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While clustering is usually an unsupervised operation, there are circum-
stances in which we believe (with varying degrees of certainty) that items
A and B should be assigned to the same cluster, while items A and C
should not. We would like such pairwise relations to influence cluster
assignments of out-of-sample data in a manner consistent with the prior
knowledge expressed in the training set. Our starting point is proba-
bilistic clustering based on gaussian mixture models (GMM) of the data
distribution. We express clustering preferences in a prior distribution
over assignments of data points to clusters. This prior penalizes cluster
assignments according to the degree with which they violate the prefer-
ences. The model parameters are fit with the expectation-maximization
(EM) algorithm. Our model provides a flexible framework that encom-
passes several other semisupervised clustering models as its special cases.
Experiments on artificial and real-world problems show that our model
can consistently improve clustering results when pairwise relations are
incorporated. The experiments also demonstrate the superiority of our
model to other semisupervised clustering methods on handling noisy
pairwise relations.

1 Introduction

While clustering is usually executed completely unsupervised, there are
circumstances in which we have prior belief (with varying degrees of cer-
tainty) that pairs of samples should (or should not) be assigned to the same
cluster. These pairwise relations are less informative than direct labeling of
the samples, but are often considerably easier to obtain. Indeed, there are
many occasions when the pairwise relations can be directly derived from
expert knowledge or common sense.

Our interest in such problems was kindled when we tried to manually
segment a satellite image by grouping small image clips from the image.
It is often hard to assign the image clips to different “groups” since we do
not know clearly the characteristic of each group or even how many classes
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we should have. In contrast, it is much easier to compare two image clips
and decide how much they look alike and thus how likely they should be
in one cluster. Another interesting example is word sense disambiguation.
Ambiguous words like plant tend to exhibit only one meaning in one dis-
course (Yarowsky, 1995). In other words, two plant’s in the same discourse
probably should be assigned to the same class of sense. This fact is very use-
ful in training unsupervised word sense disambiguation models. The third
example is in information retrieval. Cohn, Caruana, and McCallum (2003)
suggested that in creating a document taxonomy, the expert critique is often
in the form “these two documents shouldn’t be in the same cluster.” The last
example is continuity, which suggests that neighboring pairs of samples in
a time series or in an image are likely to belong to the same class of object,
is also a source of clustering preferences (Theiler & Gisler, 1997; Ambroise,
Dang, & Govaert, 1997). We would like these preferences to be incorporated
into the cluster structure so that the assignment of out-of-sample data to
clusters captures the concepts that give rise to the preferences expressed in
the training data.

Some work has been done on adopting traditional clustering meth-
ods, such as K-means, to incorporate pairwise relations (Wagstaff, Cardie,
Rogers, & Schroedl, 2001; Basu, Bannerjee, & Mooney, 2002; Klein,
Kamvar, & Manning, 2002). These models are based on hard clustering,
and the clustering preferences are expressed as hard pairwise constraints
that must be satisfied. Wagstaff (2002) and Basu et al. (2004) extended their
models to deal with soft pairwise constraints, where each constraint is as-
signed a weight. The performance of those constrained K-means algorithms
is often not satisfactory, largely due to the incapability of K-means to model
nonspherical data distribution in each class.

Shental, Bar-Hillel, Hertz, and Weinshall (2003) proposed a gaussian
mixture model (GMM) for clustering that incorporates hard pairwise con-
straints. However, the model cannot be naturally generalized to soft con-
straints, which are appropriate when our knowledge is only clustering
preferences or carries significant uncertainty. Motivated in part to remedy
this deficiency, Law, Topchy, and Jain (2004, 2005) proposed another GMM-
based model to incorporate soft constraints. In their model, virtual groups
are created for samples that are supposed to be in one class. The uncertainty
information in pairwise relations is therefore expressed as the soft member-
ship of samples to the virtual group. This modeling strategy is cumbersome
to model samples shared by different virtual groups. Moreover, it cannot
handle the prior knowledge that two samples are in different clusters. Other
efforts to make use of the pairwise relations include changing the metric in
feature space in favor of the specified relations (Cohn et al., 2003; Xing, Ng,
Jordan, & Russe, 2003) or combining the metric learning with constrained
clustering (Bilenko, Basu, & Mooney, 2004).

This letter is a detailed exposition and extension of our previously re-
ported work (Lu & Leen, 2005). We propose a soft clustering algorithm based



1530 Z. Lu and T. Leen

on GMM that expresses clustering preferences (in the form of pairwise rela-
tions) in the prior probability on assignments of data points to clusters. Our
algorithm naturally accommodates both hard constraints and soft prefer-
ences. In our framework, the preferences are expressed as a Bayesian prior
probability that pairs of points should (or should not) be assigned to the
same cluster. After training with the expectation-maximization (EM) algo-
rithm, the information expressed as a prior on the cluster assignment of the
training data is successfully encoded in the means, covariances, and cluster
priors in the GMM. Hence, the model generalizes in a way consistent with
the prior knowledge. We call the algorithm penalized probabilistic clustering
(PPC). Experiments on artificial and real-world data sets demonstrate that
PPC can consistently improve the clustering result by incorporating reliable
prior knowledge.

