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ABSTRACT 

The WinFS storage platform supports update-
anywhere, peer-to-peer data replication. Due to the 
wide range of possible system configurations, we study 
the performance of the novel data replication protocol 
using simulation. Of interest are how many network 
messages are sent, the convergence time needed for a 
modified data object to be propagated to all sites, and 
how messages and convergence time are affected by 
failures in the network. The results for configurations 
of various real and synthetic network topologies show 
an efficient network utilization since each site receives 
each modification at most once despite the peer-to-peer 
architecture. In addition, convergence time is shown to 
be scalable as the number of sites increases. Finally, 
the protocol’s robustness to link and site failures is 
quantified and shown to provide good performance in 
the face of lost messages and transient site 
unavailability. 
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1. INTRODUCTION  

The epidemic-style data replication protocol 
incorporated into Microsoft’s new WinFS storage 
platform was designed to achieve unprecedented levels 
of efficiency, scalability, and robustness.  Three key 
requirements guided the development of this novel 
protocol.  First, the protocol must make efficient use of 
network bandwidth by ensuring that each updated data 
item is transmitted at most once to each replica in the 
system even though sites exchange updates in a peer-
to-peer fashion over an overlay network of arbitrary 
topology.  Second, the storage platform must scale to 
thousands of geographically distributed replicas.  
Third, the protocol must be robust in the face of lost 
messages, terminated communication sessions, and 
intermittently connected sites.   

This paper presents the results of a simulation study 
undertaken to demonstrate that the WinFS replication 
protocol satisfies these demanding design goals.  
Although the WinFS platform has been fully 
implemented, simulation was used to evaluate the 
systems’ replication performance under a wide class of 
configuration and workload parameters that would be 
difficult to explore in practice.  Different 
communication topologies among replicas were 
simulated, including the topology of a deployed and 
widely replicated Active Directory system.  The 
correctness of our custom simulator was validated by 
comparing its results to the running WinFS system. 

Although many optimistic replication protocols have 
been devised with varied performance 
characteristics[11], few comprehensive studies have 
been conducted to evaluate such protocols.  The 
performance results that have been reported mostly 
concentrate on consistency [13] and conflicts [1][8] 
rather than overall system properties like robustness 
and message traffic.   

The main contributions of this paper are: 

• precise, measurable definitions of efficiency, 
scalability, and robustness in a large replicated 
system, and 

• performance characterization and analysis of a 
new knowledge-driven, peer-to-peer replication 
protocol. 

The following section gives an overview of the WinFS 
replication architecture and protocol that should be 
sufficient to understand the key simulation results.  
Section 3 briefly describes our custom-built simulator.  
Sections 4 through 6 then present a set of questions 
dealing with efficiency, scalability, and robustness that 
we answered using the simulator; these sections show 
that the examined replication protocol does indeed 
provide the desired performance characteristics. 
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Section 7 reviews related work and Section 8 
summarizes the conclusions that we draw from this 
simulation study. 

2. WINFS REPLICATION DESIGN 

WinFS is an innovative storage system developed at 
Microsoft that incorporates a new optimistic, state-
based [11], peer-to-peer replication protocol [7]. 
WinFS stores items that represent real-world objects 
such as people and places as well as digital artifacts 
such as digital photos and email. Items are XML-like 
data objects that are described by a schema.   

A collection of items can be grouped into a community 
folder that is shared among members of a community. 
Each member, referred to as a site, maintains a local 
replica of the community folder. A site has the ability 
to modify (insert, update, and delete) any item without 
consulting other sites. Under such conditions, multiple, 
and possibly conflicting, versions of an item may exist 
in the community. It is the responsibility of the 
synchronization protocol to propagate updated items 
between pairs of replicas, thereby driving them towards 
a consistent state; in the process, update conflicts are 
detected and resolved. 

The sites in a community are assumed to be at least 
occasionally connected to each other by a network. The 
network may become partitioned due to link or site 
failures, or a site may operate in a disconnected mode 
(such as when a person is working on a laptop while 
traveling on an airplane). The sites that participate in 
synchronizations form a topology that is overlaid on 
the underlying physical network. The choice of which 
sites synchronize with each other and how frequently 
sites initiate synchronization are parameters that 
depend on the needs of a community.  

