
Protecting Privacy in Key-Value Search Systems

Abstract— This paper investigates the general problem of
efficiently performing key-value search at untrusted servers
without loss of user privacy. Given key-value pairs from multiple
owners that are stored across untrusted servers, how can a client
efficiently search these pairs such that no server, on its own, can
reconstruct the key-value pairs?

We propose a system, calledPeekaboo, that is applicable and
practical to any type of key-value search while protecting both
data owner privacy and client privacy. The main idea is to
separate the key-value pairs across different servers. Supported
by access control and user authentication, Peekaboo allowssearch
to be performed by only authorized clients without reducingthe
level of user privacy.

I. I NTRODUCTION

Wide area distributed systems often assume that hosts from
different administrative domains will collaborate with each
other (e.g., [20], [33]). With user data exposed to hetero-
geneous, third-party servers, one major challenge is to store
and find information without loss of privacy.

Consider a distributed service discovery system with mul-
tiple independent service providers [7]. Each provider stores
service attributes, prices, and locations at one or more direc-
tory servers. Clients submit service attributes as queriesto the
directory servers, and obtain price and location information as
query results. This poses a significant risk to the privacy of
both the clients and the service providers. A curious directory
server could not only follow a client’s queries and infer the
client’s activities, but also exploit the information stored by
a service provider to infer sensitive information such as the
provider’s marketing strategies and financial status.

As another example, consider a people location service
for ubiquitous computing environments (e.g., [13]). Although
there are many solutions (e.g., [17], [22]) to prevent unautho-
rized access to user location information, few of them tackle
the problem of protecting user privacy with respect to the
servers, which may belong to different organizations and be
untrusted to expose either data or queries.
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Fig. 1. A typical key-value search system

The question then is how can we efficiently search infor-
mation while protecting the privacy of both data owners and
clients? Without loss of generality, in a key-value search sys-
tem illustrated in Figure 1, there are data owners, clients,and a
pool of servers. Data owners register their data represented as
key-value pairs at one or more servers. Clients submit keys as
queries and would like to retrieve all the values that match the
keys. In such a scenario, given key-value pairs from multiple
data owners that are stored across untrusted servers, how can
a client search keys for values in such a way that no server, in
isolation, can infer what the client has queried and retrieved?
Meanwhile, we would like no server to be able to determine
the key-value bindings stored by any data owner. Figure 2 lists
some concrete example key-value pairs in our everyday life.

Prior research on privacy-preserving search has largely
focused on providing strong security guarantees. They usually
incur high overhead, or provide limited search functionality or
privacy that limits their real-world adoptability. For example,
PIR approaches (e.g., [5], [14]) can theoretically supportkey-
value search under strong privacy, but with high overhead that
has precluded their use in practice. Encryption-based solutions
such as [30], [3] allow clients to search over encrypted data,
but limit search to be performed by either clients who hold
the same encryption keys as the data owners, or on a small
number of keywords pre-specified by clients. In addition, they
often require a sequential scan through the encrypted data and
are not efficient. Anonymity-based approaches (e.g., [6], [27])
can also achieve client privacy by routing queries through an
anonymous overlay toward servers. These approaches focus
on providing anonymity to the clients, but do not protect the
privacy for the generalized key-value search.

In this paper, we present aPeekaboosystem for performing
key-value search at untrusted servers without loss of user
privacy. We explicitly consider the tradeoffs between privacy,
usability, and efficiency. Although there are solutions that
achieve strong security properties, we intentionally favor an
efficient and practical approach that is necessary to provide
a weaker security model. Our main idea is to split the key-
value pairs across multiplenon-colluding servers. All the
servers then jointly perform search to return query results. In
summary, the Peekaboo system has the following features:

• Secure:Given a client query expressed as a key, Peekaboo
servers return a list of values matching the key while
no server, on its own, can determine either the values
retrieved, or the key-value bindings. Therefore, Peekaboo
protects both data owner privacy and client privacy.
Furthermore, the Peekaboo access control and user au-
thentication mechanisms prevent unauthorized users from
searching the data.



Key Value Application
Product names Providers, prices Online shopping
Keywords File owners, file names Keyword search, file sharing
Stock names Stock quotes Stock quote dissemination
Patient names SSN, medical histories Online medical directories
Subscriber names Phone numbers Yellow-page service

Fig. 2. Example applications of key-value search

• Flexible: Peekaboo is applicable to any type of key-
value search using user defined match criteria (e.g., exact
match [10], range search [12]). It can be easily extended
to support advance queries where not only matched values
but also matched keys will be returned in query results
(e.g., fuzzy match [11]).

• Efficient: Peekaboo requires neither expensive routing
mechanisms to send data (or queries), nor specialized
encryption algorithms on stored data. Our performance
evaluation shows that the storage costs of Peekaboo
servers are comparable or even less than legacy servers,
whereas the search latency is on the order of tens to
hundreds of milliseconds, acceptable to most clients.

II. M ODEL AND DEFINITIONS

In this section, we describe our system model and the
privacy properties that Peekaboo is trying to achieve.

A. System Model

The system has three types of entities: data owners (owners
hereafter), clients, and Peekaboo servers. We view the dataas
a list of key-value pairs. Without loss of generality, we assume
keys alone do not release useful information about the key-
value pairs that are to be searched (i.e., we should not be able
to infer a key-value pair from just the key for the purpose
of search to be meaningful). Peekaboo servers can store key-
value pairs provided by multiple independent owners. A query
consists of a single key and the client is interested in retrieving
all the values that match the key in the key-value pairs using
application specific match criteria (e.g., exact match, range
match).

The Peekaboo search protocol consists of two stages: a
registration stage and a query stage. In the registration stage,
owners publish key-value pairs at Peekaboo servers. In the
query stage, clients interact with servers to resolve queries.

