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Abstract.  Measuring the similarity between documents and queries has been 
extensively studied in information retrieval.  However, there are a growing 
number of tasks that require computing the similarity between two very short 
segments of text.  These tasks include query reformulation, sponsored search, 
and image retrieval.  Standard text similarity measures perform poorly on such 
tasks because of data sparseness and the lack of context. In this work, we study 
this problem from an information retrieval perspective, focusing on text 
representations and similarity measures.  We examine a range of similarity 
measures, including purely lexical measures, stemming, and language 
modeling-based measures.  We formally evaluate and analyze the methods on a 
query-query similarity task using 363,822 queries from a web search log.  Our 
analysis provides insights into the strengths and weaknesses of each method, 
including important tradeoffs between effectiveness and efficiency. 

1  Introduction 

Retrieving documents in response to a user query is the most common text retrieval 
task.  For this reason, most of the text similarity measures that have been developed 
take as input a query and retrieve matching documents.  However, a growing number 
of tasks, especially those related to web search technologies, rely on accurately 
computing the similarity between two very short segments of text. Example tasks 
include query reformulation (query-query similarity), sponsored search (query/ad 
keyword similarity), and image retrieval (query-image caption similarity). 

Unfortunately, standard text similarity measures fail when directly applied to these 
tasks. Such measures rely heavily on terms occurring in both the query and the 
document.  If the query and document do not have any terms in common, then they 
receive a very low similarity score, regardless of how topically related they actually 
are.  This is well-known as the vocabulary mismatch problem. This problem is only 
exacerbated if we attempt to use these measures to compute the similarity of two short 
segments of text.  For example, “UAE” and “United Arab Emirates” are semantically 
equivalent, yet share no terms in common. 

Context is another problem when measuring the similarity between two short 
segments of text.  While a document provides a reasonable amount of text to infer the 
contextual meaning of a term, a short segment of text only provides a limited context.  
For example, “Apple computer” and “apple pie” share the term apple, but are 
topically distinct. Despite this, standard text similarity measures would say that these 



two short segments of text are very similar.  However, computing the similarity 
between the query “Apple computer” and a full document about “apple pie” will 
produce a low similarity score since the document contains proportionally less text 
that is relevant to the query, especially compared to a full document about “Apple 
business news”. 

In this paper, we explore the problem of measuring similarity between short 
segments of text from an information retrieval perspective.  Studies in the past have 
investigated the problem from a machine learning point of view and provided few, if 
any comparisons to standard text similarity measures.  In this work, we describe a set 
of similarity measures that can be used to tackle the problem.  These measures include 
simple lexical matching, stemming, and text representations that are enriched using 
web search results within a language modeling framework.  In addition, we formally 
evaluate the measures for the query-query similarity task using a collection of 
363,822 popular web queries.  Our analysis provides a better understanding of the 
strengths and weaknesses of the various measures and shows an interesting tradeoff 
between effectiveness and efficiency. 

The remainder of this paper is laid out as follows.  First, Section 2 provides an 
overview of related work.  We then describe the various ways to represent short 
segments of text in Section 3.  Section 4 follows up this discussion by describing the 
similarity measures we investigated.  Section 5 provides the details of our 
experimental evaluation on the query-query similarity task. Finally, in Section 6 we 
wrap up and provide conclusions and directions of future work. 

2  Related Work 

Many techniques have been proposed to overcome the vocabulary mismatch problem, 
including stemming [5,9], LSI [3], translation models [1], and query expansion [6,14]. 
This section describes several of these techniques that are most related to our work. 
The task we focus on is a query-query similarity task, in which we compare short text 
segments, such as “Apple computer”, “apple pie”, “MAC OS X”, and “iMAC”. 

Translation models, in a monolingual setting, have been used for document 
retrieval [1], question answering [8], and detecting text reuse [7].  The goal is to 
measure the likelihood that some candidate document or sentence is a translation (or 
transformation) of the query. However, such models are less likely to be effective on 
very short segments of texts, such as queries, due to the difficulty involved in 
estimating reliable translation probabilities for such pieces of text. 

Query expansion is a common technique used to convert an initial, typically short, 
query into a richer representation of the information need [6,10,14]. This is 
accomplished by adding terms that are likely to appear in relevant or pseudo-relevant 
documents to the original query representation.  In our query-query matching work, 
we explore expanding both the original and candidate query representations. 