The replication protocol is initiated periodically, say 
once every 5 minutes, by each site wishing to 
synchronize data with a neighboring site. Updated 
items flow one-way from a sender S to a receiver R as 
illustrated in Figure 1. First, R lets S know how up-to-
date it is by sending its knowledge of the updates that it 
has learned. A site’s knowledge is represented 
compactly in the form of a version vector plus 
exceptions [5][7]. Next, S determines the set of items 
U that are in its replica but unknown to R, and S sends 
each item u in U to R. When R receives item u, R 
accepts it into its replica, possibly detecting conflicts 
and resolving them as necessary. Finally, S sends R a 
complete message including S’s knowledge. Assuming 

all items are received reliably, R knows as much as S 
when the synchronization session is completed. Hence 
R can add S’s knowledge to its own.  

 

 

 

 

 

 

Figure 1: Synchronization protocol initiated by site 
R receiving needed changes from site S. 

R detects conflicting updates by testing whether two 
versions of the same item were made concurrently. 
Conceptually, the test is done by associating a history 
of modifications per item version and checking whether 
both versions are unknown in the history of the other 
version. If so, it can be concluded that the versions 
were created concurrently. It is shown in [5] how the 
history is implemented concisely (using version 
vectors). Conflicts can be resolved automatically 
according to application specific rules or manually. 
Resolving a conflict produces a new version of the item 
that propagates to other sites via the normal 
synchronization protocol.  Full details of the WinFS 
replication design are available in a companion 
technical report [7]. 

3. OUR SIMULATOR 

Our event driven simulator implements the WinFS 
synchronization protocol and models an update 
workload as well as network and site failures.  Four 
synchronization topologies were used in this simulation 
study: a clique in which all sites are fully connected, a 
list in which sites have exactly two neighbors (except 
for the two endpoints), a star in which a central site is 
connected to all other sites, and the Active Directory 
topology, a two-level partial mesh of sites described 
more fully in Section 5.1. Each simulation is a series of 
synchronization rounds.  In each round, a number of 
randomly selected items are modified at various 
replicas and then each site synchronizes in both 
directions with a single partner chosen at random from 
its neighbor sites according to the topology. 
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U=findDiff() 
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In the following sections, we use the simulator to 
evaluate the WinFS protocol with regard to efficiency, 
scalability, robustness. The results given are averages 
over ten runs for each set of input parameters. The 
simulator was validated by comparing the outputs 
obtained from running the same workload on the 
simulator and on an installation of WinFS. We 
confirmed that our simulator behaves the same as the 
actual WinFS system for a variety of input parameters, 
thereby giving credence to the broader simulation study 
presented in the rest of this paper. 

4. EFFICIENCY 

To understand the efficiency of the WinFS replication 
protocol, we asked the following questions and relied 
on our simulator to provide the answers: 

• For each update performed to an item, how many 
messages are sent over the network to convey this 
update to other replicas? 

• What benefits does state-based replication have on 
message traffic compared to log-based schemes? 

To be classified as efficient, the protocol traffic should 
increase at most linearly with the number of updates. 

For studying the protocol’s network message traffic, 
we distinguish two types of messages: overhead and 
data. Overhead messages are the handshake messages, 
‘init’ and ‘complete’, shown in Figure 1. Data 
messages are sent to convey updated items that are 
unknown to the receiving site.  

4.1 Network Message Traffic 

Intuitively, the total number of data messages seen in 
the network during a single synchronization round 
should depend on the total number of modifications 
between rounds as well as the number of sites in the 
network. The protocol requires sending an item if its 
version is unknown at a site and avoids sending an item 
if it is already known. Due to the property of eventual 
convergence, for a given modification m, each site s 
will eventually synchronize with some site that knows 
of m, thus requiring one data message on behalf of m 
and s. 

In contrast, overhead messages depend on the number 
of synchronizations rather than the number of 
modifications. The number of synchronizations, in 

turn, depends primarily on the number of sites in the 
network and its topology in addition to the frequency 
with which sites initiate synchronization. 

In a failure-free network of size n, the expectation is 
that (n-1) data messages will be sent for each 
modification. Furthermore, the number of overhead 
messages should remain constant as the number of 
modifications increases. The result in Figure 2 shows 
the total number of data and overhead messages sent 
for a given number of modifications made at a single 
site. For example, assuming that modifications do not 
overwrite each other, 8 modifications result in 56 data 
messages, which is expected for an 8 site network.  

The result also shows that overhead messages are 
independent of the number of modifications. 
Specifically, the number of overhead messages o is a 
little less than 4 per site (3.71) in each round. We will 
show that o varies for different topologies using 
analytical and empirical evidence.  

