Protecting Privacy in Key-Value Search Systems

Abstract— This paper investigates the general problem of

efficiently performing key-value search at untrusted serves
without loss of user privacy. Given key-value pairs from mutiple
owners that are stored across untrusted servers, how can aieht
efficiently search these pairs such that no server, on its owrcan
reconstruct the key-value pairs?

We propose a system, calledPeekaboo, that is applicable and
practical to any type of key-value search while protecting loth
data owner privacy and client privacy. The main idea is to
separate the key-value pairs across different servers. Spprted
by access control and user authentication, Peekaboo allowsarch
to be performed by only authorized clients without reducingthe
level of user privacy.

I. INTRODUCTION

, o S
Wide area distributed systems often assume that hosts from

The question then is how can we efficiently search infor-
mation while protecting the privacy of both data owners and
clients? Without loss of generality, in a key-value seang$t s
tem illustrated in Figure 1, there are data owners, clieantd,a
pool of servers. Data owners register their data repredeate
key-value pairs at one or more servers. Clients submit keys a
gueries and would like to retrieve all the values that maleh t
keys. In such a scenario, given key-value pairs from mutipl
data owners that are stored across untrusted servers, low ca
a client search keys for values in such a way that no server, in
isolation, can infer what the client has queried and reguév
Meanwhile, we would like no server to be able to determine
the key-value bindings stored by any data owner. Figuret? lis
ome concrete example key-value pairs in our everyday life.

Prior research on privacy-preserving search has largely

different administrative domains will collaborate withcha - i
other (e.g., [20], [33]). With user data exposed to hetergqcused on providing strong security guarantees. Theyllysua

geneous, third-party servers, one major challenge is e std U’ high ov_erhead, or provide limited sea_rt_:h functictyzor
and find information without loss of privacy. privacy that limits their real-world adoptability. For exale,

Consider a distributed service discovery system with mLﬁ)-lR approaches (e.g., [5], [14]) can theo_rengally SupgeyE
tiple independent service providers [7]. Each providereso value search undgr strong privacy, but with _h|gh overhead th
service attributes, prices, and locations at one or mom:dirhas precluded their use in practice. Encryption-basedieok

tory servers. Clients submit service attributes as quéoid¢ise such as [30], [3] allow clients to search over encrypted data

directory servers, and obtain price and location infororatis but limit search to be performed by either clients who hold

query results. This poses a significant risk to the privacy g?e same encryption keys as_t.he data. owners, or on a small
both the clients and the service providers. A curious dingct number of keywords pre-specified by clients. In additiomyth

server could not only follow a client’s queries and infer thgften require a sequential scan through the encrypted data a

client's activities, but also exploit the information stdr by are not efficient. Anonymity-based approaches (e.g., BJ)l

a service provider to infer sensitive information such as ffan also achieve client privacy by routing queries through a

. - . . . anonymous overlay toward servers. These approaches focus
provider’'s marketing strategies and financial status. y Y PP

As another example, consider a people location servigg providing anonymity to the clients, but do not protect the

for ubiquitous computing environments (e.g., [13]). Altigt prlvacy_ for the generalized key-value search.)

there are many solutions (e.g., [17], [22]) to prevent upaut ' this paper, we presentReekabocsystem for performing
rized access to user location information, few of them ackKey-value search at untrusted servers without loss of user
the problem of protecting user privacy with respect to thHfivacy. We explicitly consider the tradeoffs between acy,

servers, which may belong to different organizations and H§ability, and efficiency. Although there are solutionsttha
untrusted to expose either data or queries. achieve strong security properties, we intentionally faso
efficient and practical approach that is necessary to peovid

a weaker security model. Our main idea is to split the key-
value pairs across multipl@on-colluding servers. All the
servers then jointly perform search to return query resuits
summary, the Peekaboo system has the following features:

Data owner

Server pool H ;\(2’(\0
p ?\e‘é\; ~ 20
e

« SecureGiven a client query expressed as a key, Peekaboo
servers return a list of values matching the key while
no server, on its own, can determine either the values
retrieved, or the key-value bindings. Therefore, Peekaboo
protects both data owner privacy and client privacy.
Furthermore, the Peekaboo access control and user au-
thentication mechanisms prevent unauthorized users from
searching the data.

Client

Fig. 1. A typical key-value search system

Value

Providers, prices

File owners, file names

Stock quotes

SSN, medical histories|
5 Phone numbers

Key

Product names
Keywords

Stock names
Patient names
Subscriber name

Fig. 2.

Application
Online shopping
Keyword search, file sharing
Stock quote dissemination
Online medical directories
Yellow-page service

Example applications of key-value search

« Flexible: Peekaboo is applicable to any type of keyB. Privacy Properties
value search using user defined match criteria (e.g., exac

match [10], range search [12]). It can be easily extendedbnvacy s a guarantee that_gertam |nformat|on about an
. entity is hidden from other entities. The privacy propesy i
to support advance queries where not only matched val

. " R& definition of what types of information are hidden from
but also matched keys will be returned in query results, . .
Which entity. In a Peekaboo search system, there are twa type
(e.g., fuzzy match [11]).

o of entities whose privacy we would like to protect: data ovene
« Efficient: Peekaboo requires neither expensive routlné;nd clients P Y P

mechanisms to send data (or queries), nor specialized]_h hout both istrati q " i
encryption algorithms on stored data. Our performan([;e roughout both registration and query stages, we strive
prevent K-servers from learning values or user idestitie

evaluation shows that the storage costs of Peekab)
9 ﬂhough K-servers have access to keys, we protect theqyriva

servers are comparable or even less than legacy serve Nat d clients b idi v t0 both of
whereas the search latency is on the order of tens Jo ata owners and clients by providing anonymity to both o
hundreds of milliseconds, acceptable to most clients. t em aggmst the K-servers. Meanwhile, we strive to 'e"’?k.”o
information about keys or values to V-servers, thus proygdi
confidentiality of both the key-value pairs published by the
owners and the key-value pairs retrieved by the clients from
In this section, we describe our system model and thiee V-servers. Each server, on its own (i.e., without anyinp
privacy properties that Peekaboo is trying to achieve. from other servers), cannot determine the key-value bagslin
either stored or queried. Accordingly, we define the follaogyi
privacy properties for data owners and clients, respdgtive

II. MODEL AND DEFINITIONS

A. System Model

Owner privacy:During both the registration and query
stages, a K-server, on its own, should not learn the owner
identity and the list of values in key-value pairs. A V-
server, on its own, should not learn either the keys or the
values in key-value pairs.

