Nested data parallelism in Haskell

Simon Peyton Jones (Microsoft)
Manuel Chakravarty, Gabriele Keller, Roman Leshchinskiy
(University of New South Wales)
2008
Multicore

Road map

Parallel programming essential

Task parallelism
• Explicit threads
• Synchronise via locks, messages, or STM

Data parallelism
Operate simultaneously on bulk data

Massive parallelism
Easy to program
• Single flow of control
• Implicit synchronisation

Modest parallelism
Hard to program
Haskell has three forms of concurrency

- **Explicit threads**
 - Non-deterministic by design
 - Monadic: `forkIO` and `STM`

- **Semi-implicit**
 - Deterministic
 - Pure: `par` and `seq`

- **Data parallel**
 - Deterministic
 - Pure: parallel arrays
 - Shared memory initially; distributed memory eventually; possibly even GPUs

```haskell
main :: IO ()
    = do { ch <- newChan
              ; forkIO (ioManager ch)
              ; forkIO (worker 1 ch)
             ... etc ... }

f :: Int -> Int
f x = a `par` b `seq` a + b
    where
        a = f (x-1)
        b = f (x-2)
```
Data parallelism

The key to using multicores

Flat data parallel
- Apply sequential operation to bulk data
- The brand leader
- Limited applicability (dense matrix, map/reduce)
- Well developed
- Limited new opportunities

Nested data parallel
- Apply parallel operation to bulk data
- Developed in 90’s
- Much wider applicability (sparse matrix, graph algorithms, games etc)
- Practically un-developed
- Huge opportunity
Flat data parallel

- The brand leader: widely used, well understood, well supported

```
foreach i in 1..N {
    ...do something to A[i]...
}
```

- BUT: “something” is sequential
- Single point of concurrency
- Easy to implement: use “chunking”
- Good cost model

1,000,000’s of (small) work items

e.g. Fortran(s), *C
MPI, map/reduce
Nested data parallel

- Main idea: allow “something” to be parallel

```c
foreach i in 1..N {
    ...do something to A[i]...
}
```

- Now the parallelism structure is recursive, and un-balanced
- Still good cost model
- Hard to implement!

Still 1,000,000’s of (small) work items
Nested DP is great for programmers

- Fundamentally more modular
- Opens up a much wider range of applications:
 - Sparse arrays, variable grid adaptive methods (e.g. Barnes-Hut)
 - Divide and conquer algorithms (e.g. sort)
 - Graph algorithms (e.g. shortest path, spanning trees)
 - Physics engines for games, computational graphics (e.g. Delaunay triangulation)
 - Machine learning, optimisation, constraint solving
Nested DP is tough for *compilers*

- ...because the concurrency tree is both irregular and fine-grained
- But it can be done! NESL (Blelloch 1995) is an existence proof
- Key idea: “flattening” transformation:

 ![Diagram](nested-data-parallel-parallel-program)
Array comprehensions

[:Float:] is the type of parallel arrays of Float

vecMul :: [:Float:] -> [:Float:] -> Float
vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

sumP :: [:Float:] -> Float

An array comprehension: “the array of all f1*f2 where f1 is drawn from v1 and f2 from v2”

Operations over parallel array are computed in parallel; that is the only way the programmer says “do parallel stuff”

NB: no locks!
Sparse vector multiplication

A sparse vector is represented as a vector of (index,value) pairs

\[
\text{svMul} :: [:\text{(Int,Float)}:] \rightarrow [:\text{Float}:] \rightarrow \text{Float}
\]

\[
\text{svMul} \; \text{sv} \; \text{v} = \text{sumP} \; [: \; f*(v!i) \mid (i,f) \leftarrow \text{sv} :]
\]

Parallelism is proportional to length of sparse vector

v!i gets the i’th element of v
Sparse matrix multiplication

A sparse matrix is a vector of sparse vectors

\[
\text{smMul} :: [[:((Int,Float)):]:] \rightarrow [:\text{Float}:] \rightarrow \text{Float}
\]

\[
\text{smMul} \text{ sm v} = \text{sumP} \ [[:\text{svMul} \text{ sv v} | \text{sv} \leftarrow \text{sm :}]]
\]

Nested data parallelism here!
We are calling a parallel operation, \text{svMul}, on every element of a parallel array, \text{sm}
Hard to implement well

- Evenly chunking at top level might be **ill-balanced**
- Top level along might **not be very parallel**
The flattening transformation

- Concatenate sub-arrays into one big, flat array
- Operate in parallel on the big array
- Segment vector keeps track of where the sub-arrays are

- Lots of tricksy book-keeping!
- Possible to do by hand (and done in practice), but very hard to get right
- Blelloch showed it could be done systematically
Parallel search

Doc = [: String :] -- Sequence of words

DocBase = [: Document :]

search :: **DocBase** -> String -> [: (Doc,[:Int:]):]

