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ABSTRACT

Reasoning about multithreaded object-oriented programs is
difficult, due to the non-local nature of object aliasing, data
races, and deadlocks. We propose a programming model
that prevents data races and deadlocks, and supports local
reasoning in the presence of object aliasing and concurrency.
Our programming model builds on the multi-threading and
synchronization primitives as they are present in current
mainstream languages. Java or C# programs developed ac-
cording to our model can be annotated by means of stylized
comments to make the use of the model explicit. We show
that such annotated programs can be formally verified to
comply with the programming model. In other words, if the
annotated program verifies, the underlying Java or C# pro-
gram is guaranteed to be free from data races and deadlocks,
and it is sound to reason locally about program behavior.
Our approach supports immutable objects as well as static
fields and static initializers. We have implemented a verifier
for programs developed according to our model in a custom
build of the Spec# programming system, and have validated
our approach on a case study.

1. INTRODUCTION

Writing correct multithreaded software in mainstream lan-
guages such as Java or C# is notoriously difficult. The
non-local nature of object aliasing, data races, and dead-
locks makes it hard to reason about the correctness of such
programs. Moreover, many assumptions made by develop-
ers about concurrency are left implicit. For instance, in
Java, many objects are not intended to be used by multiple
threads, and hence it is not necessary to perform synchro-
nization before accessing their fields. Other objects are in-
tended to be shared with other threads and accesses should
be synchronized, typically using locks. However, the pro-
gram text does not make explicit if an object is intended to
be shared, and as a consequence it is practically impossible

Permission to make digital or hard copies of all or part of this work for

Wolfram Schulte
Microsoft Research
One Microsoft Way, Redmond, WA, USA

schulte@microsoft.com

for the compiler or other static analysis tools to verify if
locking is performed correctly.

We propose a programming model for concurrent pro-
gramming in Java-like languages, and the design of a set
of program annotations that make the use of the program-
ming model explicit. For instance, a developer can annotate
his code to make explicit whether an object is intended to
be shared with other threads or not. These annotations pro-
vide sufficient information to static analysis tools to verify
if locking is performed correctly: shared objects must be
locked before use, unshared objects can only be accessed by
the creating thread. Moreover, the verification can be done
modularly, hence verification scales to large programs.

Several other approaches exists to verify race- and deadlock-
freedom for multithreaded code. They range from generat-
ing verification conditions [6, 8, 10, 17, 1, 18], to type sys-
tems [5, 9]. (See Section 8 for an overview of related work.)

Our approach is unique, in that it builds around protect-
ing invariants and that it allows sequential reasoning for
multithreaded code. The contributions of this paper are
thus as follows:

e We present a programming model and a set of anno-
tations for concurrent programming in Java-like lan-
guages.

e Following our programming model ensures absence of
data races and deadlocks.

e The generated verification conditions allow sound lo-
cal reasoning about program behavior. Note that in
this paper we ignore null dereference checking to avoid
clutter, although our prototype fully supports it.

e We have prototyped a verifier as a custom build of the
Spec# programming system [4, 2], and in particular
its program verifier for sequential programs.

e Through a case study we show the model is usable in
practice, and the annotation overhead is acceptable.

The present approach evolved from [12] and [14]. It im-
proves upon [12] by directly supporting platform-standard
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gained using a prototype implementation. It improves upon
[14] by adding support for static fields and static initializ-
ers. As did [12] and [14], it builds on and extends the Spec#



programming methodology [3] that enables sound reasoning
about object invariants in sequential programs.

The rest of the paper is structured as follows. We intro-
duce the methodology in three steps. The model of Section 2
prevents low-level data races on individual fields. Section 3
adds deadlock prevention. The final model, which adds pre-
vention of races on data structures consisting of multiple
objects, is presented in Section 4. Each section consists of
three subsections, that elaborate the programming model,
the program annotations, and the static verification rules,
respectively. The remaining sections discuss immutable ob-
jects, our approach for static fields and static initializers,
experience, and related work, and offer a conclusion.

2. PREVENTING DATA RACES

A data race occurs when multiple threads simultaneously
access the same variable, and at least one of these accesses
is a write access. Developers can protect data structures
accessed concurrently by multiple threads by associating a
mutual exclusion lock with each data structure and ensur-
ing that a thread accesses the data structure only when it
holds the associated lock. However, mainstream program-
ming languages such as Java and C# do not force threads to
acquire any locks before accessing data structures, and they
do not enforce that locks are associated with data structures
consistently.

A simple strategy to prevent data races is to lock every
object before accessing it. Although this approach is safe, it
is rarely used in practice since it incurs a major performance
penalty, is verbose, and is prone to deadlocks. Instead, stan-
dard practice is to only lock the objects that are effectively
shared between multiple threads. However, it is hard to
distinguish shared objects (which should be locked) from
unshared objects based on the program text. As a conse-
quence, a compiler cannot enforce a locking discipline where
shared objects can only be accessed when locked without
additional annotations.

An additional complication is the fact that the implemen-
tation of a method may assume that an object is already
locked by its caller. Hence, the implementation will access
fields of a shared object without locking the object first. In
such a case, merely indicating which objects are shared does
not suffice. The implementor of a method should also make
his assumptions about locks that are already held by the
calling thread explicit in a method contract.

In this section, we describe a simple version of our pro-
gramming model that deals with data races on the fields of
shared objects. Later sections develop this model further
to deal with deadlocks and high-level races on multi-object
data structures.

2.1 Programming model

We describe our programming model in the context of
Java, but it applies equally to C# and other similar lan-
guages.

