
CONNECTING SENSORS AND ROBOTS THROUGH THE

INTERNET BY INTEGRATING MICROSOFT ROBOTICS

STUDIO AND EMBEDDED WEB SERVICES

Oscar Almeida
Texas A&M University

College Station, TX 77843

oscar10@tamu.edu

Johannes Helander
Microsoft Research

Redmond, WA 98052

jvh@microsoft.com

Henrik Nielsen
Microsoft

Redmond, WA 98052

henrikn@microsoft.com

Nishith Khantal
Indian Institute of Technology, Kanpur

nkhantal@gmail.com

ABSTRACT

While sensors and robots are prevalent in modern electronic devices, there still exists a general lack of interoperability

between them. It would be nice if all real world objects could speak the same language, regardless of their differing

properties. This work combines the development of two software platforms, Microsoft Invisible Computing and

Microsoft Robotics Studio, to provide the means for a real-time sensor network to achieve this goal. Microsoft Invisible

Computing, a light-weight operating system and communications middleware compatible with several existing hardware

platforms, allows real-time communication with sensors and robots, along with the means to send and receive

XML/SOAP messages. Microsoft Robotics Studio, on the other hand, can provide the decentralized orchestration,

simulation and user interface necessary for sensor network nodes to interoperate efficiently. Ultimately, this work lays a

foundation for a world of compatible objects.

KEYWORDS

XML, Services, Robots, Embedded Systems

1. INTRODUCTION

Today, new technologies are continuously emerging with embedded sensors and robots. This includes, but is

not limited to, consumer devices and medical tools in hospitals. A property uniting most of these devices is

that they are incompatible with each other. That is to say, that each group of devices has a somewhat unique

method of communication with other devices.

To clarify the scope of this work, we are targeting small embedded devices that can perform their

functions without even being noticed by the end user. As little as one to two-dollar processors can drive

these devices. With memory, wireless capabilities, and a sensor also added, the total estimated cost for such

devices can be as low as $25.

The primary scenario used in this paper is patient monitoring in a hospital. Here there are hundreds of

tools, sensors, and robots, few of which share the same communication protocol. Imagine representing these

objects by web services, each having a common notion of name, some states, and a list of other devices that

they need to talk to. Then on an even broader level than the network nodes themselves could be orchestration

and fusion of such objects to provide evidence to make assumptions about the safety of a patient. For

example, a patient may drop a walking stick with fall-detecting capabilities [13]. Normally this would trigger

an alarm of some sort. But what if the patient‟s bed contained a sensor that could tell if the patient was on

the bed? If the stick fell, but the patient had just gotten into bed, then there was in fact no real emergency. A

lower priority alarm can be sent to help the patient restore the fallen stick to be ready for use.

Embedded Web Services (EWS), a component of Microsoft Invisible Computing, enables such devices

to become sensor network nodes. Included is the ability to communicate with a sensor or robot, along with

the capability to communicate with other nodes. Microsoft Robotics Studio, a PC-based development tool

for easy creation of robotics applications, can be used to manage the sensor nodes in a decentralized, user-

friendly manner. The remaining sections include introductions to the Embedded Web Services and Robotics

Studio, discussion on related work, followed by our design, implementation, and results.

2. EMBEDDED WEB SERVICES AND ROBOTICS STUDIO

Embedded Web Services realizes the ability of an embedded system to become a sensor network node.

By transmitting and receiving SOAP messages, multiple nodes are able to intercommunicate, even using

different web service protocols. A major advantage of this platform in addition to network functionality is

the ability to monitor sensors in real-time. Thus, a sensor can be polled, for example, and talk to other

network nodes as well [12].

Robotics Studio is a development tool allowing easy creation of robotics and sensor-based applications.

It provides a decentralized, asynchronous environment for managing web services. The communication

between services occurs via Decentralized Software Services Protocol (DSSP) [11], a superset of the HTTP

methods. This protocol allows for structured data retrieval, monitoring, and manipulation. Robotics Studio

also contains a 3-d physics engine and simulation environment. Here real and simulated sensors can be

mixed and matched as desired. In fact, Robotics Studio does not actually know the difference between the

two.