Sahami and Heilman proposed a method of enriching short text representations that 
can be construed as a form of query expansion [11].  Their proposed method expands 
short segments of text using web search results.  The similarity between two short 
segments of text can then computed in the expanded representation space. The 
expanded representation and DenseProb similarity measure that we present in 



 

Sections 3 and 4 are similar to this approach.  However, we estimate term weights 
differently and analyze how such expansion approaches compare, in terms of 
efficiency and effectiveness, to other standard information retrieval measures. 

Finally, since we evaluate our techniques on a query-query similarity task, it 
should be noted that this problem, and the related problem of suggesting and 
identifying query-query reformulations has been investigated from a number of 
angles, ranging from machine learning approaches [4] to query session log 
analysis[2].  These techniques are complimentary to the core representational and 
similarity ideas that we explore in our work. 

3  Text Representations 

Text representations are an important part of any similarity measure. In this section, 
we describe three different ways of representing text. Although these representations 
can be applied to text of any length, we are primarily interested in using them to 
represent short segments of text. 

3.1  Surface Representation 

The most basic representation of a short segment of text is the surface representation 
(i.e. the text itself).  Such a representation is very sparse.  However, it is very high 
quality because no automatic or manual transformations (such as stemming) have 
been done to alter it.  While it is possible that such transformations enhance the 
representation, it is also possible that they introduce noise. 

3.2  Stemmed Representation 

Stemming is one of the most obvious ways to generalize (normalize) text.  For this 
reason, stemming is commonly used in information retrieval systems as a rudimentary 
device to overcome the vocabulary mismatch problem. Various stemmers exist, 
including rule-based stemmers [9] and statistical stemmers [5].   

Although stemming can significantly improve matching coverage, it also 
introduces noise, which can lead to poor matches.  Using the Porter stemmer, both 
“marine vegetation” and “marinated vegetables” stem to “marin veget”, which is 
undesirable.  Overall, however, the number of meaningful matches introduced 
typically outweighs the number of spurious matches. 

Throughout the remainder of this paper, we use the Porter stemmer to generate all 
of our stemmed representations. 

3.3  Expanded Representation 
 

Although stemming helps overcome the vocabulary mismatch problem to a certain 
extent, it does not handle the contextual problem.  It fails to discern the difference 
between the meaning of “bank” in “Bank of America” and “river bank”.  Therefore, it 



is desirable to build representations for the short text segments that include 
contextually relevant information. 

One approach is to enrich the representation using an external source of 
information related to the query terms.  Possible sources of such information include 
web (or other) search results returned by issuing the short text segment as a query, 
relevant Wikipedia articles, and, if the short text segment is a query, query 
reformulation logs.  Each of these sources provides a set of contextual text that can be 
used to expand the original sparse text representation. 

In our experiments, we use web search results to expand our short text 
representations.  For each short segment of text, we run the query against a 
commercial search engine’s index and retrieve the top 200 results.  The titles and 
snippets associated with these results are then concatenated and used as our expanded 
representation.  In Figure 1, we show a portion of the expanded representation for the 
short text segment “apple pie”.  As we see, this expanded representation contains a 
number of contextually relevant terms, such as “recipe”, “food”, and “cooking” that 
are not present in the surface representation.  We note that this expanded 
representation is similar to the one proposed in [11]. 

4  Similarity Measures 

In this section we describe three methods for measuring the similarity between short 
segments of text.  These measures are motivated by, and make use of, the 
representations described in the previous section.  We also propose a hybrid method 
of combining the ranking of the various similarity measures in order to exploit the 
strengths and weaknesses of each. 

<query>apple pie</query> 
 
<title>Applie pie – Wikipedia, the free encyclopedia</title> 
<snippet>In cooking, an apple pie is a fruit pie (or tart ) in which the principal filling ingredient is 
apples . Pastry is generally used top-and-bottom, making a double-crust pie, the upper crust of which 
...</snippet> 
<url>en.wikipedia.org/wiki/Apple_ pie</url> 

 
<title>All About Food – Apple Pies</title> 
<snippet>Apple Pie. Recipes. All-American Apple Pie. American Apple Pie. Amish Apple Pie . 
Apple Cream Pie. Apple Crumble Pie. Apple Pie . Apple Pie in a Brown Bag. Best Apple 
Pie</snippet> 
<url>fp.enter.net/~rburk/pies/ applepie/applepie.htm</url> 
 
<title>Apple Pie Recipe</title> 
<snippet>Apple Pie Recipe using apple peeler corer slicer ... Apple Pie Recipe. From Scratch to 
Oven in 20-Minutes. Start by preheating the oven. By the time it's ...</snippet> 
<url>applesource.com/applepierecipe.htm</url> 
… 

Fig. 1. Example expanded representation for the text “apple pie.” The expanded 
representation is the concatenation of the title and snippet elements. 