In our programming model, accesses to shared objects
are synchronized using Java’s synchronized statement. A
thread may enter a synchronized (o) block only if no other
thread is executing inside a synchronized (o) block; other-
wise, the thread waits. In the remainder of the paper, we use
the following terminology to refer to Java’s built-in synchro-
nization mechanism: when a thread enters a synchronized
(o) block, we say it acquires o’s lock or, as a shorthand, that

it locks o; while it is inside the block, we say it holds 0’s lock;
and when it exits the block, we say it releases o’s lock, or, as
a shorthand, that it unlocks o. Note that, contrary to what
the terminology may suggest, when a thread locks an object,
the Java language prevents other threads from locking the
object but it does not prevent other threads from accessing
the object’s fields. This is the main problem addressed by
the proposed methodology. While a thread holds an object’s
lock, we also say that the object is locked by the thread.

An important terminological point is the following: when
a thread t’s program counter reaches a synchronized (o)
block, we say the thread attempts to lock 0. Some time may
pass before the thread locks o, specifically if another thread
holds o’s lock. Indeed, if the other thread never unlocks o,
t never locks o. The distinction is important because our
programming model imposes restrictions on attempting to
lock an object.

Our programming model prevents data races by ensuring
that no two threads have access to a given object at any
one time. Specifically, it conceptually associates with each
thread t an access set t.A, which is the set of objects whose
fields thread t is allowed to read or write at a given point,
and the model ensures that no two threads’ access sets ever
intersect. Access sets can grow and shrink when objects are
created, objects are shared, threads are created, or when
a thread enters or exits a synchronized block. Note that
these access sets do not exist at run time: we use them
to explain the programming model, and to implement the
static verification.

e Object creation. When a thread creates a new ob-
ject, the object is added to the creating thread’s access
set. This means the constructor can initialize the ob-
ject’s fields without acquiring a lock first. This also
means single-threaded programs just work: if there is
only a single thread, it creates all objects, and can
access them without locking.

e Object sharing. In addition to an access set, our
model associates with each run-time state a global
shared set S. We call the objects in S shared and
objects in the complement of S unshared. The shared
set, like the access sets, is conceptual: it is not present
at run time, but used to explain the model and imple-
ment the verification.

A new object is initially unshared. Threads other than
the creating thread are not allowed to access its fields.
In addition, no thread is allowed to attempt to lock
an unshared object: our programming model does not
allow a synchronized(o){...} operation unless o is
shared. In our programming model, objects that are
not intended to be shared are never locked.

If, at some point in the code, the developer wants to
make the object available for concurrent access, he
has to indicate this through an annotation (the share
o annotation). From that point on, the object o is
shared, and threads can attempt to acquire the ob-
ject’s lock. When an object is being shared, the object
is removed from the creating thread’s access set and
added to the shared set. If, subsequent to this transi-
tion, any thread, including the creating thread, wishes
to access the object, it must acquire its lock first.



Once shared, an object can never revert to the un-
shared state.

e Thread creation. Starting a new thread transfers
the accessibility of the receiver object of the thread’s
main method (i.e. the Runnable object in Java, or
the ThreadStart delegate instance’s target object in
the .NET Framework) from the starting thread to the
started thread. Otherwise, the thread’s main method
would not be allowed to access its receiver.

In addition, the precondition requires this receiver ob-
ject to be unshared. As a consequence, the invariant
that shared objects in a thread’s access set are also
locked by that thread is maintained.

e Acquiring and releasing locks. When an object is
being shared, it is removed from the creating thread’s
access set and added to the shared set. Since the object
is now not part of any thread’s access set, no thread is
allowed to access it. To gain access to such a shared
object, a thread must lock the object first. When a
thread acquires an object’s lock, the object is added
to that thread’s access set for the duration of the syn-
chronized block.

As illustrated in Figure 1, an object can be in one of three
states: unshared, free (not locked by any thread and shared)
or locked (locked by some thread and shared). Initially, an
object is unshared. Some objects will eventually transition
to the shared state (at a program point indicated by the
developer). After this transition, the object is not part of
any thread’s access set and is said to be free. To access
a free object, it must be locked first, changing its state to
locked and adding the object to the locking thread’s access
set. Unlocking the object removes it from the access set and
makes it free again.

Let’s summarize. Threads are only allowed to access ob-
jects in their corresponding access set. A thread’s access
set consists of all objects whose lock it holds, the objects it
has created but not shared yet, and of the receiver object of
the thread’s main method, if the thread did not share this
object yet. Our programming model prevents data races by
ensuring that access sets never intersect.

2.2 Program annotations

In this section we elaborate on the annotations needed
by our approach by means of the example shown in Figure
2. The example consists of a program that observes events
from different sources and keeps a count of the total number
of events observed. Since the count is updated by multiple
threads, it is subject to data races unless precautionary mea-
sures are taken. Our approach ensures that it is impossible
to “forget” to take such measures.

In our prototype implementation (see Section 7), anno-
tations are written as stylized comments. But to improve
readability, we use a language integrated syntax in this pa-
per.

The program shown in Figure 2 is a Java program aug-
mented with a number of annotations (indicated by the
gray background). More specifically, three sorts of anno-
tations are used: share commands, shared modifiers and
method contracts. Furthermore, := denotes assignment and
= equality.

shared

new

Figure 1: The three states of an object.

class Counter {
int count;
Counter()

ensures this € tid.A A this € S;

{

class Session implements Runnable {

shared Counter counter;

int sourceld;

Session(Counter counter, int sourceld)
requires counter € S,
ensures this € tid.A A this € S;

{
this.counter := counter;
this.sourceld := sourceld,

public void run()
requires tid.A = {this} A this ¢ S;

{
for (;;) {
// Wait for event from source sourceld (not shown)
synchronized (counter) {
counter.count+-;
}
}
}

class Program {

static void start()
requires tid.A = 0;

{
Counter counter := new Counter();
share counter;
new Thread(new Session(counter,1)).start();
new Thread(new Session(counter,?2)).start();

}
}

Figure 2: Example program illustrating the ap-
proach of Section 2. Programmer-supplied annota-
tions are shown on a gray background.



e The share command makes an unshared object avail-
able for concurrent access by multiple threads. In the
example, the counter object is shared between all ses-
sions.

e Fields and parameters can be annotated with a shared
modifier, indicating they can only hold shared objects.
The field counter of Session is an example of a field
with a shared modifier.

e Method contracts are needed to make modular veri-
fication possible. They consist of preconditions and
postconditions. A precondition states what the method
implementation assumes about the current thread’s
access set (denoted as tid.A) and about the global
shared set. For instance, the precondition of the start
method requires the access set to be empty. Postcondi-
tions state properties of access sets and the shared set.
For example, the postcondition of Session’s construc-
tor guarantees that the new object is in the current
thread’s access set and unshared.