The system has three types of entities: data owners (owners
hereafter), clients, and Peekaboo servers. We view theadata
a list of key-value pairs. Without loss of generality, welang
keys alone do not release useful information about the key-
value pairs that are to be searched (i.e., we should not lee abl

to infer a key-value pair from just the key for the purpose °
of search to be meaningful). Peekaboo servers can store key-
value pairs provided by multiple independent owners. A guer
consists of a single key and the client is interested ineneitng

Client privacy: During the query stage, a K-server, on
its own, should not learn the client identity and the list
of values returned in the query results. A V-server, on
its own, should not learn the client’s queried keys or the

all the values that match the key in the key-value pairs using Vvalues retrieved.

application specific match criteria (e.g., exact matchgean Given such privacy definitions, we first describe in Sec-
match). tion 11l a basic protocol for performing registration andegy

The Peekaboo search protocol consists of two stageswigh a single K-server and a single V-server. We use this
registration stage and a query stage. In the registratagest basic protocol as a building block, and present in Section IV
owners publish key-value pairs at Peekaboo servers. In the Peekaboo search system for an open environment, where
query stage, clients interact with servers to resolve @geri any client interested in retrieving key-value pairs carfqren

The system has two types of Peekaboo serdé¢rservers search. In such a scenario, while we assume servers do
and V-servers K-servers store keys only, whereas V-serverwt collude with each other, they could actively particgpat
store encodings of values that can be used to recover valueii search as well, performing on-line dictionary attacks by
the key-value pairs after search. Data owners and clietkks tanumerating all possible keys as queries. However, we limit
only to the V-servers. Both types of servers jointly perforrauch dictionary attacks to be on-line so that they can be
search to resolve queries. Without loss of generality, witetected and stopped. To prevent such dictionary attacks, w
assume: (1) Peekaboo servers are “honest but curious”. Tliggher present in Section V an enhanced protocol that dimit
follow protocol specifications exactly, and passively aligse search to only authorized clients using access control aad u
the information stored locally and the messages they redeivauthentication mechanisms.
(2) Peekaboo servers do not collude to learn data and queriesn our model, we achieve a tradeoff between the level of
This does not prevent the servers from communicating wifirivacy and the usability and efficiency obtained in the prot
each other in order to follow the protocol. cols. For this purpose, we believe our privacy definitionarin

V-Server K-Server . . . V-Server K-Server
Alice: Registration stage

Alice V! RI | > k! 0 E(K) K < D_ (o)
Owner e Va— 5t 3 *h :
) a, V, i R. ai’ R' ' piA
V2 R2 - K2 — % Vi [Store (Alice,V,,R; . Store (K, R)
1 Al \ 1
Bob Vl; R3 L Klz’ Chavlie;. Query stage
V2 R4 K;
b o b g < Epk(Ks)
— % .Store (Charlie,Ry)—0-Re—s KsDp(ay)
— y + (R, Rg) r If K matches K
Fig. 3. Using rendezvous numbers to bind the keys and theesalu L (Alice, V) « v * V= (Alice, Vi) r= R Ry
Vi

. . - . Fig. 4. The basic Peekaboo protocol
honest-but-curious model is sufficient. We discuss deptaym

issues and solutions to mitigate server collusion in Sactib
However, if strong privacy is a concern, then more secure

protocols such as [19] can be used in the context of keyword-SteP1: To publish a key-vj';llue paif;, Vi), Alice encrypts
based PIR. the keyK; with the K-server’s public keyk, and submits the

encryptione; < Ep,(K;) and the corresponding valué to
the V-server:
IIl. THE BASIC PROTOCOL .
Alice — V-server: oy, V;
In this section, we describe a basic protocol as a building

block for our system. This basic protocol involves a Smglgxtractsv;» and the owner identity “Alice”, generates a unique

K-server and a single V-server, and is based on pUb“C_k?é(ndezvous numbek;, and stores the following entry locally:
cryptography. For the moment, we assume owners and clients

use this basic protocol to publish key-value pairs and to V-server: (Alice, V;, R;)

perform search. Since this protocol has only limited prya

guarantee, we present in the next section how we can cohstr

search systems based on this protocol to provide the desired V-server— K-server: «;, R;

privacy properties. For clarity, we use upper c#sg Ko, ...

to denote keys in the key-value pairs, and use lower caseS>tep3: The K-server extractd; — Dpi(c;) from the

k1, ks, ... to denote encryption keys that will be needed. Message, wher®,.(«;) denotes the decryption of; using
For the specific application of key-value search, keys aloffe€ Private key corresponding to the K-server's public key

do not release useful information about the pairs for thecbea !t then registers the tuplei’;, i;) locally:

to be mee}ningful. Thus our i_dea is tc_) split the pair; apd store K-server: (K;, R;)

them at different servers by introducing a layer of indii@ct

in between. Figure 3 shows the high level concept of the ba&iery stage:

protocol, where owners store the keys at only the K-serverStepl. To search based on a key., the client Charlie
. S

and the values. at only the V-server. To bind the keys a’é%cryptsKs with the K-server's public keyk, and submits
the corresponding values, we generate a listesfdezvous o encryption, «— E,,(K,) as the query to the V-server:
numbersto serve as an indirection layer. Each key-value pair

is associated with a unique rendezvous number generated Charlie— V-server: o

randomly by the V-server, and forwarded to the K-server. i .
. . . Step2: The V-server generates a unigue rendezvous number
Owners and clients both communicate with only the V;