 

4.1  Lexical 

The most basic similarity measures are purely lexical.  That is, they rely solely on 
matching the terms present in the surface representations.  Given two short segments 
of text, Q and C, treating Q as the query and C as the candidate we wish to measure 
the similarity of, we define the following lexical matching criteria: 

• Exact – Q and C are lexically equivalent. (Q: “seattle mariners tickets”, C: 
“seattle mariners tickets”) 

• Phrase – C is a substring of Q. (Q: “seattle mariners tickets”, C: “seattle 
mariners”) 

• Subset – The terms in C are a subset of the terms in Q. (Q: “seattle mariners 
tickets”,  C: “tickets seattle”) 

These measures are binary.  That is, two segments of text either match (are deemed 
‘similar’) or they do not.  There is no graded score associated with the match.  
However, if necessary, it is possible to impose such a score by looking at various 
characteristics of the match such as the length of Q and C, or the frequency of the 
terms in some collection. 

It should also be noted that exact matches ⊆  phrase matches ⊆  subset matches.  
Exact matches are very high precision (excellent matches), yet very low recall since 
they miss a lot of relevant material.  At the other extreme, subset matches are lower 
precision, but have higher recall.  Any candidate C that contains a term that does not 
appear in the query Q will not match under any of these rules, which is very 
undesirable.  Therefore, we expect that matches generated using these lexical rules 
will be have high precision but poor recall. 

4.2  Probabilistic 

As we just described, lexical matching alone is not enough to produce a large number 
of relevant matches.  In order to improve recall, we must make use of the expanded 
text representations.  To do so, we use the language modeling framework to model 
query and candidate texts. 

To utilize the framework, we must estimate unigram language models for the query 
(θQ) and each candidate (θC).  For ranking purposes, we use the negative KL-
divergence between the query and candidate model, which is commonly used in the 
language modeling framework [14].  This results in the following ranking function: 
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where V is the vocabulary, H is entropy, CE is cross entropy, and ≡ denotes rank 
equivalence. 

The critical part of the ranking function is how the query and candidate language 
models are estimated.  Different estimates can lead to radically different rankings.  
We now describe how we estimate these models using the representations available to 
us. 



We begin with the query model.  The most straightforward way of estimating a 
query model is to use the surface representation.  This is estimated as: 
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where QS denotes the query surface representation, tfw,QS is the number of times w 
occurs in the representation, and |QS| is the total number of terms in QS.  This 
estimate will be very sparse since we are using the surface representation.  This 
allows Equation 1 to be computed very efficiently since most terms in the summation 
( Vw∈ ) will be zero. 

We also consider the case when we use the expanded representation of the query, 
as described in Section 3.3.  The estimate, which is analogous to the unexpanded case, 
is: 
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where QE is the query expanded representation, and µQ is a smoothing parameter.  
This type of estimation is commonly used in the language modeling community and is 
often referred to as Dirichlet or Bayesian smoothing [13].  Since this estimate is much 
more dense than the unexpanded estimate, it is more time consuming to evaluate 
Equation 1.  Due to the amount of data we work with in our experiments, we truncate 
this distribution by only keeping the 20 most likely terms and setting the remaining 
probabilities to 0.  Pruning similar to this was done in [11] for the same reason. 

Finally, we describe how the candidate model is estimated.  Rather than exploring 
both estimates using both unexpanded and expanded representations, we restrict 
ourselves to expanded representations.  Therefore, we get the following estimate: 

C

CCEw
C CE

CwPtf
wP

µ
µ

θ
+

+
=

||

)|(
)|( ,

 
(4) 

where CE is the candidate expanded representation, and µC is a smoothing parameter. 
Unlike the expanded query model, we do not truncate this distribution in any way. 

