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Abstract. The paper first traces the image-based modeling back to feature tracking and factorization that have been
developed in the group led by Kanade since the eighties. Both feature tracking and factorization have inspired and
motivated many important algorithms in structure from motion, 3D reconstruction and modeling. We then revisit the
recent quasi-dense approach to structure from motion. The key advantage of the quasi-dense approach is that it not only
delivers the structure from motion in a robust manner for practical modeling purposes, but also it provides a cloud of
sufficiently dense 3D points that allows the objects to be explicitly modeled. To structure the available 3D points and
registered 2D image information, we argue that a joint segmentation of both 3D and 2D is the fundamental stage for the
subsequent modeling. We finally propose a probabilistic framework for the joint segmentation. The optimal solution
to such a joint segmentation is still generally intractable, but approximate solutions are developed in this paper. These
methods are implemented and validated on real data set.
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1. Introduction

Modeling by video taping has been advocated at CMU
by Kanade since the early eighties. The development has
been focused on two fundamental achievements by his
group, Moravec-Lucas-Tomasi-Kanade feature detection
and tracking, and Tomasi-Kanade factorization method
for reconstruction.

Lucas-Kanade tracking

The original idea of Lucas and Kanade (1981) is to track
or match an image patch I (x) against a reference image
I ′(x) in two successive frames with unknown transforma-
tion T (·) such that I (T (x)) = I ′(x). Due to the inherent
aperture problem for each individual pixel, it chooses a
(weighted) integral error to minimize for the unknown
transformation T (·),

E(T ) =
∫

x∈W
||I (T (x)) − I ′(x)||2(weight) dx.

The integral is over a window W around the point x. The
transformation T may be taken to be a displacement in
its simplest form, x �→ T (x) = x + d. Taylor expanding
the image term I (x + d), and differentiating E(d) with
respect to d for minima, we obtain Hd = e, where e is
the residual error vector

∫
x∈W (I ′− I )g(weight)dx and g is

the gradient of the image I . The H is the Hessian matrix,

H =
∫

x∈W
gT g(weight)dx.

As done in Tomasi and Kanade (1991) and Shi and
Tomasi (1994), the feature point is defined to be the pixel
at which we could have a reliable solution, i.e. H is not
singular at it.

The Lucas-Kanade tracking equation has several ram-
ifications. First, it leads to one definition of good feature
points (Tomasi and Kanade, 1991; Shi and Tomasi, 1994),
of which H is well conditioned. This is per se the same de-
tector of point of interest or corner in Harris and Stephens
(1988) that is motivated by improving Moravec’s points
of interest (Moravec, 1981), which in turn is from the
solution of discretization of the equation E(T ) with
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d = {(±1 | 0, ±1 | 0)} for self-matching I = I ′. It
is similar to that developed by Förstner (1994) as well.
All detectors of point of interest (Förstner, 1994; Harris
and Stephens, 1988) only differ at computational imple-
mentation of considering the eigensystem of H . Harris
and Stephen used det − kTrace2 = λ1λ2 − k(λ1 + λ2)2.
Tomasi and Kanade suggested min(λ1, λ2) > λ, and
Förstner took aslo the scale σ into account and proposed
κ2 = λ2

λ1σ 2 .
Second, it suggests that a dense correspondence

between frames is ill-posed in nature as H is not
well conditioned everywhere. I.e. there are pixels for
which H are close to singularity. The impossibility of
dense correspondence justifies the necessity of the in-
troduction of the quasi-dense correspondence (Lhuil-
lier and Quan, 2005) as a more achievable goal.
Thirdly, it implies that feature point based approach,
now the mainstream, is by its definition—the infinites-
imal expansion d for matching and self-matching—only
good for close frames. This indeed reflects the actual
practice in the representative systems implemented in
Pollefeys et al. (1998) and Nister (2001). Though a more
general transformation than the translational displace-
ment could be introduced into the development of match-
ing and self-matching equations without theoretical diffi-
culties (Triggs, 2004), it leads often to inconclusive trade-
off between invariance and rareness of the descriptors
(Triggs, 2004).

Tomasi-Kanade factorization algorithm

Related to the tracking, given the tracked points over the
sequence, but one step further to reconstruct these fea-
ture points in 3D space. By first considering a simplified
camera projection model that is approximated by an or-
thogonal type projection model (x, y, z) �→ λ(u, v) in-
stead of a more general central projection model. Tomasi
(1991) proposed the factorization algorithm for recon-
struction. Given n points tracked over m views, and stack
all measurements (u, v) over all views to form a big
measurement matrix W , which has a rank constraint by
its construction W = MS. Using SVD on M results in
W = U�V = (Uσ 1/2)(σ 1/2V ) = MS. The motion M
and shape S are defined up to an arbitrary affine transfor-
mation A as W = MS = (MA−1)(AS), so the M and S
are de facto the affine motion and affine shape. Next, the
metric constraints to guarantee that M is a valid rotation
matrix are used to finalize the Euclidean motion M and
Euclidean shape S. Each of these two steps contains fun-
damental concepts that are related to the development of
the uncalibrated approach.

First, the importance of the pre-metric structure of the
shape, the S resulted from the SVD, though not eluci-

dated, but was related to the concept of affine shape in-
troduced by Koenderink and Van Doorn in 1988. Koen-
derink’s paper (Koenderink and van Doorn, 1989) has
already been in circulation in 1988, and was published
in 1991 (Koenderink and van Doorn, 1989). The techni-
cal report of Tomas-Kanade factorization (Tomasi, 1991)
was available in 1991 and its journal version (Tomasi and
Kanade, 1992) in 1992. This affine shape was innovative,
but limited to only affine cameras. It is Faugeras’ paper
(Faugeras, 1992) that gave a definite answer to what is
the parallel to an affine camera for a projective camera.
Hartley (1992) independently reached the same re-
sults. Mohr et al. (1992, 1995) followed up by propos-
ing a numerical scheme, a kind of bundle adjustment
for projective reconstruction for multiple views, us-
ing an explicit projective basis defined by 5 space
points. Interestingly and importantly, it was shown in
Sturm and Triggs (1996) and Triggs (1996) that the orig-
inal Tomasi-Kanade affine factorization for affine cam-
eras could be extended to projective reconstruction for
projective cameras, this is the projective factorization,
that is the only alternative to a bundle-adjustment type
projective reconstruction. It has even an advantage of
straightforward initialization when an iterative scheme is
necessary. This projective tour for structure from mo-
tion is important as it tells us an important fact that
the matching problem for a rigid scene or object is
encoded by this uncalibrated projective geometry. And
this projective structure could be efficiently computed
from the feature points detected and matched in multiple
views.