server to publish data and to perform search. Given a C”e%hz)rr”g:eagg%y,Igggll)r/?glsters the tuple of the client identity

query, both servers work jointly to look up query resultagsi
rendezvous numbers. During the communication, keys will be V-server: (Charlig R;)
forwarded to the K-server without being exposed to the V- -
server, whereas the values are stored and returned by theT(}? \(—server then attaches, to the original query,, and
server. To simplify our description, we assume the systesn hscpbmlts a search request to the K-server:

a single owner Alice who wants to register a list of key-value V-server— K-server: a, R

pairs (K1, V1), ..., (K., V,), and a single client Charlie who

wants to retrieve the value corresponding to a k&y The K- Step3: On reception of the search request, the K-server

server’s public key igk. The basic protocol works as followsextracts the queried keys « Dpx(c) using its private
(illustrated in Fig. 4): key. The K-server then performs search locally. If a K€y

matches the query<, based on the predefined application
Registration stage: match criteria (e.g., numerically equal or string matchg t

Step2: On reception of the registration request, the V-server

e V-server then forwards; to the K-server, attaching;:

V-Server K-Server
Charlie: Query stage (Alice, V;, R)) (Ki, Ry) K-Server
705 Epl(Ks, sk)
— 9 store (Charlie,R)—2=Rs J(K, sk) = D, (a)
: v . (R, R, Q) T r If K, matches K| | V-Server-1 | | V-Server-2 | e+ sre V-Server-n
DE— T o, = Eg(K) |
! - y= (Alice,V,,d;) r RSkRI :
i+ (Alice,V,0) <y r={Ri Ry 0t
e Ki = Dy (a,) g

Fig. 5. Supporting advanced queriesk(is a one time encryption key

generated by Charlie.) Fig. 6. An example Peekaboo search system with a single Wesandn

V-servers

K-server returns the tuple = (R;, Rs) as the query result IV. THE PEEKABOO SEARCH SYSTEM
to the V-server, meaning the key with rendezvous nuniber

matches the key with rendezvous numbir We now consider how we can use the basic protocol to

construct a Peekaboo search system with privacy guarantees
K-server— V-server: r against both the K-servers and the V-servers. Specifioaby,
would like to protect the values from being exposed to the V-
Step4: The V-server extract$R;, R,) — r, looks up the servers.One option is for each data owner to encrypt theegalu
corresponding valu&; and the owner identity “Alice” using Using a secret key, and store the encryptions at the V-styver

R;, and returns the final query resujt = (Alice,V;) to return as query results. While clients can still performreka
Charlie: using keys, they need to contact the corresponding owners

after search in order to decrypt the returned query results.
This increases not only the search latency perceived biytslie

We note that in the query stage, no owner participation péjt also t.he processing overhead of Qata owners, whp will be
needed to perform search. Because the K-server has acced@/@Jved in every query that results in a hit from their key-
both the keys stored by the owners and the keys submitted"é‘gue pairs.))
queries, it can search all key-value pairs registered fgrgint ~ InStéad, our idea for preventing the V-servers from acogssi
owners using application specific matching criteria. the values is to divide every valug in the key-value pairs

This basic protocol provides the desired privacy protae’ctidnto g (n > }:) p|ec%s, Eandh s_tc:jr_e_(;he:n a (":2[01?3\</—§e2/ers,
from the K-server, which has no information about the value®> S lown n flguret_) abc thjn bIVIt ?ha i'e 9(| da ! o ")
the data ownership, or the client identities. However, ieslo reveals no information abotlt, but the knowledge ot or
not provide privacy against the V-server. Although the Yvse more pieces can be gasﬂy use_zd to reconstrgct the (_)r|g|na|
has no access to the keys that are encrypted under the Yk Using a reconstruction functiod’. One choice ofF is

server's public key, it may infer the key-value bindings dxhs an XOR, function W'th? = n, which offers not qnly true
on the values returned from client queries. information-theoretic privacy, but also fast reconstiarttdue

to its simplicity. More generally, we can adofgt) threshold
schemes (e.g., [28]) for choosing
To register a key-value paifK,V) in a Peekaboo system
In many applications, a client may not only want to get a listith n V-servers, the owner first decompos&s into n
of values matching the query, but also be interested in geeitifferent pieces of encodingg;, V>, ..., V,, so that a client
the matched keys as well. For example, in a service discovedn reconstruct’ usingt out of then pieces later. To bind the
system, a client searching for printers will be interested i different pieces of encodings, the owner assigns an unique
getting all the attributes regarding the list of printersoier identificationID to this key-value pair, and composes a set of
to make the best selection. Another example is keyword kearcnew key-value pairg(K, V{), (K, V4), ..., (K, V!}}, where
where a client is searching for all file names containing tHé’ = (ID,V;) (1 < ¢ < n). Finally, the owner communicates
substring “app”. with all the n V-servers in parallel using the basic protocol
The basic search protocol can support such advanced quediescribed in Section Ill, and registers each tufle V) by
with a slight modification. In order to obtain matched keys iaommunicating with the-th V-server { < i < n).
the query results, the client can attach a one-time enenypti Similarly, to perform search using kdy, the client submits
key protected by the K-server’s public key in the query. Fdhe same query of to randomly selected V-servers in
better performance, we can use symmetric keys instead pairallel using the basic protocol. After retrieving thaifferent
public keys. As shown in Figure 5, before returning the quepieces of encodings foV’ from the selected V-servers, the
results, the K-server encrypts the matched keys using ttleent reconstructd” using the predefined'.
client-provided encryption kegk, and sends the encryption The minimum number of V-servers to be contacted for
together with the query results to the V-server. retrieving and reconstructing a valt€ in the system should