Finally, it is important to recall that expanded representations may be created using 
any number of external sources.  Our use of the web was simply a matter of 
convenience.  However, we can use this same general framework with expanded 
representations generated using any possible external text source. 

4.3  Hybrid 

We are often interested in taking the matches generated by several different similarity 
measures and combining them.  We call these hybrid techniques.  Given two or more 
lists of matches, we stack the lists according to some pre-defined ordering (denoted 
“>”) of the lists, to form a combined list.  For example, given match lists A and B, 
and ordering A > B, we form the hybrid list AB, which is list B appended to the end 



 

of list A. Since the same match may occur in more than one set of results, we must 
remove duplicates from the combined list.  Our deduplication policy states that we 
keep the highest ranked match and remove all others.  Although this combination 
scheme is naïve, it has the advantage that there are no combination parameters to 
learn. 

4.4  Summary of Methods Evaluated 

Table 1 summarizes the methods we evaluate in the next section.  For each method, 
we include the query and candidate representations and the similarity measure used.  

The Lexical method, which considers the surface forms of the query and candidate, 
makes use of a hybrid technique that ranks exact matches first, then phrase matches, 
and finally subset matches. The Stemming method also uses a hybrid technique that 
first ranks matches using the Lexical method just described and then ranks any exact 
matches that result after stemming both the query and the candidate. We refer to these 
types of matches as “exact stems” matches. 

The SparseProb method is the first of the two probabilistic methods.  It uses the 
unexpanded query representation, the expanded candidate representation, and ranks 
using the negative KL-divergence, whereas the DenseProb method uses expanded 
representations for both the query and the candidate and also ranks using the negative 
KL-divergence. 

Finally, the Backoff method is a hybrid method that ranks exact matches, exact 
stems matches, and then DenseProb matches.  The goal here is to see what benefit, if 
any, is achieved by replacing the phrase and subset matches from the Stemming 
method with DenseProb matches.  We hypothesize that the DenseProb matches will 
be better than the often poor phrase and subset matches. 

Many other query/candidate representation combinations are possible beyond those 
listed in Table 1.  For example, it may be reasonable to use an expanded query form 
and a surface candidate form.  However, in order to maintain a reasonable scope, we 
constrain ourselves to the methods described in this section. 

Method 
Name 

Query 
Representation 

Candidate 
Representation 

Similarity Measure 

Lexical Surface Surface 
Hybrid 

(Exact > Phrase > Subset) 

Stemming Stemmed Stemmed 
Hybrid 

(Lexical > Exact Stems) 

SparseProb Surface Expanded Probabilistic 

DenseProb Expanded Expanded Probabilistic 

Backoff Various Various 
Hybrid 

(Exact > Exact Stems > DenseProb) 

Table 1. Overview of query representation, candidate representation, and similarity measure 
used for each matching method. 



5  Experimental Evaluation 

In this section we evaluate the similarity measures proposed in Section 4.  We begin 
by showing some illustrative examples of matches generated using our algorithms.  
We then formally evaluate the methods in the context of a query-query similarity task. 

5.1  Illustrative Examples 

Table 2 provides illustrative matches returned using the various matching techniques 
described in Section 4.  Although many of these results look reasonable, it is difficult 
to quantify how much better any one method is by simply looking at these results.  
Therefore, in the next section we formally evaluate the different match types. 

5.2  Query-Query Similarity 

We now describe our query-query similarity experiments.  Here, we are interested in 
evaluating how well the various methods we described in Section 4 can be used to 
find queries that are similar to some target query.  This task is a general task that is 
widely applicable.  For example, such a query-query similarity system could be used 
to recommend alternative queries to users of a web search engine or for session 
boundary detection in query log analysis. 

Query: "seattle mariners" 
Lexical Stemming SparseProb DenseProb Backoff 
seattle 

mariners 
seattle 

mariners 
seattle mariners 

tickets 
seattle mariners 

tickets 
seattle mariners 

seattle seattle mariners tickets mariners tickets seattle mariner 

mariners mariners seattle mariners 
seattle mariners 

baseball 
seattle mariners 

tickets 

 seattle mariner 
seattle mariners 

baseball seattle mariners mariners tickets 

  
seattle mariners 

schedule 
seattle mariners 

schedule 
seattle mariners 

baseball 

  mariners baseball mariners baseball 
seattle mariners 

schedule 
  seattle baseball seattle baseball mariners baseball 

  mariners red sox mariners 
tickets 

seattle baseball 

  mariners schedule mariners schedule 
red sox mariners 

tickets 

  seattle mariner 
cheap mariners 

tickets 
mariners schedule 

Table 2. Examples matches taken from our test collection for the query "seattle mariners". The 
Seattle Mariners are a baseball team from Seattle. For each method, we show the 10 matches 
with the highest similarity score. 



