specific to using the embedded PowerPC processor found in later generation Xilinx

FPGAs [112, 125].

Constraint management exists in the current Xilinx tools, but leaves much to be desired.
Signal timing is the most important constraint that requires management. I/O drive
strength is another useful constraint. The FAST 1.0 framework includes the initial signal-
to-pin mappings and a matching top-level Verilog port list. The Xilinx PACE tool can be
used for associating the Verilog port name with the device pin, but not much more than
that [110]. A graphical interface that provides the signal timing, placement, and
properties that can be easily manipulated would reduce the iterative FPGA bit file build
process required to meet signal timing. This would especially be useful for managing
internal bus signal propagation time. Starting with the Virtex-5 family of FPGAs, users
will be able to skew signals at the I/O pad [126]. This partially addresses the signal
timing issue from an external standpoint, but not the whole signal propagation including

propagation through configurable logic. The first step to provide a solution would be to
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integrate the PACE, Floorplanner, and FPGA Editor tools with the timing report [116].
For each FPGA pin, all of these properties (such as skew, drive strength) can be
displayed, modified, and fixed in the UCF file.

Likewise, automatically generated FAST system Verilog would accelerate the prototyping
process by producing a baseline architecture for researchers. High-level languages like
System C can already convert C-like programs into Verilog [37]. The Verilog framework
at the minimum would use parameterized Verilog modules that can be customized based
on user input and combined to build a system. This Verilog framework would manage
the port lists and all module connectivity and instantiations. This framework would also
have the flexibility to include additional user-defined buses and control signals. With this
framework, a researcher can build a functioning baseline system with the additional
hardware connectivity required for their prototype, thereby minimizing connectivity and
other user error. Researchers will be able to manage the entire FAST 2.0 hardware
system by combining the Verilog framework with an FPGA and/or system graphical

constraint manager.

FAST 1.0 was conceived to prototype new TLP architectures and enable software
development. FAST 2.0 continues this trend for a broader class of architectures. The
compiler and debugging infrastructure is critical for software development. Building a
MIPS-based prototyping platform benefited from the availability of a plethora of
compilers and debugging tools. The team had access to both native and cross-

compilation environments using both embedded and general-purpose MIPS platforms.

The variety of tools and the availability of a native MIPS-based system accelerated initial
software development by reducing the software validation time. Software validation was
performed on the native MIPS-based system, leveraging the mature development and
debugging environment. FAST 2.0 will benefit in a similar way if native systems can be
used for validation. This would most likely skew the software defined processor core
selection heavily towards the LEON3 core because it is SPARC V8 compliant and there
are many native systems available [38]. Native and GNU compiler and debuggers are also

widely available for SPARC like Forte, GCC, and DBX and GDB [13, 89].
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The final component for a full system prototyping platform is the OS. It is essential to
provide a configurable OS with the ability to add and subtract modules similar to Linux
so that real workloads can be run on the prototype system. Linux is an ideal OS
candidate given its wide adoption, and support by the open source community. Porting a
multiprocessor version of Linux to FAST 2.0 completes this system. Likewise, having a
configuration environment to manage the OS modules for peripheral support,
multiprocessor support, and user-defined modules makes FAST 2.0 even easier to

configure and use.

Finally, a graphical user interface (GUI) can bundle all of this together to create a FAST
tool chain flow or FAST Flow. FAST Flow would manage all aspects of the FAST 2.0
system, enabling user configuration for all aspects of the design. FAST Flow’s GUI can
be drilled up or down, varying the level of detail and user control. The FAST Flow GUI
uses windows or tabs for each specific operation: FAST VAL, prototype architecture, OS,
APIs and drivers, applications, and FAST runtime. The FAST Flow GUI configures the
PCB, maps the prototype architecture, integrates IP, specifies the OS and related
modules, manages user-defined APIs and drivers, manages the software development
environment for the applications, and provides the system programming, monitoring and
observation, and debugging capabilities wrapped into a single framework that invokes all
of the related tools. Table 6.1 lists all of the software features and infrastructure required

to make an easy to use, full-system prototyping substrate for FAST 2.0.

Table 6.1. FAST 2.0 Software tools and software infrastructure.

Open source software development community or industry leadership
Open source and industry sponsored software repository
Out-of-the-box, cache coherent, multiprocessor OS

Improved user constraint file (signal timing) manager
Auto-generated Verilog modules and/or libaries

Software Development Environment (SDE)

Software tool chain GUI: FAST Flow GUI

~NjoloR~WIN]E-
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6.3 FAST 2.0

The combined hardware and software vision for FAST 2.0 corrects the shortcomings of
the previous generation. The hardware improvements are a result of the normal
technology scaling. The software improvements are a result of the larger open source
community or industry-led development providing more software infrastructure, creating
a FAST software library. Focusing on the hardware, FAST 2.0 can be easily defined as a
result of the FAST 1.0 experience. The building blocks for FAST 2.0 are similar: FPGAs,
memorties, 1/O, LEDs, switches, and expansion headers/connectors. The main building
blocks for the FAST 2.0 PCB are: 1200 I/O pin FPGAs, dual-ported 512K X 36 bit
SRAMs, single-ported 2M X 36 bit SRAMs, dual-channel FB-DIMMs and some
miscellaneous components like LEDs, switches, and headers. It should be noted that the
FPGAs also have an additional 20 dedicated I/O channels for serial high-speed links that
are not counted in the general purpose 1200 I/O pins. The FAST 2.0 software relies on
a community to build it, and as such, only the hardware implementation of FAST 2.0 is
presented here, from the bottom-up, the software vision having already been presented in

the previous sections.

The FAST 2.0 PCB is designed for manufacturability (DFM) with respect to component
selection and placement, although the components and their placement are not shown to
scale in the following figures. FAST 2.0 requires professional PCB layout and routing
due to the high-speed signals, making it an ideal outsourcing candidate to a professional
PCB design house. Keeping the board dimensions below 14” X 177 also improves PCB
DFM because this is a physical design constraint for some PCB manufacturing
companies. Finally, the devices and device density on the PCB determine the number of
PCB layers. Intelligent I/O pin mapping and routing can reduce the trace density,
thereby reducing the number of layers. However, using fully populated FPGA fine-pitch
ball grid array (fBGA) packages pushes the PCB layer requirements to at least 10 layers
when considering power and ground planes as well as trace layers. Realistically, FAST 2.0
would use between 20 to 24 layers. Given a 14” X 177 PCB with 24 layers, using fBGAs
with very small drill sizes produces a PCB with an estimated manufacturing cost around
$8,000-$10,000/PCB for small quantities. There are additional components, assembly,

and testing costs not included in the PCB manufacturing costs.

164



6.3.1 FAST 2.0 FPGAs

The Virtex-5 is the near term next generation FPGA that boasts several advanced
features like I/O pad signal skewing, 6-input LUTs, dedicated high-speed serial links, and
copious amounts of configurable logic [126]. This FPGA or something similar is the
basis for the FAST 2.0 PCB. TFirst, the processor FPGA (P FPGA) connectivity is
presented. Each P FPGA is connected to all of the other P FPGAs using a wide 160-pin

bus, as shown in Figure 6.1.

Figure 6.1. FAST 2.0 P FPGA connectivity.
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Each wide bus can be subdivided, for example, into four 40-pin mini buses. This
provides four dedicated FPGA-to-FPGA buses with a 32-bit data bus, 4-bits for parity,
and 4 control bits per mini bus. Thus, if multiple processors are mapped to a single P
FPGA, the communication between P FPGAs can be divided among the mini buses or
aggregated across the large main bus. Likewise, if there is a single processor instantiated
in the P FPGA, each mini bus can serve a different purpose or a single large
multipurpose bus can be shared for high bandwidth communication. This dedicated

FPGA interconnect uses 40% of the FPGA 1/O pin resoutces or 480 pins.

The P FPGAs are used to instantiate prototype system processors. The P FPGA has the
flexibility of implementing prototypes using the embedded PowerPC processor cores or
software-defined processors (soft cores). Both options are retained because it increases
the system flexibility and increases FAST 2.0’s capabilities. Soft cores can be used for the
main prototype processor and the embedded cores can implement other compute engines
or off-load engines. Furthermore, a single embedded core could be shared across
multiple soft cores. Likewise, the roles of the embedded cores and soft cores can be
reversed. However, it should be noted that investigating processor design is more easily
explored using soft cores like the LEON3 [38] because of the soft core’s configuration
granularity. The entire soft core is specified in software and thus can be modified by
adding components internally or externally to the soft core. On the other hand, for the
embedded processors, only processor external additions are possible using user-defined
interfaces or predefined interfaces, like Xilinx’s APU [105]. To be completely fair,
limited internal changes are possible, for example, components like the data and

instruction caches can be turned off in the embedded processors.

So far, there have been at most two embedded cores in a single FPGA, while it is possible
to implement multiple soft cores in a single FPGA. The advancement in soft cores
increases the attractiveness of soft cores as the foundation for a hardware prototyping
platform. 6-input LUTs in the Virtex-5 also increases the number of soft cores that can
be mapped to a single FPGA. As a result of the greater number of soft cores per FPGA,
tewer FPGAs are integrated on FAST 2.0, but more cores are available per PCB than
FAST 1.0. Using multiple cores per FPGA motivated both the fully connected P FPGA
interconnect and the wide interconnect that can be partitioned as needed. This
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interconnect, combined with soft cores, broadens the applicability of the FAST 2.0

prototyping platform beyond just the FAST 1.0 TLP architecture focus.

Technology advances enable FAST 1.0’s separate RWC and SMC FPGAs to combine
into a single FAST 2.0 service FPGA or S FPGA. This also corresponds to the HUB
FPGA described in the FAST architecture, Chapter 2. The S FPGA shown in Figure 6.2
coordinates higher-level memory accesses, interprocessor communication, and off-PCB

communication.

Figure 6.2. FAST 2.0 S FPGA to P FPGA connectivity.
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The S FPGA has a 160-pin point-to-point connection to each P FPGA, as well as the
shared P FPGA 36-pin bus. Each point-to-point bus serves as a high bandwidth wide
bus, a collection of partitioned private buses, or something in between. The shared 36-bit
bus is used for distributing shared data, like a global clock, or for synchronization
purposes. Of course, these buses are not limited to just these functions, but are
provisioned to provide a myriad of configuration options. The S FPGA can also be used
for system clock generation or other global information distribution, similar to the PLD
functions in FAST 1.0. The point-to-point and shared buses exhaust 676 pins or about
55% of the FPGA 1/O pins. Finally, the S FPGA PCB placement reduces trace

congestion in the center of the PCB for easier routing.

6.3.2 FAST 2.0 memory

FPGAs continue to lack sufficient on-chip memory resources for large-scale computer
architecture research. Instantiating multiple soft cores in a single FPGA further
exacerbates the on-chip memory shortage. To overcome the FPGA memory resource
issue, FAST 2.0, like FAST 1.0, associates high speed dual-ported SRAMs with every P
FPGA. Each P FPGA controls two banks of dual-ported 1024K x 36 bit SRAMs [55],
shown in Figure 6.3 as a single black block. Each bank can support one to four SRAM
chips for a total capacity of approximately 16 MB of level one cache. This is further
augmented by the approximately 1 MB BRAM on each FPGA that can be used for

auxiliary memory structures.