Intuitively, assuming each site initiates a pair-wise 
synchronization during a round, four overhead 
messages are expected to be exchanged: two overhead 
messages per sync direction. Therefore, we should 
expect 4n overhead messages for an n site network. 
However, if a site chooses a partner site that has 
already chosen it, then the synchronization is 
unnecessary and therefore skipped. As a result, 4n total 
overhead messages are an upper-bound. It will occur, 
for example, in a ring topology when all sites pick a 
partner following the same direction around the ring. 
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Figure 2: Data and overhead messages per 
synchronization round as the number of 
modifications increases in an 8 site clique network. 

The last example specifies a particular path of 
synchronizations for a topology. In order to get a sense 
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for an average path, the simulator has each site select a 
random adjacent partner where adjacency is specified 
by the topology. As a result, pairs of sites can select 
each other, resulting in a skip. The number of skips 
determines how much lower than the upper-bound we 
can expect. The number of skips in turn depends on the 
topology. Intuitively, as the connectivity in the 
topology increases, assuming partners are randomly 
selected, the chance of a skip decreases, therefore 
incurring more overhead messages. 

For example, consider a clique topology which has 
maximum connectivity. The upper-bound for the 
number of messages is 4n whereas the lower-bound is 
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Equation 1: Expected number of overhead messages 

For example, the average number of overhead 
messages in Figure 2 is 29.71 which is identical to the 
expected number of messages for n=8. Equation 1 
approaches 4*n as n tends to infinity. 

Other topologies are similarly analyzed. For example, 
consider a star topology of size n where there is one 
central site and (n-1) outlying sites, each of which are 
adjacent only to the central site. In this case, each of 

the outlying sites chooses the central site as a partner 
while the central site chooses one of the outlying sites. 
As a result, there will be only one skipped 
synchronization which corresponds to 4*(n-1) 
messages. For n=8, 28 messages are expected, which 
we confirmed empirically by repeating the experiment 
shown in Figure 2, but using a star topology instead. 

Another topology with reduced connectivity is a linked 
list. In this case, sites on the end of the list have one 
adjacent partner while all other, internal sites have two 
adjacent partners. The end sites have a ½ chance for 
their partner to pick them whereas pairs of internal sites 
have a ¼ chance. Since there are n-2 internal sites, 
leading to n-3 pairs, we have (1/2 + ½ + (n-3)*1/4) 
expected syncs, thus 4*(n – (1 + (n-3)*1/4)) messages. 
For n=8, 23 messages are expected. Empirically, 23.9 
messages are observed on average which corresponds 
closely to the expected number of messages. Unlike the 
star topology, randomness in selecting partners is 
expected to produce variance in the results. 

In summary, data messages scale linearly with the 
number of modifications per round whereas overhead 
messages are constant and depend on network size and 
topology. As a result, with respect to the number of 
modifications, the WinFS protocol results in an 
efficient total number of messages. 

4.2 Effect of State-based Replication 

In the previous section, the workload was chosen so as 
to avoid multiple writes to the same item: overwrites. 
An example of such a workload is an insert-only 
workload.  Similar behavior would be observed in a 
replication scheme that logs each local update and 
sends logged entries during synchronization, such as in 
the Bayou system [9]. When using state-based 
replication, however, only the most recent version of an 
item is sent. In the case of overwrites, only the version 
from the most recent write will be sent. Therefore, for 
the case of overwrites, it is reasonable to expect that 
state based replication will result in data message 
traffic that is sub-linear with respect to the modification 
workload. 

In the following experiment, overwrites are permitted 
in a fixed size database while the number of updates 
per round is increased. The results in Figure 3 show the 
average number of data messages sent for each 
modification. For an 8 site network, it is expected that 
7 messages are required to update the other sites when 
modifications do not overwrite each other. 
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Furthermore, the result should be independent of the 
total number of modifications. In the case of overwrites 
however, increasing the number of modifications in a 
fixed size database, assuming items are selected 
randomly for modification, reduces the data messages 
needed per modification. The results in Table 1 show 
the percentage reduction in network traffic of the 
overwrite workload when compared to the no-
overwrite workload. With state-based replication, since 
the most recent version is sent, the traffic reduction 
increases as the update rate increases. Such reductions 
in message traffic would also be observed with 
increased write locality. 
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Figure 3: Average number of data messages sent 
per modification in an 8 site clique network. 