The letter is organized as follows. In section 2, we introduce the model
and give an artificial example for illustration. In section 3, we discuss the
computational complexity and propose two approximation methods for
cases where the computation is intractable. Section 4 gives a detailed anal-
ysis of the connection of PPC to several other semisupervised clustering
models. In section 5, we present the experiments of PPC on a variety of
problems, as well as the comparison of PPC to several other semisuper-
vised clustering methods. Section 6 summarizes the letter and points out
future research.

2 Model

Penalized probabilistic clustering (PPC) begins with a standard M-
component GMM,

P(x|�) =
M∑

k=1

πk P(x| θk),

with the parameter vector � = (π1, . . . , πM, θ1, . . . , θM). Here, πk and θk

are the prior probability and parameters of the kth gaussian component,
respectively. We augment the data set X = {xi }, i = 1, . . . , N with latent
cluster assignments Z = z(xi ), i = 1, . . . , N to form the familiar complete
data (X, Z). The complete data likelihood is

P(X, Z|�) = P(X|Z,�)P(Z|�), (2.1)

where P(X|Z,�) is the probability of X conditioned on Z:

P(X|Z,�) =
N∏

i=1

P(xi |θzi ). (2.2)



Penalized Probabilistic Clustering 1531

2.1 Prior Distribution on Cluster Assignments. We incorporate our
clustering preferences by manipulating the prior probability P(Z|�). In the
standard gaussian mixture model, the prior distribution on cluster assign-
ments Z is trivial:

P(Z|�) =
N∏

i=1

πzi . (2.3)

We incorporate our clustering preferences through a weighting function
g(Z) that has large values when the assignment of data points to clusters
Z conforms to our preferences, and low values when Z conflicts with our
preferences. Hence, we write

P(Z|�, G) ≡ (
∏

i πzi )g(Z)∑
Z(

∏
j πz j )g(Z)

= 1
�

(∏
i

πzi

)
g(Z), (2.4)

where � = ∑
Z(

∏
j πz j )g(Z) is the normalization constant. The likelihood of

the data, given a specific cluster assignment Z, is independent of the cluster
assignment preferences, so the complete data likelihood is

P(X, Z|�, G) = P(X|Z,�)P(Z|�, G). (2.5)

From equations 2.1 through 2.5, the complete data likelihood is

P(X, Z|�, G) = P(X|Z,�)
1
�

∏
i

πzi g(Z) = 1
�

P(X, Z|�)g(Z), (2.6)

where P(X, Z|�) is the complete data likelihood for a standard GMM.
To distinguish the penalized likelihood from the standard likelihood,

we introduce the notation Ps(·) to denote the standard likelihood and
Pp(·) for penalized likelihood. The data likelihood is the sum of com-
plete data likelihood over all possible Z, that is, L(X|�) = Pp(X|�, G) =∑

Z Pp(X, Z|�, G), which can be maximized with the EM algorithm. Once
the model parameters are fit, we do soft clustering according to the pos-
terior probabilities for new data Ps(k|x,�). (Note that cluster assignment
preferences are not expressed for the new data, only for the training data.)

2.2 Pairwise Relations. Pairwise relations provide a special case of the
framework discussed above. We specify two types of pairwise relations:

� Link: two samples should be assigned to the same cluster.
� Do-not-link: Two samples should be assigned to different clusters.
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The weighting factor given to the cluster assignment configuration Z is

g(Z) =
∏
i �= j

exp
(
Wp

i j δ(zi , z j )
)
, (2.7)

where δ is the Kronecker delta function and Wp
i j is the weight associated

with sample pair (xi , xj ). This weight satisfies

Wp
i j ∈ (−∞,∞), Wp

i j = Wp
ji .

The weight Wp
i j reflects our preference for assigning xi and xj into one

cluster.
We use positive Wp

i j when we prefer to assign xi and xj into one cluster
(link) and negative Wp

i j when we prefer to assign them into different clusters
(do-not-link). The absolute value |Wp

i j | reflects the strength of the preference.
The prior probability with the pairwise relations is

P(Z|�, G) = 1
�

∏
i

πzi

∏
i �= j

exp
(
Wp

i j δ(zi , z j )
)
. (2.8)

It appears that the g(Z) in equation 2.7 changes asymmetrically with the
violation of link and do-not-link: when a link is conformed, g(Z) increases;
when a do-not-link is violated, g(Z) decreases. Nevertheless, the prior prob-
ability given by equation 2.8 decreases under both types of violations.