Unlike FAST 1.0, FAST 2.0 also integrates a dual channel FB-DIMM DRAM interface at
each P FPGA, labeled as DRAM in Figure 6.3. This adds a second level of memory close
to the processor with virtually unlimited capacity, when compared to SRAMs, on the
order of several gigabytes. The FB-DIMMs can be used for data or statistics storage, or
an upper level of cache. This P FPGA memory configuration provides two levels of
configurable memories close to the processor. This memory can be used to implement
varying data structures including caches of varying size, set associativity, and latency.
Furthermore, various memory structure policies can be implemented in the P FPGA, e.g.,

write-through versus write-back caches.
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The S FPGA also has memory associated with it to serve as higher levels of memory. As
Figure 6.4 illustrates, the S FPGA has both SRAMs and FB-DIMM sockets for DRAM.
There are two banks of SRAMs, with each bank represented by a gray box in Figure 6.4.
Each SRAM is single-ported and is configured as 2M x 36 bit [42]. The bank can support
from one to eight SRAM chips providing approximately 128 MB of shared memory. The
S FPGA is similar to the P FPGA because it also provides approximately 1 MB of FPGA

BRAM.

SRAM SRAM

Figure 6.3. FAST 2.0 P FPGA memory configuration.
Single-ported SRAMs operate faster than dual-ported SRAMs. Thus, time division

- HIST 2.0 -

multiplexing and SRAM partitioning can be used for building high set associative shared
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memories. The single-ported SRAMs can operate around 300 MHz, while the FPGA
BRAMs are predicted to operate up to 550 MHz [42, 126]. In comparison to the
currently available single-ported SRAMs, the dual-ported SRAM has a maximum
operating frequency of 250 MHz [55].

SRAM SRAM

Figure 6.4. FAST 2.0 S FPGA memory configuration.
Two dual channel FB-DIMM sockets are controlled by the S FPGA and are labeled as
DRAM blocks at the top of Figure 6.4. The two dual channel FB-DIMM interfaces,

- HIST 2.0 -

together, require only 220 pins. FEach FB-DIMM interface requires far fewer pins
compared to a single channel DDR interface, which requires about 250 pins. The two

channels double the available shared memory capacity at the S FPGA. Overall, FAST 2.0
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can be configured with an aggregate of tens to hundreds of gigabytes of FB-DIMM
DRAM. From the P FPGA perspective, there are at least 4 levels of memory that the P
FPGA has access to in its memory hierarchy. Two memory levels are available locally (.1
SRAM and L1 DRAM) and two memory levels are available at the S FPGA (L2 SRAM
and L2 DRAM). If the BRAMs are included, there are six distinct memory levels that any
P FPGA can access in its memory hierarchy. The quantity and capacity of the memory
levels in FAST 2.0 exceeds current and next generation general-purpose processors.
Furthermore, while the operating frequency of SRAMs is not going to dramatically
increase, the capacity of the SRAMs will double with every silicon technology generation,
at least for a while. Thus, the SRAM capacities specified for FAST 2.0 are actually lower

limits and will probably be greater, depending on the future component availability.

Finally, soft cores may have a maximum operating frequency of 200 MHz, but actual
maximum operating frequencies of 100 MHz can be expected for implemented designs
given past experience. Thus, both the SRAMs and embedded processor still operate
faster than their soft core counterparts, enabling time division multiplex and multi-way
memory structures in a single soft core clock cycle. It should be noted that careful PCB
layout and routing are required in order for the FPGAs, SRAMs, and DRAMs to perform
at their peak operating frequency. For that matter, because of the high-speed operation,

the entire FAST 2.0 PCB requires very careful PCB layout and routing.

6.3.3 FAST 2.01I/0

Communication is the final aspect of FAST 2.0 that greatly improves on the FAST 1.0
implementation. The FAST 2.0 I/O infrastructure is designed for stand-alone operation,
coupled to a host PC, or in a rack mounted, multi-PCB installation. Each FPGA has an
associated I/O cluster that is mounted at one of the edges of the PCB. The I/O cluster
placement facilitates cabling in rack-mounted systems. Figure 6.5 illustrates the I/O
cluster placement. The S FPGA has its I/O cluster or S I/O Cluster placed at the top of
Figure 6.5. The S I/O Cluster is responsible for traditional PCB communication for large
FAST 2.0 compute fabrics by connecting into a backplane or other substrate for a
traditional hierarchical interconnect. The S I/O Cluster also supports multiple 10 Gb

Ethernet ports, as well as SATA interfaces all the way down to a simple RS-232 interface.
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Providing various communication interfaces facilitates greater flexibility for data
movement and resulting system configuration. For example, a traditional bus-based
communication protocol and interconnect can be provided with FAST 2.0 by daisy
chaining eight FAST 2.0%s, in this case an arbitrary number of PCBs. However, the
Ethernet ports could also be used for PCB-to-PCB communication to examine different
latency and bandwidth characteristics. Taking this a step further, researchers can
implement their own protocols and interconnect fabrics. The S I/O Cluster also has a

generic digital I/O interface for other digital interfaces.

S I/0 Cluster

SRAM SRAM

I/0 Cluster 1I/0O Cluster I/0 Cluster 1I/0 Cluster

- HIST 20 -

Figure 6.5. FAST 2.0 I/O cluster per FPGA and placement.
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Each P FPGA 1I/0 Cluster or I/O Cluster is similar to the S I/O Cluster, but has fewer
I/0 interfaces. The I/O Clusters are placed on the bottom edge of Figure 6.5. The
primary function of the I/O cluster is to provide FPGA-local communication and
expansion, for example, the I/O cluster enables FPGA-to-FPGA communication for
network architecture studies. The placement of the I/O clusters takes into account space
on the edge of the PCB, FPGA-to-FPGA communication and expansion, and thereby
reduces physical cabling constraints. Each P FPGA has its own I/O Cluster. The I/O
Cluster has multiple Ethernet ports, SATA interfaces, and a simple RS-232 interface. The
P FPGA also has a generic digital interface for data generation or acquisition. This
generic digital interface enables FAST 2.0 to process digital data for DSP or sensor

network research, for example.

FAST 2.0 also has an interconnect bonus of 20 high-speed serial links per FPGA, for
both S and P FGPAs. Initial, optimistic, publications state these high-speed serial links
can operate at up to 10 Gb/s [126]. By combining pairs of high-speed serial links, a
guaranteed 10 Gb/s is provided using a 50% degradation factor on all high-speed serial
links. This degradation factor has been added to compensate for the lack of available
hardware that operates at 10 Gb/s, at the time of publication. Cutrently available
hardware can operate at the degraded bandwidth of 5 Gb/s per serial link [124, 125].
Ten high-speed serial links provide a myriad of interesting interconnect options for
building large-scale FAST 2.0 prototyping fabrics. These high-speed links can be
configured as InfiniBand links to provide a genetic I/O framework [24]. Thus, FPGA-
to-FPGA inter-PCB and/or intra-PCB communication is possible in a mult-PCB FAST
2.0 fabric, enabling novel interconnect and network research. Furthermore, using the
high-speed serial links allows the other I/O devices to be used for out-of-band
communication or for other purposes, increasing FAST 2.0 system flexibility. Overall,
FAST 2.0 can connect over one hundred PCBs, in a variety of ways, to create very large

prototyping systems with over one thousand soft cores.

6.3.4 FAST 2.0 system

Figure 6.6 illustrates a complete high-level view of the FAST 2.0 PCB. Both single PCB
and rack-mounted (edge-viewable) LEDs, switches, and headers (I./S/H) are added to
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the PCB to provide visual and manual 1/O. Each P FPGA controls 32 LEDs and
collects input from 32 switches. There is also a 40-pin header that can be used for a

variety of purposes including a 40-pin IDE interface. All of the pin mappings for the P
FPGAs are listed in Table 6.2.

As Figutre 6.6 illustrates, the L/S/H of each P FPGA and S FPGA can be distributed
between a central location and the edge of the PCB in a rack-mounted system. The S
FPGA controls only sixteen LEDs and collects input from sixteen switches, versus 32 for
the P FPGA’s. The header pins are also reduced for the S FPGA down to 32 pins.
These reductions are made in order to provide a 40-pin Compact Flash interface that
serves as a non-volatile memory interface. Similar to the P FPGAs, the S FPGA can
distribute the L./S/H components across the center of the PCB and on the edge for rack-

mounted configurations. All of the pin mappings for the S FPGAs are listed in Table 6.3.

Table 6.2. FAST 2.0 P FPGA pin mapping.

P FPGA Connection Pin Requirement | Total
P FPGA 3 x 160 480
2 Dual-ported SRAM banks 2 x 132 264
Dual channel FB-DIMM 1x110 110
S FPGA point-to-point bus 1x 160 160
S FPGA shared bus 1x36 36
1/0 cluster 1x46 46
LEDs 1x32 32
Switches 1x32 32
Headers 1 x40 40
Total 1/0 Pins 1200
Dedicated high speed serial links 20

Current Compact Flash devices can store up to 8 GB of data [82]. Technology
improvements point to increased Compact Flash capacity in the future. Today and
moving forward, the Compact Flash provides ample storage for most FAST 2.0
configurations and applications. Large commercial server and scientific applications that
require large databases or large data sets, like TPC-C, require large hard drives instead of
Compact Flash devices, which cannot store the hundreds of gigabytes of data required
for these applications. Alternatively, Ethernet or InfiniBand can be used to access large
datasets or databases.
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Figure 6.6 shows the next generation PCB for the FAST 2.0 system. It has at least twice
as many resources when compared to FAST 1.0. FAST 2.0 integrates a DRAM interface
for the P FPGA and S FPGA. FAST 2.0 has sixteen times as much processor local
SRAM and at least twice as much shared SRAM. FAST 2.0 can implement more
complex interconnects and has the ability to build a compute fabric an order of

magnitude larger than FAST 1.0.

L/S/H S I/0 Cluster L/S/H

.17 .1?

SRAM SRAM

ST 2.0

I/O Cluster 1/O Cluster B 1/0 Cluster I/O Cluster

Figure 6.6. Complete FAST 2.0 PCB design.

FAST 2.0 retains the ability to configure systems with very large on-chip memory systems
and to configure memory latencies for these systems. FAST 2.0 also expands its memory

system infrastructure to include DRAM, and hard drive interfaces like SATA, providing
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the entire hardware memory stack of a modern computer system. Finally, using soft
cores, FAST 2.0 should be able to achieve a true 100 MHz operating frequency with a
single cycle load-use latency. Thus, each FAST 2.0 PCB would have a peak performance
of at least 800 MIPS (8 processors X 100 MIPS) if each P FPGA implemented just two
soft cores. Each P FPGA should be able to implement four soft cores, which would
yield 1.6 GIPS peak performance, far better than any currently available sequential

software simulator with high fidelity.

Table 6.3. FAST 2.0 S FPGA pin mapping.

S FPGA Connection Pin Requirement | Total
P FPGA 4 x 160 640
2 single-ported SRAM banks 2 X 66 132
Dual channel FB-DIMM 2 x 110 220
P FPGA shared 1x36 36
1/0 cluster 1 x 68 68
Compact Flash 1 x40 40
LEDs 1x16 16
Switches 1x16 16
Headers 1x32 32
Total 1/0 Pins 1200
Dedicated high speed serial links 20

6.4 Comparing FAST 1.0, FAST 2.0, and BEE2

Many of the feature differences between FAST 1.0 and FAST 2.0 result from technology
improvements. Table 6.4 compares FAST 1.0 to the BEE2 PCB and the proposed FAST
2.0 PCB. BEE2 was designed for DSP and wireless ASIC prototyping [21]. Even though
FAST 1.0 predates BEE2, FAST 1.0 contains more programmable logic measured in the
number of slices. It should be noted that Xilinx redefines the notion of a slice with
Virtex-5, with a Virtex-5 slice equal to two older generation Virtex slices. Beyond
technological advances, the main differences between the FAST PCBs and the BEE2
PCB are the FPGA interconnect topology, clock distribution, use of SRAM, and an
integrated FPU. These differences stem from the fact that the BEE2 PCB was designed

for ASIC and, in particular, DSP emulation.