Second, it has been known that the second step of
the enforcement of metric constraints is capital, but
hard to succeed in some cases. This has been primarily
viewed as a successive step of the entire reconstruction
for affine cameras. Now from an uncalibrated projective
viewpoint, the enforcement of the metric constraints is
equivalent to the autocalibration of the uncalibrated ap-
proach. Indeed, using the orthogonality constraints orig-
inally proposed by Tomasi and Kanade gives an alterna-
tive way of formulating the autocalibration both for affine
and projective cameras, which is usually formulated in
terms of the absolute conic borrowed from the projective
geometry.

Combining Lucas-Kanade-Tomasi feature detection
and tracking with the projective factorization is an al-
ternative of the standard uncalibrated approach which
is often implemented (Pollefeys et al., 1998; Hartley and
Zisserman, 2000; Faugeras et al., 2001) by first extracting
the points of interest, Harris corners, then combining with
robust statistics such as RANSAC or LMS with a projec-
tive structure (Zhang et al., 1995), and finally optimizing
the structure by a bundle-adjustment-like optimization
(Mohr et al., 1995, 1992; Triggs et al., 2000) in projective
space.



Image-Based Modeling by Joint Segmentation

Figure 1. One overview on the right of the reconstructed quasi-dense points for the entire scene from 25 images shown on the left.

Quasi-dense approach

This sparse structure from motion approach usually re-
quires a dense frame rate and leads to a too sparse set of
points to be sufficient for object modeling and depiction.
This insufficiency motivated the development the quasi-
dense approach started since 1998 in Lhuillier (1998) and
matured into the work in Lhuillier and Quan (2005). It
is robust and handles more distant views. More impor-
tantly, it produces a set of semi-dense 3D points that was
impossible with the previous methods. The quasi-dense
approach will be briefly revisited in Section 2. One exam-
ple is shown in Fig. 1. The quasi-dense approach can be
viewed as an extension to the discussed two key subjects,
feature point selection, re-sampled quasi-dense point vs.
interest point, and reconstruction, hierarchical division
combined with a bundle-like method vs. batch solution
combined with a factorization.

Joint segmentation approach

The increased density of the reconstructed 3D points from
multiple views, paves the way for the three-dimensional
modeling of the objects in space, in addition to the re-
covery of the camera positions. But the 3D points, even
semi-dense, are unstructured in space, therefore are not
yet sufficient for creating a geometric model of the un-
derlying objects. It is necessary to group the points and
pixels that belong to the same object into the same cluster
of points and pixels. Obviously, the concept of object is
subjective: for the example scenario shown in Fig. 2, the
whole plant might be considered as an object for some ap-
plications, whereas each individual leaf should be consid-
ered as an independent object for some others, depending
on the application and the realism details of the modeling

required. The main contribution of this paper is to intro-
duce a joint segmentation framework, for both 3D points
and 2D pixels, and look for robust and efficient solutions
to it in Section 3. Figure 2 shows one of the original 25
images captured by a handheld camera for the example
scenario, a rendered image of the final modeling result
based on the desired 3D segmentation and 2D segmenta-
tion results by a semi-automatic approach developed in
Quan et al. (2006) using the joint segmentation method
presented in this paper. The segmentation and modeling
of such complex objects are almost impossible without
the joint segmentation.

2. Quasi-Dense Approach Revisited

The quasi-dense approach developed in Lhuillier (1998);
Lhuillier and Quan (2002, 2005) overcomes the sparse-
ness of feature points and results in a more efficient
and robust algorithm when combined with a bundle
adjustment like algorithms both at projective and Eu-
clidean stages. The purpose is to view the quasi-dense
approach as an extension of the discussed two key sub-
jects: feature point, quasi-dense point vs. interest point;
and reconstruction, hierarchical division combined with a
bundle-like method vs. batch solution with a factorization
scheme.

2.1. Quasi-Dense Point

Initialization by sparse points of interest. We start by
detecting the points of interest in each image (Zhang et al.,
1995), then compute the Zero-Mean Normalized Cross-
Correlation (ZNCC) to match points of interest in two
images. First, we do the correlation from the first image
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Figure 2. A proper segmentation is fundamental to 3D modeling. (a) One of the 25 original images captured by a handheld camera. (b) A rendered

image at a similar viewpoint of the reconstructed 3D model based on the segmentation results in (c) and (d). (c) A desired segmentation of 3D data

points from the reconstructed quasi-dense points, and (d) a desired segmentation of an input image.

to the second, and then do the same from the second to the
first to retain a one-to-one consistent matching of points
of interest between two images. Most of the standard
approaches will continue with this set of feature points by
introducing global geometry constraint. The quasi-dense
approach will not, it is merely initialized at this stage.

Propagation. The initial sparse matches of points of
interest, still often containing a significant portion of
outliers, are now sorted by decreasing ZNCC correla-
tion score. These sorted seed points bootstrap a region-
growing type algorithm that propagates the matches lo-
cally from the most reliable pixels to the less reliable ones.
At each step, the match (x, x′) with the highest ZNCC
score from the current list of the seeds is taken off the list
and is propagated in the immediate spatial neighborhood
N (x, x′) for potential new matches. The new match has
to be sufficiently discriminant and satisfy the disparity
gradient constraint for uniqueness. Each new match is
revaluated by the ZNCC to update the sorted list of the
seeds for the next step. In addition to the important the
best-first propagation strategy, there are two key features
of this approach.