A similar situation arises in Section 6.2 where the 
effect of network and site failures on message traffic is 
studied. Briefly, errors effectively increase the length 
of a round by causing synchronizations to be skipped. 
As a result, more modifications per synchronization 
round result in more overwrites, and thus fewer data 
messages. 

Number of 
Modifications 

4 8 12 16 20 

Percentage 
Reduction 

2% 5% 7% 9% 11% 

Table 1: Percentage reduction in message traffic of 
an overwrite workload in comparison to no-
overwrite workload. 

Note that objects are randomly selected for updates in 
the preceding experiments. In contrast, consider a 
workload that includes a hot spot of update activity. 
For example, n updates are made to an object in one 
round. The advantage of the state-based scheme is 

unbounded: one data message is sent whereas a log-
based scheme may send n data messages. 

5. SCALABILITY 

Scalability is a measure of how well a system performs 
as certain configuration or workload parameters are 
increased.  In studying the WinFS replication protocol, 
we were particularly interested in answers to the 
following questions: 

• How does the convergence time, the number of 
synchronization rounds to fully propagate an 
updated item to all replicas, increase with the 
number of replicas? 

• How does the resolution time, the number of 
synchronization rounds to resolve conflicting 
updates, increase with the number of replicas and 
the conflict rate? 

• Are certain communication topologies more 
scalable than others? 

• How does message traffic increase as the number 
of sites increases? 

To be classified as scalable, the average convergence 
time for propagating updates should increase by no 
more than 10% when the number of replicas increases 
by 100%.  The resolution time should behave similarly. 
For message traffic, a single update should be sent at 
most once per site. Therefore it should not scale worse 
than linear in terms of the number of sites. 

5.1 Convergence Time 

Through model checking and formal analysis, the 
WinFS replication protocol has been proven to 
guarantee convergence.  In this section, we show how 
long it takes for a number of sites to converge on a 
modification. Previous work on epidemic algorithms 
has shown that the expected convergence time is O(log 
n) for uniform random connections in a clique [2]. Our 
first set of experiments confirms this finding and 
explores other topologies. These results assume a 
failure-free network; the experiments that follow in 
section 6 investigate networks with failures. 

The experiments when assuming a failure-free network 
vary the topology and the number of sites to show 
scalability. The topologies that are considered are 
clique, linked list, and star from before. In addition, we 
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considered a topology derived from a real system. 
Since a real WinFS deployment for this purpose did 
not exist at the time of the study, we simulated the 
topology of the Active Directory system in daily use 
within Microsoft. Active Directory allows a repository 
of objects to be replicated and written at multiple sites. 
As in WinFS, weak consistency is provided and sites 
exchange updated objects through a pair-wise 
synchronization protocol [12]. 

An abstraction of the Active Directory topology that 
we simulated is shown in Figure 4. The illustration 
shows a two-level organization of sites. At the top-
level, the circles are connected by high latency links as 
is common in a wide-area network (WAN). Each circle 
represents a cluster of one or more sites that are 
interconnected by low latency links as is common in a 
LAN. The overlaid network used for synchronization is 
constructed automatically but with the possibility for 
manual overrides. The synchronization network 
amongst circles is organized such that a minimum 
spanning tree is formed. There are extra links in the 
graph at this level for redundancy. Within a circle, a 
synchronization network of diameter three is formed 
(no two pairs are more than three hops apart).  

 

Figure 4: Topology for Active Directory system. 

The experiments were run for several sizes of network 
for each topology. The synthetic topologies are easily 
scaled to increasing number of sites but it was not 
obvious how the Active Directory topology should be 
scaled. To build larger networks, we maintained the 
same ratios of sites to top-level clusters as observed in 
the real topology. That is, top-level circle ‘A’ in Figure 
4 contains 50% of the total number of sites, top-level 
circle ‘B’ contain 12% and the remainder are spread 
evenly amongst the other top-level clusters. 

The results are shown in Figure 5, where convergence 
time is measured in the number of synchronization 
rounds. A linked list performs the worst, as expected, 
since it requires the longest possible path. The star 
topology does best, yielding convergence in constant 
time due to the path between non-center nodes being of 
length two. The path between any two nodes is 
deterministic due the links to the center node. These 
simulation results assume unlimited bandwidth. That is, 
in a single round, a site, such as the center of a star 
topology, can be a partner of any number of other sites 
with whom it is a neighbor. The clique topology results 
in the expected logarithmic growth.  
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Figure 5: Average convergence time for several 
topologies as the number of sites increases. 