176



The FPGA interconnect topology determines the class of architectures that can be
prototyped by the PCB. The FAST PCBs target CMPs in general. As a result of this
general focus, both FAST PCBs implement a fully connected point-to-point (P2P)
interconnect to facilitate rapid and efficient inter-processor communication. Similarly,
multiprocessor systems may require global communication, which is facilitated by the
shared bus. The shared bus can be used for global synchronization or broadcast data.

FAST 2.0 proposes a similar topology and uses a newer technology, enabling wider buses.

Table 6.4. FAST 1.0 PCB comparison to BEE2 and FAST 2.0.

Feature FAST 1.0 BEE2 FAST 2.0
Prototyping focus MP/CMP ASIC/DSP MP/CMP
FPGAs (Slices) 10 (264,192) | 5 (165,440) | 5 (518,400%)
FPGA interconnect topology** P2P, Shared Ring P2P, Shared
Clock distribution Flexible Rigid Flexible
BRAM 640 KB 3 MB 5 MB
SRAM 68 MB 0 MB 196 MB
DRAM Expansion Yes Yes
Compact Flash Expansion Yes Yes
Embedded processor core No Yes Yes
Software-defined core Yes Yes Yes
Floating-Point Unit Hard Soft (-) Soft (+)
JTAG Yes Partial Yes
RS-232 Yes Yes Yes
SATA No Yes Yes
Ethernet Yes Yes Yes
Infiniband No Yes Yes
High-speed serial links No No Yes

* Virtex-5 slice is equivalent to 2 older generation Virtex slices [126]. FAST 2.0 contains 209,200
Virtex-5 slices.

**The FPGA interconnect topology for FAST 1.0 and 2.0 is a combination of a point-to-point
(P2P) fully connected network and a shared bus network. The fully connected topology allows for
single hop inter-processor communication and the shared bus enables broadcast. The BEE2
implements a ring network for the user FPGAs. The ring network requires two network hops to
communicate to non-nearest neichbor FPGAs.

The BEE2 PCB was designed for ASIC and DSP research. The BEE2 PCB has one
control FPGA and four user FPGAs. The control FPGA is similar to a service processor
or master node. New designs are generally mapped to the user FPGAs and initiated,

monitored, and controlled by the control FPGA. The PCB was designed with ring
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FPGA interconnect topology for the user FPGAs. This topology restricts the
communication by forcing data to be transmitted through an intermediary for the user
FPGAs that are not nearest neighbors. This FPGA interconnect topology may

complicate architectures that require flexible inter-processor communication.

Clock distribution is also flexible in the FAST PCBs. In FAST 1.0, the PLD distributes
the clock to all the FPGAs. The PLD can be used to gate the clock to any of the FPGAs
at any time. Furthermore, the PLD has two different clock input sources: the clock crystal
socket and a header for an external frequency generator. Thus, using this framework,
FAST 1.0 has a very flexible clock distribution infrastructure. Once the clock is
distributed to the FPGAs, the internal FPGA clock management hardware can be used to
produce various permutations of the system clock. FAST 2.0 builds on this flexible clock
distribution infrastructure. The latest Virtex-5 FPGA also has more clock generation and

skew management resources than previous Virtex FPGAs.

The BEE2 PCB uses clocks and clock buffers to distribute a global clock. Like the FAST
designs, the BEE2 PCB can also use external clock sources using SMA connectors. The
improvement of digital clock management (DCM) hardware inside the FPGA has
dramatically increased the clocking resources available, thereby reducing the need for
global clock management. However, there is no central clock gating mechanism like that
which exists on the FAST PCBs. This gating mechanism could be useful for the central

processor if it acts like a service processor to control the PCB.

FAST 2.0 is able to integrate DRAM as well as SRAM for every FPGA, expanding the
memory hierarchy. Again, this is a feature that is enabled by technology advances.
Providing both types of memory enables a wider array of architectures. The SRAM can
be used for cache structures and has functional characteristics similar to caches.
Likewise, DRAM can be used at each FPGA as a higher level of memory, enabling the
FPGA to compensate for DRAM refresh and memory request collisions. Each FPGA
also has access to far more memory than what was available to each FPGA in FAST 1.0

or the BEE2 PCBs.
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The BEE2 PCB focused on ASIC and DSP research and in general, ASIC and DSP
architectures do not use cache structures because the application space requires
deterministic memory access latencies. DRAM is sufficient as a deterministic storage, but
not as a foundation for cache structures, because of the issues with DRAM refresh. Of
course, if the DRAM access time is set longer to incorporate the extra latency required to

resolve DRAM refresh collisions, then the DRAM can function as a slow, large cache.

The FAST 1.0 PCB is the only PCB solution that also integrated a dedicated hard FPU.
The FPU broadened the application space of the prototyped architecture. There was no
need to implement very slow floating-point emulation that would be required for later
generations, in this case the BEE2 and FAST 2.0 PCBs. Thus, floating-point applications
operate with reasonable latencies compared to the CPU in FAST 1.0. The BEE2 and
FAST 2.0 PCB integrate the software-defined FPU differently. The BEE2 PCB requires
the use of the multi-cycle PLB interface or some other custom interface, while the FAST
2.0 PCB can use the much faster APU interface [51, 104, 118]. The APU interface
dramatically reduces the communication time between the processor and the FPU,
realizing more realistic FPU latencies with respect to the embedded CPU. If software
defined processor cores can be directly coupled to software-defined FPUs, FAST 2.0 has
the performance advantage over BEE2 because of the technology speed step and higher
logic densities using 6-input LUTs. This makes the software-defined FPU option for the
FAST 2.0 PCB much better than the BEE2 software-defined FPU.

Finally, as Table 6.4 illustrates, FAST 2.0 merges the benefits of new technology with
FAST 1.0 and BEE2 PCB design concepts, creating a more flexible hardware prototyping
platform. Like its predecessors, FAST 2.0 also incorporates standard expansion
interfaces for new devices and I/O. This expansion interface was especially useful for
FAST 1.0 because it enabled both a Compact Flash and DRAM interface. Likewise,
FAST 2.0 will be able to benefit in much the same way using its expansion interfaces.
FAST 2.0 cleatly demonstrates its broader applicability and increased flexibility by
incorporating both DRAM and SRAM, combined with a wider, more flexible FPGA

interconnect topology using the latest FPGAs.
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6.5 Are flexible hardware prototypes the answer?

FAST 2.0 has been designed for manufacturability and high performance. It should out-
perform FAST 1.0 and any other currently available hardware prototyping system. There
are still several low level details that require definition before it can be built, but this
ambiguity only exists in the complete definition of the L./S/H and I/O Clusters, or about
10% of the available I/O pins. These final decisions enable on-PCB peripheral 1/O
devices, like a keyboard, and other miscellaneous interfaces. FAST 2.0 delivers 6-12
times higher peak performance compared to FAST 1.0 and copious amounts more
memory: sixteen times more .1 memory, twice as much shared SRAM, and gigabytes of
DRAM and Compact Flash. However, the question still remains if a flexible hardware
prototyping system is the answer for software development and system implementation

and validation.

FAST 2.0 does not usurp software simulation from the computer architecture research
life cycle. FAST 2.0 expands its prototyping applicability and performance. FAST 2.0
still relies on software infrastructure for wide spread adoption and use. Without an out-
of-the-box hardware and software solution with a working multiprocessor example,
FAST 2.0 suffers from the same underutilization as FAST 1.0. Given a baseline example
to build from and a rudimentary collection of tools, FAST 2.0 can gain traction in the
research community because of its performance and reuse. FAST 2.0 has the same cost
barrier as FAST 1.0, but this cost barrier is far less than developing, manufacturing, and

debugging actual custom microchips.

FAST 2.0 or systems like it are required for computer architecture or parallel systems
research because of the emergence of chip multiprocessors (CMPs) as the dominant
processor architecture. Every additional processor in a CMP configuration linearly slows
down sequential software simulators. Likewise, tracking memory interactions in the large
on-chip caches also requires a lot of simulation overhead. Both the number of
processors and the size of on-chip caches are on the rise, further exacerbating the
softwate simulation speed/fidelity tradeoff problem. FAST 2.0 and systems like it enable
tull system prototyping at hardware speed. Prototyping novel architectures exposes any

shortcomings in their concept and provides the ultimate credibility with reduced
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validation effort. More specifically, new architectures developed in software have no
reference systems for validation and generally this validation is beyond the scope and
resources of a small (on the order of five or less people) research group. FAST 2.0
leverages pre-validated building blocks, reducing the validation effort to build larger,

working hardware systems.

Finally, CMPs require an iterative software development approach because of the
complex memory and shared resource interactions that change with each new CMP
configuration. As a result, there is no “golden binary” that works across all CMP
configurations. The tremendous wall clock time required for software-based CMP
simulators makes iterative software development impractical and very tedious at best.
FAST 2.0 is a viable alternative until and unless parallel simulation with very low
slowdown becomes a reality. Parallel programming is very difficult for existing hardware
platforms. Creating a correct and accurate parallel software simulation infrastructure is
even more difficult. FAST 2.0, a PCB and collection of software modules, libraries and
tools, is the next generation hybrid hardware and software solution addressing system

prototyping and software development, as demonstrated with FAST 1.0.
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Chapter 7

Conclusions

FAST is another successful Stanford hardware project. The FAST PCB was conceived
and designed at Stanford and manufactured and assembled by Sanmina’s prototyping
PCB facility. The result is a working PCB with #o PCB rework! FAST ushers in an era of
FPGA prototyping that will facilitate software development for new computer
architectures. FAST combined various prior generations of hardware to achieve this goal.
Moving forward, the next generation of hardware prototyping platforms will have more
features, greater flexibility, and fewer drawbacks. FAST 2.0 was proposed as the next
generation prototyping system that would far exceed current hardware prototyping
capabilities. However, the next generation hardware substrate is nothing without various
levels of software. Creating an open source community using a standardized hardware
prototyping platform will produce the software foundation required for a successful

FAST 2.0 system.

FAST 1.0 and FAST 2.0 are not without their predecessors. Fortunately, FAST also has a
list of successors that validate the need for hardware prototyping in academia and
research in general. To wrap up this dissertation, a discussion of the scope of research
facilitated by FAST is followed by a critical evaluation of the FAST system. FAST 2.0 is
revisited and discussed. Finally, FAST conclusions are provided given the benefit of

hindsight.

7.1  FAST scope

A simple, decoupled 4-way CMP prototype demonstrated the capabilities of the FAST
system. By developing the FAST VAL and integrating the SRAM chips, LL1C, CP2, and
RWC FPGAs, FAST 4W-NC provided a proof of concept for hybrid prototyping
platforms. This simple prototype illustrates the ability to use a central communication
structure as a point of coherence for more complex systems like Hydra. However, FAST

is not limited to TLS designs like Hydra. FAST can also be used to implement other
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TLP-focused architectures or CMPs. Stanford University projects like TCC [45] and
Smart Memories [69] are systems that can be mapped to FAST. Other embedded CMP
systems can also be mapped to FAST, like MPOC [80].

Unlike other systems [9, 20, 21, 33], FAST was designed and built to implement
CMP/MP architectures to investigate methods focused on parallel programming
paradigms and hiding or ameliorating the memory latency problems of future processor
designs. FAST can also prototype multiprocessor systems by changing the memory
latency. Unlike RPM, FAST also incorporates ample configurable logic that can be used
to implement more than just a memory system [9, 33]. FAST uses newer components,
which enable larger designs. Likewise, the BEE2 board was developed after FAST and
incorporates newer components. The BEE2 project was focused on DSP architectures,
whereas FAST was designed to implement TLP architectures. The BEE2 PCB also uses
FPGAs with two embedded hard processor cores, but interfacing to these cores requires
a multi-cycle interface bus [51]. By leveraging the next generation hardware and
broadening the system capabilities, FAST 2.0 improves upon all previous hardware
prototyping platform and yields at least two times the performance of any previous
system. As Figure 7.1 illustrates, FAST or systems like it enable research to incorporate

hardware prototyping and implement designs sooner, as has been demonstrated by FAST

4W-NC and the TCC Atlas project [75].