The system has two types of Peekaboo servers:K-servers
and V-servers. K-servers store keys only, whereas V-servers
store encodings of values that can be used to recover values in
the key-value pairs after search. Data owners and clients talk
only to the V-servers. Both types of servers jointly perform
search to resolve queries. Without loss of generality, we
assume: (1) Peekaboo servers are “honest but curious”. They
follow protocol specifications exactly, and passively observe
the information stored locally and the messages they received.
(2) Peekaboo servers do not collude to learn data and queries.
This does not prevent the servers from communicating with
each other in order to follow the protocol.

B. Privacy Properties

Privacy is a guarantee that certain information about an
entity is hidden from other entities. The privacy property is
the definition of what types of information are hidden from
which entity. In a Peekaboo search system, there are two types
of entities whose privacy we would like to protect: data owners
and clients.

Throughout both registration and query stages, we strive
to prevent K-servers from learning values or user identities.
Although K-servers have access to keys, we protect the privacy
of data owners and clients by providing anonymity to both of
them against the K-servers. Meanwhile, we strive to leak no
information about keys or values to V-servers, thus providing
confidentiality of both the key-value pairs published by the
owners and the key-value pairs retrieved by the clients from
the V-servers. Each server, on its own (i.e., without any input
from other servers), cannot determine the key-value bindings
either stored or queried. Accordingly, we define the following
privacy properties for data owners and clients, respectively:

• Owner privacy:During both the registration and query
stages, a K-server, on its own, should not learn the owner
identity and the list of values in key-value pairs. A V-
server, on its own, should not learn either the keys or the
values in key-value pairs.

• Client privacy: During the query stage, a K-server, on
its own, should not learn the client identity and the list
of values returned in the query results. A V-server, on
its own, should not learn the client’s queried keys or the
values retrieved.

Given such privacy definitions, we first describe in Sec-
tion III a basic protocol for performing registration and query
with a single K-server and a single V-server. We use this
basic protocol as a building block, and present in Section IV
the Peekaboo search system for an open environment, where
any client interested in retrieving key-value pairs can perform
search. In such a scenario, while we assume servers do
not collude with each other, they could actively participate
in search as well, performing on-line dictionary attacks by
enumerating all possible keys as queries. However, we limit
such dictionary attacks to be on-line so that they can be
detected and stopped. To prevent such dictionary attacks, we
further present in Section V an enhanced protocol that limits
search to only authorized clients using access control and user
authentication mechanisms.

In our model, we achieve a tradeoff between the level of
privacy and the usability and efficiency obtained in the proto-
cols. For this purpose, we believe our privacy definitions inan
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Fig. 3. Using rendezvous numbers to bind the keys and the values

honest-but-curious model is sufficient. We discuss deployment
issues and solutions to mitigate server collusion in Section VI.
However, if strong privacy is a concern, then more secure
protocols such as [19] can be used in the context of keyword-
based PIR.

III. T HE BASIC PROTOCOL

In this section, we describe a basic protocol as a building
block for our system. This basic protocol involves a single
K-server and a single V-server, and is based on public key
cryptography. For the moment, we assume owners and clients
use this basic protocol to publish key-value pairs and to
perform search. Since this protocol has only limited privacy
guarantee, we present in the next section how we can construct
search systems based on this protocol to provide the desired
privacy properties. For clarity, we use upper caseK1, K2, . . .

to denote keys in the key-value pairs, and use lower case
k1, k2, . . . to denote encryption keys that will be needed.

For the specific application of key-value search, keys alone
do not release useful information about the pairs for the search
to be meaningful. Thus our idea is to split the pairs and store
them at different servers by introducing a layer of indirection
in between. Figure 3 shows the high level concept of the basic
protocol, where owners store the keys at only the K-server
and the values at only the V-server. To bind the keys and
the corresponding values, we generate a list ofrendezvous
numbersto serve as an indirection layer. Each key-value pair
is associated with a unique rendezvous number generated
randomly by the V-server, and forwarded to the K-server.

Owners and clients both communicate with only the V-
server to publish data and to perform search. Given a client
query, both servers work jointly to look up query results using
rendezvous numbers. During the communication, keys will be
forwarded to the K-server without being exposed to the V-
server, whereas the values are stored and returned by the V-
server. To simplify our description, we assume the system has
a single owner Alice who wants to register a list of key-value
pairs〈K1, V1〉, . . . , 〈Kn, Vn〉, and a single client Charlie who
wants to retrieve the value corresponding to a keyKs. The K-
server’s public key ispk. The basic protocol works as follows
(illustrated in Fig. 4):
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Fig. 4. The basic Peekaboo protocol

Step1: To publish a key-value pair〈Ki, Vi〉, Alice encrypts
the keyKi with the K-server’s public keypk, and submits the
encryptionαi ← Epk(Ki) and the corresponding valueVi to
the V-server:

Alice→ V-server : αi, Vi

Step2: On reception of the registration request, the V-server
extractsVi and the owner identity “Alice”, generates a unique
rendezvous numberRi, and stores the following entry locally:

V-server : 〈Alice, Vi, Ri〉

The V-server then forwardsαi to the K-server, attachingRi:

V-server→ K-server : αi, Ri

Step 3: The K-server extractsKi ← Dpk(αi) from the
message, whereDpk(αi) denotes the decryption ofαi using
the private key corresponding to the K-server’s public keypk.
It then registers the tuple〈Ki, Ri〉 locally:

K-server : 〈Ki, Ri〉

Query stage:

Step1: To search based on a keyKs, the client Charlie
encryptsKs with the K-server’s public keypk, and submits
the encryptionαs ← Epk(Ks) as the query to the V-server:

Charlie→ V-server : αs

Step2: The V-server generates a unique rendezvous number
Rs for the query, and registers the tuple of the client identity
“Charlie” andRs locally:

V-server: 〈Charlie, Rs〉

The V-server then attachesRs to the original queryαs, and
submits a search request to the K-server:

V-server→ K-server : αs, Rs

Step3: On reception of the search request, the K-server
extracts the queried keyKs ← Dpk(αs) using its private
key. The K-server then performs search locally. If a keyKi

matches the queryKs based on the predefined application
match criteria (e.g., numerically equal or string match), the
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Store 〈Charlie,Rs〉
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αs,Rs

r

Charlie: Query stage

V-Server K-Server

αs

〈Alice, Vi, Ri〉 〈Ki, Ri〉
αs ← Epk(〈Ks, sk〉)

• 〈Ri, Rs, αr 〉 ← r

• γ = 〈Alice,Vi,αr〉

〈Ks ,sk〉 = Dpk(αs)

• 〈Alice,Vi,αr〉 ← γ
• Ki ← Dsk(αr)

Fig. 5. Supporting advanced queries (sk is a one time encryption key
generated by Charlie.)

K-server returns the tupler = 〈Ri, Rs〉 as the query result
to the V-server, meaning the key with rendezvous numberRi

matches the key with rendezvous numberRs:

K-server→ V-server : r

Step4: The V-server extracts〈Ri, Rs〉 ← r, looks up the
corresponding valueVi and the owner identity “Alice” using
Ri, and returns the final query resultγ = 〈Alice, Vi〉 to
Charlie:

V-server→ Charlie : γ

We note that in the query stage, no owner participation is
needed to perform search. Because the K-server has access to
both the keys stored by the owners and the keys submitted as
queries, it can search all key-value pairs registered by different
owners using application specific matching criteria.

This basic protocol provides the desired privacy protection
from the K-server, which has no information about the values,
the data ownership, or the client identities. However, it does
not provide privacy against the V-server. Although the V-server
has no access to the keys that are encrypted under the K-
server’s public key, it may infer the key-value bindings based
on the values returned from client queries.

A. Supporting Advanced Queries

In many applications, a client may not only want to get a list
of values matching the query, but also be interested in seeing
the matched keys as well. For example, in a service discovery
system, a client searching for printers will be interested in
getting all the attributes regarding the list of printers inorder
to make the best selection. Another example is keyword search
where a client is searching for all file names containing the
substring “app”.

The basic search protocol can support such advanced queries
with a slight modification. In order to obtain matched keys in
the query results, the client can attach a one-time encryption
key protected by the K-server’s public key in the query. For
better performance, we can use symmetric keys instead of
public keys. As shown in Figure 5, before returning the query
results, the K-server encrypts the matched keys using the
client-provided encryption keysk, and sends the encryption
together with the query results to the V-server.

V-Server-1 V-Server-n

owner/client

… …

K-Server

V-Server-2

<K,V’1 >
(V’1 = <ID, V1>)

<K, V = F(V1, V2, …, Vn)>

<K,V’2 >
(V’2 = <ID, V2>)

<K,V’n >
(V’n = <ID, Vn>)

Fig. 6. An example Peekaboo search system with a single K-server andn

V-servers

IV. T HE PEEKABOO SEARCH SYSTEM

We now consider how we can use the basic protocol to
construct a Peekaboo search system with privacy guarantees
against both the K-servers and the V-servers. Specifically,we
would like to protect the values from being exposed to the V-
servers. One option is for each data owner to encrypt the values
using a secret key, and store the encryptions at the V-serverto
return as query results. While clients can still perform search
using keys, they need to contact the corresponding owners
after search in order to decrypt the returned query results.
This increases not only the search latency perceived by clients,
but also the processing overhead of data owners, who will be
involved in every query that results in a hit from their key-
value pairs.

Instead, our idea for preventing the V-servers from accessing
the values is to divide every valueV in the key-value pairs
into n (n > 1) pieces, and store them acrossn V-servers,
as shown in Figure 6. Each individual pieceVi(1 ≤ i ≤ n)
reveals no information aboutV , but the knowledge oft or
more pieces can be easily used to reconstruct the original
V using a reconstruction functionF . One choice ofF is
an XOR function with t = n, which offers not only true
information-theoretic privacy, but also fast reconstruction due
to its simplicity. More generally, we can adopt(t, n) threshold
schemes (e.g., [28]) for choosingF .

To register a key-value pair〈K, V 〉 in a Peekaboo system
with n V-servers, the owner first decomposesV into n

different pieces of encodingsV1, V2, . . . , Vn, so that a client
can reconstructV usingt out of then pieces later. To bind the
n different pieces of encodings, the owner assigns an unique
identificationID to this key-value pair, and composes a set of
n new key-value pairs{〈K, V ′

1
〉, 〈K, V ′

2
〉, . . ., 〈K, V ′

n〉}, where
V ′

i = 〈ID, Vi〉 (1 ≤ i ≤ n). Finally, the owner communicates
with all the n V-servers in parallel using the basic protocol
described in Section III, and registers each tuple〈K, V ′

i 〉 by
communicating with thei-th V-server (1 ≤ i ≤ n).

Similarly, to perform search using keyK, the client submits
the same query ofK to randomly selectedt V-servers in
parallel using the basic protocol. After retrieving thet different
pieces of encodings forV from the selected V-servers, the
client reconstructsV using the predefinedF .

The minimum number of V-servers to be contacted for
retrieving and reconstructing a valueV in the system should



be determined based on the level of privacy required by
the corresponding data owner. To prevent the K-server from
becoming the system bottleneck, we can also configure the
system with multiple K-servers to balance both the registration
and query workload.