The results in Figure 6 illustrate these trends for a 
larger number of sites. This figure confirms that, in 
terms of convergence time, the WinFS design can scale 
up to thousands of replicas for both star and clique 
topologies. The scalability of a star-configured system, 
however, is likely to be limited by the capacity of the 
central site and its network connections. The Active 
Directory topology is similar in shape to a clique but 
with convergence times between those of the clique 
and the linked list. The results show that in order to 
achieve scalable convergence time, a topology must be 
used such that the average path length taken for 
convergence is logarithmic with respect to the number 
of sites in the network. 
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Figure 6: Convergence time for star topology is 
constant at 1 whereas a clique topology is 
logarithmic in the number of sites. 
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Figure 7: Resolution time is similar to convergence 
time for all topologies. 

5.2 Resolution Time 
Resolution time is similar to convergence time but is 
tailored to the case when the workload includes 
conflicting modifications to the same item. In this case, 
as the modifications are sent through the network, 
conflicts will be detected and resolved, thereby 
producing new versions to be propagated. Since any 
site can potentially resolve conflicts, the same conflict 
may be detected and resolved independently at several 
sites, possibly leading to versions of an item that 
themselves need to be resolved.  WinFS ensures that 
the resolution process eventually converges. In this 
experiment, we performed a number of conflicting 
updates to an item before the first synchronization 
round and then measured the time (in rounds) until all 
sites agree on the same version, assuming that each site 
can resolve conflicts. The results shown in Figure 7 are 

similar to the convergence times shown in Figure 5, 
which confirms that conflict resolution is scalable for 
clique and star topologies.  

We also consider the case where not all sites are 
capable of detecting and resolving conflicts. Fewer 
resolving sites require potentially more time for 
conflicting modifications to reach the resolving sites. 
On the other hand, having more sites that can resolve 
conflicts increases the number of concurrent, and hence 
conflicting, resolutions, which can lead to longer 
resolution times. Would it be beneficial to use one site 
as the authoritative conflict resolver and simply 
propagate conflicting items at the remaining, non-
resolving sites? The following experiments consider 
this question by varying the percentage of sites that can 
resolve conflicts.  

The results in Figure 8 illustrate the competing effects 
of time to resolve versus number of resolving sites.  
They show that resolution time differs per topology as 
the percentage of resolving sites is varied. For clique, 
the percentage of resolving sites is not a factor. 
Consider a network with one resolving site. It is likely 
that not all concurrent modifications will arrive in the 
same round. As a result, multiple resolutions are 
propagated into the network resulting in a system-wide 
state with possibly many versions. However, when all 
conflicting modifications have been seen by the 
resolving site, all sites contribute to propagating the 
final version to all other sites. Now consider a network 
with two resolving sites. Both may resolve the same 
conflict identically. When the two resolutions are 
detected in WinFS, the resolution from the site with the 
lower site id will win. Thus, all conflicts must go 
through the site with the lower id which results in a 
resolution time that is similar to the network with one 
resolving site. 

Resolution time for the star topology can be understood 
by considering its asymmetry. If the central site is a 
resolving site, then resolution time is considerably 
shorter. Since sites are assigned to be resolution sites at 
random, when the percentage is sufficiently high, the 
likelihood that the central node is not assigned to be a 
resolution site becomes very low, thus resulting in a 
high likelihood of shorter resolution times. 
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Figure 8: Resolution time for a percentage of 
resolving sites. Each network has 10 sites and 4 
concurrent modifications are made in the first 
synchronization round. 

For the list topology, when there is one resolving site, 
all conflicting modifications must propagate to the 
resolving site, and then propagate back out to all the 
other sites. By adding resolving sites, propagation of 
the final resolution can proceed in parallel. Consider 
the case where one site resolves all conflicts and 
propagates its resolution to another resolving site. If 
the first site has a lower id, the second site will use the 
received resolution as a winner. Resolution will 
complete without having to revisit the already seen 
sites. However, there is a possibility that not all 
conflicts are seen by the first site when the two 
resolutions are detected. As a result, potentially more 
time will be required in order to revisit previously seen 
sites. The latter factor has greater influence when there 
are fewer resolution sites since intermediate, non-
resolving sites propagate old resolutions. However, 
when there is a large percentage of resolving sites, 
revisiting previously seen sites following the resolution 
of all conflicts is less likely, thus leading to faster 
resolution times. 