Note that our annotations are entirely erasable, i.e. they
have no effect whatsoever on the execution of the program.

The example program is correctly synchronized, and the
annotations enable our static verifier to prove this. We dis-
cuss in the next subsection how this is done. If the devel-
oper forgets to write the synchronized block in the run
method, the program is no longer correctly synchronized.
Specifically, the access of counter.count in method run vio-
lates the programming model, since object counter is not in
the thread’s access set.

2.2.1 Thread creation

To verify the example, we also need the method contracts
of all library methods used by the program. These are shown
in Figure 3.

The method contracts shown in Figure 3 encode the pro-
gramming model’s rules regarding thread creation.

e The Thread constructor requires its argument to be
part of the calling thread’s access set and unshared.
The constructor removes the Runnable object from the
access set and associates it with the Thread object.
Indeed, the constructor’s postcondition does not state
that in the post-state, the Runnable object is still in
the access set, and therefore the caller cannot assume
this and can no longer access the Runnable object.

e When method start is called, a new thread is started
and the Runnable object associated with the Thread
object is inserted into the new thread’s access set.
Method run’s precondition allows the method to as-
sume that its receiver is the only object in the access
set and that this object is unshared.

2.3 Static verification

We have explained our programming model informally in
the previous sections. In this section we define the model
formally, and show how we can statically verify adherence
to the model in a modular (i.e. per-method) way.

We proceed as follows: a program P enriched with our an-
notations is translated to a verification-time program P’ en-
riched with assertions and classical method contracts. This

public interface Runnable {
void run();

requires tid.A = {this} A this ¢ S;

public class Thread {
public Thread(Runnable runnable)

requires runnable € tid.A A runnable & S;
ensures this € tid.A A this ¢ S;

public void start()
requires this € tid. A;

(...}

Figure 3: Contracts for the library methods used by
the program in Figure 2.

translation defines the semantics of our annotations, and is
the formal definition of our programming model: the original
annotated program P is correct according to our model, if
and only if the translated program P’ is correct with respect
to its assertions and classical method contracts. To check if
the translated program P’ is correct, we use an existing au-
tomatic program verifier for single-threaded programs. Our
experiments show (Section 7) that state-of-the-art verifiers
are capable of verifying realistic programs in this way.

The contributions of this paper are in the design of the
annotation syntax (for the multithreading-specific annota-
tions) and the translation of the annotated program; we
use existing technology [2] for sequential program verifica-
tion. The translation involves two things. In a first step, we
insert two verification-only variables into the program (so
called ghost variables) to track the state necessary to do the
verification. The ghost variable tid.A represents the cur-
rent thread’s access set, while S represents the set of shared
objects.

Then, in a second step each method of the original pro-
gram is translated in such a way that the translated method
can be verified modularly. The method contracts that the
developer writes in annotations are classical method con-
tracts on the ghost state introduced in the first step. The
code and other annotations written by the developer are
translated into verification-time code and proof obligations
(written as assertions) for the verifier. The essence of the
translation of code and annotations is shown in Figure 4.
It is a formalization of the programming model rules intro-
duced in Section 2.1. We ignore the fact that object refer-
ences can be null to reduce clutter. The verification-time
code for a synchronized block includes a havoc operation
that assigns an arbitrary value to all fields of the object be-
ing locked. Additionally, it also includes a havoc where
operation which replaces the shared set by an arbitrary
superset. This reflects the fact that other threads may
have modified these fields. Source program assignment and
verification-time assignment are shown as := and «—, respec-
tively.

3. LOCK LEVELS FOR DEADLOCK PRE-
VENTION



o:=new C; =

0 new C- share o; =
) assert o € tid.A;
assume o ¢ S assert o ¢ S
’

tid. A — tid. AU {o}; tid.A — tid A\ {o};

tid.S — tid.S U {o};

r:=o.f; =
assert o € tid. 4; synchronized (o) B =
v od; assert o € S;
of =z = assert o € A;
. a;eré 0_6 tid. A: havoc o.x;
if (f is declared shared) Ed‘A —tid. AU {o};

assert x € S;

o.f — tid. A — tid. A\ {o};

Figure 4: Translation of source program commands
to verification-time commands.

The approach of Section 2 prevents data races but it does
not prevent deadlocks. In this section, we introduce our
approach to deadlock prevention.

For the purpose of this paper, we define a deadlock to be
a cycle of threads such that each thread is waiting for the
next thread to release some lock. Formally, a deadlock is a
sequence of threads to,...,t,—1 and a sequence of objects
00,...,0n—1 such that ¢; holds o0;’s lock and is trying to
acquire 0(i4+1) mod »'S lock. Threads involved in a deadlock
are stuck forever.

The prototypical way in which a developer can avoid dead-
locks is by defining a partial order over all shared objects,
and by allowing a thread to attempt to acquire an object’s
lock only if the object is less than all objects whose lock the
thread already holds.

There are different common strategies for defining such a
partial order. A first one is to define the order statically.
This approach is common in case the shared objects protect
global resources: code will have to acquire these resources in
the statically defined order. A second strategy is to define
the order based on some field of the objects involved. For
instance to define a transfer operation between accounts, the
two accounts involved can be locked in order of the account
number, thus avoiding deadlocks while locking account ob-
jects.