The storage overhead at each server, determined by the
requirement of the basic protocol, is linear in the number
of owners and the number of key-value pairs in total. The
communication overhead is linear in the number of query
results. Both overheads are comparable to legacy servers.
Since a client will talk to multiple V-servers in parallel, the
search latency will be slightly higher with public key en-
cryption/decryption and one more round-trip communication
between the V-servers and the K-server. We will evaluate the
system overhead in Section VII.

V. ACCESSCONTROL AND USERAUTHENTICATION

In many applications, data owners would like to control
which clients can search which data items. For example,
in stock quote dissemination, quotes should be searched by
paying customers only. More seriously, without access control
and authentication, a malicious user can carefully perform
on-line dictionary attacks by searching all possible keys to
find out all the registered key-value pairs. We focus on the
environments where both users and servers may belong to
different organizations and administrative domains. Unlike
traditional mechanisms, Peekaboo access control and authen-
tication should be both privacy-preserving and convenientfor
search to be used frequently. Our design is guided by the
following principles:

• Inter-operability and expressivity.The system should
support users from different organizations or domains.
Given a query, servers should return all query results
(which may be from different owners) that the client is
authorized to see. Each owner should be able to specify
which client can access which key-value pairs based on
different levels of data sensitivity.

• Privacy non-disclosure.Servers should not be able to
infer the key-value pairs from the access control and user
authentication information.

• Convenience to the user.For convenient practical use,
clients should not need to know which data owners can
potentially satisfy their queries prior to search. Owners
should be able to revoke existing access permissions of
their data easily.

With all users talking only to the V-servers, the natural
choice is to authenticate users at the V-servers. Access control
can be enforced at both the K-servers and the V-servers. For
inter-operability, Peekaboo access control and user authentica-
tion are based on public key cryptography and we assume an
available public key infrastructure (e.g., [21]).

A. V-server based Access Control

Given a query, V-servers can perform access control by
jointly returning only the values that a client is authorized
to see. In the registration stage, each owner creates an Access

Control List (ACL) for every〈K, V 〉 of their key-value pairs,
specifying a list of clients that can access the pair. The owner
then splitsV into n piecesV1, V2, . . . , Vn, attaches the ACL
with every Vi, and registers the tuple〈K, {Vi, ACL}〉 by
communicating with thei-th V-server using the basic protocol.
During the query stage, given all the matched rendezvous
numbers returned from the K-server, each V-server returns to a
client only the value pieces that the client is allowed to access
based on the corresponding ACLs.

However, such V-server based access control may create a
side channel of information leakage, where the V-servers may
infer the corresponding queried keys based on the number of
entries matched and returned from the K-servers. For example,
the V-servers can guess whether a searched key is about a
popular product with many matching results.

B. K-server based Access Control

The K-servers can perform access control as well to prevent
the aforemention side channel of information leakage and
thus provide stronger privacy guarantee. By returning only
the entries that a client is authorized to access, the K-servers
prevent the V-servers from learning the exacted numbers of
matched results.

However, because the K-servers do not have access to the
client identity information, they cannot perform permission
checks directly by attaching an owner specified ACL for
every stored key. We thus need a solution that can hide client
identities in ACLs while still enforcing access control.

Our key idea is to let each owner create a pseudonym
C′ for a client C whom the owner is granting access to.
Every such〈C, C′〉 client-pseudonym mapping is split in half
and stored at different types of servers. In particular, theV-
servers authenticate clients with their identity information,
while the K-servers check access permission using client
pseudonyms to preserve privacy. To prevent a malicious client
from forging pseudonyms or using other people’s pseudonyms,
we use noninteractive zero-knowledge proofs so that the V-
servers can ensure the client-submitted pseudonyms are indeed
those specified by the data owners, even though the V-servers
themselves do not have access to the pseudonyms. We describe
the modified protocol with access control between a K-
server and a V-server using the same example described in
Section III. The scheme can be easily generalized to a system
with multiple V-servers.

Registration stage:

Step1: For each key-value pair〈Ki, Vi〉, the owner Alice
creates an access control listACLi consisting of a list of
clients{C1, C2, . . .} that can search the pair:

Alice : 〈Ki, Vi, ACLi〉

ACLi = {C1, C2, . . .}

For each clientCi in ACLi, Alice creates a pseudonymC′

i,
and replacesCi with C′

i in ACLi:

Alice : ACL′

i = {C′

1
, C′

2
, . . .}



To register〈Ki, Vi〉 with access control information, Alice
encrypts both the keyKi and the correspondingACL′

i using
the K-server’s public keypk into αi ← Epk(Ki, ACL′

i), so
that only the K-server will be able to see the key and the
access control specification.

For each client Ci, Alice constructs a tuplemi =
〈Ci, ei, hi〉, whereei ← Epci

(C′

i) is an encryption of the client
pseudonymC′

i using Ci’s public key pci, andhi ← H(C′

i)
is generated using a one-way hash functionH . This tuplemi

allows the V-server to verify the clientCi’s input later (we
discuss how to choose the hash function later).

Finally, Alice submitsαi, the corresponding valueVi, and
the set of tuplesM = {m1, m2, . . . , } to the V-server:

Alice→ V-server : αi, Vi, M

Step2: On reception of the registration request, the V-
server generates a rendezvous numberRi, and registers the
following tuple locally:

V-server : 〈Alice, Vi, Ri, M〉

whereM = {〈C1, e1, h1〉, 〈C2, e2, h2〉, . . .}

The V-server then forwards the encryptionαi as well as the
rendezvous numberRi to the K-server:

V-server→ K-server: αi, Ri

Step3: The K-server decrypts the message〈Ki, ACL′

i〉 ←
Dpk(αi), and registers the data and the access control infor-
mation locally:

K-server: 〈Ki, ACL′

i, Ri〉

Query stage:

Step1: To search based on a keyKs, the client Charlie first
submits a “ready-to-search” request to the V-server with his
identity Ic = “Charlie”:

Charlie→ V-server : Ic

Step 2: Given the “ready-to-search” request from
“Charlie” ← Ic, the V-server extracts Charlie’s pseudonym
from the tuple 〈Charlie, ec, hc〉 where ec = Epc(C

′) and
hc = H(C′) if one exists, and presentsec andhc to Charlie:

V-server→ Charlie : ec, hc

Step3: Charlie decryptsec and finds out his pseudonym
C′ ← Dpc(ec).