V-server— Charlie : ~

A. Supporting Advanced Queries

be determined based on the level of privacy required IGontrol List (ACL) for every(K, V) of their key-value pairs,

the corresponding data owner. To prevent the K-server frapecifying a list of clients that can access the pair. Theeswn

becoming the system bottleneck, we can also configure titen splitsV' into n piecesVi, Vs, ..., V,, attaches the ACL

system with multiple K-servers to balance both the redisina with every V;, and registers the tupléK, {V;, ACL}) by

and query workload. communicating with the-th V-server using the basic protocol.
The storage overhead at each server, determined by Eharing the query stage, given all the matched rendezvous

requirement of the basic protocol, is linear in the numbeumbers returned from the K-server, each V-server retaras t

of owners and the number of key-value pairs in total. Thaient only the value pieces that the client is allowed toesesc

communication overhead is linear in the number of quebhased on the corresponding ACLs.

results. Both overheads are comparable to legacy serverddowever, such V-server based access control may create a

Since a client will talk to multiple V-servers in parallehe side channel of information leakage, where the V-serveng ma

search latency will be slightly higher with public key eninfer the corresponding queried keys based on the number of

cryption/decryption and one more round-trip communigaticentries matched and returned from the K-servers. For ex@ampl

between the V-servers and the K-server. We will evaluate thiee V-servers can guess whether a searched key is about a

system overhead in Section VII. popular product with many matching results.

V. ACCESSCONTROL AND USERAUTHENTICATION B. K-server based Access Control

In many applications, data owners would like to control The K-servers can perform access control as well to prevent
which clients can search which data items. For examplde aforemention side channel of information leakage and
in stock quote dissemination, quotes should be searchedtbys provide stronger privacy guarantee. By returning only
paying customers only. More seriously, without accessrobntthe entries that a client is authorized to access, the Kesgerv
and authentication, a malicious user can carefully perforprievent the V-servers from learning the exacted numbers of
on-line dictionary attacks by searching all possible kays tnatched resuilts.
find out all the registered key-value pairs. We focus on the However, because the K-servers do not have access to the
environments where both users and servers may belongclient identity information, they cannot perform perméssi
different organizations and administrative domains. kinli checks directly by attaching an owner specified ACL for
traditional mechanisms, Peekaboo access control andrautrevery stored key. We thus need a solution that can hide client
tication should be both privacy-preserving and converfient identities in ACLs while still enforcing access control.
search to be used frequently. Our design is guided by theOur key idea is to let each owner create a pseudonym
following principles: C’ for a client C whom the owner is granting access to.

« Inter-operability and expressivityThe system should Every such(C, (") client-pseudonym mapping is split in half
support users from different organizations or domaingnd stored at different types of servers. In particular, \the
Given a query, servers should return all query resulégrvers authenticate clients with their identity inforioaf
(which may be from different owners) that the client isvhile the K-servers check access permission using client
authorized to see. Each owner should be able to spegfyeudonyms to preserve privacy. To prevent a malicioustclie
which client can access which key-value pairs based @idm forging pseudonyms or using other people’s pseudonyms
different levels of data sensitivity. we use noninteractive zero-knowledge proofs so that the V-

« Privacy non-disclosureServers should not be able toservers can ensure the client-submitted pseudonyms azednd
infer the key-value pairs from the access control and ugéose specified by the data owners, even though the V-servers
authentication information. themselves do not have access to the pseudonyms. We describe

« Convenience to the useEor convenient practical use,the modified protocol with access control between a K-
clients should not need to know which data owners caerver and a V-server using the same example described in
potentially satisfy their queries prior to search. OwneiSection lll. The scheme can be easily generalized to a system
should be able to revoke existing access permissionsvath multiple V-servers.

their data easily. Registrati ‘
, . egistration stage:
With all users talking only to the V-servers, the natural 9 9

choice is to authenticate users at the V-servers. Accedsoton Stepl: For each key-value paifK;,V;), the owner Alice
can be enforced at both the K-servers and the V-servers. Eogates an access control ligiC'L; consisting of a list of
inter-operability, Peekaboo access control and user atitae clients {C1, Cy, ...} that can search the pair:
tlon_ are baseq on qullc key cryptography and we assume an Alice : (Ki, Vi, ACLy)
available public key infrastructure (e.g., [21]).

ACL; ={C1,Cs,...}

) For each clienC; in ACL;, Alice creates a pseudonyff,
Given a query, V-servers can perform access control I%d replace; with C’ in ACL;:

jointly returning only the values that a client is authodze
to see. In the registration stage, each owner creates arsé\cce Alice : ACL, ={C1,C5,...}

A. V-server based Access Control

To register (K;,V;) with access control information, Alice Step4: The V-server first verifies that the proefpresented
encrypts both the key; and the correspondindCL; using by Charlie is true based on the receivédand the stored,. It
the K-server's public keyk into a; «— E,;(K;, ACL}), so then creates a rendezvous numiRgr and registers the entry
that only the K-server will be able to see the key and th¢harlie R;) for this query locally:

access control specification.

For each clientC;, Alice constructs a tuplem; =
(Cis €i, hi), wheree; — E, (C;) is an encryption of the client The \~server then forwards, ande, to the K-server, attach-
pseudonymC! using C;'s public key pc;, andh; «— H(CY) ing the rendezvous numbét,:
is generated using a one-way hash functiénThis tuplem;
allows the V-server to verify the clien®;’s input later (we V-server— K-server: o, e, R,
discuss how to choose the hash function later).