The PPC model is clearly connected to the standard GMM and the con-
strained clustering model proposed by Shental et al. (2003). We shall show
that both models can be viewed as special cases of PPC with particular Wp .
The connection between PPC and other semisupervised clustering models
is less straightforward and will be discussed in section 4. If Wp

i j = 0, we
have no prior knowledge on the assignment relevancy of xi and xj . When
Wp

i j = 0 for all pairs (i, j), we have g(Z) = 1; hence, the complete likelihood
reduces to the standard one:

Pp(X, Z|�, G) = 1
�

Ps(X, Z|�)g(Z) = Ps(X, Z|�). (2.9)

In the other extreme with |Wp
i j | → ∞, assignments Z that violate the pair-

wise relations between xi and xj have zero prior probability, since for those
assignments,

Pp(Z|�, G) =
∏

k πzk

∏
i �= j exp(Wp

i j δ(zi , z j ))∑
Z

∏
l πzl

∏
m �=n exp(Wp

mn δ(zm, zn))
→ 0.
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Then the relations become hard constraints, while the relations with |Wp
i j | <

∞ are called soft preferences. When all the specified pairwise relations are
hard constraints, the data likelihood becomes

Pp(X, Z|�, G) = 1
�

∏
i j∈L

δ(zi , z j )
∏

i j∈N
(1 − δ(zi , z j ))

N∏
i=1

πzi Ps(xi | θzi ),

(2.10)

where L is the set of linked sample pairs and N is the set of do-not-link
sample pairs. It is straightforward to verify that equation 2.10 is essentially
the same as the complete data likelihood given by Shental et al. (2003).
Therefore, the model proposed by Shental et al. (2003) is equivalent to PPC
with hard constraints. In appendix A, we give a detailed derivation of equa-
tion 2.10 and the equivalence of two models. When only hard constraints
are available, we simply implement PPC based on equation 2.10. In the re-
mainder of this letter, we use Wp to denote the prior knowledge on pairwise
relations, that is,

Pp(X, Z|�, G) ≡ Pp(X, Z|�, Wp) = 1
�

Ps(X, Z|�)
∏
i �= j

exp
(
Wp

i j δ(zi , z j )
)

(2.11)

2.3 Model Fitting. We use the EM algorithm (Dempster, Laird, & Rubin,
1977) to fit the model parameters �:

�∗ = arg max
�

L(X|�, Wp).

The expectation step (E-step) and maximization step (M-step) are

E-step: Q(�,�(t−1)) = EZ|X(log Pp(X, Z|�, Wp)|X,�(t−1), Wp)

M-step:�(t) = arg max
�

Q(�,�(t−1)).

In the M-step, the optimal mean and covariance matrix of each component
is

µk =
∑N

j=1 xj Pp(k|xj ,�
(t−1), Wp)∑N

j=1 Pp(k|xj ,�(t−1), Wp)

�k =
∑N

j=1 Pp(k|xj ,�
(t−1), Wp)(xj − µk)(xj − µk)T∑N

j=1 Pp(k|xj ,�(t−1), Wp)
.
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The update of the prior probability of each component is more difficult
due to the normalizing constant � in the data likelihood,

� =
∑

Z




N∏
k=1

πzk

∏
i �= j

exp
(
Wp

i j δ(zi , z j )
) . (2.12)

We need to find

π ≡ {π1, . . . , πm} = arg max
π

M∑
l=1

N∑
i=1

log πl Pp(l|xi ,�
(t−1), Wp) − log �(π),

(2.13)

which, unfortunately, does not have a closed-form solution in general.1 In
this letter, we use a rather crude approximation of the optimal π instead.
First, we estimate the values of log �(π ) on a grid H = {π̂n} on the simplex
defined by

M∑
k=1

πk = 1, πk ≥ 0.

Then in each M-step, we calculate the value of
∑M

l=1
∑N

i=1
log π̂n

l Pp(l|xi ,�
(t−1), Wp) for each node π̂n ∈ H and find the node π̂∗ that

maximizes the function defined in equation 2.13:

π̂∗ = arg max
π̂n∈H

M∑
l=1

N∑
i=1

log π̂n
l Pp(l|xi ,�

(t−1), Wp) − log �(π̂n). (2.14)

We use π̂∗ as the approximative solution of equation 2.13. In this letter, the
resolution of the grid is set to be 0.01. Although it works very well for all
experiments in this letter, we notice that the search over grid will be fairly
slow for M > 5. Shental, Bar-Hillel, Hertz, and Weinshall (2004) proposed to
find optimal π using gradient descent and approximate �(π) by pretending
all specified relations are nonoverlapping (see section 3.1). Although this
method is originally designed for hard constraints, it can be easily adapted
for PPC. This will not be covered in this letter.

1 Shental et al. (2003) pointed out that with a different sampling assumption, a
closed-form solution for equation 2.13 exists when only hard links are available. See
section 4.
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(a) (b)

(c) (d)

Figure 1: The influence of constraint weight on model fitting. (a) Artificial data
set. (b) Links (solid lines) and do-not-links (dashed line). (c, d) The probability
density contour of two possible fitted models.