To send his queryKs and his pseudonymC′ to the K-server
without leaking the information to the V-server, Charlie re-
encrypts bothKs and C′ with the K-server’s public keypk

asαs ← Epk(Ks) ande′c ← Epk(C′), respectively.
In addition, to prove thatC′ (hidden in the encryptione′c) is

indeed the one returned by the V-server, Charlie constructsa
noninteractive zero knowledge proofπ thatH(Dpk(e′c)) = hc.
Charlie then submitsαs, e′c, andπ back to the V-server:

Charlie→ V-server : αs, e
′

c, π

Step4: The V-server first verifies that the proofπ presented
by Charlie is true based on the receivede′c and the storedhc. It
then creates a rendezvous numberRs, and registers the entry
〈Charlie, Rs〉 for this query locally:

V-server : 〈Charlie, Rs〉

The V-server then forwardsαs ande′c to the K-server, attach-
ing the rendezvous numberRs:

V-server→ K-server : αs, e
′

c, Rs

Step5: On reception of the query, the K-server decrypts
αs ande′c to obtain both the queried keyKs ← Dpk(αs) and
the corresponding client pseudonymC′ ← Dpk(e′c). The K-
server then performs both search and access permission check.
Only those query results that are allowed to be accessed by
Charlie’s pseudonymC′ (e.g.,Ri), e.g.,Ri, will be returned
asr = 〈Rs, Ri〉 to the V-server:

K-server→ V-server : r

Step6: Finally, the V-server looks up the values based on the
K-server returned rendezvous numbers, and sends the query
resultsγ = 〈Alice, Vi〉 back to Charlie:

V-server→ Charlie : γ

Discussion

By verifying the noninteractive zero-knowledge proofπ that
H(Dpk(ec)) = hc, the V-server is convinced that a client
is using the pseudonym sent to it by the V-server when the
client submits a query. The form of this proof depends on the
form of encryption and the one-way functionH , but certain
such functions permitπ to be constructed at a computational
expense roughly equal to the expense of a digital signature.In
one example, the K-server selects a cyclic groupG in which
both the Decisional Diffie-Hellman problem and computing
square roots are intractable, and utilizes Shoup-Gennaro en-
cryption [29] in G and one-way functionH : G → G defined
by H(x) = x2; see, e.g., [24, Section 5.2] for details.

Note access control checking is only performed on private
data. For public data that can be searched by anonymous
clients, Alice simply tags them as “public” at both the K-
server and the V-server for better search performance.

To supportgroups, Alice can create a pseudonymG′ for
each groupG in ACL specification. For each memberCi in
G, Alice encrypts the group pseudonymG′ together withCi’s
pseudonymC′

i using Ci’s public key pci, and obtains the
encryptionei ← Epci

(C′

i, G
′). Finally, Alice computes the

hashhi ← H(C′

i, G
′), and sendsmi = 〈Ci, ei, hi〉 to the V-

server during the data registration, so thatCi can use bothC′

i

andG′ to perform search:

Alice→ V-server : mi

To revoke a clientCi’s access rights on a particular key-
value pair 〈Kj, Vj〉, Alice simply removesCi’s pseudonym
C′

i from the correspondingACL′

j at the K-server. Such



permission revocation can take effect immediately without
being noticed by the client at all.

Since each owner selects client pseudonyms independently,
a client may need to decrypt multiple different pseudonyms
from different owners during the query stage. To reduce the
query overhead, pseudonyms can be cached at the client side
in the first query, and reused at subsequent queries to avoid
the first two steps in the query stage. Alternatively, each client
can select a unique pseudonym (e.g., a user ID), and register
it at different owners for permission specification.

C. User Authentication

For inter-operability, the Peekaboo user authentication is
based on conventional digital signatures (e.g., [9]). To defend
against replay attacks, we use timestamps and assume loosely
synchronized clocks. When submitting a query to the V-server
in step3, the client Charlie generates a timestampT , signs
T and the rest of query, and submits the following message
including the signature to the V-server:

Charlie→ V-server : M, σ

where M = {T, es, e
′

c, π}. Here es ← Epk(Ks), ec ←
Epk(C′), andσ is the digital signature ofM .

On reception of the message, the V-server verifies the
signatureσ using Charlie’s public key, which can be obtained
from a public key infrastructure. The V-server then processes
the query using the procedures described above. For message
integrity and confidentiality, we assume a protected channel
such as TLS [32] between the K-server and the V-server.

In summary, the revised Peekaboo protocol with access
control and user authentication is illustrated in Figure 7.

Store 〈Alice,Vi, Ri, M〉
M = {〈Charlie, ec, hc〉}

1. Ic
2. ec, hc

• {T, αs, ec’, π} ← M
• Verify σ, π
• Store  〈Charlie, Rs〉

•〈Ki, C’〉 ← Dpk(αi)
• Store 〈Ki, C’, Ri〉

α
i
, Ri

4. αs,ec’,Rs

Ic = Charlie

α
i
←Epk(Ki, C’)

ec←Epc(C’),  hc←H(C’)
M = {〈Charlie, ec, hc〉}

Alice: Registration stage  

Charlie: Query stage

V-Server K-Server

αi, Vi, M

• C’ ← Dpc(ec)
• ec’ ← Epk(C’), αs ← Epk(Ks)
• π←proof(hc, ec’, H, pk) 
• M = {T, αs, ec’, π}
• σ = sig(M)

•Ks ← Dpk(αs)
•C’ ← Dpk(e’c)
•If Ki matches Ks
•&& C’ is permitted

r = 〈R
i
, R

s
〉6. γ 5. r• 〈Ri, Rs〉 ← r

• γ = 〈Alice, Vi〉

3. M, σ

• Charlie ← Ic
• Look up “Charlie”
to return ec, hc

〈Alice, Vi〉 ← γ

Fig. 7. The enhanced protocol with access control and user authentication,
whereπ is a noninteractive zero knowledge proof thatH(Dpk(e′c)) = hc.