First, the key is the definition of the potential match
candidates N (x, x′) satisfying the disparity gradient
(Lhuillier and Quan, 2002; Pollard et al., 1985) as

N (a, a′) = {(b, b′), b ∈ N (a), b′ ∈ N (a′),

| (b′ − b) − (a′ − a) |< ε},

given the neighborhood N (x) consisting of all pixels of
x within a window of size n × n. Figure 3 illustrates one

Figure 3. Possible matches N (a, a′) around a seed match (a, a′) come

from its 5 × 5-neighborhood N5(a) and N5(a′). The possible matches

for b and c′ are in the 3 × 3 window frame centered at b′ (resp. c).
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Figure 4. The quasi-dense disparities for the two pairs of views ( f1, f2) and ( f2, f3) of a triplet of views ( f1, f2, f3).

example of possible matches generated from (a, a′) for
n = 5 and ε = 1. The topologies of the matches might be
very different in different images: (a, a′), (b, b̄), (c̄, c′)).

Second, the sufficient density is achieved for largely
separated views because of the confidence measure used
in the approach, it is defined in Lhuillier and Quan
(2005) as max{E}, where {E = |I (x + d) − I (x)|, d ∈
{(±1, 0), (0, ±1)}. It simply responds to a gradient in
any direction, and is less restrictive than Moravec op-
erator (Moravec, 1979) that is the local maximum of
min{E, d ∈ {(±1, 0)} that again approximates the in-
tended summation

∑
i E2

i in the least squares matching. It
therefore allows the matches to also go along edge points
despite the aperture problem while avoiding matching
uniform areas by imposing a threshold on the confi-
dence. An example of quasi-dense disparities is shown in
Fig. 4.

Quasi-dense points as re-sampled correspondence
points. Disparities give pixel-to-pixel correspon-
dences, which are locally dense, but they give an
irregular distribution of clusters of pixels, which is not
suitable for geometry computation. Clustered pixels bias
the geometric constraints and increase the computation
cost. We re-sample the disparities to produce the
quasi-dense points that are more suitable for subsequent
computations. Re-sampling not only produces a reduced
set of point correspondences that are more uniformly
distributed than the raw pixel correspondences, more-
over, it acts as a post-propagation regularization that
improves the reliability of the estimation of the disparties

Figure 5. The resulting quasi-dense correspondence points for a triplet of views. The points in red are outliers.

by integrating local geometric constraints. The scene
or object surfaces are often at least locally smooth,
and this local smoothness is encoded by a local plane
homography.

The first image plane is partitioned into a regular square
grid of n ×n pixels. This size n is a trade-off between the
sampling resolution and regularization stability. For each
square patch, all pixel correspondences inside it induced
by the current disparities are used to fit a plane transfor-
mation. The transformed points, in subpixel accuracy, are
considered as the quasi-dense correspondence points. An
example of quasi-dense disparties is shown in Fig. 4, and
an example of quasi-dense points is shown in Fig. 5.

2.2. Quasi-Dense Geometry Reconstruction

Projective quasi-dense geometry. We consider a lin-
ear sequence of views that requires sufficient overlap-
ping between every two adjacent views. We essentially
use the hierarchical structuring of the subsequences
adapted in Laveau (1996). A sequence of images indexed
by [i, . . . , j] is recursively partitioned into two subse-
quences [i, . . . , k, k + 1] and [k, k + 1, . . . , j] with the
two overlapping frames k and k+1, where k is the median
of the index range [i.. j]. The partition stops at each triplet
of views for which the geometry is computable and esti-
mated. Then the geometry of each two subsequences are
merged by computing a space homography induced by
the the two overlapping frames of two subsequences. The
geometry of the merged sequence is always re-optimized
as a whole. The geometry of a triplet of views is first
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directly computed using 6 corresponding points in three
views (Quan, 1995), similar to 7 points in two views, then
optimized subsequently.

The establishment of quasi-point correspondences is
to divide the three views into two pairs with one overlap-
ping view. The quasi-dense point correspondences for a
pair of views discussed in the previous section are now
used to compute an initial solution of fundamental ma-
trix of the pair. To be more robust and accurate, a sec-
ond constrained propagation by the current fundamental
matrix is re-computed and resampled to obtain the final
quasi-dense correspondences of the pair. The quasi-dense
point correspondences for each pair is propagated into the
triplet thanks to the common view.

It is important to observe that the two propagations im-
prove the robustness of the correspondence computation.
The first unconstrained propagation has the advantage of
overcoming the biased estimates toward the areas with a
high density of matches usually observed in other feature
based approaches due to the irregular distribution of the
points in image space, discussed as well in Hartley and
Zisserman (2000).

Euclidean quasi-dense geometry. The projective geom-
etry of 3D quasi-dense points and cameras is upgraded
into Euclidean structure by an initial autocalibration fol-
lowed by an optimization in Euclidian space, a bundle
adjustment. The initial value for the focal length might
be either computed by some linear autocalibration meth-
ods (Nister, 2001; Triggs, 1997) or obtained from the
setting of the digital camera. The autocalibrated intrin-
sic parameters transform the reconstruction into a metric
representation. The world Euclidean coordinate frame is
fixed at the camera center of the view in the middle of the
whole sequence and the scale is fixed to be the maximum
distance between any pair of camera center positions. We
re-parameterize each calibrated camera by its six individ-
ual extrinsic parameters and one intrinsic focal length to
finally adjust the geometry of the whole system through
the optimization. This natural re-parametrization treats
equally all cameras for uncertainty estimation, but leaves
the seven d.o.f scaled Euclidean transformation as the
gauge freedom (Lhuillier and Quan, 2005; Triggs et al.,
2000).

2.3. Remarks

The quasi-dense approach is remarkably both more ro-
bust and accurate than the standard approaches available
in Hartley and Zisserman (2000), Faugeras et al. (2001),
Pollefeys et al. (1998) and Nister (2001). For the example
scenario in Fig. 2 the reconstructed 3D quasi-dense points
are shown in Fig. 1. Some quantitative comparisons are
presented in Lhuillier and Quan (2005). We support the

previous analysis by mentioning the two keypoints for the
achievements of robustness and accuracy: wide separa-
tion for adjacent views and density of the corresponding
points. It indeed works for more widely separated image
pairs than that required by the standard sparse approach.
It is due to the fact that the number of matched inter-
est points drastically decreases with increasing geomet-
ric distortion between views in the feature point based
approach. The propagation strategy used for the quasi-
dense points accepts the more complicated local image
distortion because of the 2D disparity gradient constraint
developed in Lhuillier and Quan (2002). The more spe-
cific wide baseline stereo such as Tuytelaars and Van
Gool (2000), Urban et al. (2002) and Lowe (2004) pro-
duces far fewer points, which, again, might be sufficient
for the camera geometry and indexation, but not for ob-
ject modeling.