Although Microsoft Invisible Computing provides the means to communicate with sensors in real-time

and transfer data to other network nodes, the scope of each node is mostly reduced to itself. That is, overall

system management is not provided for complex distributed tasks. Furthermore, it is common for network

nodes to require as little computation as possible to meet timing and size requirements. While EWS has

some orchestration support, it is not practical to do sophisticated modeling or planning on microcontroller

nodes with limited computation power. Robotics Studio, running on PC class computers, can provide

decentralized management of network nodes with very little overhead. Thus, leaving the individual nodes to

EWS and the overall system management to MSRS makes an efficient and effective combination.

 Robotics Studio is also capable of having a user interface that cannot be achieved in most embedded

systems. The 3-D graphics and physics engines provide a method of displaying the status of the network

nodes actuated by EWS. Take for instance the hospital scenario again. A 3-D floor plan model of a hospital

can be created in Robotics Studio. Visualizing the locations and states of several sensors in the hospital can

be very beneficial for patient monitoring and for responding to alarms.

One advantage of the combination of Robotics Studio and EWS in this medical scenario is the

removal of false positives. Microsoft Invisible device could monitor a sensor such that it over-detects

potential accidents. While over-detecting alarms may remove the possibility of false negatives, false

positives may likely become present. Robotics Studio could then use evidence from other sensors to detect

and remove false positives.

 The ability to mix simulated and real sensors in Robotics Studio can also prove to be useful for

system testing. If certain devices are not ready to be directly monitored, simulation for such devices can be

used for testing the devices that are already monitored by Robotics Studio. The 3-D physics engine allows

identical output between a simulated and actual robot, since Robotics Studio cannot tell the difference.

Alternatively, an entire simulation environment could be created to provide a base for real sensors to be

verified against.

3. RELATED WORK

Significant work, on platforms similar to those targeted by Microsoft Invisible Computing, has also been

done recently in the field of sensor networks. [1] presents a sensor network testbed that uses a centralized

server for reprogramming nodes, data logging, and supplying a web interface. This allows for a reduced

amount of attention required by the individual nodes, since all can be accessed by a conveniently central

location. [7] on the other hand explains an asynchronous approach to designing sensor networks for

distributed applications. Comparisons to scheduled networks are also made. [2] describes a sensor network

monitoring software that, like EWS, allows different types of sensors to be integrated and communicate via

XML through the internet. Because it is written in Java, this software achieves OS platform independence,

while requiring somewhat more powerful hardware. While our system also uses XML, it is in the form of

SOAP messages. With this method, we can be careless of what types of objects are being added to the

system. In other words, there does not need to be a global library of acceptable object types. Only at the

node level should it be known what types of objects can be interacted with. [3] involves a real-time

embedded OS designed with scheduling and timing advantages over a number of other existing embedded

operating systems. [4] constructs an interpretation model for sensor data and queries. The work described in

[5] discusses several issues regarding important real-time issues to be considered when designing complex

robotics systems and applications. [6] emphasizes the reality of heterogeneous sensor networks, in which

each node may operate on different platforms. A combination of simulation and emulated sensors being

controlled one instruction at a time is also discussed. [8] also involves heterogeneous sensor networks but

instead focuses on the appropriateness of TCP/IP as a means of communication between network nodes. The

work performed in [9] suggests that mobile sensor networks can be more appropriate at times, depending on

what is being monitored. Lastly, [10] presents a sensor network architecture with the purpose of

intertwining network communication and computing operations. Various protocols and middleware options

are discussed as well.

4. DESIGN

The web service architecture that we integrated into the Microsoft Invisible platform can be divided into five

layers: connector, converter, DSSP interface, resource, and property class. The connector manages network

connections and handles TCP/IP and HTTP processing. The converter takes XML and converts it to native

representation based on the schema of the data. The DSSP interface implements the parameters necessary in

the incoming and outgoing SOAP messages. This implementation supports customized data types by using

three special parameters provided by the converter. The data value is referenced by a pointer, while a string

specifies the type, and an integer stores the data size. Several DSSP functions share code by calling the same

function in the resource layer.

 We designed the resource layer to consist of a single directory tree of resource objects. Each object

has a value and a property class. Part of the state defined by the property class, for example a “name” field,

is used to identify the resources in the directory tree. Every resource represents either a service or a service‟s

state. Resources that act only as a subdirectory are represented by services. The identification is used for

searching purposes, while the value and property class define the object. Again, the data is merely pointed

to, whereas the resource type and method interface are stored in the property class.