Find all Docs that mention the string, along with the places where it is mentioned (e.g. word 45 and 99)
Parallel search

```haskell
type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc, [:Int:]):]

wordOccs :: Doc -> String -> [: Int :]
```

Find all the places where a string is mentioned in a document (e.g. word 45 and 99)
Parallel search

```
type Doc = [: String :

type DocBase = [: Document :

search :: DocBase -> String -> [: (Doc,[:Int:])]:
search ds s = [: (d,is) | d <- ds
 , let is = wordOccs d s
 , not (nullP is) :

wordOccs :: Doc -> String -> [: Int :]

nullP :: [:a:] -> Bool
```
Parallel search

```haskell
import Data.List (zipWith)

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc, [Int]):]

wordOccs :: Doc -> String -> [: Int :]

wordOccs d s = [: i | (i, s2) <- zipP positions d,
                s == s2 :]

  where
    positions :: [: Int :]
    positions = [: 1..lengthP d :]

zipP :: [:a:] -> [:b:] -> [:((a, b)):

lengthP :: [:a:] -> Int
```
Data-parallel quicksort

sort :: [:Float:] -> [:Float:]
sort a = if (length a <= 1) then a
 else sa!0 +++ eq +++ sa!1
where
 m = a!0
 lt = [: f | f<a, f<m :]
 eq = [: f | f<a, f==m :]
 gr = [: f | f<a, f>m :]
 sa = [: sort a | a <- [:lt,gr:] :]

2-way nested data parallelism here!

Parallel filters
How it works

Step 1

Step 2

Step 3

...etc...

- All sub-sorts at the same level are done in parallel
- Segment vectors track which chunk belongs to which sub problem
- Instant insanity when done by hand
Fusion

- Flattening is not enough

vecMul :: [:Float:] -> [:Float:] -> Float
vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

- Do not
 1. Generate [: f1*f2 | f1 <- v1 | f2 <- v2 :]
 (big intermediate vector)
 2. Add up the elements of this vector

- Instead: multiply and add in the same loop

- That is, **fuse** the multiply loop with the add loop

- Very general, aggressive fusion is required
Purity pays off

- Two key transformations:
 - Flattening
 - Fusion
- Both depend utterly on purely-functional semantics:
 - no assignments
 - every operation is a pure function

The data-parallel languages of the future will be functional languages
What we are doing about it

NESL
- a mega-breakthrough but:
 - specialised, prototype
 - first order
 - few data types
 - no fusion
 - interpreted

Substantial improvement in
- Expressiveness
- Performance

Haskell
- broad-spectrum, widely used
- higher order
- very rich data types
- aggressive fusion
- compiled

- Shared memory initially
- Distributed memory eventually
- GPUs anyone?

Not a special purpose data-parallel compiler! Most support is either useful for other things, or is in the form of library code.
Main contribution: an optimising data-parallel compiler implemented by modest enhancements to a full-scale functional language implementation

Four key pieces of technology
1. Flattening
 - specific to parallel arrays
2. Non-parametric data representations
 - A generically useful new feature in GHC
3. Chunking
 - Divide up the work evenly between processors
4. Aggressive fusion
 - Uses “rewrite rules”, an old feature of GHC

Not a special purpose data-parallel compiler! Most support is either useful for other things, or is in the form of library code.
Step 0: desugaring

```haskell
svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: f*(v!i) | (i,f) <- sv :]
```

```
sumP :: Num a => [:a:] -> a
mapP :: (a -> b) -> [:a:] -> [:b:]
```

```haskell
svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP (mapP \(i,f) -> f * (v!i)) sv)
```
Step 1: Vectorisation

```
svMul :: [(Int,Float)] -> [Float] -> Float
svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)
```

```
sumP :: Num a => [a] -> a
*
:: Num a => [a] -> [a] -> [a]
fst^ :: [(a,b)] -> [a]
bpermuteP :: [a] -> [Int] -> [a]
```

Scalar operation * replaced by vector operation **
Vectorisation: the basic idea

- For every function \(f \), generate its lifted version, namely \(f^\wedge \)
- Result: a functional program, operating over flat arrays, with a fixed set of primitive operations \(^\wedge\), \(\text{sumP} \), \(\text{fst}^\wedge \), etc.
- Lots of intermediate arrays!
Vectorisation: the basic idea

\[
f :: \text{Int} \rightarrow \text{Int} \\
f \ x = x + 1 \\
\]

\[
f^\wedge :: [:\text{Int}:] \rightarrow [:\text{Int}:] \\
f^\wedge \ x = x +^\wedge (\text{replicateP} \ (\text{lengthP} \ x) \ 1) \\
\]