3. Joint Segmentation

Given a set of 3D points, the quasi-dense points in our
case such as the example shown in Fig. 1, and all the
images of the sequence, we would like to segment jointly
all 3D points and 2D pixels into groups of meaningful
objects.

3.1. Related Work

Image segmentation has been a traditional and fundamen-
tal topic in computer vision. There is an abundant liter-
ature in both segmentation of 3D range images or depth
maps, and that of normal 2D gray level or color images.
Segmentation of range images usually looks for more lo-
cal geometric characterization as it has a high density of
3D points, it leads to different approaches as it has no
associated 2D images. Segmentation of normal images
uses only pure pixel information, and attracts recent at-
tentions. Unfortunately it operates only in 2D space with
pure pixel information, and its purposes are often moti-
vated by object recognition. Some representative works
include (Shi and Malik, 2000; Tu and Zhu, 2002). It is nat-
ural that segmentation of multi-view, often calibrated off-
line, handles both image and depth information. There
are several representative works. The layered approaches
originated from Wang and Adelson (1994) usually do not
directly adopt 3D reconstruction information. In Wills et
al. (2003) and Xiao and Shah (2004), motion estimation
and segmentation on the extracted correspondences be-
tween frames are performed, then layer assignment (i.e.
pixel label) is obtained through propagating the labels
of the corresponding pixels. In Patras et al. (2001), joint
inference of motion estimation and labeling is solved us-
ing the Expectation Maximization (EM) algorithm. The
modern stereo matching approach is much similar to the
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Figure 6. One source image is shown in (a). The zoomed subimage is shown in (b). Assume that the Euclidean distances satisfy |sa − sb| > |sb − sc|
in 3D space. The similarity of the colors for a and b makes them closer in grouping, while the presence of the edge inbetween b and c moves them

apart in grouping. A typical example in which the leaves can not be separated with 3D Euclidean distances is shown in (c), but can be separated after

considering color and contour information as shown in (d).

layered approach, and it in essence discretizes the 3D
space into a few layers . One of the most representative
works is Kolmogorov and Zabih (2002). Bilayer segmen-
tation as a simplest layered representation, basically uses
the learned appearance model instead of correspondence
relations. Stereo cues are probabilistically fused for seg-
mentation in Kolmogorov et al. (2005). The edges of the
background of last frame are used to attenuate the edges
of current frame in Sun et al. (2006). The probabilistic
motion model is learnt to help segmentation in Criminisi
et al. (2006).

The existing approach may directly integrate the mo-
tion constraints into the segmentation, but is often pri-
marily preoccupied by the recovery of depth information
rather than the clustering of the objects. It makes little
exploitation of reliable 3D information, probably lack of
it. Intuitively, there is much richer information available
to explore for object segmentation when both 3D and
2D information is available. For instance, some objects
are obviously separable in 3D whereas others are clearly
cut out by image boundary information even if they are
closely connected in space as shown in Fig. 6. We will
first formulate the joint segmentation in a probabilistic
framework, then propose some solutions to it.

3.2. Probabilistic Formulation

Let I = {Ii } be the set of n images with i = 1, . . . , n.
Each image Ii is represented by a set of pixels in RGB
space, i.e. Ii = {(uk, ck)} with k up to the number set by
the image resolution, and each image point includes its
position uk in image space and three colors ck . It is as-
sumed that all the images are fully calibrated with respect
to a common coordinate fame. We define a joint point x
to be a vector composed of the 3D coordinates (x, y, z) of
a point in space and all its corresponding image points ui

in all images, i.e. x = ((x, y, z), (u1, c1), . . . , (un, cn)),
where each image point satisfies ui = Pi (x, y, z, 1)T

for the projection matrix Pi of the i-th camera. The cor-

respondence information is encoded in the joint point
representation. And each joint point x is associated with
a n-dimensional visibility vector v with binary values to
indicate that ui is visible in the i-th image if the i-th com-
ponent is 1, and invisible otherwise. A segmentation is a
set of labels L = {lk}, and each of them lk assigns a set of
joint points to a common group. The number of the labels
is unknown. If X = {x j } is the given set of joint points,
and V = {v j } the given set of visibilities for each joint
point, X and V are given by the quasi-dense reconstruc-
tion in our case, then L X is a labeling for the given set
of joint points X . The inference of L X could be treated
as a maximum a posteriori estimate of the probability
P(L X | X, V, I ). A joint segmentation L X is formally
given by

L X = arg max
L X

P(L X | X, V, I ). (1)

This MAP could be solved by representing the poste-
rior probability P(L X | X, V, I ) as a Conditional Ran-
dom Field (CRF) as in Lafferty et al. (2001),

P(L X | X, V, I ) ∝ exp −{El(L X ; X, V, I )

+ λEs(L X ; X, V, I )},

where El(·) is the energy for the likelihood model of the
labeling, and Es(·) is the energy for the conditional prior
model of the labeling.

3.2.1. Joint Likelihood Model. For a joint point, there is
no evidence to support the dependency of the 3D position
xs = (x, y, z) and the image colors xc = (c1, . . . , cn),
the joint likelihood model is then divided into the inde-
pendent spatial and color terms:

El(L X ; X, V ) = ρl1
El(L X ; XC , V ) + ρl2

El(L X ; X S),

(2)
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where XC = {xc
j } is the set of the components of the

image colors of the joint points X and X S = {xs
j } is

the set of the components of 3D coordinates of the joint
points X .

Color likelihood. The Color likelihood is taken to be

El(L X ; XC , V ) = −
m∑

j=1

log p
(
xc

j

∣∣ l j
)
, (3)

where the color likelihood model for each joint point is

defined by p(xc | l) = ∏
p(ci | l)

vi
|v|1 as the geometric

mean of the likelihoods of all its 2D pixels. The L1-norm
|v|1 of v is just the number of visible pixels of the joint
point x. The invisible features ci , with vi = 0, do not
contribute to the model. In other words, the definition
actually only performs geometric mean on the visible
2D pixels, which equally treats every joint point without
over-using it.