 All property class methods (e.g. Copy, Delete, and Apply) are shared, but not necessarily

implemented, by all resources. It is in this layer that resources are found, created, destroyed, stored, and

retrieved. Additionally, a resource may apply another resource (e.g. policy) to itself to validate its actions.

For example, a resource storing sensor data may only report its data to others if the data is above some lower

threshold applied to it.

 Code reuse is heavily emphasized to save space. The DSSP functions CREATE, DELETE, DROP,

INSERT, REPLACE, UPDATE, and UPSERT all utilize the same resource-changing method in the resource

layer. Likewise, the functions GET, LOOKUP, and QUERY all use a resource-enumerating method that

returns a list of resources at a certain level in the resource directory. The enumeration involves creating a list

of pointers to the desired resources. Then each resource‟s value is pulled from the list, one by one, being

added to the output list if it passes the filter. GET would return all resources at a given level, while

LOOKUP would return only services, and QUERY would return some specific resource.

 Subscriptions and policies have slightly different implementations from the above. When a

subscription to resource X is received, a directory path identical to that of X is created under the

“root/Subscriptions” directory. Here the subscriber, subscription expiration, and notification count are

stored. Anytime resource X is changed thereafter, its corresponding subscriber will be sent a notification.

Policies, such as thresholds and trust scripts, are handled in an identical fashion but in the “root/Evidences”

directory.

5. IMPLEMENTATION

The following demo was performed in an outpatient monitoring medical context. The angular velocity of a

walking stick prototype, intended for use by the elderly, is measured by an embedded gyro sensor. Such

measurements can be used to detect when the user may have fallen and generate an alarm to the medical

personnel. The scope of this demo is to poll the gyro with a microcontroller and send the data over the

network to Robotics Studio using DSSP.

The microcontroller used in the demo is the Atmel EB63 Arm7 board, which runs at 25MHz. This

board is loaded with the Microsoft Invisible Computing platform. Tasks include polling the gyro and

managing the web services used to communicate with Robotics Studio. Because the actual board has no

Ethernet port, the Ethernet packets generated by the network protocol are sent via a serial line instead to the

PC and are then forwarded using a Virtual NIC driver. All in all the PC here simply serves as a very bulky

Ethernet card.

The gyro used is the Gyration MG1101 MicroGyro. It contains two axes of measurement and

operates over a 2-wire serial bus. In this project, we placed the gyro inside and at the base of the walking

stick prototype, shown at right. The gyro measures the angular velocity of the walking stick.

Three parties are involved in the communications, as shown in figure 1. “Embedded Client” is a

local application running on the board, which is the software that actually controls the gyro. It communicates

locally with the “Embedded Server” via the loopback network interface using SOAP. “Robotics Studio” runs

on a PC and communicates with “Embedded Server” using the Ethernet link.

Figure 1. The communication between the gyro sensor, Embedded Client, Embedded Server, and Robotics Studio is

shown here. The gyro is connected via 2-wire serial bus to the microcontroller board. The Embedded Client, Embedded

Server, and Robotics Studio talk via SOAP messages

At the start, Embedded Client asks Embedded Server to create a web service for itself. This service is called

„TEST‟ and will serve to hold the gyro data. Embedded Client then inserts the initial state of the gyro into

the „TEST‟ web service on Embedded Server. At this point, Robotics Studio subscribes to the service

„TEST‟, to be notified of any changes in the state of the gyro. The message exchange is shown in figure 2.

Figure 2. The top xml snippet below shows the subscribe request by Robotics Studio to the Embedded Server. The

significant data is in the body of the message. The Embedded Server stores this information and then sends a response,

shown in the lower xml code block

Now the system is initialized and enters the operational state. The EB63 board polls the gyro at a set rate, and

accordingly Embedded Client updates the state of the gyro in Embedded Server. This update triggers the

creation of a proxy between Embedded Server and Robotics Studio. Once the connection is established, the

updated gyro measurements are sent to Robotics Studio. The Robotics Studio web service collecting this

data (gyro measurements) can be viewed in a web browser in real time. Below is the printed debug

information displayed when Embedded Server creates the proxy to Robotics Studio and sends it a message.