Finally, Alice submitsw;, the corresponding valug;, and
the set of tuples\/ = {mi, mo,...,} to the V-server:

V-server: (Charlie R;)

Step5: On reception of the query, the K-server decrypts
o andel, to obtain both the queried kelf; < D, () and
the corresponding client pseudony@i < D, (e.). The K-
Alice — V-server : «;,V;, M server then performs both search and access permissiok. chec
Only those query results that are allowed to be accessed by

Step2: On reception of the registration request, the Vcharlie's pseudonynt” (e.g., R;), €.g., R;, will be returned
server generates a rendezvous numbgrand registers the 5q,. — (R,, R;) to the V-server:

following tuple locally:
] K-server— V-server: r
V-server : (Alice,V;, R;, M)
where M = {(C1,e1, h1), (Ca, €2, ha), ...} Step6: Finally, the V-server looks up the values based on the
K-server returned rendezvous numbers, and sends the query
The V-server then forwards the encryption as well as the resultsy = (Alice, V;) back to Charlie:

rendezvous numbeR; to the K-server:)
V-server— Charlie : ~

V-server— K-server: «;, R;]]
Discussion

Step3: The K-server decrypts the message;, ACL;) — . . .
D,r(c;), and registers the data and the access control infor-By verifying the noninteractive ;ero-knqwledge pro:oﬁha_t
mation locally: H(Dpr(ec)) = he, the V-server is convinced that a client

is using the pseudonym sent to it by the V-server when the
K-server: (K;, ACL., R;) client submits a query. The form of this proof depends on the
form of encryption and the one-way functidi, but certain
such functions permitr to be constructed at a computational
Stepl: To search based on a ké¥;, the client Charlie first €xpense roughly equal to the expense of a digital signalture.
submits a “ready-to-search” request to the V-server with hpne example, the K-server selects a cyclic grgum which

Query stage:

identity I, = “Charlie™ both the Decisional Diffie-Hellman problem and computing
. square roots are intractable, and utilizes Shoup-Gennaro e
Charlie— V-server: I. cryption [29] in G and one-way functiod? : G — G defined

el . .
Step 2: Given the ‘ready-to-search’ request fronPY (%) =27 see, e.?.,h[24l,<_8e(?tlon |5'2] fc;r deta(‘j'ls' ,
“Charlie” — 1., the V-server extracts Charlie’s pseudonym Note access control checking is only performed on private

from the tuple (Charlie e., h.) where e, — E,.(C’) and ata. For public data that can be searched by anonymous
cylbe c — pc

he = H(C') if one exists, and presents and i, to Charlie: CIENts, Alice simply tags them as "public” at both the K-
server and the V-server for better search performance.

V-server— Charlie : e, h, To supportgroups Alice can create a pseudony@Y for

,)) each group’ in ACL specification. For each membér; in

/Step3: Charlie decryptse. and finds out his pseudonymG’ Alice encrypts the group pseudony together withC;'s
' DPC(EC,)' . pseudonymC! using C;'s public key pc;, and obtains the
To send his query, and his pseudonym’ to the K-server encryptione; — E,..(C!,G’). Finally, Alice computes the

without leaking the information to the V-server, Charlie "ehashh; « H(CZ(’GIIJ): and sendsn; = (C;, e;, hy) to the V-

encrypts bothi’s and C” with the K-server's public kewk gerer during the data registration, so thatcan use botit!
asa, — Epi(Ks) ande,, — E,,(C"), respectively. and G’ to perform search:
In addition, to prove thaf” (hidden in the encryptior’) is
indeed the one returned by the V-server, Charlie constructs Alice — V-server: m;
noninteractive zero knowledge proothat (D, (e,)) = he.

Charlie then submits,, ¢., andx back to the V-server: To revoke a clientC;’s access rights on a particular key-

value pair (K;,V;), Alice simply removesC;'s pseudonym
Charlie— V-server: ag,el, C; from the correspondingACL’ at the K-server. Such

permission revocation can take effect immediately withowalues. Therefore, in real deployment, the K-servers shoul
being noticed by the client at all. not have access to the network packets routed toward the V-

Since each owner selects client pseudonyms independerggrvers. If both the K-servers and the V-servers are located
a client may need to decrypt multiple different pseudonynm the same LAN, they should be configured at different
from different owners during the query stage. To reduce timetwork segments (e.g., separated by bridges). On campus
guery overhead, pseudonyms can be cached at the client sideenterprise networks with firewalls, we can configure the
in the first query, and reused at subsequent queries to avdidervers to sit inside the firewalls while the K-servers can
the first two steps in the query stage. Alternatively, ea@ntl be configured outside the firewalls so that they do not see
can select a unique pseudonym (e.g., a user ID), and regigster user traffic. If both servers are on a wide area network,
it at different owners for permission specification. we require the K-servers not be configured on transit network
o backbones. In overlay networks, data and queries are ysuall
C. User Authentication routed incrementally in the application layer (e.g., [&]3ers

For inter-operability, the Peekaboo user authenticat®n dan thus encrypt their identities (e.g., IP addresses)yugin
based on conventional digital signatures (e.g., [9]). Tedé servers’ public keys so that the K-servers do not know who is
against replay attacks, we use timestamps and assumeyloog@ true message initiator.
synchronized clocks. When submitting a query to the V-gerve Both the K-servers and the V-servers could disrupt service.
in step3, the client Charlie generates a timestaffipsigns For example, the V-servers could produce bogus searchsesul
T and the rest of query, and submits the following messaggthe clients without forwarding the queries to the K-sesve
including the signature to the V-server: Similarly, the K-servers could return arbitrary query fésu
without performing the actual search. To detect misbelgavin
servers, we can use both owner-initiated auditing and tlien
where M = {T,es e, w}. Herees «— initiated auditing based on random sampling so that the more
E,,(C"), ando is the digital signature of\/. the server misbehaves, the higher the probability that lit wi

On reception of the message, the V-server verifies the caught. For server non-repudiation, both servers can sig
signatures using Charlie’s public key, which can be obtainedheir responses in query results.
from a public key infrastructure. The V-server then proeess A more serious threat is server collusion, where the K-
the query using the procedures described above. For messsgygers and the V-servers cooperate to reconstruct the key-
integrity and confidentiality, we assume a protected chann@lue pairs registered or searched. One approach is to intro
such as TLS [32] between the K-server and the V-server. duce further layers of indirection by adding auxiliary sms/