The probability density p(c | l) describes the color
distribution of the joint points for the label l. It is nat-
ural to take a Gaussian Mixture Model (GMM) (Rother
et al., 2004; Blake et al., 2004; Kolmogorov et al., 2005),
whose parameters could be estimated by the Expectation
Maximization (EM) algorithm (Dempster et al., 1977).
Again the visible color of each joint point x is weighted
by 1

|v|1 for the estimation to view equally each joint
point.

Spatial shape likelihood. The spatial shape likelihood is
used to model the shape prior of the object. It is desirable
to be able to model a general surface patch that will be
good for modeling the visible surface of an object, but it is
usually computationally difficult. We will take a planar
model to approximate the shape model of the objects,
this is similar to Torr et al. (2001) that uses a plane as a
layer. Using a planar model is however insufficient since
the 3D points for an object spatially spread rather in a
compact manner. To take the compactness into account,
we use the Mixture of Probabilistic Principal Component
Analysis (MPPCA) (Tipping and Bishop, 1999) to obtain
a probability measure. And this shape likelihood term is
defined as:

El(L X ; X S) = −
m∑

j=1

log p
(
xs

j | l j
)
, (4)

where p(xs | l) is formulated in terms of Probabilistic
Principal Component Model (PPCA) (Tipping and
Bishop, 1999). The principal 2D subspace P2 and the
complementary 1D subspace P1 are first computed
through Principal Component Analysis (PCA) for the
points with the same label. Then the probability is the
combination of the two terms. The first term is to pe-
nalize the projection in the complementary subspace P1,
i.e. the residual error; the smaller the probability is, the

larger the residual error is. The second term is to measure
the compactness of the projected points in the principal
plane P2 through a Gaussian model. We assign a larger
weight to the first term than the second, slightly different
from Tipping and Bishop (1999).

3.2.2. Joint Prior Model. Conditional prior model is
used to measure the consistency between the labelings of
the joint points. The k-way consistency is usually more
powerful to describe the prior than the pair-wise consis-
tency, but it leads to higher computation cost. We adopted
the common pair-wise affinity as the prior that is formu-
lated as the following:

Es(L X ; X, V, I ) =
∑

(i, j)∈E

Es(li , l j ; X, V, I )

= −
∑

(i, j)∈E

a(i, j)δ(li = l j ),

where a(i, j) is the affinity function between the points
i and j , E is the set of all pairs of points corresponding
to linked edges in a graph, and δ(a = b) is a Dirichlet
function such that δ(a = b) is 1 if a = b holds and 0
otherwise. The quality of a segmentation based on the
formulation fundamentally depends on the affinity, we
seek therefore to define it jointly from both 3D and 2D
features.

3D Affinity. Closer points in space tend to have higher
probability of belonging to the same group, i.e. the dis-
tance between the points of the same group is smaller
than that of the points of different groups. We natu-
rally take this spatial distance as an affinity measure

a3d (i, j) = exp(−||si −s j ||2
2σ 2

3d
), where σ3d = E1/2(||si −

s j ||2). The Gaussian function has the desired properties
for an affinity, and is popular in spectral clustering and
normalized cut (Shi and Malik, 2000). In addition to the
3D Euclidean distance, the normal directions are also
important for shape smoothness. We incorporate the dif-
ference between normal directions into the affinity and

define a3n(i, j) = exp(−||ni −n j ||2
2σ 2

3n
), where n j is the normal

direction vector of the point j , approximately estimated
from its neighbor points, and σ3n = E1/2(||ni − n j ||2).
The final 3D affinity is given by a3(i, j) = a3d (i, j)
a3n(i, j).

2D Affinity. Since a joint point x is associated with the
image colors, we can define an affinity function encoding

the color differences as ac(i, j) = exp(−||E(ci )−E(c j )||2
2σ 2

c
),

where σc = E1/2(||E(ci ) − E(c j )||2), and E(c) =
1

|v|1
∑n

i=1 ci . This color consistency between joint points
is intuitively estimated using their average colors, since
different points may have different numbers of visible
color features. Averaging the colors leads to a more sta-
ble solution. However, this affinity function only makes
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sense between the objects with apparent different colors.
In case of apparent similar colors, image contour features,
similar to Malik et al. (2001), should be incorporated into
the affinity as illustrated in Fig. 6.

It is assumed at present that each pixel u in view Iv is
associated with a response gv(u) to show the degree of
the pixel lying on a contour point. The endpoints of the
edge (i, j) ∈ E must be both visible at least in one view,
meaning that the line segment [i, j] must correspond to
a line segment visible in the same view. We can use the
following affinity measurement

aic(i, j) = exp

(
− medv{maxtv∈[i, j]v gv(tv)}

2σ 2
ic

)
, (5)

where the inner term maxtv∈[i, j]v gv(tv) finds the maxi-
mum contour response along the projected line segment
[i, j]v in view v, the outer term medv{·} tries to seek the
median contour response in all possible views, and σic is
the variance of the median contour responses of all line
segments. Different from Quan et al. (2006), the median
operator is observed in experiment to be more robust than
the maximum operator.

An edge map in Malik et al. (2001) is used to com-
pute the contour responses in this paper. The oriented
filter bank based on rotated copies of a Gaussian deriva-
tive and its Hilbert transform are used. Let f1(x, y) =
G ′′

σ1
(y)Gσ2

(x), and f2(x, y) = H ( f1(x, y)) is the Hilbert
transform of f1(x, y) along the y axis. The oriented en-
ergy at angle 0◦ is defined as E0◦ = (I ∗ f1)2 + (I ∗ f2)2.
Then the contour response is defined as g(x, y) =
maxθ Eθ (x, y).

Finally, we are able to perform simple multiplication
of the affinities to define the joint affinity to be a(i, j) =
a3(i, j) × ac(i, j) × aic(i, j).

3.2.3. Graph Construction. The set of edges E in defin-
ing the likelihood can be constructed using k-Nearest
Neighbor (k-NN) technique. As mentioned above, we
expect that the points i and j of (i, j) ∈ E must be both
visible at least in one view. This can be guaranteed as
follows. Each view is associated with a set of joint points
that are visible in this view. We first build for each view
a k-NN network on the corresponding set of joint points
according to the 3D Euclidean distance, and set k to be
5 by default. Then we combine those networks together
to reach a graph on the entire joint points. Finally we
discard some incident edges with larger distance for each
joint point such that the graph is not so dense for efficient
computation. It should be noted that the graph construc-
tion is critical in that the 2D affinity definition is entirely
based on the construction.