<table>
<thead>
<tr>
<th>This</th>
<th>Transforms to this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locals, (x)</td>
<td>(x)</td>
</tr>
<tr>
<td>Globals, (g)</td>
<td>(g^\wedge)</td>
</tr>
<tr>
<td>Constants, (k)</td>
<td>(\text{replicateP} \ (\text{lengthP} \ x) \ k)</td>
</tr>
</tbody>
</table>

\[
\text{replicateP} :: \text{Int} \rightarrow a \rightarrow [:a:] \\
\text{lengthP} :: [:a:] \rightarrow \text{Int} \\
\]
Vectorisation: the key insight

\[f :: [:Int:] \rightarrow [:Int:] \]
\[f \ a = \text{mapP} \ g \ a = g^\ a \]

\[f^\ :: [:[:Int:]:] \rightarrow [:[:Int:]:] \]
\[f^\ a = g^{^\ a} \ --??\]

Yet another version of \(g \)???
Vectorisation: the key insight

\[f :: [:\text{Int}:] \to [:\text{Int}:] \]

\[f\ a = \text{mapP} \ g\ a = g^{\wedge} a \]

\[f^{\wedge} :: [:[:\text{Int}:]:] \to [:[:\text{Int}:]:] \]

\[f^{\wedge}\ a = \text{segmentP}\ a\ (g^{\wedge}\ (\text{concatP}\ a)) \]

\[\text{concatP} :: [:[:a:]:] \to [:a:] \]

\[\text{segmentP} :: [:[:a:]:] \to [:b:] \to [:[:b]::] \]

Payoff: \(f \) and \(f^{\wedge} \) are enough. No \(f^{\wedge\wedge} \)

First concatenate, then map, then re-split
Step 2: Representing arrays

[::Double::] Arrays of pointers to boxed numbers are Much Too Slow

[::(a,b)::] Arrays of pointers to pairs are Much Too Slow

Idea! Representation of an array depends on the element type
Step 2: Representing arrays
[POPL05], [ICFP05], [TLDI07]

```
data family [:a:]

data instance [:Double:] = AD ByteArray
data instance [::(a,b):] = AP [:a:] [:b:]
```

- Now \(\ast^\) is a fast loop
- And \(\text{fst}^\) is constant time!

\[
\text{fst}^\colon [::(a,b):] \rightarrow [:a:]
\text{fst}^\ (\text{AP as bs}) = \text{as}
\]
Step 2: Nested arrays

Shape

Flat data

data instance [:[:a:]:] = AN [:Int:] [:a:]

concatP :: [:[:a:]:] -> [:a:]
concatP (AN shape data) = data

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
segmentP (AN shape _) data = AN shape data

Surprise: concatP, segmentP are constant time!
Higher order complications

\[f :: T1 \to T2 \to T3 \]

\[f1^ :: [:T1:] \to [:T2:] \to [:T3:] -- f1^ = \text{zipWithP } f \]
\[f2^ :: [:T1:] \to [:(T2 \to T3):] -- f2^ = \text{mapP } f \]

- \(f1^ \) is good for \([: f a b | a \leftarrow \text{as} | b \leftarrow \text{bs} : \]\
- But the type transformation is not uniform
- And sooner or later we want higher-order functions anyway
- \(f2^ \) forces us to find a representation for \([:(T2\rightarrow T3):]\). Closure conversion [PAPPO06]
Step 3: chunking

- **Program consists of**
 - Flat arrays
 - Primitive operations over them (*^, sumP etc)

- **Can directly execute this (NESL).**
 - Hand-code assembler for primitive ops
 - All the time is spent here anyway

- **But:**
 - Intermediate arrays, and hence memory traffic
 - Each intermediate array is a synchronisation point

- **Idea:** chunking and fusion

```haskell
svMul :: [: (Int, Float) :] -> [: Float :] -> Float
svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)
```
Step 3: Chunking

1. **Chunking**: Divide is, fs into chunks, one chunk per processor

2. **Fusion**: Execute sumP (fs ^ bpermuteP v is) in a tight, sequential loop on each processor

3. **Combining**: Add up the results of each chunk

svMul :: [(Int, Float)] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)

Step 2 alone is not good for a parallel machine!
Expressing chunking

- **sumS** is a tight sequential loop
- **mapD** is the true source of parallelism:
 - it starts a “gang”,
 - runs it,
 - waits for all gang members to finish

```haskell
sumP :: [:Float:] -> Float
sumP xs = sumD (mapD sumS (splitD xs))
```

```haskell
splitD :: [:a:] -> Dist [:a:]
mapD :: (a->b) -> Dist a -> Dist b
sumD :: Dist Float -> Float
sumS :: [:Float:] -> Float -- Sequential!
```
Expressing chunking

\[
\ast^\wedge :: \text{[:Float:] -> [:Float:] -> [:Float:]}
\]
\[
\ast^\wedge \text{ xs ys} = \text{joinD (mapD mulS (zipD (splitD xs) (splitD ys)))}
\]