In summary, the revised Peekaboo protocol with accessthe system. Specifically, we can deploy a chain of auxilary
control and user authentication is illustrated in Figure 7. servers between a K-server and a V-server to perform the

basic Peekaboo protocol. A registration requestl’) (o —

Charlie— V-server : M,o

pk(Ks)i €

Alice: Registration stage V-Server K-Server E,x(K)) is first submitted to a V-server, who creates a ren-
‘g‘:EEpk((’é;)C?] CHE) dezvous numbeR, and forwards«, Ry) to the first auxiliary
M = {(Charlie, e,, h,}} Store (Alce Y, R, M)) D) server in the chain. Each auxiliary servéy, on reception of
ore (Alice,V, R, . (K, C’) + Q;
‘ — OO Charlie, e,) e i, ciry|} the message, randomly generates a new rendezvous number
Charlie: Query stage R; to replace the old oneRi__l in the message to forward
Sl=Charie 1.1« Charlie I, to the next hop server, until the request finally reaches the
. k up “Charlie” .. . f
.C e Dye) ‘A_h*mL?;urﬁpefhfr e K-server. Similarly, a user query is also routed incremignta
el e Epfk((hC’), o, ¢ Ekp)k(Ks) along the server chain from the V-server to the K-serverrQQue
« T—proof(h,, e.’, H, . . :
.M:p{T’ e e p ol meM | K e Dy(a) results are then propagated b{;\ck in the reverse d|_rect@n. T
* 0 =sigM) e P AU e ouled tolerate the brute force collusion of up toservers in this
o -8 C'is permitted chain, we need at least— 1 auxiliary servers between the
'\ alce. v — Ry sr | =RRY K-server and the V-server. There is thus a balance between
pac=tiA privacy and efficiency, and both the data owners and clients
can jointly decide the level of desired privacy.
Fig. 7. The enhanced protocol with access control and udbeatication, However, such multi-server protocol is vulnerable to tigin

wherer is a noninteractive zero knowledge proof tH&{ D, (e..)) = he.

VI. DEPLOYMENT AND VULNERABILITIES

attacks with the collusion between the K-server and the V-
server. For example, both servers could jointly measure the
time needed between the V-server forwarding a query and the

In this section, we discuss various issues in system depld§+server receiving it, or submit queries one by one to learn
ment, and outline potential malicious attacks that Peettabaho submitted what query. To mitigate such attacks, we can
is vulnerable with possible solutions. Completely address use solutions from anonymous routing [4], [31]. For example
these attacks is a topic of ongoing work.

A basic assumption of the Peekaboo search system is thamall time frame.
the K-servers have no information about user identitiesaded Finally, Peekaboo servers could perform traffic patterd-ana

each auxiliary server can buffer and reorder messagesnwithi

ysis to infer popular keys or values by measuring the frequenA. Storage Costs at Peekaboo Servers
of the corresponding rendezvous numbers in queries or query

results. In particular, the V-servers could tell whetheo tw e
queries resul@ed in the_same response even though they have —— Regular server
access to neither queries nor query results. To mitigath suc S| server

10 - —

threat, owners can initiate the registration process &atjy
in order to update both the rendezvous numbers and the
encodings of values hold by the V-servers.

VIl. EXAMPLE APPLICATIONS AND PERFORMANCE

Index table size (Kbyte)

In this section, we describe an example application of file

sharing service to illustrate how Peekaboo can be used to 10" ‘ ‘ ‘
i i 10° 10" 10° 10°
perform keyword search without Io_ss of user privacy. We _then N0 er of fles indoved
evaluate the protocol overhead using trace-based expetisme
and compare its performance with regular centralized sgrve Fig. 8. Index table size vs. number of indexed files

In a file sharing system, owners store files or file namesrq eyauate the storage costs, we extract file names and
at directory servers. Each file has a owner-assigned 10¢alir owner IP addresses from the search reply messages in th
ID. Clients submit queries as keywords to the servers. If the, jtella trace, and register them using a fake owner program
content or the name of a file maiches the query, the servefs, jating different file owners. Figure 8 shows the index
return the local file ID and the corresponding owner identity|e sjzes of the Peekaboo servers and the regular ceattali
(e.g., IP address) as query results. Clients can then da@inlqerer a5 the function of the number of indexed files. We
the file directly using the local file ID from the correspongiin ghserve that the storage costs increase linearly as theerumb
file owner. i i _of indexed files increases. The K-server index table sizes ar

In the Peekaboo system registration stage, owners regisifthtiy larger compared with a regular server, while the V-
the file names (or file content) as the keys, and the 10cgl.\er index sizes are only about a third of those of a regular

file 1Ds as the values at the K-servers and the V-Servelgyer |n general, the storage costs are small at both tyfpes
respectively. For each file, the V-servers randomly geeergqokaboo servers.

unigue 128-bit strings as the rendezvous numbers. To stippor

efficient query search, each V-server computes a hash bagedsearch Latency Perceived by Clients
inverted index of rendezvous numbers, whereas each Kiserve
computes an inverted index table of keywords based on file
names (or file content). In the query stage, clients submit B R vanced

keywords as the queried keys, and get a list of matched values 5 Peckaboo-advanced
represented as the local file IDs and the corresponding file I B
owner IP addresses. When advanced queries are supported

where matched keys should be returned in query results,
the servers also return the list of matched file names (or
relevant file content) encrypted by the client-provided -one

time encryption key.