Architecture Software FAST

| Idea | Simulation | |
I Research Cycle

Figure 7.1. FAST reintroduces hardware back into the research cycle and brings it in even
catlier than previous hardware prototypes.

FAST 2.0 was proposed as a system that extends the scope of research compared to
previous configurable hardware prototyping systems. FAST has demonstrated that both

hardware and software research is enabled by this platform. Furthermore, by providing
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the necessary base infrastructure, FAST or systems like it provide a reusable validation
platform that may accelerate the flow of research ideas from academia to industry.
Likewise, these hybrid systems can be used much like current software simulators that

provide APIs for extensibility, as discussed in Njoroge et al. [75].
Not so FAST

FAST 1.0 has significant limitations that push many current research projects outside of
its scope. Several aspects of software research like compilers, operating systems, and
application tuning, are outside of FAST 1.0’s scope because of the lack of software
infrastructure and tools. However, it should be noted that this is not a fundamental
system limitation, but a software resources limitation.  Similarly, the hardware
development time also inhibits hybrid prototype development, but this will improve with
advancement in tools and the creation of software module libraries. FAST 1.0 does have
fundamental limitations that prevent prototyping processor pipeline design, complex
large memory structures, and complex processor designs. Some of these issues are
resolved with FAST 2.0 and the use of software-defined processor cores, but physical
resource limitations will always restrict the designs that are mapped to FPGA-based
prototyping platforms. Finally, advances in FPGAs are required to easily implement real
hardware, like fully associative memories or gang cleared or set memory structures. The
desire to build real prototypes will continue until these features are available to computer

architects in hybrid prototype platforms.

7.2  FAST grade

The initial goal of the FAST project was to create a prototyping platform that could be
reused across multiple research projects. By developing a hybrid system, FAST tried to
combine the best benefits of software and hardware systems. Table 7.1 revisits the initial
comparison Table 1.1 with FAST specific grades instead of the hypothetical goals
presented in Chapter 1. Table 7.1 provides a critical evaluation of the system and its
future use. A single full-time graduate student developed the entire FAST system. A

larger FAST development team would have been able to develop a more mature FAST
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system. Table 7.1 evaluates the current system and not its potential. FAST has

demonstrated that it can be much more than it is, given the development resources.

Table 7.1. FAST comparison to software simulators and hardware prototypes.

Feature Software Hardware | Ideal Hybrid FAST
Reuse A+ F A+ D
Flexibility A+ F A+ B
Transparency A+ D A+ A
Reproducibility A+ C A+ A+
Community A D A C
Development Time A B A B
Cost A+ B A B
Credibility F A A A
Performance JE A A C
Software Development F A A B

Table 7.1 highlights where FAST deviates from the initial features in the white boxes for
software, hardware, and an ideal hybrid solution. FAST has the potential to be reused,
but currently, there is not enough infrastructure in terms of software and additional
hardware (PCBs). The lack of mature software prevents more hardware systems from
being developed and distributed. There is no critical mass in the research community to
use this platform. However, the formation of the RAMP project [11] demonstrates the
ideas inspired by FAST are gaining critical mass. FAST is flexible and can be used for a
variety of projects. However, it is not as easy to develop and use as software simulators.
The initial prototype used very few of the available resources, demonstrating that many

more complex designs can be mapped to the FAST system.

FAST did meet or nearly meet three of its design goals. FAST provides approximately
the same transparency that is found in software simulators. FAST is limited in the
number of asynchronous statistics that can be collected. However, FAST provides a
variety of ways to collect data and process that data. FAST may require a combination of
hardware and software to collect statistics, making it a bit more cumbersome than a
software simulator. Likewise, the results from FAST are reproducible with the same
determinism of software simulators when no external events are required. Furthermore,
given an OS and I/O, FAST can reproduce the results of real systems, exceeding the

ability of software simulators to reproduce real systems, giving it credibility.
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While the FAST project community members can be counted on a single hand, the
overall community interested in using FPGAs to conduct computer architecture has
grown. This community even helped the FAST project by providing some utilities that
swapped BRAM contents in the Virtex FPGAs [25]. Moving forward, projects like
RAMP will not only leverage the existing community, but unite a large part of the
academic community using FPGAs to investigate computer architecture.  The
development time of the FAST PCB and software was reasonable given its serial nature
and external delays. Prototyping the FAST 4W-NC system was relatively quick. It only
required a few months to run simple applications on the PCB. This is similar to

developing a simple software simulator from scratch.

Finally, the system cost was relatively low if human capital and donations are not
accounted for in the process. The actual hard cost for the FAST project including test
equipment was about $25,000 to produce one fully functional PCB and 3 additional
unpopulated PCBs. If FAST were to go into low-volume production with donated Xilinx
parts, the cost per unit would be about $7,500. There is about $4000 in parts, mainly
SRAM chips, and $3500 in manufacturing, assembly, and testing fees. Any capital costs
cannot compare to the free software simulators. However, the FAST software would be
distributed for free with the system, reducing the prototyping effort. At less than

$10,000, FAST is a bargain compared to the cost of producing a chip.

FAST also met the credibility design goal and was validated using small test programs and
other reference hardware [64]. Because FAST is a hardware platform, the results are not
subject to the same lack of confidence associated with software simulators. Similarly,

future hybrid prototyping platforms will enjoy the same high credibility.

Finally, FAST is two orders of magnitude slower than current hardware. The
performance grade was decremented by one for each order of magnitude slowdown
compared to real hardware. Ironically, prototypes are rarely as fast as real hardware, so
this comparison is probably overly harsh given that one-off prototypes are approximately
one order of magnitude slower than the fastest general-purpose hardware. Likewise,
FAST was downgraded for the software development difficulty. The FAST project

leveraged existing working systems for software development. This dramatically
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accelerated the software development process, but may not be realistic for other systems.
Had the FAST project not been able to leverage a native or emulated software

development platform, FAST would have gotten a much lower grade.

Obviously, given more time, the FAST system could be developed into a mature
configurable prototyping platform.  Given the lack of resources and the short
development time, FAST was able to demonstrate a proof of concept. Overall, the FAST
system has far exceeded the initial goals. The combination of the FAST 4W-NC
prototype proof of concept and system functionality tests demonstrates that FAST can
prototype a variety of TLP architectures. Given an experienced PCB development team,
the FAST project could have reduced the 1.5 man-years required for the PCB design and
production down to 0.5 man-years. Similarly, with a larger FAST team, the software
environment could have been developed in parallel, overlapping the one man-year of
software development time with the PCB design and production time. Overall, the tools
required to develop the entire system were barely sufficient to accomplish the tasks.
Hopefully, future systems will have better tools and more resources to develop even

better configurable prototyping platforms.

7.3 FAST 2.0

The current computer architecture landscape requires a rapid prototyping platform for
small and large-scale research. FAST and BEE2 demonstrate how the evolution in
hardware can enable more complex research. FAST 2.0 was presented as a platform with
even broader applicability compared to FAST 1.0 and the BEE2 PCB using the next
generation of FPGAs, SRAMs, and interfaces. The FAST 2.0 PCB must be designed by a
professional PCB design firm to enable high-speed communication and is beyond the

capabilities of a graduate student design team.

FAST 2.0 provides an improved hardware platform. FPGAs continue to increase in
density and speed, but lack significant on-chip memory for building large caches and
other memory structures. FAST 2.0 integrates both SRAM and DRAM to address the
on-chip memory shortage. Using time-division multiplexing and multiple ports enables

the prototyping of multi-way set associative caches and other interesting memory
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structures. The larger FPGAs also provide the flexibility to use embedded hard processor
cores or software-defined cores like the LEON3 [38]. Using these cores as the system
foundation enables both rapid processor prototyping and/or system prototyping.
Moving forward, software-defined cores are more attractive because of their flexibility,

extensibility, and availability of native systems for software development [89].

Finally, FAST 2.0 or similar systems will only be successful with a community to develop
and maintain the software and support systems. Building the hardware requires a finite
amount of time that is amortized over each instance of the hardware. However, without
the software, the hardware is useless, preventing research community adoption. FAST
2.0 tries to build a hardware platform that can be used across multiple architecture
domains. This hardware is only useful if software exists. Research institutions will buy
and use FAST 2.0 if both pieces of the prototyping puzzle exist, the PCB hardware
platform and a rich software library and development environment. Providing the
working out-of-the-box examples is key to FAST 2.0 or any other system adoption,

similar to current software simulators.

7.4  Conclusions

It is a pleasure to conclude that FAST was a successful project. Along the way, several
lessons were learned that made the FAST project more difficult than necessary. These
lessons and conclusions are enumerated in the next section and described in more detail

in the last section.

7.4.1 Lessons and conclusions

Each of the following summary points below are described in more detail in section 7.4.2.

1) Complex PCB designs require high-end PCB design tools. These tools are worth the
extended learning curve.
a. Future PCB prototyping platforms using high-speed interfaces and high-
speed signaling will require professional layout and routing.

b. Future PCB unit costs will hover around $10,000 assuming donated
configurable logic and many other hardware components.

2) Undergraduate research in the eatly hardware development stage was unused.
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3) A team is required to develop the hardware and a community is required to develop
the software in a reasonable timeframe.

4) A software library is required to accelerate research using a hybrid platform.

5) Better timing and constraint management tools are required for FPGAs, because
timing and constraint management requires significant effort.

6) Incorporating redundant systems in hardware was essential and actually accelerated
FAST software development.

7) Providing a variety of PCB 1/O options, from simple and slow to complex and very
fast, addresses different I/O requirements and increases overall system flexibility.

8) The FAST 4W-NC proof of concept and system functionality tests demonstrate that
FAST can prototype a variety of TLP architectures.

9) A PCB with no rework was developed.

10) Intelligent FPGA interconnect broadens the prototyping domain of the hybrid
systems.

11) The next generation hybrid system will be even better!

7.4.2 Detailed conclusions

As a result of shrinking research dollars, CAD tool support has been drastically reduced
over the term of this project. This major limitation makes future in-house large-scale
PCB efforts impractical. One of the major benefits of FAST and similar projects, is its
ability to accelerate research using a common, shared infrastructure. However, this
research acceleration cannot happen with an initial infrastructure that is severely under-
resourced. The FAST project could have had greater impact if it had not encountered
significant implementation delays. The PCB implementation delays were the result of
using mid-grade OrCad PCB design tools, from Cadence, and not the high-end Allegro
PCB design tools [16]. Because the next generation PCB will incorporate a variety of
high-speed interfaces and high-speed signaling, the actual design will require more money
and/or a professional design team. If the next generation has similar industry support in
terms of donations and free samples, the PCB components, manufacturing, assembly and

testing costs will remain about $10,000 per unit for low-volume production.

The second main problem FAST encountered was mismanaged and wasted human
capital. The project initially had two graduate students. This enabled parallel development
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in the project. There are many facets to a project of this magnitude, but a simple
bifurcation occurs along the hardware and software lines. Once the first graduate student
left, the project had to start over because the hardware designer had left. This forced the

timeline out by over two years from initial inception.

Several undergraduates also had the opportunity to contribute to the FAST project.
Unfortunately, without the FAST PCB, their contributions were very limited and have

served as time sinks for the senior member of the project.

In order to make useful contributions, two things must be present. First, a hardware
system must be available with several small manageable projects that are off the critical
path. Second, the project must not always be on the critical path. Because of the delays
incurred at the beginning of the project, the focus of the project changed to bare
minimum functionality instead of building infrastructure. Furthermore, the project
lacked the resources to do significant FAST software development for the FAST PCB.
This is the final fatal flaw that will prevent FAST 1.0 from being distributed in the

research community and fully utilized.