5.3 Message Traffic 

The results in Section 4 show that the number of 
messages is efficient with respect to the number of 
local modifications. The next experiment shows how 
message traffic increases as the number of sites n is 
increased. The results in Figure 9 show that when the 
modification workload remains constant at u, adding 
extra sites results in a proportional number of total 
messages. The rapid rise in the region of the curve 
where the number of sites is small is due to larger than 
2x amount of work for 2n sites. In a system with few 
sites, the number of overhead and data messages is 

reduced because of synchronizations that are skipped 
due to redundantly chosen partners.  For example, with 
2 sites, there is only one other site with which to 
perform synchronization whereas for 4 sites, there are 3 
other potential partners. Hence, the traffic with 4 sites 
is more than twice that with 2 sites.  After about 20 
sites, the curve levels off indicating that the protocol 
meets the stated scalability requirements. 

The results in Figure 9 re-enforce the expected, 
reduced message traffic as a result of using a state-
based representation. The curve corresponding to the 
analytic model is simply the sum of Equation 1 and the 
expected data messages (n-1)*u divided by the number 
of total sites, n. It assumes that there are no overwrites 
in the workload so overestimates the results from the 
simulator that allow for overwrites. 
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Figure 9: Average total messages per site, per 
round as the number of sites increase in a clique 
network. The number of modifications is constant 
at 8 per round. 

6. ROBUSTNESS 

A system is robust if it continues to operate effectively 
and correctly in spite of site and communication 
failures.  In the case of WinFS replication, we explored 
the following questions: 

• How do communication outages and message loss 
affect the convergence time? 

• Which synchronization topologies are more 
tolerant of network failures? 

• How does site availability affect overall message 
traffic? 
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To be classified as robust, the WinFS replication 
protocol should (a) guarantee that replicas eventually 
converge to a consistent state as long as 
communication between replicas is not permanently 
disrupted and (b) experience an increase in 
convergence time, compared to a fault-free system, of 
at most a factor of two when site availability drops to 
80%, when the message loss rate approaches 20%, or 
when 10% of synchronization sessions terminate 
prematurely. Eventual convergence of the WinFS 
protocol was proven using formal methods and model 
checking, and so our simulation study focused on the 
performance degradation resulting from transient 
failures.  

We consider three types of failures: site unavailability, 
message loss, and session termination. Site availability 
is the inverse of site unavailability, which indicates 
how many sites are unreachable in the network due to 
either link failures or site failures. For example, if a site 
is 80% available, then 8 out of 10 attempts to 
synchronize with the site will succeed. While our 
simulations consider a broad range of availability, we 
expect practical distributed systems to operate above 
the 80% level used to measure the robustness of 
WinFS.  Given target availability, a frequency and 
duration of failures is determined to yield the 
availability used in the experiments. 

Despite all sites being functional, individual messages 
may be lost in the network if the underlying transport 
protocol is unreliable (e.g. UDP). Message loss 
determines the probability that a message from a 
sending site is not delivered to the receiving site. A 
message may be lost at any point during 
synchronization. If WinFS replication performs well up 
to 20% message loss, then we consider it to be robust. 

If the transport protocol is connection oriented (e.g., 
TCP), then the failure of concern is session termination 
rather than message loss. Session termination is similar 
to message loss except that all messages following a 
lost message in the current synchronization session are 
also undelivered. This occurs, for instance, when a 
mobile device moves out of the range of a wireless 
base station. The session termination rate is the 
percentage of synchronization sessions that do not 
complete successfully.  In our simulations, if a session 
is terminated, it terminates on a random message 
during synchronization.  Any data messages delivered 
before a session is terminated are accepted by the 
receiving site.  

6.1 Robustness of Convergence Time  

The next set of experiments considers failures in the 
network. With failures, not all modifications are 
necessarily learned in a single synchronization session 
and not all sites are available for synchronization. 
Thus, convergence time is expected to increase. Of 
interest is how much of an increase is observed, how 
does the increase differ per topology, and up to what 
failure rate is the decreased convergence time 
tolerable? For this experiment, we vary topology and 
failure rate while keeping the number of sites constant 
at 8. 

The results in Figure 10 show that convergence time 
varies significantly for different topologies. The results 
confirm the intuition that a more highly connected 
topology such as clique is more robust than the 
topologies with lower connectivity. Furthermore, for all 
topologies, the knee in the curve where convergence 
time rises dramatically is well below the target 80% 
availability.  