 

5.2.1  Data 
The following data resources were used in our experimental evaluation.  A sample of 
363,822 popular queries drawn from a 2005 MSN Search query log was used as our 
candidate pool of queries to match against.  For each query, we generated an 
expanded representation, as described in Section 3.3. In our experiments, we set µQ to 
0 and µC to 2500.  To handle this amount of data, we built an index out of the 
expanded representations using the Indri search system [12]. 

We also randomly sampled a set of 120 queries from the same log to use as target 
queries.  These target queries were then matched against the full set of 363k queries.  
For each of these target queries, we ran the methods described in Section 4 and 
pooled the results down to a depth of 25 per method.  A single human assessor then 
judged the relevance of each candidate result with respect to the target query using a 
4-point judgment scale.  Table 3 provides a description and examples of each type of 
judgment. 

The result of this assessment was 5231 judged target/candidate pairs.  Of these 
judgments, 317 (6%) were Excellent, 600 (11%) were Good, 2537 (49%) were Fair, 
and 1777 (34%) were Bad.  In order to determine the reliability of the judgments, four 
assessors judged 10 target queries.  The inter-annotator agreement was then computed 
for these queries and was found to be 60%.  However, when Excellent and Good 
judgments were binned and Fair and Bad judgments were binned, the agreement 
increased to 80%.  This indicates the boundary between Fair and Bad is interpreted 
differently among users. For this reason, we will primarily focus our attention on the 
boundary between Excellent and Good and between Good and Fair.  In addition, the 
Excellent and Good matches are the most interesting for many practical applications 
including query suggestion and sponsored search. 

5.2.2  Evaluation 
We are interested in understanding how our matching methods compare to each other 
across various relevance criteria.  Since we are interested in using standard 
information retrieval metrics, such as precision and recall, we must binarize the 
relevance judgments.  For each experiment, we state the relevance criteria used. 

Judgment Description Examples 
(Query / Candidate) 

Excellent 
The candidate is semantically equivalent to the user 

query. 
atlanta ga / 

atlanta georgia 

Good 
The candidate is related to (but not identical to) the 

query intent and it is likely the user would be 
interested in the candidate. 

seattle mariners / 
seattle baseball tickets 

Fair 
The candidate is related to the query intent, but in an 
overly vague or specific manner that results in the 
user having little, if any, interest in the candidate. 

hyundia azera / 
new york car show 

Bad The candidate is unrelated to the query intent. 
web visitor count / 

coin counter 

Table 3. Description of the relevance judgment scale. 



We first evaluate the methods using precision-recall graphs using two different 
relevance criteria. The results are given in Figure 2.  For the case when Excellent 
matches are considered relevant (left panel), we see that the Lexical and Stemming 
methods outperform the probabilistic methods, especially at lower recall levels.  This 
is not surprising, since we expect lexical matches to easily find most of the Excellent 
matches.  In addition, we see that Stemming consistently outperforms the Lexical 
method.  However, the Backoff method dominates the other methods at all recall 
levels.  This results from backing off from stricter matches to less strict matches.  For 
example, for the query “atlanta ga”, the Lexical method will match “atlanta ga”, but 
neither the Lexical nor the Stemming methods will match “atlanta georgia", which is 
actually an Excellent match that is found using the DenseProb method. 

When we relax the relevance criteria and consider both Excellent and Good 
judgments to be relevant (right panel), we see an interesting shift in the graph.  Here, 
the probabilistic methods, SparseProb and DenseProb, outperform the Lexical and 
Stemming methods at all recall levels, except very low levels.  This suggests that the 
Lexical and Stemming methods are good at finding Excellent matches, but that they 
are worse at finding Good matches compared to the probabilistic methods.  We 
further test this hypothesis later in this section.  However, once again, we see that the 
Backoff method outperforms all of the methods at all recall levels. 