In some cases the developer of a particular module may
only wish to impose partial constraints on the locking order
or may wish to abstract over a set of objects. For instance
the developer of the Subject class in the Subject-Observer
pattern may wish to specify that Observers should be locked
before locking the Subject and not vice-versa. In other
words, all Observers are above the Subject in the deadlock
prevention ordering.

3.1 Programming model

Our programming model is designed to support all three
scenarios outlined above. The developer can indicate his
intended ordering through the intermediary of lock levels. A
lock level is a value of the new primitive type (existing only
for verification purposes) locklevel. A new lock level can
be constructed between given existing lock levels using the
constructor

between ({1, ... ¢}, {¢2, ... 1B}

, where 0 < m,n, provided that each specified lower bound
is below each specified upper bound; formally, for each 1 <
i <mand1l<j<n, é? < Zf. The new value is above
0, .., 02 and below ¢2, ..., ¢E. There is no other way to
construct a lock level, which ensures that the less-than (<)
relation on lock levels is always a partial order.

In the model, a lock level is associated with an object the
moment the object is shared. This defines the lock order: for
shared objects 01 and 02, we have 01 < 02 iff 01.lockLevel <
o02.lockLevel. A thread is only allowed to lock an object if
the object is less than the objects whose lock the thread
already holds.

The level of indirection introduced by the lock levels pro-
vides an easy way to abstract over sets of objects. In the
Subject-Observer example discussed above, all Observer ob-
jects can be given the same lock level (that should be above
the Subject lock level).

3.2 Program annotations

In a concurrent Java or C# program, a lock ordering
adopted by the developers of a program for the purpose of
deadlock prevention is not explicit in the program text, al-
though it can be documented informally in comments. We
propose annotations that make it possible for a developer
to document the intended ordering formally. As a conse-
quence, static verification of adherence to the ordering is
possible (Section 3.3).

Three kinds of annotations are important. We discuss
them using the example of the Dining Philosophers program
in Figure 5. The program implements a deadlock-free solu-
tion to the Dining Philosophers problem with three philoso-
phers. Our annotations explain formally why the program
is deadlock-free.

The first kind of annotation is the creation of a lock level
using the between constructor. The example defines the
lock levels and their ordering statically in class Program’s
start method. Three linearly ordered levels are defined:
levell < level2 < level3.

The second kind of annotation associates lock levels with
shared objects. The share annotation is extended to accept
a lock level as the second argument. Again, this happens
three times in the example: each of the forks is shared with
its associated lock level. As a consequence, fork objects are
totally ordered, with forkl < fork2 < fork3. Hence, forks
can only be locked in descending order.

The third kind of annotations are the method contracts
that make modular static verification possible. Method con-
tracts make explicit what assumptions the method makes
about the ordering of parameter objects, or about locks al-
ready held by the current thread. For instance the construc-
tor of Philosopher expects its first argument to have a lower
lock level than the second argument, and the run method
requires that the current thread holds no locks.

These annotations enable a formal static verification of
deadlock-freeness.

3.3 Static verification

Static verification is again done by translating the an-
notated program P into a program P’ enriched with proof
obligations for a static verifier (in the form of classical method
contracts and assertions). The translation adds ghost fields
and variables to track the necessary state. To track the lock
level of objects, we add to each object a ghost field called



class Fork {
}

class Philosopher implements Runnable {
shared Fork forkl;
shared Fork fork2;

Philosopher( shared Fork forkl, shared Fork fork2)
requires forkl.lockLevel < fork2.lockLevel,;
ensures this € tid.A A this ¢ S

{
this.forkl := forki,

this.fork2 := fork2;
}

public void run()
requires this € tid.A;

requires tid.lockStack.isEmpty();

{
for (;;) {
synchronized (fork2) {
synchronized (fork1) {
// Use the forks to eat...

}
}
}
}

class Program {
static void start()

requires tid.lockStack.isEmpty();

{
locklevel levell := between({}, {});

locklevel level2 := between({levell}, {});

locklevel level3 := between({level2}, {});
Fork forkl := new Fork();

share (forkl,levell);

Fork fork2 := new Fork();

share (fork2,level2);

Fork fork8 := new Fork();

share (fork3,level3);

new Thread(new Philosopher(forkl, fork2)).start();
new Thread(new Philosopher(fork2, fork3)).start();
new Thread(new Philosopher(forkl, fork3)).start();

Figure 5: Deadlock prevention for the Dining
Philosophers

lockLevel, whose value is either null or a lock level and whose
initial value is null. The field is written only once: when the
object is shared a non-null lock level is assigned to this field.
This way, each shared object has an immutable association
with a lock level.

To track the locks that the current thread holds, we intro-
duce a ghost variable tid.lockStack, which is a stack con-
taining the objects whose lock the thread holds. Whenever
a thread acquires an object’s lock, the object is pushed onto
the stack. Note that it follows that the top of the stack is
always the least of all objects on the stack. A thread is al-
lowed to acquire an object o’s lock only if the lock stack is
empty or o’s lock level is strictly less than the lock level of
the object at the top of the stack.

The essence of the translation of an annotated program
is summarized in Figure 6. Note that the rules for object
creation and field access have been omitted since they are
unchanged from the previous section.

synchronized (o) B =
assert o € S;
assert o < tid.lockStack;
tid.lockStack.push(o);

share (o,1); =
assert o € tid. A;
assert o & S,

havoc o.x;
tid.A — tid.A\ {o}; : ; ,
tid.S — tid.S U {o}; 'Ed'A — tid.AU{o};

o.lockLevel « tid.A — tid. A\ {o};

tid.lockStack.pop();

Figure 6: Translation of source program commands
to verification-time commands.