It is critically important to note that with a nontrivial Wp , the assignment
independence is broken,

Pp(zi , z j |xi , xj ,�, Wp �= Pp(zi |xi ,�, Wp)Pp(z j |xj ,�, Wp),

which means that the posterior estimation of each sample cannot be done
separately. This fact brings an extra computational problem and will be
discussed in section 3.

2.4 Selecting the Constraint Weights.

2.4.1 Example: How the Weight Wi j Affects Clustering. The weight matrix
Wp is crucial to the performance of the PPC. Here we give an example
demonstrating how the weight of pairwise relations affects the clustering
process. Figure 1a shows the two-dimensional data from two classes, as in-
dicated by the symbols. Besides the data set, we also have 20 pairs correctly
labeled as links and do-not-links, as shown in Figure 1b. We try to fit the
data set with a two-component GMM. Figures 1c and 1d give the density
contour of the two possible models on the data. Without any pairwise re-
lations specified, we have essentially an equal chance to get each. After
incorporating pairwise relations, the EM optimization process is biased to
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Figure 2: The contour of probability density fit on data with different weight
given to pairwise relations. Top row: w = 0; middle row: w = 1.3; bottom row:
w = 3.

the correct one. The weights of pairwise relations are given as follows,

Wp
i j =




w if (xi , xj ) is linked
−w if (xi , xj ) is do-not-linked
0 otherwise,

where w ≥ 0 measures the certainty of all specified pairwise relations. In
Figure 2, we give three runs with the same initial model parameters but
different weight given to the specified pairwise relations.

For each run, we give snapshots of the model after 1, 3, 5, and 20 EM
iterations. The first row is the run with w = 0 (standard GMM). The search
ends up with a model that violates our prior knowledge of class member-
ship. The middle row is the run with w set to 1.3. With the same poor initial
condition, the model fitting process still goes to the wrong one again, al-
though at a slower pace. In the bottom row, we increase w to 3. This time,
the model converges to the one we intend.

2.4.2 Choosing Weight Wp Based on Prior Knowledge. There are some oc-
casions we can translate our prior belief on the relations into the weight
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Wp . Here we assume that the pairwise relations are labeled by an oracle
but contaminated by flipping noise before they are delivered to us. For each
labeled pair (xi , xj ), there is thus a certainty value 0.5 ≤ γi j ≤ 1 equal to the
probability that pairwise relation is not flipped, that is, that label is correct.2

Our prior knowledge would include those specified pairwise relations and
their certainty values � = {γi j }.

This prior knowledge can be approximately encoded into the weight Wp

by letting

Wp
i j =




1
2 log( γi j

1−γi j
) (xi , xj ) is specified as linked

− 1
2 log( γi j

1−γi j
) (xi , xj ) is specified as do-not-linked

0 otherwise.

(2.15)

The details of the derivation are in appendix B. It is obvious from equation
2.15 that for a specified pairwise relation (xi , xj ), the greater the certainty
value γi j , the greater the absolute value of weight Wp

i j .
Note that the weight designed this way is not necessarily optimal in terms

of classification accuracy, as will be demonstrated by experiment in section
5.1. The reason is twofold. First, equation 2.15 is derived based on a (possibly
crude) approximation. Second, gaussian mixture models as classifiers are
often considerably biased from true class distribution of data. As a result,
even if the PPC prior P(Z|�, Wp) faithfully reflects the truth, it does not
necessarily lead to the best classification accuracy. Nevertheless, equation
2.15 gives good initial guidance for choosing the weight. Our experiments in
section 5.1 show that this design often yields superior classification accuracy
to simply using the hard constraints or ignoring the pairwise relations
(standard GMM).

One use for this scheme of weight is when pairwise relations are labeled
by domain experts and the certainty values are given at the same time. We
might also estimate the flipping noise parameters from historical data or
available statistics. For example, we can derive soft pairwise relations based
on spatial or temporal continuity among samples. That is, we add soft links
to all adjacent pairs of samples, assuming the flipping noise explaining all
the adjacent pairs that are actually not in one class. We further assume that
the flipping noise of each pair follows the same distribution. Accordingly,
we assign uniform weight w > 0 to all adjacent pairs. Let q denote the
probability that the label on a adjacent pair is flipped. We might be able
to estimate q from labeled instances of a similar problem, for example,
segmented images or time series. The maximum likelihood (ML) estimation

2 We consider only the certainty value > 0.5, because a pairwise relation with certainty
γi j < 0.5 can be equivalently treated as its opposite relation with certainty 1 − γi j .
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of q is given by simple statistics:

q̃ = Number of adjacent pairs that are not in the same class
Number of all adjacent pairs

.

We give an application of this idea in section 5.2.