We use a Gnutella [15] trace gathered at CMU to conduct [— =l ‘
trace based experiments, and evaluate the system perfoeman 1000 mber G900 e 10000
using the described file sharing application in the follogvin
three aspects: (1) the storage costs at both types of se(Rers Fig. 9. Peekaboo search latency
the search latency perceived by clients, and (3) the ovdrbea
access control and user authentications. We implementisd bo We proceed to evaluate the search latencies perceived by
types of servers, and evaluate the performance using aesinglents. We implemented a client program running at a third
K-server and a single V-server in the system. Increasing thmchine (Plll 550MHz with 128 RAM) in the same Ethernet
number of V-servers in the system would not change eitheAN. The public key encryption uses the RSA algorithm [26]
(1) or (3). Because clients communicate with V-servers imith 1024-bit keys, and the one-time symmetric key encryp-
parallel, the search latency should increase only slightth tion uses the AES algorithm [1] with 128-bit keys. Both
multiple V-servers. For comparison, we also implementedadgorithms are implemented by the Crypte library (version
regular centralized server that performs both data registr 4.2) [8]. For each query, the servers return the first 100
and query, and repeat our experiments. All the servers amatched files as query results. Figure 9 shows the search
implemented in C++ in Linux, running on PIIl 550MHzlatencies measured by the client. Compared with the regular
machines with 128 RAM on a 10BaseT Ethernet LAN. Eackerver, Peekaboo incurs much higher search latency. When we
data point in the figures below is the average of ten runs. use the advanced queries to support returning matched keys

N
=]

w
a

w
=]

N
o

[
3

Average search latency (ms)
= N
o o

4]

o

| || Total [Network] Look up [RSA en.| RSA de.| AES en.| AES de.| Other |

Mean (us) 36475 6427 3041 1575 23834 581 781 236
Std dev [is) 2869 2831 53 10 38 14 1 5
Percentage || 100.0% 17.6% 8.3% 43% | 63.34% 1.6% 21% | 0.6%

Fig. 10. Time to process a search request using 1024-bit RyA &nd 128-bit AES keys.

(i.e., matched file names), the search latency increasgs onl T ‘ - [Ecen
slightly compared with the basic protocol. ek ||
To further examine the search latency, we list the times
spent in various steps of processing a query in Figure 10.
We fix the number of files indexed to b&)®, and show
both the mean and the standard deviation of latency as well
as the percentage of the total latency. The “Total” column |
corresponds to the time elapsed between the client sutumissi]
of a query and getting back the reply. RSA decryption and]
network transmission are the most expensive steps, whereas
AES encryption and decryption are fast, accounting for less ocaeng cacnme
than 5% of the processing time in total. The “Look up” timesig. 11, Search latency with access control and user aithéoh. The
includes both the K-server lookup and the V-server lookupient is associated with 1, 2, 4 pseudonyms, respectively
and depends on the number of files indexed. The “Other” line
consists of the time spent for the V-server to buffer and &odv pseudonymsl For Comparison, we list the processing time

client requests to the K-server as well as the time spentdgent at various entities as well as the time spent on network
buffer and forward AES-encrypted replies back to the clienfansmission. Without pseudonym caching, the client side
In general, the search latency is acceptable to clienteslie processing takes the longest time. In general, the increfase
network latencies on WAN are usually on the order of tens gfe number of files has little effect on search latency. Thentl
milliseconds. By optimizing the security operations (elt¢ side processing time increases proportionally to the nurmbe
using cryptographic routines implemented in hardware), Wéient pseudonyms, while the server side processing lgtenc
expect the performance penalties due to security to dezreagcreases only slightly with the increasing number of dlien
Furthermore, if clients will submit multiple queries in ar0 pseudonyms. By caching client pseudonyms, we can greatly

they can set up symmetric session keys with the K-server f@duce the client processing time, and therefore reduce the
encrypting/decrypting queried keys to amortize the costs @verall search latency.

RSA decryption.

.
@
3

Average search latency (ms)

bR e
» o @ 5 K &
5§ 8 &8 8 8 8

N
S

o

VIIl. RELATED WORK

A number of recent solutions have been proposed to perform
The Peekaboo access control and user authentication mesgarch on encrypted data (e.qg., [30], [3]). Although entioyp
anisms introduce additional query processing overhead. Tfrovides data confidentiality to protect privacy, it limiise
V-server based access control is relatively simple andldhosgearch functionality that can be performed. These appesach
incur only a small amount of overhead by performing aeither require clients to share the same encryption keyd use
additional ACL lookup before returning results. We thuby the data owners [30], or limit search to be performed on a
implement the K-server based access control describedsmall number of keywords pre-specified by the clients. They
Section V-B to evaluate the worst case performance. Sualso require a sequential scan through encrypted datahwhic
access control and authentication introduce the following an expensive operation in terms of performance.
extra steps during the query processing: (1) client sigeatu There has been a large body of literature on anonymous
signing and verification, and (2) client pseudonym encoypti communication to prevent discovery of source-destingtiatn
decryption, and verification. While the digital signatutesbd terns. In general, there are two types of approaches: proxy
client authentication has a relatively constant cost, st of based approaches and mix based approaches. Proxy based
decrypting pseudonyms can grow linearly with the number approaches interpose an additional proxy between the sende
client pseudonyms assigned by different owners. Fortlypateand the receiver to hide the sender’s identity from the re-
such expensive computations are performed by the cliewtsiver. Examples include Janus [18], Crowds [25], and email
which will less likely become overloaded compared with thpseudonym servers [23]. The Peekaboo V-servers bears some
servers. In addition, the client pseudonyms can be cachedsiailarity with a proxy in that all user traffic goes through
the client side to reduce the search latency. them. However, the primary purpose of Peekaboo is not to hide
Figure 11 shows the search latency with the Peekaboser identities, but rather to perform search without rénga
access control and user authentication mechanisms by vahe key-value pairs. Thus the Peekaboo V-servers are ngt onl
ing the number of indexed files and the number of cliemroxies as they actively participate in storing and retugni

C. Overhead of Access control and Authentication

values. The mix based approaches interpose (e.g., [4]) §81] [5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Btiinformation

chain of proxies between the sender and the receiver tovachie ~ 'étrieval. InIEEE Symposium on Foundations of Computer Science
: N i 1995.

ynl|nkqb|llty between the sendgr and the receiver. We onqu] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenat:

in Section VI where we used mix based approaches to prevent distributed anonymous information storage and retrieyatesn. In

timing attacks. Compared with these approaches, Peekahoo Designing Privacy Enhancing Technologies:Internatiovébrkshop on
| id .. b | k | . Design Issues in Anonymity and Unobservability, LNCS 2000
protects not only user identities, but also key-value pa”ﬁ?] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz.n A

However, Peekaboo does not provide unlinkability between architecture for a secure service discovery servicédbile Computing
key-value pairs in the presence of server collusion. and Networking 1999. . o
. . . [8] Wei Dai. Cryptot-+. http://www.eskimo.com/"weidai/
The problem of Private Information Retrieval (PIR) [S], " cryptiib.htmi

[14] has been well studied to protect client privacy in skarc [9] Digital signature standard (DSS).Federal Information Processing

These approaches model the database as-lin string, and Standards Publication 18@May 1994.