One way to address the software development deficiency is to use an open source
software development and maintenance methodology. Community software
development can occur in parallel and leverage a larger community than any one
university or research group within that university can allocate to software development.
This builds a software library that includes several foundational examples for new
research, similar to the out-of-the-box working examples provided with software
simulators [4, 12, 34, 50, 68, 81]. This software library will accelerate future research
projects because of the available working building blocks.  Furthermore, working

hardware prototypes will accelerate the transfer of research ideas to industry.

The FAST project did not anticipate the difficulty and increased design time required to
manage the FPGA constraints. Specifying and meeting the design timing constraints was
more difficult than expected. Developing tools and GUIs to manage the FPGA
constraints by incorporating design feedback from the post-PAR information will speed

up the prototype development. Furthermore, implicit hardware instantiation by the
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Xilinx tools can also lead to many days of frustration. The tools produce so many
warnings, creating information overload, making it difficult or impossible to track down

automatically instantiated components.

From the beginning, FAST incorporated at least two alternatives for every major function
of the PCB and these were controlled by software. One method required some software
development to be functional, while the secondary method required little or no software
development to be functional. For example, the FPGAs have two different programming
interfaces. The PLD can be used to program the FPGAs, but additional infrastructure is
required to use this potentially faster FPGA programming method. Xilinx also provides
Impact and the Parallel IV cable to program FPGAs using the JTAG interface without
any additional user developed infrastructure. Due to time pressure, the easiest method
was always used. Having multiple ways to do the same thing provided designer flexibility

and reduced prototyping effort.

The FAST PCB also had several headers that could be used for yet-to-be-defined
functions. FAST implemented an RS-232 protocol that required a daughter card for the
RS-232 buffer. As described in the FAST 2.0 design, incorporating multiple 1/O options
will make that design even more flexible and easy to use. These I/O options must
provide a range of functionality and bandwidth with integrated buffers and physical layer

chips. Fortunately, this does not require significantly more integration effort.

The FAST project produced both hardware and software that demonstrated the
teasibility of hybrid hardware prototyping platforms. Incredibly, the FAST project
produced a single run PCB that was a Stanford design, layout, and route, requiring 7o
rework. Normally, the design schematic and specification is defined and professional PCB
design houses do the PCB layout and routing. Even then, most PCBs require an
additional spin to correct any mistakes and rework. By comparison, the NetFPGA II
PCB, a much smaller and less complicated design, provided a schematic and specification

to a PCB design house and the first revision required rework [99].

The FAST 4W-NC prototype was developed as a proof of concept that demonstrated

that more complex designs could be mapped to the FAST platform. Time was the only
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factor that prevented more complex designs like Hydra or TCC from being mapped to
the substrate. In the process of creating a simple prototype, all the systems on the FAST
PCB were tested and deemed functional. Furthermore, the base software infrastructure
was developed for FAST and demonstrated by running programs on FAST 4W-NC.

This software foundation would be used in all future prototypes mapped to FAST.

Future systems that require chip design will become increasingly more difficult because of
the high cost of chip manufacturing. Thus, developing a flexible hardware prototyping
platform will enable research beyond the software simulator, and in particular, software
development research. Careful attention to the FPGA interconnect is required because
an intelligent interconnect will broaden the prototyping domain, whereas a poor FPGA
interconnect will narrow the prototyping domain, in the worst case to a single instance.
FAST and other follow-on projects have demonstrated the utility of and demand for
reconfigurable prototyping platforms. Future hybrid systems are going to be even better
than FAST or any current system from a hardware point of view. However, hybrid

systems will require significant software infrastructure to truly exploit their vast potential.
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Appendix A
Making FAST

There are several steps that go into making a functioning hybrid prototyping system like
FAST. This section provides a list of those steps. This is not an exhaustive list that
covers all aspects of the project, but it provides an understanding of the details not
discussed in the main body of this dissertation. The following sections detail the process
required to build the FAST system. Not all the information can be provided, but the
FAST PCB summary README information required by the PCB manufacturer and
assembler is provided for reproduction purposes or as templates. The manufacturing and

assembly files are located online: http://ogun.stanford.edu/fast/FAST PCB Files.zip.

A.1 Building a hybrid prototyping platform

Building a hybrid prototyping platform can be broken into two main steps: all the
processes and information required to build the PCB, and all of the processes and
information required to make the PCB functional. The steps for the pre-PCB
development and post-PCB development are presented in outline form for brevity. The
following subsections list the steps, sometimes in no particular order, required to realize
the FAST system. Documentation is an overarching requirement for all phases of the
system development and is not explicitly included in any given step. Therefore, the

documentation process is left out of the steps and any further descriptions.

A.1.2 Pre-PCB development process

There are five main components to making the PCB. The PCB development process
requires: define the PCB architecture, select the PCB tools, design the PCB, specify the
prototype details, and verify the PCB. The PCB architecture defines the overall design
and functionality. The PCB tools are the framework used to realize the design. The PCB
design specifies all the parts, the schematic, the layout and routing, and design verification
processes. The prototype specification is required to describe how to build and assemble
the PCB. Finally, a process to verify that the PCB is functional is also required. The

outline of these five categories is as follows:
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1. Define the PCB Architecture

a. Define the function and connectivity.

Example: four processors connected to FPGAs via a common
shared bus with a shared memory.

b. Select the PCB components: source, availability, package, I/O and core
voltage, create a Bill of Materials (BOM), additional 10% parts margin,
thermal profile parts

2. Select the PCB Tools (Cadence)
a. Tools selected to design the FAST PCB

1.
1.
1ii.

1v.

Schematic editor: OrCad Capture

PCB Layout (including footprint generation): OrCad LayoutPlus
PCB Router: Specctra

Gerber file tool: GerbTool

b. Tools that SHOULD have been selected to design the FAST PCB

L
il
1.

1v.

Schematic editor: Concept

PCB Layout (including footprint generation): Allegro
PCB Router: Specctra

Gertber file tool: Allegro/APD

3. Design the PCB

a. Schematic editor

1.

1.

Use a flat or hierarchical schematic to define component
connectivity

Use net names of 8 or less characters for tools compatibility

b. PCB Layout

1

1.

1.

Define footprints: dimensions, SMT, through-hole, sockets, pin
spacing, clearance

Determine component placement: layer placement (top, bottom,
sandwich between layers)

Place components and additional support components:
decoupling capacitors, pull-up/down tesistors, no connection pins

c. PCB Router

1.

1.

1.

Define layer routing: Manhattan, Diagonal, combination
1. Manual routing for critical nets
2. Automated: routing order, bus routing

Validate Routing: connected nets, trace spacing, off-grid
components, off-grid routes

Generate Gerber Files and modify them for PCB production
1. Visually check Gerber files
2. Remove unused pads

3. Compare Gerber files to Layout netlist.

196



4. PCB Prototype Constraints and Specification
a. Design for Manufacturability (DFM) constraints

Create PCB specifications (README file): PCB material, layer count,
layer stack-up, Gerber file descriptions, hole plating, pad details,
miscellaneous details, manufacturing standards, parts orientation.

c. Create PCB assembly specifications: BOM, parts orientation, and post
assembly PCB testing (X-ray and integrity)

5. Verify PCB
a. Pre-PCB delivery process
1. Test equipment
1. Power estimates
iii. Software
b. Post-PCB delivery process
1. Visual inspection: parts placement and orientation, solder
inspection
ii. Buzz-out: resistance measurements and power connectivity
iii. Power-up PCB: voltage rails and voltage noise
iv. Check JTAG integrity: Corelis, ]-SCAN, Xilinx Impact
v. Program FPGA/CPLD with simple counter and LED tests
vi. Perform Corelis interconnectivity test
vii. Perform Memory tests: L1 SRAM, .2 SRAM, Flash
viii. Perform Processor tests: R3000, R3010

This outline provides a glimpse into the steps required to produce and do initial testing of
a prototype PCB. This outline does not provide all the details, but provides enough detail
to reproduce the process. Copious amounts of documentation is collected or generated

after going through all five of these steps.

A.1.3 Post-PCB development process

There are five main processes required to make the PCB functional. These required
processes include: select morphware tool chain, build Verilog infrastructure, add
supplemental hardware, software tool chain, and software infrastructure. The morphware
tool chain provides the overall framework for Verilog infrastructure development
(morphware). The Verilog infrastructure is broken down into the main modules required
for the functioning FAST system. Supplemental hardware was added to the system, after
the fact, to extend system functionality. The software tool chain provides the overall

framework for the software infrastructure development.  Finally, the software
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infrastructure is the foundation for software development and tuning. The outline of

these five categories is as follows:

1. Select Morphware tool chain
a. Verilog and FPGA development environment (Xilinx ISE)
1. Coregen
ii. Data2Mem

1. Impact
b. JTAG
1. Corelis
. J-Scan

iii.  ChipScope
c. Support tools
i. Sed/awk/petl
2. Create Verilog infrastructure
FAST Verilog and UCF wrappers
Clock distribution and generation
MIPS initialization
Memory testing
1. BRAM, SRAM, Flash, and Compact Flash
e. Memory initialization
i. BRAM, SRAM, Flash, and Compact Flash
f.  Performance counter
Off-board I/O
i.  RCM3200 and RS-232
h. Timing
1. R3000 and UCF timing constraints
1. TLP prototype architecture
i. FAST 4W-NC
i. Future prototypes

po o e

1. Hydra
2. TCC
3. Build supplement hardware

a. RS-232
b. Compact Flash daughter card
c. Ethernet
4. Select software tool chain
a. Software development environment (SDE): Compilet/Linker/Debugger
i. Cygwin + MIPS SDE
ii. Native SGI SDE
b. Support tools and scripts
1. Binary to Verilog converter
i. Binary to MEM file converter
5. Software infrastructure
a. Operating system
i. Start.s and exit.s
1. Porting Linux
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b. Drivers
1. Compact Flash
ii. RS-232
c. Applications
i. Stanford Small Benchmark Suite
i. All applications

A.2 PCB specifications

The PCB manufacturing and assembly house requires a README file, a collection of
Gerber files, parts for the PCB assembly (prototype PCB and thermal profile PCB for
BGA parts), and the related BOM. The README file is included as an example.
Version numbers and dates for the files were used in order to track changes resulting

from DFM revisions to the design files, only one PCB was built and required NO rework.