3 Computing the Cluster Posterior

The M-step requires the cluster membership posterior. Computing this
posterior is simple for the standard GMM since each data point xi

can be assigned to a cluster independent of the other data points
and we have the familiar cluster origin posterior Ps(zi = k|xi ,�). The
pairwise constraints bring extra relevancy in assignment among sam-
ples involved. From equation 2.11, if Wp

i j �= 0, Pp(zi , z j |xi , xj ,�, Wp) �=
Pp(zi |xi ,�, Wp)Pp(z j |xj ,�, Wp). Consequently, the posterior probability of
xi and xj cannot be estimated separately. This relevancy in the assignment
can be formalized as follows:

Definition. If Wp
i j �= 0, we say there is direct assignment relevancy

between xi and xj , denoted by xi Rd xj . If Pp(zi , z j |xi , xj ,�, Wp) �=
Pp(zi |xi ,�, Wp)Pp(z j |xj ,�, Wp), we say there is assignment relevancy between
xi and xj , denoted by xi Ra xj .

It is clear that Ra is reflexive, symmetric, and transitive. Hence, Ra is
an equivalence relation. It can be shown that Ra is the transitive closure of
Rd . In other words, two samples have assignment relevancy relation Ra if
they can be connected by a path consisting of Ra relations, as illustrated in
Figure 3. We call each equivalence class associated with Ra a clique. It is clear
that cliques are the smallest sets of samples whose posterior probabilities
can be calculated independently. When calculating posterior probabilities,
all samples within a clique need to be considered together. In a clique T
with size |T |, the posterior probability of a given sample xi ∈ T is calculated
by marginalizing the posterior over the entire clique,

Pp(zi = k|X,�, Wp) =
∑

ZT |zi =k

Pp(ZT |XT ,�, Wp),

with the posterior on the clique given by

Pp(ZT |XT ,�, Wp) = Pp(ZT , XT |�, Wp)
Pp(XT |�, Wp)

= Pp(ZT , XT |�, Wp)∑
Z′

T
Pp(Z′

T , XT |�, Wp)
.
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(a) (c)(b)

Figure 3: (a) Links (solid line) and do-not-links (dotted line) among six sam-
ples. (b) Direct assignment relevancy Rd (solid line) translated from links in a.
(c) Equivalence classes defined by assignment relevancy Ra , denoted by
shading.

(a) (c)(b)

Figure 4: (a) Overlapping pairwise relations, with links (solid line) and do-
not-links (dotted line). (b) Nonoverlapping pairwise relations. (c) Only hard
links.

Exact calculation of the posterior probability of a sample in clique T
requires time complexity O(M|T |), where M is the number of components
in the mixture model. This calculation can get prohibitively expensive if |T |
is large (e.g., 50) for any model size M ≥ 2. Hence, small-size cliques are
required to make the marginalization computationally reasonable.

3.1 Two Special Cases with Easy Inference. Apparently the inference
is easy when we limit ourselves to small cliques. Specifically, when |T | ≤ 2,
the pairwise relations are nonoverlapping, as illustrated in Figures 4a and
4b. With nonoverlapping constraints, the posterior probability for the whole
data set can be given in closed form with O(N) time complexity. Moreover,
the evaluation of the normalization factor �(π ) is simple:

�(π) =
(

1 −
M∑

k=1

π2
k

)NL (
M∑

k=1

π2
k

)NN

,

where NL and NN are, respectively, the number of links and do-not-links.
The optimization of π in the M-step can thus be achieved with little cost.
Sometimes nonoverlapping relations are a natural choice: they can be gen-
erated by picking up sample pairs from sample sets and labeling the re-
lations without replacement. More generally, we can avoid the expensive
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computation in posterior inference by breaking large cliques into small
ones. To do this, we need to deliberately ignore some links or do-not-links.
In section 5.2, experiment 3 is an application of this idea.

The second simplifying situation is that we have only hard links (Wp
i j =

+∞ or 0), as illustrated in Figure 4c. In this case, the posterior probability
for each sample must be exactly the same as the others in the same clique,
so a clique can be treated as a single sample. That is, assume xi is in clique
T . We then have

Pp(zi = k|xi ,�, Wp) = Pp(ZT = k|xT ,�, Wp)

= Pp(xT , ZT = k|�, Wp)∑′
k Pp(xT , ZT = k ′|�, Wp)

= Ps(xT , ZT = k|�)∑′
k Ps(xT , ZT = k ′|�)

=
∏

j∈T πk Ps(xj |θk)∑
k ′ (

∏
j∈T πk ′ Ps(xj |θk ′ ))

.

Similar ideas have been proposed independently by Wagstaff et al. (2001),
Shental et al. (2003), and Bilenko et al. (2004). This case is useful when we
are sure that a group of samples are from one source (Shental et al., 2003).