- splitD :: [\text{[:a:]} -> \text{Dist [[:a:]}}
- joinD :: \text{Dist [[:a:] -> [[:a:]]}
- mapD :: (\text{a->b}) -> \text{Dist a} \rightarrow \text{Dist b}
- zipD :: \text{Dist a} \rightarrow \text{Dist b} \rightarrow \text{Dist (a,b)}
- mulS :: (\text{[:Float:]},\text{[: Float :]} -> \text{[:Float:]}}

- Again, mulS is a tight, sequential loop
Step 4: Fusion

```
svMul :: [:((Int,Float):):] -> [:Float:] -> Float
svMul (AP is fs) v = sumP (fs *> bpermuteP v is)
    = sumD . mapD sumS . splitD . joinD . mapD mulS $
      zipD (splitD fs) (splitD (bpermuteP v is))
```

- Aha! Now use rewrite rules:

```
{-# RULE 
    splitD (joinD x) = x
    mapD f (mapD g x) = mapD (f . g) x #-}
```

```
svMul :: [:((Int,Float):):] -> [:Float:] -> Float
svMul (AP is fs) v = sumP (fs *> bpermuteP v is)
    = sumD . mapD (sumS . mulS) $
      zipD (splitD fs) (splitD (bpermuteP v is))
```
Step 4: Sequential fusion

Now we have a sequential fusion problem.

Problem:
- lots and lots of functions over arrays
- we can’t have fusion rules for every pair

New idea: stream fusion

```
svMul :: [(Int,Float):] -> [:Float:] -> Float
svMul (AP is fs) v = sumP (fs ^* bpermuteP v is)
    = sumD . mapD (sumS . mulS) $
        zipD (splitD fs) (splitD (bpermuteP v is))
```
Four key pieces of technology

1. **Flattening**
 - specific to parallel arrays

2. **Non-parametric data representations**
 - A generically useful new feature in GHC

3. **Chunking**
 - Divide up the work evenly between processors

4. **Aggressive fusion**
 - Uses “rewrite rules”, an old feature of GHC

Not a special purpose data-parallel compiler! Most support is either useful for other things, or is in the form of library code.

Main contribution: an optimising data-parallel compiler implemented by modest enhancements to a full-scale functional language implementation
And it goes fast too...

1-processor version goes only 30% slower than C

Perf win with 2 processors

Pinch of salt

Figure 2. Speedup of svmm (x-axis is number of PEs)
Summary

- **Data parallelism** is the only way to harness 100’s of cores
- **Nested DP** is great for programmers: far, far more flexible than flat DP
- Nested DP is tough to implement, but we (think we) know how to do it
- **Huge opportunity**: almost no one else is doing this stuff!
- Functional programming is a massive win in this space: Haskell prototype in 2008
- **WANTED**: friendly guinea pigs

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
Extra slides
Stream fusion for lists

Problem:
- lots and lots of functions over lists
- and they are recursive functions

New idea: make map, filter etc non-recursive, by defining them to work over streams

```
map f (filter p (map g xs))
```
data Stream a where
S :: (s -> Step s a) -> s -> Stream a

data Step s a = Done | Yield a (Stream s a)

toStream :: [a] -> Stream a

toStream as = S step as
where
 step [] = Done
 step (a:as) = Yield a as

fromStream :: Stream a -> [a]

fromStream (S step s) = loop s
where
 loop s = case step s of
 Yield a s’ -> a : loop s’
 Done -> []

Non-recursive!

Recursive
Stream fusion for lists

mapStream :: (a -> b) -> Stream a -> Stream b
mapStream f (S step s) = S step’ s
 where
 step’ s = case step s of
 Done -> Done
 Yield a s’ -> Yield (f a) s’

map :: (a -> b) -> [a] -> [b]
map f xs = fromStream (mapStream f (toStream xs))

Non-recursive!
Stream fusion for lists

map f (map g xs)

= fromStream (mapStream f (toStream
 (fromStream (mapStream g (toStream xs)))))

= -- Apply (toStream (fromStream xs) = xs)
 fromStream (mapStream f (mapStream g (toStream xs)))

= -- Inline mapStream, toStream
 fromStream (Stream step xs)
 where
 step [] = Done
 step (x:xs) = Yield (f (g x)) xs
Stream fusion for lists

```haskell
fromStream (Stream step xs)
  where
    step [] = Done
    step (x:xs) = Yield (f (g x)) xs

= -- Inline fromStream

loop xs
  where
    loop [] = []
    loop (x:xs) = f (g x) : loop xs
```

- Key idea: mapStream, filterStream etc are all non-recursive, and can be inlined
- Works for arrays; change only fromStream, toStream