VI. D EPLOYMENT AND VULNERABILITIES

In this section, we discuss various issues in system deploy-
ment, and outline potential malicious attacks that Peekaboo
is vulnerable with possible solutions. Completely addressing
these attacks is a topic of ongoing work.

A basic assumption of the Peekaboo search system is that
the K-servers have no information about user identities or data

values. Therefore, in real deployment, the K-servers should
not have access to the network packets routed toward the V-
servers. If both the K-servers and the V-servers are located
on the same LAN, they should be configured at different
network segments (e.g., separated by bridges). On campus
or enterprise networks with firewalls, we can configure the
V-servers to sit inside the firewalls while the K-servers can
be configured outside the firewalls so that they do not see
the user traffic. If both servers are on a wide area network,
we require the K-servers not be configured on transit network
backbones. In overlay networks, data and queries are usually
routed incrementally in the application layer (e.g., [6]),users
can thus encrypt their identities (e.g., IP addresses) using V-
servers’ public keys so that the K-servers do not know who is
the true message initiator.

Both the K-servers and the V-servers could disrupt service.
For example, the V-servers could produce bogus search results
to the clients without forwarding the queries to the K-servers.
Similarly, the K-servers could return arbitrary query results
without performing the actual search. To detect misbehaving
servers, we can use both owner-initiated auditing and client-
initiated auditing based on random sampling so that the more
the server misbehaves, the higher the probability that it will
be caught. For server non-repudiation, both servers can sign
their responses in query results.

A more serious threat is server collusion, where the K-
servers and the V-servers cooperate to reconstruct the key-
value pairs registered or searched. One approach is to intro-
duce further layers of indirection by adding auxiliary servers
in the system. Specifically, we can deploy a chain of auxilary
servers between a K-server and a V-server to perform the
basic Peekaboo protocol. A registration request〈α, V 〉 (α ←
Epk(K)) is first submitted to a V-server, who creates a ren-
dezvous numberR0 and forwards〈α, R0〉 to the first auxiliary
server in the chain. Each auxiliary serverAi, on reception of
the message, randomly generates a new rendezvous number
Ri to replace the old oneRi−1 in the message to forward
to the next hop server, until the request finally reaches the
K-server. Similarly, a user query is also routed incrementally
along the server chain from the V-server to the K-server. Query
results are then propagated back in the reverse direction. To
tolerate the brute force collusion of up tot servers in this
chain, we need at leastt − 1 auxiliary servers between the
K-server and the V-server. There is thus a balance between
privacy and efficiency, and both the data owners and clients
can jointly decide the level of desired privacy.

However, such multi-server protocol is vulnerable to timing
attacks with the collusion between the K-server and the V-
server. For example, both servers could jointly measure the
time needed between the V-server forwarding a query and the
K-server receiving it, or submit queries one by one to learn
who submitted what query. To mitigate such attacks, we can
use solutions from anonymous routing [4], [31]. For example,
each auxiliary server can buffer and reorder messages within
a small time frame.

Finally, Peekaboo servers could perform traffic pattern anal-



ysis to infer popular keys or values by measuring the frequency
of the corresponding rendezvous numbers in queries or query
results. In particular, the V-servers could tell whether two
queries resulted in the same response even though they have
access to neither queries nor query results. To mitigate such
threat, owners can initiate the registration process frequently
in order to update both the rendezvous numbers and the
encodings of values hold by the V-servers.

VII. E XAMPLE APPLICATIONS AND PERFORMANCE

In this section, we describe an example application of file
sharing service to illustrate how Peekaboo can be used to
perform keyword search without loss of user privacy. We then
evaluate the protocol overhead using trace-based experiments
and compare its performance with regular centralized servers.

In a file sharing system, owners store files or file names
at directory servers. Each file has a owner-assigned local
ID. Clients submit queries as keywords to the servers. If the
content or the name of a file matches the query, the servers
return the local file ID and the corresponding owner identity
(e.g., IP address) as query results. Clients can then download
the file directly using the local file ID from the corresponding
file owner.

In the Peekaboo system registration stage, owners register
the file names (or file content) as the keys, and the local
file IDs as the values at the K-servers and the V-servers,
respectively. For each file, the V-servers randomly generate
unique 128-bit strings as the rendezvous numbers. To support
efficient query search, each V-server computes a hash based
inverted index of rendezvous numbers, whereas each K-server
computes an inverted index table of keywords based on file
names (or file content). In the query stage, clients submit
keywords as the queried keys, and get a list of matched values
represented as the local file IDs and the corresponding file
owner IP addresses. When advanced queries are supported
where matched keys should be returned in query results,
the servers also return the list of matched file names (or
relevant file content) encrypted by the client-provided one-
time encryption key.

We use a Gnutella [15] trace gathered at CMU to conduct
trace based experiments, and evaluate the system performance
using the described file sharing application in the following
three aspects: (1) the storage costs at both types of servers, (2)
the search latency perceived by clients, and (3) the overhead of
access control and user authentications. We implemented both
types of servers, and evaluate the performance using a single
K-server and a single V-server in the system. Increasing the
number of V-servers in the system would not change either
(1) or (3). Because clients communicate with V-servers in
parallel, the search latency should increase only slightlywith
multiple V-servers. For comparison, we also implemented a
regular centralized server that performs both data registration
and query, and repeat our experiments. All the servers are
implemented in C++ in Linux, running on PIII 550MHz
machines with 128 RAM on a 10BaseT Ethernet LAN. Each
data point in the figures below is the average of ten runs.