4. INVARIANTS AND OWNERSHIP

The approach as described in the preceding sections en-
sures absence of low-level data races and deadlocks. How-
ever, it does not prevent higher-level race conditions, where
the programmer protects individual field accesses, but not
updates involving accesses of multiple fields or objects that
are part of the same data structure. As a result, accesses
may be interleaved in such a way that the data structure’s
consistency is not maintained.

4.1 Programming model

To prevent race conditions that break the consistency of
multi-object data structures, we integrate the Spec# method-
ology’s object invariant and ownership system [3] into our
approach, to obtain the final programming model of this
paper. This model supports objects that use other objects
to represent their state, and object invariants that express
consistency constraints on such multi-object structures.

The programming model requires the programmer to des-
ignate a subset of each class’s fields as the class’s rep fields.
The objects pointed to by an object 0’s non-null rep fields in
a given program state are called o’s rep objects. An object’s
rep objects may have rep objects themselves, and so on; we
refer to all of these as the object’s transitive rep objects.
The fields of an object, along with those of its transitive rep
objects, are considered in our approach to constitute the
entire representation of the state of the object; hence the
name. As will be explained later, a shared object o’s lock
protects both o and its transitive rep objects.



In addition to a set of rep fields, the programming model
requires the programmer to designate, for each class C, an
object invariant, denoted Invc (o) when applied to an object
o of C. Invc(o) is a predicate that may depend on the state
of o, i.e. the fields of o and of its transitive rep objects.

The object invariant for an object o need not hold in each
program state; rather, the programming model associates
with each object a boolean state variable called its inv bit.*
The programming model requires the object invariant to
hold only when the inv bit is true.

The programming model requires an object’s tnv bit to be
true when a thread shares the object or unlocks it, i.e. when
the object becomes free. It follows that each free object’s inv
bit is true and its object invariant holds. As a result, when
a thread locks an object, it may assume that the object’s
inv bit is true and its object invariant holds.

At the start of an object’s constructor, its inv bit is false.
The programming model requires the programmer to desig-
nate the regions of code where an object’s invariant is sup-
posed to hold by designating the points where pack o; and
unpack o; operations occur. The former sets o’s inv bit to
true, and the latter sets it to false.

To ensure that whenever an object’s inv bit is true, its
object invariant holds, the programming model imposes the
following restrictions:

e A thread may assign to an object’s fields only when the
object is in the thread’s access set and the object’s inv
bit is false. Furthermore, the remaining restrictions
ensure that whenever an object’s inv bit is true, then
so are those of its transitive rep objects. As a result,
an object’s state does not change while its inv bit is
true.

e A thread is allowed to perform a pack o; operation
only when o0’s object invariant holds, its inv bit is false,
and the inv bits of o’s rep objects are true. Further-
more, besides setting o’s inv bit to true, the operation
removes o0’s rep objects from the thread’s access set.

e A thread is allowed to perform an unpack o; operation
only when o’s inv bit is true. The operation sets o’s
inv bit to false and adds o’s rep objects to the thread’s
access set.

We say that an object owns its rep objects whenever its
inv bit is true. It follows from the above restrictions that
an object has at most one owner.

Note that our approach supports ownership transfer; a rep
object can be moved from one owner to another by first un-
packing both owners and then simply updating the relevant
rep fields.

4.2 Program annotations

The example in Figure 7 shows the annotations required
by our final methodology. A Rectangle object is used to store
the bounds of an application’s window. The Rectangle’s
state is represented internally using two Point objects, that
represent the location of upper-left and lower-right corner,
respectively. If the user drags the window’s title bar, the
window manager moves the window, even if the application
is painting the window contents. Our methodology ensures

The inv bit is not a field in the actual program; it is a
variable introduced only to explain the programming model.

that the application sees only valid states of the Rectangle
object.

Developers designate a class’s rep fields using the rep
modifier, they define a class’s object invariant using invariant
declarations, and they insert pack and unpack commands
in method bodies. Additionally, developers may denote an
object o’s inv bit in method contracts, using the o.inv no-
tation.

4.3 Static verification

Figure 8 shows the translation of source program com-
mands to input for the sequential program verifier.

Note that the verification-time commands for a synchro-
nized (o) block havoc all objects that are not in the thread’s
access set, rather than just object o. This is necessary since
other threads may have modified not just o, but o’s transi-
tively owned objects as well. Also, the assumption encoded
by the assume statement is justified by the programming
model, as explained above.

The verifier is additionally made aware of the following
properties:

(Vo ® 0.inv = Inv(o)
(Vo,p e 0.inv A p € repobjects(o) = p.inv)

These are guaranteed to hold in each program state by the
programming model, as explained above.

5. IMMUTABLE OBJECTS

In this section we briefly describe how the approach we
implemented supports sharing immutable objects without
synchronization.

If after an object is shared, it is only ever inspected and
never mutated, then there’s no need to synchronize accesses.
Our approach supports this by splitting a thread’s access set
into a read set and a write set, and by splitting the shared
sharing mode into a lockprotected mode and an immutable
mode. Correspondingly, the share command is replaced
with a share_lockprotected command and a share_im-
mutable command. Sharing an object as immutable re-
quires that it is unshared and in the current thread’s write
set. It removes the object from the write set and adds it to
each thread’s read set (even if the thread has not yet been
started). If the object has rep objects, they are recursively
shared as immutable and added to all read sets.

Whether an object is shared as lock-protected or as im-
mutable, it must be fully packed in both cases. As a result,
an immutable object’s invariant holds at all times.

Our approach supports writing classes that allow client
code the freedom to use some of the class’s objects as thread-
local (unshared) objects, to share some and protect them by
their lock, and to share some as immutable. Such a class
typically provides inspector methods and mutator methods.
Only inspector methods can be called on immutable objects.