. [10] Exact match. http://www.searchenginedictionary.com/
a client retrieves the-th bit W|th_out revealing the mdt_ex. e.shtml#exactmatch .
Although PIR schemes can achieve very strong security, thi¢y] Fuzzy match. http://www.searchenginedictionary.com/
are generally not practical to use. terms-fuzzy-matching.shtml

. . . 2] J. Gao and P. Steenkiste. An adap.tive protocol for efficsupport of
Secure multi-party computation (SMC) has also been widely " range queries in DHT-based systems.I@NP, 2004.

studied [16]. These technigues enable multiple partiesh ed13] D. Garlan, D. Siewiorek, A. Smailagic, and P. SteerkistProject

; ; ; ; ; aura: Towards distraction-free pervasive computinglBBE Pervasive
holding a private input, to collectively compute a function Computing 12002,

of their inputs while revealing only the function output. IOU[14] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Resting data
problem can be viewed as a special case of this problem, privacy in private information retrieval schemedournal of Computer

though it permits more efficient solutions than general SMG;, g’;}‘fjéﬁ:ﬁ?stssc'i?t%?;msg@ig%zo‘sfsngriooo'

techniques, which are rarely efficient for practical use. [16] O. Goldreich. Secure multi-party computation. Firstsion posted in
Recent work [2] has also noticed the value of two or June 1998. Final revision posted October 2002.

. . . L . [17] U. Hengartner and P. Steenkiste. Protecting acces®apl@ location
more IOglca"y mdependent servers for maintaining theemy information. InProc. of the First International Conference on Security

of database content and queries. It envisions an archigectu in Pervasive Computing2003.
where data and queries can be decomposed across multiffie The Lucent personalized web assistant. http://wwilv.be
servers in different ways. The authors leave open a concrEl labs.com/project/lpwalhistory.html.

- . L. Kissner, A. Oprea, M. K. Reiter, D. Song, and K. YangrivBte
solution based on the proposed architecture, and Peekabo0 keyword-based push and pull with applications to anonynemsmu-

may potentially be adapted to provide a starting point. nication. InApplied Cryptography and Network Security (ACN&)04.
[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.t&ia D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Welld, an
IX. CONCLUSION B. Zhao. Oceanstore: An architecture for global-scaleigterst storage.
) In ASPLOS 2000
We have proposed a system callebkabopfor performing [21] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Autheation

genera| key-value search at untrusted servers withoutdbss in Distributed Systems: Theory and PracticACM Trans. Computer

ffici d . Gi f Kk | . Systems10(4):265-310, November 1992.
eficiency and user privacy. Given a set of key-value palf$] y. Leonhardt and J. Magee. Security considerationsafatistributed

from multiple owners that are stored across untrusted sgrve location serviceJournal of Network and Systems Managem&r&1-70,
Peekaboo allows a client to search these pairs in such a way 1998.
k

L . . D. Mazieres and M. F. Kaashoek. The design and operatiam E-mail
that each server, in isolation, cannot determine any of éye pseudonym server. IACM CCS 1998.

value bindings. Our main idea is to separate the key-valire pg24] M. K. Reiter, X. Wang, and M. Wright. Building reliable imnetworks
and store them across different servers. Supported by sicces With fair exchange. InApplied Cryptography and Network Security

control and user authentication, Peekaboo is: (1) securepj (ACNS) 2005. - i :
’ : [25‘] M.K. Reiter and A.D. Rubin. Crowds: Anonymity for wekatrsactions.

that search can be performed by only authorized clientsewhil =~ ACM Transactions on Information and System Securltfl):66-92,
protecting the privacy of both data owners and clients, (%26] November 1998.

flexible in that it i licabl fk | R. L. Rivest, A. Shamir, and L. M. Adleman. A method fortaiming
exible in that it Is applicable to any type of key-value sERr digital signatures and public-key cryptosyster@@mmunications of the

and can be easily extended to support advanced queries, andACM, 27(2), February 1978.

(3) efficient in that it has small storage cost and searcintgte [27]1 V. Scarlata, B. Levine, and C. Shields. Responder amityy and
anonymous peer-to-peer file sharing. IGNP 2001

and hence is practical to use today. [28] A. Shamir. How to share a secr&@ommunications of the ACN22(11),
1979.
REFERENCES [29] V. Shoup and R. Gennaro. Securing threshold cryptesystagainst
chosen ciphertext attacklournal of Cryptology 15, 2002.
[1] AES. http://csrc.nist.gov/CryptoToolkit/aes/ [30] Dawn X. Song, D. Wagner, and A. Perrig. Practical solusi for search
riindael . on encrypted data. IFEEE Symposium on Security and Priva2p00.

[2] G. Aggarwal, M. Bawa, P. Ganesan, H. G. Molina, K. Kentdip [31] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonysnconnec-
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep a fions and onion routing. liProc. of the IEEE symposium on Security

secret: A distributed architecture for secure databasdcssr InCIDR, and Privacy 1997. _

2005. [32] The TLS protocol.http://www.ietf.org/rfc/rfc2246.txt -
[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiglic key [33] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum. ating

encryption with keyword search. IRroc. of Eurocrypt 2004. objects in wide area systems. I[BEE Communications Magazinpages

[4] D. Chaum. Untraceable electronic mail, return addressed digital 104-109, 1998.

pseudonymsCommunications of the ACN24(2):84-88, February 1981.