A. Storage Costs at Peekaboo Servers
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Fig. 8. Index table size vs. number of indexed files

To evaluate the storage costs, we extract file names and
their owner IP addresses from the search reply messages in the
Gnutella trace, and register them using a fake owner program
simulating different file owners. Figure 8 shows the index
table sizes of the Peekaboo servers and the regular centralized
server as the function of the number of indexed files. We
observe that the storage costs increase linearly as the number
of indexed files increases. The K-server index table sizes are
slightly larger compared with a regular server, while the V-
server index sizes are only about a third of those of a regular
server. In general, the storage costs are small at both typesof
Peekaboo servers.

B. Search Latency Perceived by Clients
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Fig. 9. Peekaboo search latency

We proceed to evaluate the search latencies perceived by
clients. We implemented a client program running at a third
machine (PIII 550MHz with 128 RAM) in the same Ethernet
LAN. The public key encryption uses the RSA algorithm [26]
with 1024-bit keys, and the one-time symmetric key encryp-
tion uses the AES algorithm [1] with 128-bit keys. Both
algorithms are implemented by the Crypto++ library (version
4.2) [8]. For each query, the servers return the first 100
matched files as query results. Figure 9 shows the search
latencies measured by the client. Compared with the regular
server, Peekaboo incurs much higher search latency. When we
use the advanced queries to support returning matched keys



Total Network Look up RSA en. RSA de. AES en. AES de. Other
Mean (µs) 36475 6427 3041 1575 23834 581 781 236
Std dev (µs) 2869 2831 53 10 38 14 1 5
Percentage 100.0% 17.6% 8.3% 4.3% 63.34% 1.6% 2.1% 0.6%

Fig. 10. Time to process a search request using 1024-bit RSA keys and 128-bit AES keys.

(i.e., matched file names), the search latency increases only
slightly compared with the basic protocol.

To further examine the search latency, we list the times
spent in various steps of processing a query in Figure 10.
We fix the number of files indexed to be105, and show
both the mean and the standard deviation of latency as well
as the percentage of the total latency. The “Total” column
corresponds to the time elapsed between the client submission
of a query and getting back the reply. RSA decryption and
network transmission are the most expensive steps, whereas
AES encryption and decryption are fast, accounting for less
than 5% of the processing time in total. The “Look up” time
includes both the K-server lookup and the V-server lookup,
and depends on the number of files indexed. The “Other” line
consists of the time spent for the V-server to buffer and forward
client requests to the K-server as well as the time spent to
buffer and forward AES-encrypted replies back to the client.
In general, the search latency is acceptable to clients since the
network latencies on WAN are usually on the order of tens of
milliseconds. By optimizing the security operations (e.g., by
using cryptographic routines implemented in hardware), we
expect the performance penalties due to security to decrease.
Furthermore, if clients will submit multiple queries in a row,
they can set up symmetric session keys with the K-server for
encrypting/decrypting queried keys to amortize the costs of
RSA decryption.

C. Overhead of Access control and Authentication

The Peekaboo access control and user authentication mech-
anisms introduce additional query processing overhead. The
V-server based access control is relatively simple and should
incur only a small amount of overhead by performing an
additional ACL lookup before returning results. We thus
implement the K-server based access control described in
Section V-B to evaluate the worst case performance. Such
access control and authentication introduce the following
extra steps during the query processing: (1) client signature
signing and verification, and (2) client pseudonym encryption,
decryption, and verification. While the digital signature based
client authentication has a relatively constant cost, the cost of
decrypting pseudonyms can grow linearly with the number of
client pseudonyms assigned by different owners. Fortunately,
such expensive computations are performed by the clients
which will less likely become overloaded compared with the
servers. In addition, the client pseudonyms can be cached at
the client side to reduce the search latency.

Figure 11 shows the search latency with the Peekaboo
access control and user authentication mechanisms by vary-
ing the number of indexed files and the number of client
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Fig. 11. Search latency with access control and user authentication. The
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pseudonyms. For comparison, we list the processing time
spent at various entities as well as the time spent on network
transmission. Without pseudonym caching, the client side
processing takes the longest time. In general, the increaseof
the number of files has little effect on search latency. The client
side processing time increases proportionally to the number of
client pseudonyms, while the server side processing latency
increases only slightly with the increasing number of client
pseudonyms. By caching client pseudonyms, we can greatly
reduce the client processing time, and therefore reduce the
overall search latency.

VIII. R ELATED WORK

A number of recent solutions have been proposed to perform
search on encrypted data (e.g., [30], [3]). Although encryption
provides data confidentiality to protect privacy, it limitsthe
search functionality that can be performed. These approaches
either require clients to share the same encryption keys used
by the data owners [30], or limit search to be performed on a
small number of keywords pre-specified by the clients. They
also require a sequential scan through encrypted data, which
is an expensive operation in terms of performance.

There has been a large body of literature on anonymous
communication to prevent discovery of source-destinationpat-
terns. In general, there are two types of approaches: proxy
based approaches and mix based approaches. Proxy based
approaches interpose an additional proxy between the sender
and the receiver to hide the sender’s identity from the re-
ceiver. Examples include Janus [18], Crowds [25], and email
pseudonym servers [23]. The Peekaboo V-servers bears some
similarity with a proxy in that all user traffic goes through
them. However, the primary purpose of Peekaboo is not to hide
user identities, but rather to perform search without revealing
the key-value pairs. Thus the Peekaboo V-servers are not only
proxies as they actively participate in storing and returning



values. The mix based approaches interpose (e.g., [4], [31]) a
chain of proxies between the sender and the receiver to achieve
unlinkability between the sender and the receiver. We showed
in Section VI where we used mix based approaches to prevent
timing attacks. Compared with these approaches, Peekaboo
protects not only user identities, but also key-value pairs.
However, Peekaboo does not provide unlinkability between
key-value pairs in the presence of server collusion.