The unpack o; command requires o to be in the thread’s
write set. To allow an inspector method to access its re-
ceiver’s rep objects, regardless of whether the receiver is
writable or only readable, our approach includes a read (o)
block that adds o’s rep objects to the thread’s read set for
the duration of the block. It also temporarily removes o it-
self from the write set (but not the read set); this is required
for soundness.



class Point {
int z,y;
void move(int dz,int dy)
requires this € tid. A A this.inv;

ensures this € tid. A A this.inv;

{ unpack this; z:=z + dz; y:=y+ dy; pack this; }

class Rectangle {
rep Point ul,lr;
invariant ul.z < lIr.x A ul.y < lr.y;
void move(int dz,int dy)
requires this € tid. A A this.inv;
ensures this € tid. A A this.inv;

unpack this; ul.move(dz, dy);
lr.move(dz, dy); pack this;

int getHeight()
requires this € tid. A A this.inv;
ensures this € tid. A A this.inv;

ensures 0 < result;

unpack this; int h = lr.y — ul.y;
pack this; return h;

}

class Application {
shared Rectangle windowBounds;
void paint()
requires tid.lockStack.isEmpty();
requires this € tid. A A this.inv;
ensures this € tid. A A this.inv;

int height;

synchronized (windowBounds) {
height := windowBounds.getHeight();

}

.

class WindowManager {

shared Rectangle windowBounds;
void mouseDragged (int dz,int dy)

requires tid.lockStack.isEmpty();
requires this € tid. A A this.inv;
ensures this € tid. A A this.inv;

{

synchronized (windowBounds) {
windowBounds.move(dz, dy);
}

}
}

Figure 7: An example illustrating our data race and
deadlock prevention strategy, combined with object
invariants and ownership.

o:=new C; =
0 +— new (|
assume o ¢ S,
tid. A — tid. AU {o};

0.inv «— false;

of =z =
assert o € tid. A;
assert —o.inv;
if (f is shared)
assert z € S,

pack o; = o.f «— x;
assert o € tid. A;
assert —o.inv share (0,1); =

assert o € tid.A;
assert o0.1nv;

assert (Vp € repobjects(o) o
pEetidAAp & S Ap.inv);

assert Inv(o); assert o € S
0.1V «— true; o.lockLevel «—
foreach (p € repobjects(o)) S — SuU{o};

tid. A — tid. A\ {p}; tid. A — tid. A\ {o};
unpack o; =
assert o € tid. A;
assert 0.inv;
0.inv «— false;
foreach (p € repobjects(0)){
tid. A — tid. AU {p};
assume p ¢ S,

synchronized (o) B =
assert o € S;

tid.lockStack.push(o);

foreach (p ¢ tid.A)
havoc p.x;

tid.A — tid. AU {o};

} assume 0.inv;
B
r:=o.f; = assert o0.1nv;
assert o € tid. 4; tid. A — tid. A\ {o};
T o.f; tid.lockStack.pop();

Figure 8: Translation of source program commands
to verification-time commands (with invariants and
ownership).

6. STATIC FIELDS AND STATIC INITIAL-
IZERS

In this section, we extend our programming model to also
prevent data races on static fields and deadlocks involving
class initialization and class lock acquisition. The extended
model also enforces invariants on the static fields of a class
and its transitively owned objects.

We first briefly recall the syntax and semantics of class
initialization in Java. We then present the programming
model extension. The remaining subsections discuss acyclic-
ity of the lock_before relation and describe our support for
classes whose static state does not change after initializa-
tion.

6.1 Class initialization in Java

In this section, we briefly recall the syntax and semantics
of class initialization in the Java programming language.
In the next section, we explain our approach for modular
verification of Java programs with static fields and static
initializers.

A class may declare static field initializers and static ini-
tializer blocks (or static initializers for short). In the sequel,
we assume that each class declares no static field initializers
and exactly one static initializer. (It is always possible to
rewrite a class to satisfy this assumption.) A static initial-
izer is an arbitrary sequence of statements.

Java ensures that a class’s static initializer is executed at
most once, at the last possible moment, and that it com-

assert o < tid.lockStack;



pletes normally before any access of the class or one of its
transitive subclasses (except for an access performed while
the current thread is running the static initializer). The fol-
lowing are considered accesses of a class: reads and writes
of static fields, calls of static methods, and calls of construc-
tors.

We may think of this semantics as follows. In a pre-
processing step, an initialize C'; command is inserted before
each access of class C in the program.? An initialize C;
command is additionally inserted at the start of the static
initializer of each direct subclass of C. A thread t executes
an initialize C; command as follows:

e If no thread has started executing C’s static initial-
izer, thread t executes C’s static initializer. If execu-
tion completes normally, the initialize operation com-
pletes normally. If execution completes abruptly with
an exception, then so does the initialize operation.

e If thread ¢ is currently executing C’s static initializer,
i.e. if this is a recursive initialize C; operation, then
the operation completes normally directly, without re-
cursively executing the static initializer.

e Otherwise, if some other thread is executing C'’s static
initializer, thread ¢ waits until the execution has com-
pleted (normally or abruptly). Once execution of C’s
static initializer has completed normally or abruptly,
execution of the initialize C'; operation by thread ¢
completes normally or abruptly in the same way.

Note that class initialization may deadlock, if threads are
waiting for each other to finish executing a static initializer.

6.2 Programming Model

In this section, we present a programming model that pre-
vents data races on static fields and deadlocks involving class
initialization and class lock acquisition, and that ensures in-
variants on the static fields of a class and its transitively
owned objects.