For more general cases, where the exact inference is computationally
prohibitive, we propose to use Gibbs sampling (Neal, 1993) and the mean
field approximation (Jaakkola, 2004) to estimate the posterior probability.
This will be discussed in sections 3.2 and 3.3.

3.2 Estimation with Gibbs Sampling. For fixed �, finding Pp(Z|�, Wp)
is a typical inference problem for graphical models. Techniques for approx-
imate inference developed for graphical models can also be used here. In
this section, we use Gibbs sampling to estimate the posterior probability in
each EM iteration.

In Gibbs sampling, we estimate Pp(zi |X,�, Wp) as a sample mean,

Pp(zi = k|X,�, Wp) = E(δ(zi , k)|X,�, Wp) ≈ 1
S

S∑
t=1

δ
(
z(t)

i , k
)
,

where the sum is over a sequence of S samples from P(Z|X,�, G) generated
by the Gibbs MCMC. The tth sample in the sequence is generated by the
usual Gibbs sampling technique:

� Pick z(t)
1 from distribution Pp(z1|z(t−1)

2 , z(t−1)
3 , . . . , z(t−1)

N , X, Wp,�).



Penalized Probabilistic Clustering 1541

� Pick z(t)
2 from distribution Pp(z2|z(t)

1 , z(t−1)
3 , . . . , z(t−1)

N , X, Wp,�).
· · ·

� Pick z(t)
N from distribution Pp(zN|z(t)

1 , z(t)
2 , . . . , z(t)

N−1, X, Wp,�).

For pairwise relations it is helpful to introduce some notation. Let Z−i denote
an assignment of data points to clusters that leaves out the assignment of
xi . Let U(i) be the indices of the set of samples that participate in a pairwise
relation with sample xi , U(i) = { j : Wp

i j �= 0}. Then we have

Pp(zi |Z−i , X,�, Wp) ∝ Ps(xi , zi |�)
∏

j∈U(i)

exp(2Wp
i j δ

(
zi , z j )

)
. (3.1)

The time complexity of each Gibbs sampling pass is O(NnM), where n is the
maximum number of pairwise relations a sample can be involved in. When
Wp is sparse, the size of U(i) is small. Thus, calculating Pp(zi |Z−i , X,�, Wp)
is fairly cheap, and Gibbs sampling can effectively estimate the posterior
probability.

3.3 Estimation with Mean Field Approximation. Another approach
to posterior estimation is to use mean field theory (Jaakkola, 2004; Lange,
Law, Jain, & Buhmann, 2005). Instead of directly evaluating the intractable
Pp(Z|X,�, W), we try to find a tractable mean field approximation Q(Z).
To find a Q(Z) close to the true posterior probability Pp(Z|X,�, W), we
minimize the Kullback-Leibler divergence between them,

min
Q

KL(Q(Z)|Pp(Z|X,�, Wp)), (3.2)

which can be recast into

max
Q

[H(Q) + EQ{log Pp(Z|X,�, Wp)}], (3.3)

where EQ{·} denotes the expectation with respect to Q. The simplest fam-
ily of variational distribution is one where all the latent variables {zi } are
independent of each other:

Q(Z) =
N∏

i=1

Qi (zi ). (3.4)

With this Q(Z), the optimization problem in equation 3.3 does not have a
closed-form solution and is not a convex problem. Instead, a locally optimal
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Q can be found iteratively with the following update equations,

Qi (zi ) ← 1
�i

exp(EQ{log Pp(Z|X,�, Wp)|zi }), (3.5)

for all i and zi ∈ {1, 2, · · · , M}. Here �i = ∑
zi

exp(EQ{log Pp(Z|X,�,

Wp)|zi }) is the local normalization constant. For the PPC model, we have

exp(EQ{log Pp(Z|X,�, Wp)|zi }) = Ps(zi |xi ,�) exp


∑

j �=i

Wp
i j Q j (zi )


 .

Equation 3.5, collectively for all i , is the mean field equation. Evaluation
of mean field equations requires at most O(NnM) time complexity, which
is same as the time complexity of one Gibbs sampling pass. Successive
updates of equation 3.5 will converge to a local optimum of equation 3.3.
In our experiments, the convergence usually occurs after about 20 itera-
tions, which is many fewer than the number of passes required for Gibbs
sampling.