The problem of Private Information Retrieval (PIR) [5],
[14] has been well studied to protect client privacy in search.
These approaches model the database as ann-bit string, and
a client retrieves thei-th bit without revealing the indexi.
Although PIR schemes can achieve very strong security, they
are generally not practical to use.

Secure multi-party computation (SMC) has also been widely
studied [16]. These techniques enable multiple parties, each
holding a private input, to collectively compute a function
of their inputs while revealing only the function output. Our
problem can be viewed as a special case of this problem,
though it permits more efficient solutions than general SMC
techniques, which are rarely efficient for practical use.

Recent work [2] has also noticed the value of two or
more logically independent servers for maintaining the privacy
of database content and queries. It envisions an architecture
where data and queries can be decomposed across multiple
servers in different ways. The authors leave open a concrete
solution based on the proposed architecture, and Peekaboo
may potentially be adapted to provide a starting point.

IX. CONCLUSION

We have proposed a system calledPeekaboo, for performing
general key-value search at untrusted servers without lossof
efficiency and user privacy. Given a set of key-value pairs
from multiple owners that are stored across untrusted servers,
Peekaboo allows a client to search these pairs in such a way
that each server, in isolation, cannot determine any of the key-
value bindings. Our main idea is to separate the key-value pairs
and store them across different servers. Supported by access
control and user authentication, Peekaboo is: (1) secure in
that search can be performed by only authorized clients while
protecting the privacy of both data owners and clients, (2)
flexible in that it is applicable to any type of key-value search,
and can be easily extended to support advanced queries, and
(3) efficient in that it has small storage cost and search latency,
and hence is practical to use today.

REFERENCES

[1] AES. http://csrc.nist.gov/CryptoToolkit/aes/
rijndael .

[2] G. Aggarwal, M. Bawa, P. Ganesan, H. G. Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep a
secret: A distributed architecture for secure database services. InCIDR,
2005.

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.Public key
encryption with keyword search. InProc. of Eurocrypt, 2004.

[4] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms.Communications of the ACM, 24(2):84–88, February 1981.

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In IEEE Symposium on Foundations of Computer Science,
1995.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:A
distributed anonymous information storage and retrieval system. In
Designing Privacy Enhancing Technologies:InternationalWorkshop on
Design Issues in Anonymity and Unobservability, LNCS 2000.

[7] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An
architecture for a secure service discovery service. InMobile Computing
and Networking, 1999.

[8] Wei Dai. Crypto++. http://www.eskimo.com/˜weidai/
cryptlib.html .

[9] Digital signature standard (DSS). Federal Information Processing
Standards Publication 186, May 1994.

[10] Exact match. http://www.searchenginedictionary.com/
e.shtml#exactmatch .

[11] Fuzzy match. http://www.searchenginedictionary.com/
terms-fuzzy-matching.shtml .

[12] J. Gao and P. Steenkiste. An adaptive protocol for efficient support of
range queries in DHT-based systems. InICNP, 2004.

[13] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project
aura: Towards distraction-free pervasive computing. InIEEE Pervasive
Computing 1, 2002.

[14] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data
privacy in private information retrieval schemes.Journal of Computer
and System Sciences (JCSS), 60(3):592–629, 2000.

[15] Gnutella hosts. http://www.gnutellahosts.com.
[16] O. Goldreich. Secure multi-party computation. First version posted in

June 1998. Final revision posted October 2002.
[17] U. Hengartner and P. Steenkiste. Protecting access to people location

information. InProc. of the First International Conference on Security
in Pervasive Computing, 2003.

[18] The Lucent personalized web assistant. http://www.bell-
labs.com/project/lpwa/history.html.

[19] L. Kissner, A. Oprea, M. K. Reiter, D. Song, and K. Yang. Private
keyword-based push and pull with applications to anonymouscommu-
nication. InApplied Cryptography and Network Security (ACNS), 2004.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In ASPLOS 2000.

[21] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication
in Distributed Systems: Theory and Practice.ACM Trans. Computer
Systems, 10(4):265–310, November 1992.

[22] U. Leonhardt and J. Magee. Security considerations fora distributed
location service.Journal of Network and Systems Management, 6:51–70,
1998.

[23] D. Mazieres and M. F. Kaashoek. The design and operationof an E-mail
pseudonym server. InACM CCS, 1998.

[24] M. K. Reiter, X. Wang, and M. Wright. Building reliable mix networks
with fair exchange. InApplied Cryptography and Network Security
(ACNS), 2005.

[25] M.K. Reiter and A.D. Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66–92,
November 1998.

[26] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems.Communications of the
ACM, 27(2), February 1978.

[27] V. Scarlata, B. Levine, and C. Shields. Responder anonymity and
anonymous peer-to-peer file sharing. InICNP 2001.

[28] A. Shamir. How to share a secret.Communications of the ACM, 22(11),
1979.

[29] V. Shoup and R. Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack.Journal of Cryptology, 15, 2002.

[30] Dawn X. Song, D. Wagner, and A. Perrig. Practical solutions for search
on encrypted data. InIEEE Symposium on Security and Privacy, 2000.

[31] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connec-
tions and onion routing. InProc. of the IEEE symposium on Security
and Privacy, 1997.

[32] The TLS protocol.http://www.ietf.org/rfc/rfc2246.txt .
[33] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum. Locating

objects in wide area systems. InIEEE Communications Magazine, pages
104–109, 1998.