Our general approach is to treat static fields of a class C'
as if they are fields of the Class object for C, denoted in
Java as C.class. That is:

e We prevent data races on static fields by allowing a
thread ¢ to access a static field C.f only if C.class is
in t’s access set, and by ensuring that access sets are
always disjoint.

e An object C.class is accessible and unshared on entry
to its static initializer. Upon normal completion of
the static initializer, a share operation is implicitly
performed on the object. Once C'.class is shared, to
access the static fields of C, a thread must first lock
C'.class, which adds C'.class to the thread’s access set.

e The lock acquisition deadlock prevention approach ap-
plies to Class objects as well. A class C' may spec-
ify lower bounds for its Class object’s lock level using
lock_before D; declarations. C.class’s lock level is

2 Actually, for calls of constructors and static methods, we
insert the initialize operation at the top of the constructor
or method body rather than at the call site. Both encodings
are sound but the callee-side encoding yields slightly simpler
method contracts.

constructed to be above the lock levels of the classes
mentioned in C’s lock_before declarations. Cycles in
the lock_before relation are not allowed. Also, the ap-
proach does not support specification of upper bounds
for lock levels of Class objects.

e A class may declare some of its static fields as rep. The
objects pointed to by a class’s non-null rep fields are
its rep objects. A class may declare a static invariant,
which may depend on the class’s static fields and the
fields of its transitive rep objects. A Class object has
an inv field, and the pack and unpack operations
apply to Class objects as well as other objects. A
Class object must be valid when it is shared and when
it is unlocked.

We prevent deadlocks involving class initialization by ap-
plying the locking order to initialize operations as well,
and by tracking static initializer executions in a thread’s
lock stack. Specifically, a thread is allowed to perform an
initialize C'; operation only if

e (.class is less than all objects on the thread’s lock
stack, or

e (C.class is already shared (which implies the static ini-
tializer has already completed), or

e C.class is on the thread’s lock stack (which implies
that either the class is locked and therefore already
shared or the thread is already executing the static
initializer)

It follows that on entry to the static initializer, we have
C.class < tid.lockStack

. Object C.class is pushed onto the lock stack for the du-
ration of the static initializer’s execution. Class C’s static
initializer may lock and then access classes that are less than
C in the locking order.

An initialize C; operation ensures that if C.class is less
than the objects on the lock stack, then in the post-state,
C.class is shared.

An initialize operation’s frame condition states that it
does not modify any fields of any objects in the thread’s
access set.

Notice that in this approach, a thread must trigger an
initialize C'; operation before it can acquire the lock of class
C. The easiest way to achieve this is by acquiring the lock
inside a method of class C.

Figure 9 illustrates the approach. It shows how an initial-
ize command is inserted at the top of each static method and
before each static field access. Validity of the synchronized
command in method increment requires that Counter.class
is shared. The preceding initialize command guarantees
this, provided that Counter.class is not on the lock stack.
This, in turn, is guaranteed by increment’s precondition.

6.3 lock_before acyclicity

The soundness of our approach requires that the lock_be-
fore relation is acyclic. If a run-time system ensures that
the module import relation is acyclic, then acyclicity of the
lock_before relation may be ensured by checking at compile
time that the lock_before relation on the classes of the
module being compiled is acyclic.



static_lockprotected class Counter {
static int count;
static invariant 0 < count;

static {
// initialize Object;
pack Counter.class;
// share_lockprotected Counter.class;

static void increment()
requires Counter.class < tid.lockStack;

// initialize Counter;
synchronized (Counter.class) {

unpack Counter.class;

// initialize Counter;

int ¢ := count;

// initialize Counter;

count 1= c + 1;

pack Counter.class;

Figure 9: Example illustrating the programming
model’s support for static fields and static initial-
izers. Commands implicitly inserted by the model
are shown in comments.

static_immutable class Primes {
static rep int[] primes;
static invariant primes # null A
forall{int ¢ in (0..primes.length — 2);
primes[i] < primes[i + 1]};

static {
// initialize Object;
primes := new int[] {2,3,5,7,11};
pack Primes.class;
// share_immutable Primes.class;

static int getThirdPrime()
requires Primes.class < tid.lockStack;

{

// initialize Primes;

read (Primes.class) {
// initialize Primes;
return primes|2];

}

Figure 10: Example illustrating the support for
classes with immutable static state.

However, neither the Java virtual machine nor the Mi-
crosoft .NET Framework’s CLR refuse to load modules that
import each other. As a result, the modules themselves are
responsible for detecting cycles in the locking order at run
time.

In our approach, this is achieved by requiring the program
to build a module lock order graph, whose nodes are mod-
ules, at run time. The graph is stored in a static field in a
class called LockOrder in a special module that all modules
of the program must import. The graph is initially empty.
Whenever a thread requires a lock order edge between a
class C' in a module M; and a class D in a different module
Ms , it must request it by performing a call

LockOrder.checkEdge(C.class, D.class)

. This call first checks if a path already exists from M; to
Ms. If so, the call returns normally. Otherwise, it checks if
an edge from M; to M2 would create a cycle. If so, the call
throws an exception. Otherwise, the call adds the edge to
the graph and returns normally.

6.4 Immutable Class Objects

The approach of the previous sections supports classes
whose static fields are protected by locks. It is easy to extend
the approach with more efficient support for classes whose
static state is not modified after initialization, by allowing
the immutable objects approach of Section 5 to be applied
to Class objects as well.

A class must declare whether its Class object is shared as
lock-protected or as immutable. Depending on this declara-
tion, the implicit share operation at the end of the static ini-
tializer is either a share_lockprotected or a share_immut-
able operation.

An initialize C'; operation ensures that if C'.class is less
than the objects on the lock stack, then in the post-state,
C'.class is shared as declared.

Figure 10 illustrates the approach. Recall that validity of
the array element access in method getThirdPrime requires
that the array is in the read set. The array is inserted into
the read set by the read command (see Section 5). The read
command, in turn, requires that Primes.class is in the read
set. This follows from the fact that it is immutable. The
initialize command preceding the read command guaran-
tees that Primes.class is immutable, provided that it is not
on the lock stack. This, finally, is guaranteed by method
getThirdPrime’s precondition.