4 Related Models

Prior to our work, different authors have proposed several constrained clus-
tering models based on K-means, including the seminal work by Wagstaff
and colleagues (Wagstaff et al., 2001; Wagstaff, 2002), and its successor (Basu
et al., 2002; Basu, Bilenko, & Mooney, 2004; Bilenko et al., 2004). These mod-
els generally fall into two classes. The first class of algorithms (Wagstaff
et al., 2001; Basu et al., 2002) keeps the original K-means cost function
(reconstruction error) while confining the cluster assignments to be consis-
tent with the specified pairwise relations. The problem can be cast into the
following constrained optimization problem,

min
Z,µ

N∑
i=1

||xi − µzi ||2

subject to zi = z j , if (xi , xj ) ∈ L

zi �= z j , if (xi , xj ) ∈ N ,

where µ = {µ1, . . . , µM} is the cluster center. In the second class of algo-
rithms, cluster assignments that violate the pairwise relations are allowed
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but will be penalized. They employ a modified cost function (Basu et al.,
2004):

J (µ, Z) = 1
2

N∑
i=1

||xi − µzi ||2 +
∑

(i, j)∈L
ai j (zi �= z j ) +

∑
(i, j)∈N

bi j (zi = z j ),

(4.1)

where ai j is the penalty for violating the link between (xi , xj ) and bi j is the
penalty when the violated pairwise relation is a do-not-link. It can be shown
that both classes of algorithms are encompassed by PPC as special cases.
The particular PPC model we consider has spherical gaussian components
with radius shrunk to zero and the weight matrix Wp expands properly.
The details are in appendix C.

One weakness shared by the semisupervised K-means algorithms is the
limited capability of K-means to model complex data distribution. If data in
one class are far from being spherical, it may take a great number of pairwise
relations to achieve reasonable classification accuracy (Wagstaff, 2002). An-
other serious problem lies in the optimization strategy employed by those
algorithms to find the optimal assignment within each EM iteration. Due to
the extra dependency brought by the pairwise relations, finding the optimal
assignment of samples to clusters is not trivial. Evaluating every potential
assignments requires O(M|T |) time complexity where |T | denotes the size
of the biggest clique, which is prohibitively expensive when |T | is big. The
greedy search used by these algorithms can return only local optima (Basu
et al., 2002, 2004), and the sequential assignment strategy employed by
Wagstaff et al. (2001) may lead to the situation where one cannot assign a
sample to any cluster because of the conflict with some assigned samples.

To remedy the limited capability of constrained K-means, several au-
thors proposed probabilistic models based on gaussian mixture models.
The models proposed by Shental et al. (2003, 2004) address the situation
where pairwise relations are hard constraints. The authors partition the
whole data set into a number of (maximal) “chunklets” consisting of sam-
ples that are (hard) linked to each other.3 Shental et al. (2003, 2004) discuss
two sampling assumptions:

� Assumption 1: Chunklet Xi is generated identically and independently
from component k with prior πk (Shental et al., 2004), and the complete
data likelihood is

P(X, Z|�, E�) = 1
�

∏
i �= j∈N

(1 − δ(zi , z j )) ·
L∏

l=1

{πzl

∏
xi ∈Xl

Ps(xi |θzl )},

(4.2)

3 If a sample is not linked to any other samples, it comprises a chunklet by itself.
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where E� denotes the specified constraints.
� Assumption 2: Chunklet Xi generated from component k with prior

∝ π
|Xi |
k , where |Xi | is the number of samples in Xi (Shental et al., 2004).

The complete data likelihood is:

P(X, Z|�, E�) = 1
�

∏
i j∈N

(1 − δ(zi , z j )) ·
L∏

l=1

{π |Xl |
zl

∏
xi ∈Xl

Ps(xi |θzl )}

(4.3)

= 1
�

∏
i j∈L

δ(zi , z j )
∏

i j∈N
(1 − δ(zi , z j ))

N∏
i=1

πzi Ps(xi | θzi ).

(4.4)

In appendix A we show that when using assumption 2, this model (as
expressed in equations 4.3 and 4.4) is equivalent to the PPC with only hard
constraints (as expressed in equation 2.10). Shental et al. (2004) suggested
that assumption 1 might be appropriate, for example, when chunklets are
generated from temporal continuity. When pairwise relations are generated
by labeling sample pairs picked from a data set, assumption 2 might be
more reasonable. Assumption 1 allows a closed-form solution in the M-step
(including solution for π ) in each EM iteration (Shental et al., 2004). The
empirical comparison of the two sampling assumptions will be discussed
in section 5.

To incorporate the uncertainty associated with pairwise relations, Law
et al. (2004, 2005) proposed to use soft group constraints. To model a
link between any sample pair (xi , xj ), they create a group l and express
the strength of the link as the membership of xi and xj to group l. This
strategy works well for some simple situations, for example, when the
pairwise relations are nonoverlapping (as defined in section 3.1). How-
ever, it is awkward if samples are shared by multiple groups, which
is unavoidable when samples are commonly involved in multiple rela-
tions. Another serious drawback of the group constraints model is its
inability to model do-not-links. Due to these obvious limitations, we
omit the empirical comparison of this model to PPC in the following
section.

5 Experiments

The experiments section consists of two parts. In section 5.1, we examine
the way the number of constraints affects the clustering results. For each
clustering task in this section, we generate artificial pairwise relations based
on class labels. In section 5.2, we address real-world problems, where the
constraints are derived from our prior knowledge. Also in this section,
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we demonstrate the approaches to reduce computational complexity, as
described in section 3.