The results in Table 2  focus on the portion of the 
graph corresponding to availability greater than 70%. 
This table presents the percentage increase in 
convergence time for various topologies and site 
availability compared to convergence time assuming no 
failures. Convergence time for clique and list 
topologies slows down by less than 100% when site 
availability is 80% or above. In contrast, for a star 
topology, convergence slows down unacceptably for 
availability below 90%.  Thus, a star is not a robust 
topology according to our definition. This is due to the 
central site potentially blocking all progress in the case 
that it is unavailable. In a realistic implementation, 
however, the central site may have a failure rate that is 
lower than the other connecting sites. In a clique, on 
the other hand, the replication process can make 
progress by potentially circumventing unavailable sites. 
When a list topology is used, the replication process 
makes progress for higher levels of availability due to a 
decreased probability of being blocked. Furthermore, 
the replication process can make progress towards 
unavailable sites during which time these sites may 
become available. However, when availability is too 
low, the probability of being blocked by neighboring, 
unavailable sites increases, thus impeding progress. 
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Figure 10: Convergence time for different 
topologies as site availability increases. 

        Availability 

Topology 
95% 90% 80% 70% 

Clique 21 26 41 328 

Star 77 96 177 977 

List 5 34 57 199 

Table 2: The percentage slowdown of convergence 
time for several combinations of topologies and 
availability.  

Similar experiments were conducted for studying the 
effect of message loss and session termination on 
convergence time. Table 3 shows the percentage 
increase in convergence time as the message loss rate 
increases.  Cliques and lists experience an increase of 
less than 100% up to a message loss rate of 20%. 
These results demonstrate once again that clique and 
list are robust topologies whereas a star topology is not. 

        Message Loss 

Topology 
5% 10% 20% 

Clique 13 26 62 

Star 60 137 271 

List 3 34 65 

Table 3: The percentage slowdown of convergence 
time for combinations of topologies and message 
loss rate.  

The results in Table 4 show a similar relationship 
between topology and robustness when sessions are 
terminated. The clique topology is robust up to a 10% 
session termination rate. In addition, the results show 

that session termination has a larger effect on 
convergence time than message loss since, for each 
synchronization that is terminated, all messages that 
would have followed the failure are lost. However, it is 
assumed that session termination using a reliable 
transport occurs less frequently than message loss with 
an unreliable transport, and so a lower threshold for 
determining robustness is reasonable.   

         Session Termination  

Topology 
5% 7.5% 10% 

Clique 46 68 96 

Star 191 445 629 

List 62 75 140 

Table 4: The percentage slowdown in convergence 
time for combinations of topologies and session 
termination rate. 

6.2 Robustness of Message Traffic  

The final experiments test the robustness of message 
traffic when sites are unavailable. The results in Figure 
11 extend the results shown in Table 1 where we study 
the effect of overwriting modifications. Network 
failures and site unavailability have a similar effect. 
Specifically, unavailable sites increase the number of 
modifications per site between successful 
synchronizations. As a result, the likelihood of an 
overwrite increases, leading to a decrease in the 
number of messages due to the state-based replication 
scheme. In addition, although not shown, topology has 
an effect on message traffic. Due to the increased 
connectivity, and hence robustness, of the clique 
topology, more messages are sent in comparison to star 
and list topologies.  
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Figure 11: Message counts decrease as availability 
decreases for an 8 site clique network. 

7. RELATED WORK 

In this paper, the WinFS replication protocol is 
characterized with respect to overall system properties 
such as convergence time and message traffic. In 
contrast, the designers of other optimistic replication 
protocols have mostly evaluated them with respect to 
consistency [13]  and conflicts [1][8].  Other 
researchers have simply noted the difficulty of 
measuring the quality of service in optimistically 
replicated systems [4]. 

One notable exception is the seminal paper on 
epidemic algorithms that evaluated both anti-entropy 
and rumor mongering convergence through analysis 
and simulation [2].  However, the rumor mongering 
protocols studied by Demers et al. have the unfortunate 
property of leaving a non-zero residue; in other words, 
replicas only receive updates with some probability.  
Rumor mongering protocols also are inefficient in that 
an update may be delivered to a replica multiple times.  
Table 1 in the epidemic algorithms paper [2] shows 
that the number of messages sent per replica per update 
is 6.68 in order to achieve a residue of 0.0012.  
Mullender and van der Valk also used simulation to 
explore the tradeoffs between message traffic and 
infection rates in epidemic protocols [6].  In contrast, 
the WinFS replication protocol studied in this paper 
guarantees eventual convergence of all replicas and, as 
shown in section 4, is efficient in that it maintains a 
traffic ratio of 1 or less for all topologies.  Demers et 
al. suggest backing up a complex epidemic with anti-
entropy to ensure full convergence.   The efficiency 
and scalability of WinFS replication, which uses a 
novel anti-entropy protocol, allows it to be used as the 
sole means of propagating updates between replicas.    