7. EXPERIENCE

To verify the applicability of our approach to realistic,
useful programs, we implemented it in a custom build of
the Spec# program verifier [2] and used it to verify a chat
server application written in C# with annotations inserted
in the form of specially marked comments. The application
verifies successfully; this guarantees the following:

e The program is free from data races and deadlocks

e Object invariants, loop invariants, method precondi-
tions and postconditions, and assert statements de-
clared by the program hold

e The program is free from null dereferences, array index
out of bounds errors, and typecasting errors



Lines Lines
Program of Code Changed Overhead
or Added
chat 344 117 34%
phone 222 50 23%
prod-cons 84 24 29%
philosophers 64 21 33%

Table 1: Annotation overhead

e The program is free from races on platform resources
such as network sockets. This is achieved by enforcing
concurrency contracts on the relevant API methods.

Table 1 shows the annotation overhead of four programs
which we annotated and verified. Programs chat and phone
were derived from the ones used in [5].

The prototype verifier and the sample programs are avail-
able at http://www.cs.kuleuven.be/~bartj/.

8. RELATED WORK

The Extended Static Checkers for Modula-3 [6] and for
Java [8] attempt to statically find errors in object-oriented
programs. These tools include support for the prevention of
data races and deadlocks. For each field, a programmer can
designate which lock protects it. However, these two tools
trade soundness for ease of use; for example, they do not
take into consideration the effects of other threads between
regions of exclusion. Moreover, various engineering trade-
offs in the tools notwithstanding, the methodology used by
the tools was never formalized enough to allow a soundness
proof.

Method specifications in our methodology pertain only to
the pre-state and post-state of method calls. Some systems
[17, 10] additionally support specification and verification
of the atomic transactions performed during a method call.
We focus on verification of object invariants, which does not
require such specifications.

A number of type systems have been proposed that pre-
vent data races in object-oriented programs. For example,
Boyapati et al. [5] parameterize classes by the protection
mechanism that will protect their objects against data races.
The type system supports thread-local objects, objects pro-
tected by a lock (its own lock or its root owner’s lock), read-
only objects, and unique pointers. However, the ownership
relationship that relates objects to their protection mecha-
nism is fixed. Also, the type system does not support object
invariants.

Boyapati et al. prevent deadlocks by allowing the devel-
oper to declare a fixed set of lock levels. Lock levels are as-
signed to objects as type arguments. Additional expressive-
ness is gained by supporting locking the nodes of a mutable
tree data structure or an immutable DAG data structure, and
by ordering the objects of designated classes at run time.

We enable sequential reasoning and ensure consistency of
aggregate objects by preventing data races. Some authors
propose pursuing a different property, called atomicity, ei-
ther through dynamic checking [7], by way of a type sys-
tem [9], or using a theorem prover [18]. An atomic method
can be reasoned about sequentially. However, we enable se-
quential reasoning even for non-atomic methods, by assum-
ing only the object invariant for a newly acquired object

(see Figure 8). Also, in [9] the authors claim that data-
race-freedom is unnecessary for sequential reasoning. It is
true that some data races are benign, even in the Java and
C+# memory models; however, the data races allowed in [9]
are generally not benign in these memory models; indeed,
the authors prove soundness only for sequentially consistent
systems, whereas we prove soundness for the Java memory
model, which is considerably weaker.

Abrahdm-Mumm et al. [1] propose an assertional proof
system for Java’s reentrant monitors. It supports object
invariants, but these can depend only on the fields of this.
No claim of modular verification is made.

The rules in our methodology that an object must be con-
sistent when it is released, and that it can be assumed to be
consistent when it is acquired, are taken from Hoare’s work
on monitors and monitor invariants [11].

There are also tools that try dynamically to detect viola-
tions of safe concurrency. A notable example is Eraser [19].
It finds data races by looking for locking-discipline viola-
tions. The tool has been effective in practice, but does not
come with guarantees about the completeness nor the sound-
ness of the method.

In the straightforward implementation proposed in this
paper, mutual exclusion is achieved through coarse-grained
locking. However, the methodology allows one to use other
semantically equivalent techniques that may be more appro-
priate for particular contention patterns, while preserving
the same reasoning framework and safety guarantees. Pos-
sible alternatives include fine-grained locking of the objects
within an ownership domain, or a form of optimistic con-
currency, such as transactional monitors [20].

Leino and Miiller [16, 15] propose an approach for verifi-
cation of programs with static class invariants. Contrary to
our work, they support neither multithreading nor Java and
C+#£’s lazy class initialization semantics. Also, our approach
is more flexible in terms of method effect framing w.r.t. sta-
tic fields. Furthermore, our lock_before relation improves
on the import order of [16], in that a) we do not restrict ac-
cessing classes as such, and b) contrary to the class import
order, the lock_before order is consistent with the module
import order, which is easier to understand for deployers
and checking its acyclicity at run time is more efficient.

The present approach evolved from [12] and [14]. [14] im-
proved upon [12] by supporting standard locking primitives,
by preventing deadlocks, by supporting immutable objects,
and by reporting on experience gained using a prototype
verifier. This paper improves on [14] by adding support for
static fields and static initializers.

9. CONCLUSION

We propose a programming model for concurrent pro-
gramming in Java-like languages, and the design of a set
of program annotations that make the use of the program-
ming model explicit and that enable automated verification
of compliance. Our programming model ensures absence of
data races and deadlocks, and provides a sound approach
for local reasoning about program behavior. We have pro-
totyped the verifier as a custom build of the Spec# program-
ming system. Through a case study we show the model is
usable in practice, and the annotation overhead is accept-
able.

Our verification approach is sound; the proof of soundness
is largely analogous to the one given in [13] for an earlier



version of the approach.
We are currently further extending the programming model
to encompass lock re-entry and read-write locks.
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