STANFORD FAST BOARD (V1.3) : Last Updated: 03/30/05

Contact:
John D. Davis
Stanford Computer Systems Lab
Gates CS 4a, Room 456, M/C 9030
Stanford University
Stanford, CA 94305-9030

phn: 650-723-6891
fax: 650-725-6949

Jjohnd@stanford.edu

General information:
Fabricate to IPC standards
FR4 Material
No impedance matching
ENIG Board Finish
Red soldermask
Silkscreen top and bottom
20 layers, stack up below
1/2 oz. copper (if possible)
4 mil traces with 4 mil spacing
There are about 20 5 mil traces.
Standard Layer thickness, total board thickness ~0.087"
4260 components
31673 vias, 13 drill sizes
Teardrop pads are ok.
Minimum drill hole size is 8 mils
ALL vias not associated with BGAs use 10 mil vias with 26 mil pad
Most BGA pads are 24 mils for the 8 mil via
Some 9 mil vias have 18 mil pads for the 0.8 mm pitch BGAs
Mount holes are not plated.
Alignment pins are not plated: MBC_* and JTAG* headers have alignment pins.
All other holes are plated.
+/- 0.003 drill hole tolerance.
Board dimensions are all on the Assembly Top layer Gerber file, *_AST
Fiducial marks are measured from right to left
Mount Holes are measured from left to right

Manufacturing files archive: FAST_Fab.zip

Stack up: Gerber File Name
TOP FAST_DONE.TOP
GND1 FAST_DONE.GND
PWR FAST_DONE.PWR
GND2 FAST_DONE.GND
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INNER2 FAST_DONE. IN2

INNER3 FAST_DONE. IN3
GND3 FAST_DONE.GND
INNER4 FAST_DONE. IN4
INNERS FAST_DONE. IN5
INNERG FAST_DONE. IN6
INNER7 FAST_DONE. IN7
INNERS FAST_DONE. IN8
INNER9 FAST_DONE. IN9
INNER10 FAST_DONE. IN10
INNER11 FAST_DONE. IN11
INNER12 FAST_DONE. IN12
GND4 FAST_DONE.GND
3V FAST_DONE.3v
GND5 FAST_DONE.GND
BOTTOM FAST_DONE.TOP

Manufacturing files archive contents:

Orcad Layout Plus 10.2 produced, Gerbtool 13.0.1 modified (remove isolated pads)
Gerber file format: RS274X, m.n.:2.4, Terminator *\r\n, Absolute Coordinate Mode,

Leading Zero Suppression, "G Command Included, ASCIl Character Set

file name contents

FAST_DONE.TOP top layer gerber, RS274X

FAST_DONE.GND main ground plane gerber, RS274X, NOTE: use for ALL GND* planes
1-5)

FAST_DONE.PWR 5.0V, 2.5V, and 1.5 V power plane gerber, RS274X

FAST_DONE. 3V 3.3 V power plane gerber, RS274X

FAST_DONE. IN2 signal layer 2 gerber, RS274X

FAST_DONE. IN3 signal layer 3 gerber, RS274X

FAST_DONE. IN4 signal layer 4 gerber, RS274X

FAST_DONE. IN5 signal layer 5 gerber, RS274X

FAST_DONE. IN6 signal layer 6 gerber, RS274X

FAST_DONE. IN7 signal layer 7 gerber, RS274X

FAST_DONE. IN8 signal layer 8 gerber, RS274X

FAST_DONE. IN9 signal layer 9 gerber, RS274X

FAST_DONE. 110 signal layer 10 gerber, RS274X

FAST_DONE. 111 signal layer 11 gerber, RS274X

FAST_DONE. 112 signal layer 12 gerber, RS274X

FAST_DONE. SMT top soldermask gerber, RS274X

FAST_DONE. SMB bottom soldermask gerber, RS274X

FAST_DONE.SPT top solderpaste gerber, RS274X

FAST_DONE.SPB bottom solderpaste gerber, RS274X

FAST_DONE.SST top silkscreen gerber, RS247X

FAST_DONE.SSB bottom silkscreen gerber, RS247X

FAST_DONE.AST top assembly layer and board dimension gerber, RS274X

FAST_DONE.ASB bottom assmebly layer gerber, RS274X

FAST_DONE.DRD drill drawing gerber, RS274X

FAST_DONE.FAB fabrication drawing gerber(no info. in this file), RS274X

FAST_DONE.BOT bottom layer gerber, RS274X

FAST_DONE. IPC IPC-D-356 format netlist

FAST_DONE.DTS Drill tape summary report

FAST_FINAL .MNL Orcad Layout Netlist

README_1.3_FAST.txt This Ffile.

FAST-FinalPartsChecklist.xls Parts shipping list, excel file

FAST-ThermalProfileChecklist.xls Parts for the thermal profile PCB.

FAST_FINAL.BOM Bill of Materials, ASCII

thruhole.tap drill tape file, ASCII

FAST_DONE.APT aperature file, ASCII1

COMPPROP . txt alternate format of the pick and place file with X/Y
coordinates

PICKNPLC. txt Orcad layout pick and place file

Assembly Notes:

Some components listed in the BOM are actually two separate receptacle
components or a header. Please look at the FAST-FinalPartsChecklist.xls
for the part number mappings.

Here is a brief description:

BOM Item # Description
2 clock header, part number A463-ND
35 two 2mm dual row headers,17-pins per row
40 two dual row headers with 4-pins per row
41 two different single row receptacles, one 5-pin and one 6-pin

All TPA_* and TEST POINTS are on reels, part number 5015KTR-ND
They are group in 115 "parts" for placement conveniences, but are 2452
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Appendix B
FAST software stack

The Verilog modules for the FAST system are provided in this section with the intention
of copying and pasting the text from the PDF file to an appropriate text editor. The font
size was selected to conserve space while at the same time providing all the UCF files and
Verilog modules. The Verilog modules are broken up into two sections: FAST VAL
modules and the modules required to instantiate the FAST 4W-NC prototype. The
FAST software is packaged into one archive file with several subdirectories. This archive

can be found: http://ogun.stanford.edu/fast/FAST SW Archive.zip.

B.1 FAST VAL

The FAST VAL is made up of two different collections of files: User Constraint Files
(UCF) and Verilog modules. This section presents the generic UCF files. Only one UCF
file is provided for the L1C and CP2 FPGAs. There are minor naming differences
between the set of UCF files and some of the mappings to other components. The
Verilog wrapper modules and the FAST VAL Verilog modules are located online in the
software repository directory FAST_VAL of the complete FAST software archive.

B.2 FAST 4W-NC

The FAST CMP 4W-NC is a decoupled 4-way CMP with private I.1 data and instruction
caches and private L2 memory. Figure B.1 provides a high-level overview of the FAST
CMP 4W-NC architecture. The FAST CMP 4W-NC used 4 KB BRAM L1 caches or 256
KB SRAM L1 caches. In either L1 cache size case, the caches were direct-mapped and
used a write-through policy. The private L2 memories are 32 KB (not including parity
bits) each with a maximum size of 72 KB, if all BRAM blocks are used. The level of
integration in the FAST CMP 4W-NC demonstrates that a variety of other more complex

architectures can be mapped to FAST.
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CPUO CPU1 CPU 2 CPU3
L11I% L1D$% L1 1% L1DS L1 I% L1DS L1 I$J L1D s
CPU 0 Memory CPU 1 Memory CPU 2 Memory CPU 3 Memory
Controller Controller Controller Controller
L2 Memory L2 Memory L2 Memory L2 Memory

Figure B.1. 4-way decoupled FAST CMP 4W-NC.

The Verilog modules that instantiate the FAST 4W-NC proof of concept and related
helper Verilog modules that purge the L1 SRAM caches are located online in the software
repository directories FAST_SW\Verilog\RWC and FAST_SW\Verilog\PT.

B.3 FAST software

The FAST System has three main software components that make up the FAST Software
Toolbox: short Assembly language diagnostics, system software and applications, and
support software in the form of scripts. Once the FAST PCB is programmed with the
morphware, the prototype system is ready to run diagnostic tests or applications. This
section provides the software used to provide the proof of concept for the FAST 4W-NC
prototype. The small diagnostics, operating system functions, small applications, and
Stanford Small Benchmarks are located online in the software repository directory

FAST_SW\SSB.
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Appendix C

FAST 2.0 consideration details

There are many details that need to be specified for a new hardware prototyping
platform. The details provided below outline the high-level considerations that will
enable more flexibility, thereby extending the systems capabilities. Leveraging existing
technology has the added side benefit of reducing development time. Moving forward,
technology enables more feature and presents greater design challenges and

considerations.

C.1 Leveraging hardware

The major advance in FPGAs is the device density. High device density combined with
the 6-input LUTs, improves the speed and density of mapped logic by reducing the
number of logic levels. The 6-input LUTSs also reduce the design routing pressure. These
latest FPGAs have also added high-speed serial links. The high-speed serial links increase

the chip bandwidth and compensate for the limited number of I/O pins.

Unfortunately, FPGAs continue to struggle with resource allocation. In particular, on-
chip memory (BRAMs), special purpose embedded units (embedded DSP and hard
processor cores), and configurable logic continue to battle for on-chip real estate, with
the most general or flexible configuration determining the FPGA building block mix. As
previously mentioned, the quantity of FPGA on-chip memory has stagnated over the last
few generations, losing on-chip real estate, but maintaining the same on-chip memory
capacity. The memory density is an allocation issue and not a technological issue. Thus,
FAST 2.0 must provision additional memory to compensate for the lack of on-chip

memory in the FPGAs, as did FAST 1.0.

Like FPGAs, memory continues its growth in both device speed and device density. As a
result of the memory improvements, both static random access memories (SRAMs) and
dynamic random access memories (DRAMs) can interface to FPGAs and provide enough
bandwidth for the processor and low access latency for memory requests. SRAMs are

fast enough to fulfill memory requests in a single clock cycle and provide more capacity
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than any available level one cache or level two cache, as demonstrated by FAST 1.0.
Furthermore, DRAMs can be added for even greater memory capacity beyond the
SRAMs, as demonstrated by BEE2 that integrated DRAM and not SRAM [21]. DRAM
access time, though slower than SRAM, is certainly sufficient for prototyping level two or
higher levels in the memory subsystem. New DRAM interfaces have also significantly
reduced the interface pin requirements. Dual channel fully-buffered DIMMs (FB-
DIMMs) can provide similar bandwidth to that of a single channel DDR interface [59].
More importantly, the DDR interface requires about 250 pins, while the FB-DIMM
interface requires only about 110 pins [59]. Using FB-DIMM dramatically reduces the
pin pressure on the FPGA, allowing for more FB-DIMM channels or other interfaces.
Unfortunately, there is no free lunch and the FB-DIMMs require higher integration
because an additional Advanced Memory Bus (AMB) chip is required to communicate
between the memory controller (FPGA) and the FB-DIMM modules [59]. This adds to
the design complexity, but the package pin savings more than compensates for the

additional chip integration and reduces the pin pressure on the FPGAs.

There are several 1/O devices that can be incorporated into a PCB design that will
improve system functionality and flexibility. Technology advances have yielded high-
speed serial links that provide several gigabits per second. Coupling these high-speed
serial links with standard network protocols like Ethernet or Infiniband accelerates
system development by providing pre-defined interconnects. Likewise, low-speed
alternatives should not be ignored. Using a low-speed RS-232 or other low-speed
communication interface can provide a system or FPGA interface or diagnostic back
door. It is important to plan for communication because RS-232, Ethernet, and other

communication methods require additional components integrated on the PCB.

There are also some things that cannot be planned at project inception. Thus, to
compensate for this lack of foresight, additional flexibility must be designed into the
prototyping platform. For FAST 2.0, this takes the form of additional interfaces for
communication and hardware modules. Daughter cards are the primary hardware
module interface. This requires a standard connector for the daughter cards on the PCB

and distributed power and ground connections. By including a daughter card interface,
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the FAST 2.0 PCB can expand its capabilities beyond the initial design. Thus, digital

interfaces can be easily added using this standard interface.

C.2 Leveraging software

The new VAL will depend on the processor used in FAST 2.0 as the basis for the
prototyping system. VAL development is required for any new PCB design because the
processor and memory interfaces will be different than the FAST 1.0 interfaces. Current
and future FPGA generations have embedded processor cores that run much faster than
the MIPS R3000’s used with FAST 1.0. Software-defined processor cores (soft cores) are
also an option, as they operate at or above the speed of the MIPS R3000’s as well. Using
soft cores has the additional benefit of improving system flexibility by adding more
extensive processor design capabilities to FAST 2.0. If the VAL interface is maintained,
then previous prototypes that use the VAL interface can be used with the next PCB
design and new VAL. Maintaining the same VAL interface leverages the existing
software. In this case, the existing software consists of previous architecture prototypes

ot just prototype building blocks.

Another crucial software component is the operating system (OS). A flexible, open
source OS with cache coherent multiprocessor support can supply the building blocks for
all other prototype systems enabling full-system prototyping. Providing such an OS
along with the board will enable full-system prototyping.  Given this baseline
functionality, other systems can add or subtract OS functionality as needed to suit their
prototype system. Using a similar open source development methodology, the FAST OS
can be created as a branch off of the existing Linux software tree with various modules
that can be added or subtracted. This provides a familiar software repository and

community to build and support the FAST OS version of Linux.