3.2.4. Computation. The final objective function for the
joint segmentation is given by

E = −
m∑

i=1

(
ρ1 log p

(
xc

i

∣∣ li
) + ρ2 log p(xs

i

∣∣ li
))

− λ
∑

(i, j)∈E
a(i, j)δ(li = l j ).

This problem is, generally speaking, a graph partitioning
problem, but the optimization depends on how discrimi-
native the likelihood is.

In the case of separating objects with apparent color
dissimilarity, the color likelihood is usually discrimina-
tive, but not the shape model. The objective function re-
duces to the common combinatorial formulation:

E = −ρ1

N∑
i=1

log p
(
xc

i

∣∣ li
)

− λ
∑

(i, j)∈E
a(i, j)δ(li = l j ). (6)

This equation is a typical discrete CRF formulation,
which can be efficiently optimized using graph cut algo-
rithm (Boykov et al., 2001). Its complexity is of O(N 3)
because the graph is sparse, and there are N points and
O(N ) edges.

In other cases there exists discriminative spatial shape
feature, but not discriminative colors. For instance, we
may want to model individual leaves, which requires an
individual leaf segmentation. The color is similar for all
leaves of the same plant, but each leaf lies on a different
surface patch in space. The objective function can be
simplified to

E = −ρ2

m∑
i=1

log p
(
xs

i

∣∣ li
)

− λ
∑

(i, j)∈E
a(i, j)δ(li = l j )

= −ρ2

m∑
i=1

log p
(
xs

i

∣∣ li
)

+ λ
∑

(i, j)∈E
a(i, j)(1 − δ(li = l j )) + const.

(7)

Now that the problem, similar to those used in Zabih
and Kolmogorov (2004) and Zhu and Lafferty (2005), can
be casted into an unsupervised clustering framework. We
can use an iterative algorithm that combines GMM and
graph cut. We rewrite the affinity part in matrix form,∑

(i, j)∈E

a(i, j)(1 − δ(li = l j )=Trace(XT (D−W)X),

(8)

where W is the symmetric affinity matrix with each entry
Wi j corresponding to the affinity value of the edge (i, j),
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and Wi j = 0 if there is no edge between the points i and
j , D is the diagonal degree matrix in which the diagonal
entry Di i = ∑

j Wi j , X is a label matrix of size n ×
c such that Xil = 1 if the label of point i is l and 0
otherwise. The minimization of the above function is in
essence a graph min-cut problem. As pointed out in Shi
and Malik (2000), a normalized cut criterion will give a
better graph partition. We use the normalized cut method
to get a reliable labeling (graph partitioning):

X̂ = arg min
X

Trace(XT D− 1
2 (D − W)D− 1

2 X). (9)

We optimize Eq. (7) in two steps. we first use the tech-
nique in Shi and Malik (2000) to solve Eq. (9) to get
an initial label X̂. In the second step, the PPCA model
can be estimated according to each group of points. After-
wards the MPPCA is used to refine the labeling. Although
an iterative algorithm can be used for optimization, its
convergence can not be theoretically guaranteed and it
does not improve significantly the results. We observed
in our experiments that the two steps without iteration
work satisfactorily, thanks to the affinity function. The
most computationally expensive step is sparse SVD for
L = D− 1

2 (D − W)D− 1
2 in Eq. (9). Its complexity is of

O(N 2) as L has only O(N ) nonzero entries.

4. Segmentation Propagation

The joint segmentation L X is so far defined for a given set
of joint points X , which is, practically, the set of quasi-
dense points. Ideally had we a dense reconstruction from
multiple views, the joint segmentation could have been
applied to the set of dense joint points. This only in-
creases the computational cost. As we have argued at the
beginning of the paper that the full dense reconstruction
is hardly achievable and this motivated the development
of our quasi-dense approach. Though the quasi-dense 3D
points are the best we can achieve in 3D in terms of com-
putability, but in image space, often the object image
boundaries are expected for many geometric reconstruc-
tion. This means that the dense image segmentation could
have been incorporated into the probabilistic framework.
This can be done by extending the definition of labeling
to all pixels. Let L = L X ∪ L I be the collective label-
ing for the joint points and all image pixels. Then the
segmentation is given by

L = arg max
L

P(L | X, V, I ).

The probability P(L | X, V, I ) is factored into two terms

P(L | X, V, I ) = P(L I | X, V, I, L X )P(L X | X, V, I ),

where the second term is the labeling model of joint points
L X , and the first term is image labeling L I given the la-
beling of the joint points L X or the propagation of L X

into image segmentations L I . This propagation model
can roughly be interpreted as a data augmentation prob-
lem (Tanner and Wong, 1987) in which L X is treated as
hidden variables. Usually an iterative algorithm could be
adopted to this optimization problem, however, from the
perspective of labeling and the fact that the visibility V of
X is given, it is unnecessary to come back to re-estimate
L X from an estimate of L I . This leads to the following
segmentation propagation.

Given the labeling of the joint points L X , the corre-
sponding (quasi-dense) pixels in each view have been
assigned the corresponding labels since the correspon-
dence information and the visibility are provided. The
probabilistic dependency relation of joint points and im-
age segmentation is represented as a Bayesian network
illustrated in Fig. 7(a). According to the conditional inde-
pendence and Bayesian network properties, the Bayesian
network can be exactly divided into n independent net-
works as shown in Fig. 7(b), where γv = {x} ⊂ X is
the set of the joint points on which the labels of image
Iv are dependent. This means that labeling other pixels
in each view is dependent on those fixed labels and the
image itself. It should be noted that the division holds
only if the labels of joint points are given. Formally,
P(L I | X, V, I, L X ) can be factorized into:

(L I1
, . . . , L In ) = arg max P(L I1

, . . . , L In | X, V, I, L X )

= arg max
n∏

v=1

P(L Iv | X, V, I, L X )

= arg max
n∏

v=1

P(L Iv | Lγv
, Iv). (10)

The independence of views implies that it amounts
to solving L I = arg max P(L I | Lγ , I ) if we drop the
subscript v for simplicity. Again by adopting CRF to
model the probabilistic segmentation model, we have

P(L I | Lγ , I ) ∝ exp −{Ec(L I ; Lγ ) + ρEl(L I ; I )

+ ζ Es(L I ; I )},

where Ec(L I ; Lγ ) is used to penalize the inconsistency
between the labels of joint points and its corresponding
image pixels, El(L I ; I ), called image compatibility term,
is used to penalize the incompatibility between the labels
and color information of pixels, and Es(L I ; I ), called
regularization term, is used to bias the smoothness of the
labels of neighboring pixels.