One reason why the Backoff method is superior to the non-hybrid probabilistic 
methods is the fact that the SparseProb and DenseProb methods often fail to return 
exact matches high in the ranked list.  This is caused by truncating the expanded 
query distribution before computing the KL divergence.  Since exact matches account  
for a majority of the Excellent judgments, this causes the entire curve to be shifted 
down. By forcing the exact and exact stems matches to occur first, we are ‘stacking 
the deck’ and promoting matches that are likely to be high precision.  This, combined 
with the high recall of the DenseProb method, results in a superior matching method. 

It is clear that exact matches are very likely to result in Excellent matches.  
However, it is not clear how phrase and subset lexical matches compare to stemming 
and probabilistic matches.  To measure this, we compute the precision at k for the 
Lexical and Backoff methods, where k is the number of results returned by the 
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Fig. 2.  Interpolated, 11-point precision-recall curves for the five matching methods described 
in Section 4.  On the left, candidates judged ‘Excellent’ are considered relevant.  On the right, 
candidates judged ‘Excellent’ or ‘Good’ are considered relevant. 



 

Lexical method.  This evaluation allows us to quantify the improvement achieved by 
replacing the low precision phrase and subset matches with the high precision exact 
stems matches and high recall DenseProb matches. 

The results are presented in Table 4 for two relevance criteria.  We stratify the 
queries with respect to k, the number of Lexical method matches for the query, and 
compute precision at depth k over these queries.  We only include values of k 
associated with 10 or more queries, since it misleading to compute and compare 
means over smaller samples.  As the results show, the Backoff method is superior in 
every case.  This suggests that the stemming and probabilistic matches (used in the 
Backoff method) are considerably better at finding both Excellent and Good matches 
compared to the phrase and subset matches (used in the Lexical method). 

5.2.3  Effectiveness vs. Efficiency 
One important practical aspect of the techniques developed is efficiency.  Generating 
lexical and stemming matches is very efficient. The probabilistic methods are slower, 
but not unreasonable. Generating matches against our collection of 363,822 
candidates using a modern single CPU machine takes 0.15 seconds per query using 
the SparseProb method and 3 seconds per query using the DenseProb method. 

The DenseProb method requires, a priori, an index of expanded representations for 
both the candidates and the incoming queries.  If we are asked to generate DenseProb 
matches for a query that is not in our index, then we must generate this representation 
on the fly.  However, the SparseProb method does not exhibit this behavior and can 
be used to efficiently generate matches for any incoming query. 

Therefore, SparseProb is the the best choice in terms of speed and coverage.  
However, if speed is not an issue, and high quality results are important, then 
DenseProb is the better choice. 

6  Conclusions and Future Work 

In this paper we studied the problem of measuring the similarity between short 
segments of text.  We looked at various types of text representations, including 
surface, stemmed, and expanded.  We showed how web search results can be used to 
form expanded representations of short text segments.  We then described several 

  R = {Excellent} R = {Excellent, Good} 

k Queries Lexical Backoff Lexical Backoff 

1 40 0.7500 0.8125 0.7500 0.8125 

2 38 0.3235 0.4853 0.3382 0.5882 

3 31 0.2688 0.4194 0.3978 0.5914 

Table 3. Precision at k, where k is the number of matches returned using the Lexical method.  
In this table, the evaluation set of queries was stratified according to k.  Queries indicates the 
the number of queries associated with each k . Only values of k associated with 10 or more 
queries are shown. 



similarity measures based on these representations, including lexical matching and 
probabilistic measures based on language models estimated from unexpanded and 
expanded representations.  We then formally evaluated and compared these measures 
in the context of a query-query similarity task over a large collection of popular web 
search queries.  Our results showed that lexical matching is good for finding 
semantically identical matches and that the probabilistic methods are better at finding 
interesting topically related matches.  It was shown that a simple hybrid technique 
that combines lexical, stemmed, and probabilistic matches results in far superior 
performance than any method alone. 

The probabilistic framework presented in this paper provides a general method for 
measuring the similarity between two short segments of text.  Although we chose to 
use web search results as the basis of our expanded representation in this work, an 
interesting direction of future work would be to use a variety of other sources of 
external text, such as query reformulation logs, queries that result in similar click 
patterns, and Wikipedia. It would also be worthwhile to evaluate these techniques in 
an end-to-end application, such as a query-query reformulation system, in order to see 
what impact they have in a more practical setting. 
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