Selecting a processor that runs an OS out of the box also reduces the software
development effort. Having an available OS to run also implies a mature software
toolset: compilers, debuggers, etc. Both software-defined cores and hard cores can run
ported versions of Linux. Furthermore, the LEON3 software defined core is Ultra

SPARC compliant and can run older versions of Solaris [88].
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Application profiling also facilitates rapid prototyping. Application profiling is possible
without a full operating system and related OS overhead. The base OS functionality can
be provided in the form of statically linked libraries included within the application
binary, thereby focusing on the potential of the new prototype architecture without the
need for extensive OS development. Runtime libraries statically linked, for simplicity,
into the application provide the essential OS functions, enabling FAST 2.0’s rapid
application profiling. These standalone libraries are essential to rapid application and
system prototyping because the libraries can easily be modified and integrated without
any OS overheads, as well as, minimizing the FAST 2.0 system and system software
learning curves. This also enables API and driver development in parallel with OS
development and integration. Using the standalone libraries enables parallel software and

system development, which also accelerates the rapid prototyping process.

Likewise, having an available suite of pre-compiled benchmarks for the base system also
accelerates the prototyping process. A broad selection of applications also enables a wide
array of research, from embedded systems to high performance computing.  The
benchmark source code combined with a software development environment (SDE) is all
that is needed to target the new system. The SDE also enables OS, API, and driver
development for the new prototyping environment. Furthermore, using open source
development methods, the applications, OS, APIs and drivers can be leveraged by the

entire research and development community.

C.3 Implementing new architectures

The FPGA interconnect is the most critical element required for prototyping platforms
from different domains. Mapping various architectures from different domains like
networking, DSP, embedded processors, and scientific computing is only possible by
mapping the FPGA interconnect in an efficient and flexible manner. PCB prototyping
substrates use reconfigurable FPGAs and fixed component routing or interconnect.
Because FPGAs are reconfigurable, it is possible to work around the fixed routing and
pin assignments of the FPGAs, but potentially using cumbersome interfaces.
Unfortunately, the PCB substrate forces interconnect choices, which if done pootly, only

inhibits mapping prototype architectures to the system. If the communication resources
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for an architecture exist, an architecture is much easier to map to the prototyping
substrate compared to an architecture that must work around insufficient communication
resources. The dedicated high-speed serial links on FPGAs reduce some of the design
pressure because these links reduce the pin pressure required for high bandwidth FPGA-
to-FPGA, and off-PCB communication.

One system cannot provide the substrate for all computer systems and computer
architecture research. Thus, a standard expansion mechanism is required to enable new
functionality. Using a standard digital interface for daughter cards, FAST 2.0 will be able
to expand both its compute and communication capabilities. The daughter cards extend
the capabilities of FAST 2.0 by providing additional configurable logic or new
communication interfaces. The daughter card interface provides 1/O pins and power and
ground pins to provide a complete module interface. This complete interface eliminates
the need for external power supplies or other infrastructure. Dedicated high-speed serial
links in the daughter card interface provide high bandwidth communication with a limited
number of pins. Parallel to serial data conversion may be required, but this does not

inhibit design flexibility.

C.4 Making FAST work

Creating a PCB with no rework is an amazing task that was validated using JTAG tools
from Corelis [26]. By using the Corelis tools, all of the FAST system problems could be
quickly isolated to software issues and not a combination of software and hardware
issues. Furthermore, no additional workarounds were required to make the PCB fully
functional, saving many hours of PCB diagnostics and resulting rework. Validating the
PCB was one small step in making the FAST system work. This was a small step because

the PCB did not have any hardware problems that impacted functionality.

Making the FAST system work was more involved than designing and manufacturing a
PCB and writing some software. A majority of the complexity involved mating the MIPS
R3000s to FPGAs. This combination enforced hard timing constraints that had to be
met in order for the system to function. Defining timing constraints is part of all Verilog

designs that are mapped to FPGAs. FAST required in depth knowledge of the timing
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constraints and very low-level logic placement was required to meet timing. For example,
the MIPS R3000 requires four externally generated clock inputs for its dual-phase
clocking scheme. The MIPS R3000 can operate in a range of clock frequencies, from 16
MHz to 33 MHz. Two of the clock signals lag the initial system clock by 6 ns, while the
other clock signal is almost 180 degrees phase shifted. In order to produce these two
different phase shifts, a fixed buffer was used along with a delay lock loop (DLL). The
DLL produces the correct clock frequency and shifts the clock by 180 degrees. Fixed
placement and routed buffers provide the additional delay required to meet the MIPS
R3000 timing specification [54]. Using a placed and routed buffer achieves the 6 ns delay
regardless of input clock frequency. Using the DLL plus a buffer achieves the frequency
dependent approximately half clock cycle delay. This example illustrates how difficult
arbitrary delay generation is using an FPGA. Later generations of FPGAs, Virtex II and
beyond, enable more flexibility and more clock resources, but these resources can be

quickly exhausted.

The FAST 4W-NC model, discussed in Section 4.2.2, used less than 2% of the logic
resources on the FPGA. When the instruction and data cache were instantiated on the
FPGA, almost 100% of the BRAMs were allocated for the 4 KB data and tag arrays.
Using the SRAM chips for the instruction and data caches freed all the BRAM resources,
keeping the logic utilization constant. Even at this low logic utilization level, some signals
were unable to meet the timing constraints that were applied to the bus. In particular, the
32-bit data bus required several placement iterations to meet timing. Signals that met
timing were fixed in the UCF file and signals that did not meet timing were rerouted until
those signals did meet timing. Each routing pass produced a few more signals that met
the timing constraint and could be fixed in the UCF file. Once the signals were fixed, the
subsequent placement and routing completed very quickly because of the reduced

complexity.

Xilinx allows the user to specify the placement and routing effort. By increasing this
effort to high, more signals could be routed, but this required much more time for this
phase of the FPGA bit file generation, in some cases several hours. Unfortunately, the
entire bus would not meet the timing constraints, forcing the iterative fixed routing

process using high effort. It was much faster to use the standard placement and routing
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effort when iteratively fixing the placement and routing for a particular bus, even though
more iteration were required to fix the bus placement and routing because each iteration

was much faster.

When designing the SRAM interface, the contents of the 32-bit data bus and/or address
bus needed to be captured by the L1C FPGA and sent to the appropriate cache, because
the dual-phase clocking scheme provides an instruction and data request each clock cycle.
The latches used to captute and hold the data and/or address were initially automatically
placed by the Xilinx tools. The Xilinx tools placed the latches close to the pins that
connected the FPGA to the SRAM and not the pins close to the MIPS R3000. Thus, the
data and address were forced to traverse the entire FPGA chip before they were captured.
Using this placement, the entire bus could not be routed to meet the timing constraints.
However, by fixing the placement of these latches in the I/O pads associated with the
pins connected to the R3000, timing was met and the cotrect data and/or address could
be provided to the SRAM chips. Moving the latches is a relatively simple concept, but
required several hours of combing through the documentation because the latches in the

I/O pads are specified differently than the latches in the normal combinational logic

block (CLB).

The FAST system also implemented a bi-directional RS-232 module that can be used
with any of the FPGAs on the FAST PCB. This enabled a host PC to download
performance counter results. The initial RS-232 module was designed and tested in
isolation. The RS-232 module was fully functional and then integrated into the FAST
4W-NC prototype. Integrating the RS-232 module was very easy, but it was non-
functional. Some of the counters were not transmitted to the host correctly. By
comparing the previous results from experimental runs and displaying the current counter
values using the J-SCAN GUI with what was being received by the host PC verified that
the RS-232 module was corrupting the counter values. The non-functional RS-232
module was surprising given a 9600-baud rate for the data transmission. After extensive
investigation, the difference between the working isolated RS-232 module and the non-
working integrated RS-232 module was the use of a global clock buffer. In the isolated
RS-232 module instantiation, the Xilinx tools implicitly added a global clock buffer to the
RS-232 9600 Hz clock. In the integrated module, the clocking resources were limited and
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the Xilinx tools did not implicitly promote the 9600 Hz clock to a global clock buffer, but
kept this clock local. By explicitly defining the 9600 Hz clock as a global clock buffer, the
integrated RS-232 module functioned correctly. This minor difference required several
weeks of investigation to pin down. The 9600 Hz clock was also not an initial suspect in
the investigation because of its very low frequency. However, even very slow clocks can

cause problems, as proven by the integrated RS-232 module.

As the RS-232 module has demonstrated, the level of detail required to make various
parts functional in the FAST 4W-NC design was underestimated because of the relative
operating frequency difference between the MIPS R3000, submodules like RS-232, and
Virtex I FPGAs. In order to create working interfaces, the timing constraints of the
FPGA and placement of logic, down to individual look-up tables (LUTs), had to be
managed for the FAST VAL and FAST 4W-NC prototype. Interfacing to the MIPS
R3000 presented the greatest challenge, but this interface is encapsulated in the FAST
VAL and requires no further modifications. The memory system interface is also

defined, reducing the effort for future prototype systems.

Expanding FAST’s capabilities will require a similar level of attention to detail with
respect to timing constraints and logic placement. These factors become more critical as
the prototype systems use more and more of the FPGA resources. Fixed placement and
routing becomes even more critical because it will enforce the timing constraints and
reduce morphware build effort and time. Imagining a mature FAST system, it is
necessary to provide a better interface to deal with timing constraints because it is very
easy to shoot yourself in the foot with timing problems, as demonstrated by the RS-232
integration problem. Removing the additional timing constraint problems from FAST or
future system will make them more like software simulators. Just providing a software
library is not sufficient for building new prototype systems. The Xilinx tools are slowly
improving the constraint management, but the improvement is limited to configurable
Xilinx modules that can be incorporated into the design. Easy constraint management
has not been extended to user-specified Verilog modules. Creating such a constraint

management framework would greatly reduce the prototype development effort.
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C.5 Scalable hardware prototyping platforms

Creating a flexible and scalable hardware prototyping platform is very challenging.
Exploring FAST 1.0’s scalability was outside of the scope of this work, but was a PCB
feature. FAST 2.0 greatly improves on system scalability by enabling FPGA-to-FPGA
and PCB-to-PCB communication or anything in between. In order to scale FAST 2.0,
the front panel connectivity would enable FPGA-to-FPGA connectivity, while the back
panel would enable PCB-to-PCB connectivity for a rack-mounted system. FAST 1.0 also
demonstrated that having back-up hardware mechanisms added to the system flexibility
and reduced system software development. Implementing an intelligent interconnect also
broadens system applicability. However, these design practices alone do not make a

scalable system.

Power, form factor, and system control are very important design considerations for
scalable prototyping systems. The increased device density of FPGAs and DRAMs has
the added down side of increased power. Starting with Virtex-II Pro, Xilinx FPGAs
required active cooling using small fans. Likewise, multiple DRAM modules increase the
power dissipation dramatically. The combined power dissipation poses the same power
distribution and cooling challenges that server racks have. Creating a high-density
prototyping platform can require the same unsustainable power density of blade or rack

Servers.

FAST 2.0, or systems like it, can be produced with PCB dimensions of 14” X 177, which
will easily fit in a 1U server form factor. Heat dissipation is the major challenge for this
form factor. FAST 2.0 can easily dissipate 350 W, at 150 W for the FPGAs and 200 W
for DRAMs (four per FPGA). This is a similar power budget for a 1U rack server.
Exotic power dissipation measures like heat pipes and several fans would enable proper
cooling. Using a 2U enclosure with two FAST 2.0 PCBs would relax the heat dissipation
constraints by allowing cheaper active cooling solutions. The 2U enclosure would
contain a FAST 2.0 board mounted on the bottom with the other FAST 2.0 PCB
mounted upside down on the top of the enclosure. The two FAST 2.0 boards would be

staggered to prevent the integrated fan and heat sink from colliding. Using these
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standard enclosures would enable inexpensive infrastructure for scalable prototyping

systems.