This leads to a formulation that is very close to the im-
age segmentation methods proposed in Boykov and Jolly
(2001), Li et al. (2004), Blake et al. (2004) and Rother
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(a)

LI2 LIV

I1 I2 IV

LI1

x1 x2 xNx3

(b)

LI2 LIV

I1 I2 IV

LI1

γ1 γVγ2

Figure 7. (a) The network shows the conditional relation of the joint segmentation probability model for all views. The a → b means that b is

conditionally dependent on a. (b) The network shows the independence factorization of the network in (a) according to the probability property.

et al. (2004). The difference is that the condition Lμ or
the energy Ec term is provided differently in different
methods. The existing methods put the user into the loop
to provide an iterative and interactive condition by mark-
ing up the image, while our method uses the condition
Lμ available from the given quasi-dense points and pre-
viously computed joint segmentation. We briefly specify
the three energy terms to complete the description of the
whole procedure.

Consistency constraint. Consistency term aims at keep-
ing the consistency between the labels of image pixels and
the associated joint points. It is given by Ec(L I ; Lγ ) =
−η

∑
i∈γ δ(lk = l̂i ), where k is the pixel index of the joint

point i , and l̂i is the label of the joint point. We impose a
strict consistency constraint by setting η = ∞. It should
be noted that the seeds Lγ are semi-dense as shown in
Fig. 8(a), which makes labeling of the remaining pixels
much more robust and effective.

Image compatibility. Image compatibility term is de-
fined as El(L I ; I ) = − ∑

k log p(ck | lk), where p(c | l)
is a GMM probabilistic model that describes the color

Figure 8. (a) The superimposition of the projections of segmented 3D

groups with one image. (b) The image segmentation of one group in

blue, representing one leaf, from the associated group of 3D points.

distribution of the pixels with the label l. It is used to
penalize the incompatibility between the label and color
information of each pixel.

Regularization. A regularization term is necessary
to make the labels of neighboring pixels as smooth
as possible. We take a Potts spatial energy model,
Es(L I ; I ) = − ∑

(m,n)∈C a(m, n)δ(lm = ln), where C =
{(m, n); | (xm, ym) − (xn, yn) |≤ d} with d being the
neighborhood size and typically set as 1, and the affin-

ity between pixels a(m, n) = 1
1+ε

(ε + exp(−||cm−cn ||2
2σ 2 )),

where ε is a dilution parameter for color contrast and is
set as 0.1 by default, and σ is the standard deviation and
estimated as σ =

√
E(| cm − cn |2). This model avoids

the natural tendency for segmentation boundaries to align
with colors of high image contrast.

Computation. The overall objective function for seg-
mentation propagation is given by

E = Ec(L I ; Lγ ) + ρEl(L I ; I ) + ζ Es(L I ; I )

= − η
∑
i∈γ

δ(lk = l̂i ) − ρ
∑

k

log p(ck | lk)

− ζ
∑

(m,n)∈C
δ(lm = ln)a(m, n). (11)

It is typically solved by graph cut (Boykov and Jolly,
2001). For the objects having apparent color similar-
ity, for example when we would segment out individual
leaves, the image compatibility term is not discriminative
and can be ignored. The energy then reduces to

E= − η
∑
i∈γ

δ(lk = l̂i )−ζ
∑

(m,n)∈C
δ(lm = ln)a(m, n).

This can still be optimized using graph cut. Different
from existing methods in Boykov and Jolly (2001), Li
et al. (2004), Rother et al. (2004), Kolmogorov et al.
(2005), Sun et al. (2006) and Criminisi et al. (2006), here
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only hard constraint, i.e. the consistency term, is involved.
It appears to be insufficient for pixel labeling, but the
number of the labeled pixels from the joint segmentation
is larger than those in Boykov and Jolly (2001), Li et al.
(2004), Rother et al. (2004) and Blake et al. (2004). The
propagation from Lγ to the whole image is efficient using
a graph cut algorithm as shown in Fig. 8(b).

5. Implementation and Results

Data acquisition. We typically capture about 35 im-
ages by moving around a foreground object as discussed
in Lhuillier and Quan (2005). We choose two typical in-
door scenes and three scenes of plants. The choice of
plant images is motivated by the fact that the plants are
omnipresent in many scenes and are reputed to be difficult
in segmentation and modeling, and that the segmentation
into individual leaves from pure images is not yet pos-
sible to the best of our knowledge even with intensive
learning. On the other hand, if we want to obtain a re-
alistic model of a plant as demonstrated in Quan et al.
(2006), it is inevitable that a proper segmentation should
be obtained. Obviously, the examples we choose have
relatively large sizes of leaves for the given resolution of
the cameras. For the dense foliage of the trees with small
leaves, it exhibits texture-like properties and a different
methodology should be developed.

The two indoor scenes are captured with 48 and 20
images of resolutions 972 × 1296 and 1024 × 768. The
plants are captured with 35, 35 and 40 for nephthytis,
poinsettia and schefflera. The image resolution is 1944×
2592 (except for the poinsettia, which is 1200 × 1600).
For the efficiency of structure from motion, we down-
sampled the images to 583 × 777 (for the poinsettia, to
600 × 800). It took approximately 10 mins for about
40 images on a 1.9GHz P4 PC with 1 GB of RAM. On
average, we reconstructed about 100 thousands 3D points
for the scene.

Outline of the algorithms. For each data set, the com-
putation of the joint segmentation for 3D points and 2D
images proceeds as follows:

1. Train the color distributions for foreground and back-
ground. We selected several views randomly. And for
each selected view the depths of the pixels that have
3D corresponding points are calculated, and normal-
ized to [0, 1]. Then two thresholds d f = 1

5
and db = 3

5

are chosen to set the pixel whose depth is smaller than
d f as foreground pixel, and larger than db as back-
ground.