Our simulations of convergence time compliment the 
previous studies of anti-entropy protocols.  In this 
paper, we study various communication topologies in 
which synchronization partners are selected at random 
from the set of neighboring replicas, whereas Demers 
et al. evaluated different distance-biased distributions 
for selecting partners given the fixed topology of the 
Xerox Corporate Internet [2].  Golding and Long 
simulated their timestamped anti-entropy protocol for a 
number of partner selection policies and topologies, 
including rings, trees, and meshes [3].  As in our study, 
they conclude that the mesh topology is the most 
scalable. 

The Ficus [8] and Bayou [9] systems share some key 
architectural features of WinFS, namely an update-
anywhere, optimistic replication model with peer-to-
peer reconciliation.  Papers on Ficus and Bayou 
include performance measurements of individual 
reconciliation times and file system benchmarks but not 
scalability, efficiency, or robustness.  Roam is a 
descendant of Ficus that employs a two-level hierarchy 
of replicas to improve scalability by reducing the 
storage overhead and update distribution time [10].  
Ratner et al. provide an analysis of update propagation 
times for a Roam system in which replicas at each level 
of the hierarchy are arranged in rings. This 
arrangement results in propagation times that are 
shorter than in a ring but longer than the other 
topologies that we studied in section 5. 

8. CONCLUSIONS 

Compared to replicated data protocols with strong 
consistency guarantees, such as one-copy 
serializability, optimistic replication schemes have 
been developed because of their increased availability 
and performance, though few researchers have studied 
their overall system behavior.  WinFS employs an 
instance of an optimistic or epidemic-style protocol 
that allows sites to exchange updated data items in a 
peer-to-peer fashion while guaranteeing eventual 
convergence.  Our simulation study confirms that the 
WinFS replication protocol meets its design goals for 
efficiency, scalability, and robustness.  

The key WinFS replication properties validated or 
quantified in this study are: 

• At most one data message per site is sent for each 
updated item regardless of the topology of the 
overlay network used for communication between 
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sites, the policy that selects synchronization 
partners, and the frequency of synchronization.  

• State-based replication, compared to systems that 
maintain and replicate update logs, sends fewer 
messages as the update rate increases since data 
items may be overwritten multiple times in 
between synchronization sessions; reductions in 
message traffic of up to 11% were observed for 
modest numbers of modifications. 

• For clique, star, and the two-level clustered 
synchronization topology used in the Active 
Directory system, convergence time and resolution 
time grow slowly with increasing numbers of 
replica sites, and hence systems configured in 
these topologies can scale to large numbers of 
replicas; list and ring topologies are not scalable. 

• Increasing the percentage of sites that can 
automatically resolve update conflicts generally 
reduces the overall time for sites to agree on a 
resolution; however, there is a tension since a 
larger number of resolvers also results in higher 
likelihood of concurrent resolutions which prolong 
the resolution time. 

• As the number of sites increases, overall message 
traffic increases due to fewer redundant 
synchronizations in a given round; this effect is 
pronounced for small numbers of replicas but the 
message traffic curve flattens out for large 
systems. 

• Reducing the availability of communication 
channels between sites, such as when sites are 
intermittently connected, reduces the overall 
message traffic without impacting eventual 
consistency; however, low availability can have a 
considerable detrimental effect on convergence 
time. 

• A clique topology is the most tolerant of network 
and site failures; convergence time increases by 
less than a factor of 2 for reasonable failure rates 
such as 20% site unavailability, 20% message loss, 
and a session termination rate of 10%. 

The simulation results presented in this paper were 
based on synthetic workloads in which modifications 
were performed on random items at randomly selected 
replicas.  While such workloads were sufficient to 
answer our questions concerning the efficiency, 
scalability, and robustness of the WinFS replication 

protocol, they did not allow us to predict the overall 
WinFS system performance for real user communities.  
In the future, we hope to extend the experiments by 
simulating update workloads obtained from actual 
distributed systems.  These workloads are likely to 
exhibit more locality than random modifications but 
should not alter our fundamental conclusions.   
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