Figure 3. The debug information display that occurs at the time of proxy creation between the Embedded Server and

Robotics Studio

The notifications are one-way SOAP messages, meaning that they will not wait for a response from the

target. A notification can be configured in Robotics Studio in the form of any of the state changing

commands (REPLACE, INSERT, UPDATE, and UPSERT). For this demo, the notification is the equivalent

of a Replace call, meaning that the entire state kept in Robotics Studio will be replaced by the entire body of

the incoming message.

Shown below is the simple user interface of this demo. While Robotics Studio is running, a user

may simply open a web browser to the URL of the Robotics Studio service. If the service state is desired, the

web browser will perform a Get function call on the service and display the response. Here the

measurements on each axis of the gyro are shown in the body of the message. Of course, a much more

detailed interface could be created in Robotics Studio using the 3-D physics engine.

Figure 4. The simplest Robotics Studio interface, which is simply a page in a web browser at the service‟s URL. The

web browser performs a GET operation on the service of interest and displays the data it contains

6. RESULTS

Although the most significant results of this work involve interoperability between sensors and robots

through the Internet, three quantitative measurements were performed. The first set of measurements

consisted of the time taken to create web services on the Embedded Server. Below are the time requirements

for creating the service directory in Table 1. Notice that the time to create services increases as the depth in

the tree increases. This is because an inserted service‟s parent must first be located.

Table 1. The time needed to create the services below. A lower threshold policy is inserted into

EVIDENCE/TEST0/TEST/TEST2 while TEST0/TEST/TEST2 contains actual gyro measurements

Directory Location Time taken to create service (ms)

EVIDENCE 66.53 ms

EVIDENCE/TEST0 80.21 ms

EVIDENCE/TEST0/TEST 89.27 ms

EVIDENCE/TEST0/TEST/TEST2 96.68 ms

TEST0 84.03 ms

TEST0/TEST 86.25 ms

TEST0/TEST/TEST2 111.97 ms

The next set of measurements was simply a summation of the sizes of the files necessary to run the

demonstration program. The table below displays the individual sizes of several file groupings. It is worth

noting that the total ROM size is less than 256KB. The files in Table 2 are ordered from the lowest to

highest abstraction levels. “BASE” to “DRIVERS” are very hardware specific, while “NET” to “HTTP” are

network intensive and constitute the connector. “XML” to “SOAPMETA” contain the converter and related

middleware files, and remaining files are directly accessible by the user applications. DSSP implements the

DSSP protocol. DSSP and an optional WS-Management component (not included) take use of the CIMDB

files, which contains the “resource layer” from section 4 of this paper. The DSSP files are the major addition

of this work to the Microsoft Invisible platform. Several other files experienced minor changes to support

this new protocol.

Table 2. The categorical listing of the file sizes, in bytes, included in a working implementation of this demonstration.

This list is expandable to include more functionality from Microsoft Invisible Computing

File ROM RAM # Files

BASE 22928 292 50

MACHDEP 5944 1632 22

CRT 14372 32 59

DRIVERS 11348 308 23

NET 57728 1844 67

TCP 13276 76 10

DHCP 5576 96 4

HTTP 21292 168 15

XML 12708 16 8

CONVERTER 37644 612 19

SOAP 17792 348 39

SOAPMETA 16112 20 26

DSSP 10636 144 5

CIMDB 12040 80 23

TOTAL 259396 5668 370

Lastly are the memory allocation measurements and thread count at different points in the demo application

process. The column labeled “Command” shows what was entered in the command line interface for

initializing the Microsoft Invisible Platform. Such instructions were performed to set up the network

interface, establish a DHCP IP address for the “Embedded Server”, and to actually run the demo application.

Table 3. The number of bytes in use at each stage of the demonstration application is shown below, as are the number of

active threads at each step

Command Memory Used (Bytes) # Active Threads

[Initial] 11,056 1

protocol.cob start 46,464 6

start protocol.cob dhcp 53,376 8

http.cob 61,176 9

protocol.cob lo0 127.0.0.1 61,040 7

cimdb.cob 55,144 7

7. FUTURE WORK

Survey of more hardware, appropriately smaller sensors, microcontrollers, wireless, GPS, etc. is necessary to

make a more concrete example of this work. Additionally, further development of a Microsoft Robotics

Studio user interface application in conjunction with Embedded Web Services is also a major goal. This

includes defining how ubiquitous services can be asynchronously well-managed, monitored, and discovered.