2. Optimize Eq. (6) using graph cut to obtain foreground
and background separation. We set λ

ρ1
= 2.5 by de-

fault, the graph cut implementation in Boykov et al.
(2001) is used.

3. Compute the second smallest eigenvector for the nor-
malized Laplacian matrix L = D− 1

2 (D − W)D− 1
2 us-

ing sparse singular value decomposition (SVD) algo-
rithm.

4. Threshold the eigenvector to produce a bi-partitioning
of the 3D points. We chose 25 different values uni-
formly spaced within the range of the eigenvector
as possible thresholds. Then we chose the one cor-
responding to a partition which minimizes the nor-
malized cut value. The corresponding partition is
accepted.

5. Recursively repeat step 3 and 4 for each partition until
the normalized cut value is larger than 0.06.

6. Perform MPPCA to refine the 3D segments for the
foreground points.

7. Segment each image by optimizing Eq. (11) using
graph cut algorithm in Boykov et al. (2001) given
segmented 3D points. And we fix η = ∞, ρ = 1
and ζ = 2.5.

8. Fitting a specific geometric representation to each
group, more details are given in the following para-
graph.

Segmentation-based modeling. Each segmented group
should be further processed to build an appropriate geo-
metric representation as an object.

• If a group is representing a regular geometric object,
for instances, a plane, a polyhedron, or a cylinder, it is
straightforward to use some standard methods of fitting
these well-defined geometric models to the given data.

• If a group is representing a smooth surface like a hu-
man head or a compact object, we could use a level set
approach that integrates all joint points, image infor-
mation and the object boundaries to build an implicit
surface model (Lhuillier and Quan, 2005). Alterna-
tively, we used a graph-cut approach that builds a sur-
face model with more details but higher computational
cost (Zeng et al., to appear).

• If a group is representing the specific hair of a given per-
son, a combination of synthesis and analysis method
could be used to reconstruct each hair fiber as a curve
represented as a set of connected line segments by fol-
lowing the edge orientation in the images (Wei et al.,
2005).

• If a group is representing an individual leaf of a plant,
then we can build a generic leaf model for each plant,
and we have developed a method of fitting a generic
deformable model to the data in Quan et al. (2006).

We did not develop any specific fitting method in this
paper, we used the combination of the above mentioned
methods to build the final models illustrated in Figs. 2
and 13.
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Figure 9. (a) The 3D points. (b) The joint segmentation results. (c) One of the original images. (d) One of the image segmentations by propagation.

Figure 10. (a) The 3D points. (b) The segmented 3D groups by 3D segmentation. (c) One of the original images. (d) One of the image segmentations

by propagation.

Figure 11. Two intermediate 3D segmentation results of the nephthytis example to illustrate the successive splitting of larger groups into the smaller

ones.

Results. For the example scenario shown in Fig. 2, the
joint segmentation results are given in Fig. 9. The walls,
the small desk, and individual leaves have been success-
fully segmented, whereas the book and the eyeglasses
box are not due to lack of discriminant reconstructed 3D
points associated with them. These automatic results are
then edited using a semi-automatic system as described
in Quan et al. (2006) to create the final model of the scene
rendered by Maya in Fig. 13.

Another example of scene shown in Fig. 10 segments
out the different walls, the statue, and the leaves of one
plant. The second smaller plant is segmented out as a
whole not into leaves and flower pot, this is due to that
the same scale, therefore the same parameters, is used for
the whole scene, and it will be possible by changing the
setting of the parameters.

For the difficult segmentation of a plant into leaves,
when the leaves of the plant tend to be sufficiently large,
that is the case of the nephthytis as shown in the first row
of Fig. 12, the segmentation is relatively easier as the
spatial distance is larger between the points of different
leaves, and the image contour is strong as well. The seg-
mentation results are excellent, since all visible leaves
have been successfully partitioned. The intermediate re-
sults of the recursive strategy in step 3–4 of the above
procedure are shown in Fig. 11. When the leaves of
the plants become smaller such as in the cases of the
poinsettia and schefflera shown in Fig. 12, the occlu-
sion between leaves makes the segmentation more dif-
ficult, so the success rate is lower than the nephthytis
example. The statistics of the results are reported in
Table 1.
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Figure 12. The first row is the nephthytis plant, the second is the poinsettia plant, and the third is the schefflera plant. (a) One of the original images.

(b) Joint segmentation shown for 3D points, each group is coded with a different color. (c) Joint segmentation shown for the visible 2D points at one

view. (d) Propagated image segmentation.

Figure 13. One of the original images of the schefflera plant on the left. Rendered at a similar viewpoint of the reconstructed full model of the plant

on the right.
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Table 1. The statistics for the 3D segmentation results on the three

plants jointly using 3D and 2D information. The last row gives a rough

estimate of the true number of the leaves for each plant by inspection.

Nephthytis Poinsettia Schefflera

# images 35 35 40

# total 3D pts 128,000 103,000 118,000

# foreground pts 53,000 83,000 43,000

# segmented groups of 29 97 343

the foreground

ground truth of # leaves 30 ≈120 ≈450

The segmentation results are not yet as perfect as we
may expect, but fortunately many small objects such as
individual leaves for the various plants have been suc-
cessfully segmented out. The segmentation results have
been successfully explored in a semi-automatic model-
ing approach in Quan et al. (2006) to produce realistic 3D
models of the plants as shown in Fig. 13. Of course, the
joint segmentation approach is general, not restricted to
plants, and geometric fitting after the segmentation might
be different for different types of objects.

6. Conclusion

By discussing the two concepts developed in the group
led by Kanade, feature tracking for correspondences and
factorization for reconstruction, we suggested that the
quasi-dense approach overcomes the shortcomings of the
existing approaches. Given the availability of both 3D
point data and 2D image data, we proposed a joint seg-
mentation approach that is formulated within a proba-
bilistic framework. We proposed the approximate solu-
tion to the joint segmentation. The results obtained on
real data could be explored in an interactive modeling
approach as presented in Quan et al. (2006) for modeling
purposes. The future directions include the development
of more efficient computation methods of the proposed
joint segmentation formulation.
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