Finally, as systems like FAST 2.0 scale, they require control systems. Inherently, FAST
2.0 has a service (S§) FPGA that can act like a service processor used in larger servers.
The server processor monitors system behavior, can restart the system, and reconfigure
the system. The S FPGA serves the same process as traditional service processors, but
the prototyping system also requires a system hierarchy that scales. A well-defined S
FPGA hierarchy enables full system control required for initializing, synchronizing, and

executing applications on large systems.

Scaling was a design parameter for FAST 1.0, but scaling presents more challenges for
FAST 2.0. FAST 1.0 dissipated 20 W while FAST 2.0 can easily dissipate 20 times that
amount of power. Technology also enables FAST 2.0 scalability, with greater design
complexity as a result. Likewise, FAST 2.0 leverages more hardware and software by
using commodity components and intellectual property. Every next generation hardware

prototyping platform will have greater capabilities and will be easier to use.
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Appendix D

FAST 4W-NC data

Initial results using FAST were difficult to gather because the system was unreliable.
Transmitting the data clock from the processor tile to the RWC FPGA solved this reliability
problem. The SRAM instruction cache for the FAST CMP 4W-NC was the last fully
functional component. The instruction cache required both iterative routing and the
addition of multiplexers with the correct conditions for the L1 SRAMs to be fully functional.
There were also some additional steps required to make the system complete. The next
section describes the data collection process. This is followed by a stall cycle discussion
using Bubblesort as an example, keeping in mind that Intmm and Quick also experience the

same latencies. We will conclude this section with the Chapter 5 data in tabular form.

D.1 Collecting the data

Consistent data collection from the FAST 4W-NC prototype was achieved with the addition
of an L1 instruction cache scrubber. This Verilog module uses the R3000 to issue
instructions that invalidate the entries. Running this module in between data collection runs
guarantees that the instruction cache has no residual data from a previous run. Unlike
DRAM modules, SRAMs can retain data for very long periods of time without applied
power because the charge is trapped between the gates of the inverters and leakage is very
minimal. The same procedure can be applied to the data cache. Data cache scrubbing is not
required because the benchmarks are unoptimized; all data loads have a preceding store to

the data cache.

Scrubbing the caches enables data collection without power cycling the FAST PCB, which
turns out to be ineffective in clearing the SRAM memory. For all the runs below, the L2
memory can be programmed and then the processor tile configuration can be changed to
petform latency and/or cache studies. In between each processor tile configuration update,
the cache scrubbing Verilog modules are loaded. The other side benefit of using the
processor tile to scrub the LL1 caches is that the processor tile configuration files are smaller

and load faster than the larger Virtex-1I configuration files.
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D.2 Explaining the data

Running without an instruction cache, the div instruction in bubble is responsible for 4250
stalls. The processor requires 35 cycles to pass after a div instruction before it can execute
an mflo. In bubble, the div is part of a sequence div-bnez-nop-mflo. Without an
instruction cache, each instruction bnez-nop-mflo takes 6 cycles to come in from the
L2 cache (1 normal cycle plus five stall cycles), for a total of 18 cycles by the time the
processor sees the mf 1o instruction [54]. It thus must stall 17 cycles for all 250 iterations of

the loop because there is no instruction cache.

When an instruction cache is present, the div instruction causes a delay of 17 cycles for the
first time through the loop, because each instruction has a cold miss, and must be brought in
from the L2 memory. In each of the succeeding 249 loop iterations, however, the three
instructions bnez-nop-mflo only take one cycle each to bring in from the L1, leaving 32
cycles to stall. This results in the total stall cycles of (17 + (249 x 32)) or 7985 cycles. For
the benchmarks that use this instruction sequence, the number of stall cycles is dominated
by div-bnez-nop-mflo sequence and not cold, conflict, or capacity misses. Thus,
increasing the L2 latency has a reduced impact compared to programs that only experience

cache misses and not ISA related stall cycles.

To further confirm this, we changed the sequence from div-bnez-nop-mflo to div-
nop-nop-nop-mflo, and the number of stalls increased to (16 + 249 x 31), or 7735.

Figure D.1 shows the counters reporting the program statistics for Bubblesort (Bubble):

counter]: 960,577 Instruction Cycles
counter2: 9,070  Stall Cycles
countet3: 219,630 1.1 Data Reads
counter4: 209  Instruction Misses
counterb: 32,888 1.1 Data Writes
counter0: 218 L2 Reads
counter7: 32,919 L2 Writes

Figure D.1. Performance counters for Bubble sort with a 250 element array.
Table D.1 further breaks down the program behavior and tabulates the stall cycles.

Table D.1 Bubblesort stall cycle break down.
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Instruction Stall L1D L1D L11 1.2 L2 Write
(Instr) Cycles | Cycles | Read Write Miss Read
NC* Inst. 4 40 0 0 0 1 0
Cold Misses 209 1,045 0 0 209 209 0
Inst. Hits 960,360 0 0 0 0 0 0
Load Hits 0 0 219,630 0 0 0 0
Stores 0 0 0 32,888 0 0 32,919
MFLO Inst. 0 7,985 0 0 0 0 0
Unknown* 4 0 0 0 0 1 0
TOTAL 960,577 9,070 | 219,630 | 32,888 209 218 32,919

*Non-cacheable (NC) instructions are used to jump from the reset memory address into the
cacheable address space. There are also four instructions and one L2 read that was not
accounted for in this tally, but do not warrant further investigation because the consistency
across all benchmarks.

D.3 FAST 4W-NC Stanford Small Integer Benchmark data

Table D.2. .1 Cache study investigating program performance behavior without a data
and/or instruction cache.

No | Cache | No | Cache No | Cache No | Cache

L1 Data Cache L1 Instr.Cache L1 Cache Total Total Dyn Intsr. | Compiled L2 Memory
Applications | Reads Writes Reads Writes D Miss | Miss  |Cycles Stalls Cycles Instr. |L2 Reads L2 Writes
Bubble 219,630 32,888 960,577] 960,569 0 960,569| 5,767,716 4,807,139 960,577 301 218 32,887
Intmm 12,433 3,252 53,271 53,263 0 53,263 326,758 273,487 53,271 355 336 3,251
Permute 807,149| 518,930| 3,495,775| 3,495,767 0 3,495,767 20,974,654| 17,478,879 3,495,775 254 208 518,929
Queens 662,753| 185,809| 2,230,110| 2,230,102 0[ 2,230,102 13,380,664| 11,150,554 2,230,110 358 311 185,808
Quick 28,375 7,182 105,020] 105,012 0 105,012 634,374 529,354 105,020 376 363 7,181
Towers 725,319] 450,769| 3,372,684| 3,372,676 3| 3,372,676] 3,376,459 3,775| 3,372,684 468 408 450,765

No D Cache No D Cache No D Cache No D Cache

L1 Data Cache L1 Instr.Cache L1 Cache Total Total Dyn Intsr. | Compiled L2 Memory
Applications |Reads Writes Reads Writes D Miss | Miss Cycles Stalls Cycles Instr. |L2 Reads L2 Writes
Bubble 219,630 252,518 960,577 209 219,630 209 2,067,801] 1,107,224 960,577 301 218 32,887
Intmm 12,433 15,685 53,271 327] 12,433 327 130,298 77,027 53,271 355 336 3,251
Permute 807,149( 1,326,079] 3,495,775 199| 807,149 199| 7,532,559| 4,036,784 3,495,775 254 208| 518,929
Queens 662,753| 848,562| 2,230,110 302] 662,753 302] 5,545,429 3,315,319] 2,230,110 358 311 185,808
Quick 28,375 35,557 105,020 354| 28,375 354 256,694 151,674 105,020 376 363 7,181
Towers 725,319| 1,176,085 3,372,684 408) 725,319 408| 7,001,363| 3,628,679 3,372,684 468 408 442,569

No | or D Cache | No | or D Cache No | or D Cache No | or D Cache

L1 Data Cache L1 Instr.Cache L1 Cache Total Total Dyn Intsr. | Compiled L2 Memory
Applications |Reads Writes Reads Writes D Miss | Miss Cycles Stalls Cycles Instr.  |L2 Reads L2 Writes
Bubble 219,630 252,518 960,577] 960,569 219,630 960,569| 6,865,866] 5,905,289 960,577 301 218 32,887
Intmm 12,433 15,685 53,271 53,263| 12,433 53,263 388,923 335,652 53,271 355 336 3,251
Permute 807,149( 1,326,079| 3,495,775| 3,495,767| 807,149 3,495,767| 25,010,399| 21,514,624 3,495,775 254 208| 518,929
Queens 662,753 848,562| 2,230,110| 2,230,102| 662,753 2,230,102| 16,694,429| 14,464,319 2,230,110 358 311| 185,808
Quick 28,375 35,557 105,020] 105,012] 28,375 105,012 776,246 671,226 105,020 376 363 7,181
Towers 725,319| 1,176,085 3,372,684| 3,372,676 725,319 3,372,676| 23,862,703| 20,490,019 3,372,684 468 408 442,569

There are two experimental series that were performed using the FAST 4W-NC prototype.

These experiments provide a proof of concept that demonstrates that more complex non-

coherent and coherent multiprocessor systems can be prototyped using the FAST system.

Table D.2 provides all of the data that supplements Table 5.1.
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instruction (I) cache, data (D) cache or both L1 caches are turned off and the program still

executes correctly with a consistent number of dynamic instructions.

Similarly, Table D.3 presents the L2 memory latency study results. Most of the redundant

data was removed and is provided in Table 5.1. Table D.3 is the tabular form of Figures

5.10 and 5.11 and is included for completeness.

Table D.3. L2 memory latency results spanning an L2 latency of 5 cycles up to 257 cycles.

5 cycle L2 Latency

9c

cle L2 Latency

17 cycle L2 Latency

Total Total Dyn Intsr. |Total Total Dyn Intsr. |Total Total Dyn Intsr.
Applications |Cycles Stalls Cycles |Cycles Stalls Cycles ]Cycles Stalls Cycles
Bubble 969,647 9,070 960,577] 970,507 9,930 960,577 972,238 11,661 960,577
Intmm 68,133 14,862 53,271 69,458| 16,187 53,271 72,130 18,859 53,271
Permute 3,496,814 1,039] 3,495,775| 3,497,642 1,867| 3,495,775| 3,499,298 3,523| 3,495,775
Queens 2,231,664 1,554| 2,230,110| 2,232,904 2,794| 2,230,110 2,235,384 5,274 2,230,110
Quick 114,819 9,799 105,020] 116,255| 11,235 105,020 119,146 14,126 105,020
Towers 3,374,783 2,099| 3,372,684| 3,376,459 3,775 3,372,684| 3,379,811 7,127| 3,372,684

33 cycle L2 Latency 65 cycle L2 Latency 257 cycle L2 Latency

Total Total Dyn Intsr. |Total Total Dyn Intsr. |Total Total Dyn Intsr.
Applications |Cycles Stalls Cycles |Cycles Stalls Cycles [|Cycles Stalls Cycles
Bubble 975,710 15,133 960,577| 982,654| 22,077 960,577| 1,024,318 63,741 960,577
Intmm 77,490 24,219 53,271 88,210| 34,939 53,271 152,530 99,259 53,271
Permute 3,502,610 6,835| 3,495,775] 3,509,234 13,459| 3,495,775| 3,548,978 53,203| 3,495,775
Queens 2,240,344 10,234| 2,230,110 2,250,264 20,154] 2,230,110] 2,309,784 79,674] 2,230,110
Quick 124,938 19,918 105,020] 136,522| 31,502 105,020 206,026 101,006 105,020
Towers 3,386,515 13,831| 3,372,684| 3,399,923| 27,239| 3,372,684 3,480,371 107,687 3,372,684
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