The capabilities of Robotics Studio graphically are far beyond the scope of the demonstration presented in

this paper. The scenario of hospital patient monitoring by combining EWS and Robotics Studio is a specific

future research project being considered. We plan to create a visual hospital setting where multiple sensors

are fused by Robotics Studio to provide information that the nodes cannot provide on their own.

8. CONCLUSION

The significance of this work is the idea that all real sensors and robots can be represented by web services.

Once such an abstraction is made, Embedded Web Services can be used to represent individual nodes while

Microsoft Robotics Studio orchestrates them. Not limited to medical contexts, this work provides the means

of interoperability that current technology often lacks. Ultimately, the dream of global compatibility and

communication is realized.

As a result of the work presented in this paper it is now possible to use DSSP and services as a generic

substrate for sensor networks, or the next generation robotic networks. The integration of the physical

modeling and orchestration capabilities of the Microsoft Robotic Studio makes it possible to quickly build

simulated environments that can be partially or completely physically realized. The Embedded Web Services

make it practical to build microcontroller based devices with limited capabilities without having to

compromise on interoperability or having to resort to proxy computers. A common data serialization format

obviates the need for most dedicated protocols and makes it easy to turn physical objects into services.

REFERENCES

[1] Werner-Allen, G., et. all, 2005. MoteLab: A Wireless Sensor Network Testbed. Fourth International Symposium on
Information Processing in Sensor Networks. Los Angeles, California, USA, pp. 483-488.

[2] Yu, M., et. all, 2007. NanoMon: A Flexible Sensor Network Monitoring Software. The 9th International Conference
on Advanced Communication Technology. Gangwon-Do, pp. 1423-1426.

[3] Park, S., et. all, 2006. Embedded Sensor Networked Operating System. Ninth IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing. Gyeongju, South Korea, 5 pp.

[4] Imai, M., et. all, 2006. Semantic Sensor Network for Physically Grounded Applications. 9th International

Conference on Control, Automation, Robotics, and Vision. Singapore, pp. 1-6.

[5] Buttazzo, G., 1996. Real-time Issues in Advanced Robotics Applications. Proceedings of the Eighth Euromicro
Workshop on Real-Time Systems. L‟Aquila, Italy, pp. 133-138.

[6] Polley, J. et. all, 2004. ATEMU: A Fine-grained Sensor Network Simulator. First Annual IEEE Communications

Society Conference on Sensor and Ad Hoc Communications and Networks. Santa Clara, California, USA, pp. 145-
152.

[7] Narayanan, S. And Jones, D., 2005. On the Performance of Asynchronous Sensor Networks for Detection.

Proceedings of the 2005 International Conference on Intelligent Sensors, Sensor Networks and Information

Processing. Melbourne, Australia, pp. 241-246.

[8] Lei, S. et. all, 2006. Connecting Heterogeneous Sensor Networks with IP Based Wire/Wireless Networks. The Fourth

IEEE Workshop on Software Technologies for Future Embedded and Ubiquuitous Systems. Gyeongju, Korea, 6 pp.

[9] Chin, T., et. all, 2005. Exposure for Collaborative Detection Using Mobile Sensor Networks. IEEE International
Conference on Mobile Adhoc and Sensor Systems Conference. Washington D.C., USA, 8 pp.

[10] Abdelzaher, T., et. all, 2007. Towards a Layered Architecture for Object-Based Execution in Wide-Area Deeply

Embedded Computing. 10th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing. Santorini Island, pp. 133-140.

[11] Nielsen, H. and Chrysanthakopoulos, G., 2007. Decentralize Software Services Protocol – DSSP/1.0. [Online]
http://download.microsoft.com/download/5/6/B/56B49917-65E8-494A-BB8C-3D49850DAAC1/DSSP.pdf.

[12] Helander, J., 2005. Deeply Embedded XML Communication: Towards an Interoperable and Seamless World.

Proceedings of the 5th ACM International Conference on Embedded Software. Jersey City, NJ, USA.

[13] Almeida, O. et. all, 2007. Dynamic Fall Detection and Pace Measurements in Walking Sticks. Joint Workshop on

High Confidence Medical Devices, Software, and Systems and Medical Plug-and-Play Interoperability. Cambridge,
MA, USA, 3 pp.

http://download.microsoft.com/download/5/6/B/56B49917-65E8-494A-BB8C-3D49850DAAC1/DSSP.pdf