Following are some abbreviations we will use: soft-PPC is PPC with soft
constraints, hard-PPC is PPC with hard constraints (implemented based on
equation 2.10), soft-CKmeans is the K-means with soft constraints (Basu
et al., 2004) and hard-CKmeans is the K-means with hard constraints
(Wagstaff et al., 2001). The gaussian mixture model with hard constraints
(Shental et al., 2003, 2004) will be referred to as constrained-EM.

5.1 Artificial Constraints. In this section, we discuss the influence of
pairwise relations on PPC’s clustering and compare the result to other
semisupervised clustering models. This section presents two experiments.
In experiment 1, we consider only correct pairwise relations, as an example
of authentic knowledge. Accordingly, we use hard constraints in clustering.
In experiment 2, we discuss the situation where pairwise relations contain
significant error. We evaluate the performance of soft-PPC and test the
weight design strategy described in section 2.4. The result is compared to
hard-PPC and other semisupervised clustering models.

5.1.1 Constraint Selection. To avoid the computational burden, we limit
our discussion to the nonoverlapping pairwise relations in experiments 1
and 2. As discussed in section 3.1, the nonoverlapping pairwise relations,
hard or soft, allow fast solution in the maximization step in each EM iter-
ation. The pairwise relations are generated as follows. We randomly pick
two samples from the training set without replacement. If the two have
the same class label, we add a link constraint between them; otherwise, we
add a do-not-link constraint. Note that the application of PPC is not limited
to the nonoverlapping cases. In section 5.2, we discuss more complicated
real-world problems where overlapping constraints are necessary, and we
also present approaches to solve the computational problems.

5.1.2 Performance Evaluation. We try PPC (with the number of compo-
nents equal to the number of classes) with various numbers of pairwise
relations. For each clustering result, a confusion matrix is built to compare
it to true labeling. The classification accuracy is calculated as the ratio of the
sum of diagonal elements to the number of all samples.

5.1.3 Experiment 1: Artificial Hard Constraints. This experiment is de-
signed to answer two questions: how the number of pairwise relations
affects the clustering result and whether the information in the relations
has been successfully encoded into the trained model. To answer the sec-
ond question, we examine the out-of-sample classification of the gaussian
mixture model fit with the aid of the pairwise relations. Toward this end,
we divide each data set into a training set (90% of data) and a held-out
test set (10% of data). Pairwise relations are generated among samples in
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(a) data set1 (b) data set 2 (c) data set 3

Figure 5: The artificial data sets.

the training set. After the density model is fit on the training set and the
pairwise relations, it will be applied to the test set. Since the classification
on the test set is merely decided by the fit gaussian mixture model, it will
reflect the influence of pairwise relations on the trained model. For com-
parison, we also give results of two other constrained clustering methods:
(1) the hard-CKmeans (Wagstaff et al., 2001), for which the accuracy on the
test set is given by the nearest-neighbor classification with the cluster cen-
ters fit on training set, and (2) constrained-EM (Shental et al., 2004). Since
we show in appendix A that constrained-EM with sampling assumption
2 (see section 5) is equivalent to hard-PPC, we need only to consider the
constrained-EM with sampling assumption 1. The reported classification
accuracy is averaged over 100 different realizations of pairwise relations.

The three two-dimensional artificial data sets shown in Figure 5 are
designed to highlight PPC’s superior modeling flexibility over constrained
K-means.4 In each example, there are 200 samples in each class. It is clear
from Figure 5 that for all three problems, data in each class are nongaussian.
So not surprisingly, standard K-means and GMM do not return satisfactory
clustering results. Figure 6 compares the clustering result of hard-PPC and
hard-CKmeans with various number of pairwise relations. As shown in
Figure 6, the accuracy of hard-PPC improves significantly when pairwise
relations are incorporated. After enough pairwise relations are added in,
we can finally reach close to 100% accuracy on the training data. On the
test set, although no pairwise relation is available, we observe significantly
improved accuracy as well. For the hard-CKmeans, we do not observe
any substantial accuracy improvement on the training set or test set. The
classification task of data set 1 is relatively easy for the gaussian mixture
and difficult for K-means. The classification accuracy of hard-PPC climbs

4 Some authors (Xing et al., 2003; Cohn et al., 2003; Bilenko et al., 2004) combined
standard or constrained K-means with metric learning based on pairwise relations and
reported improvement on classification accuracy. This will not be discussed in this letter.
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(a) On data set 1
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(b) On data set 2
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(c) On data set 3

Figure 6: The performance of hard-PPC and hard-CKmeans with various num-
bers of relations: trn ppc: accuracy on the training set with hard-PPC; tst ppc:
accuracy on the test set from the GMM trained by hard-PPC; trn cop: accuracy
on the training set with hard-CKmeans; tst cop: accuracy of K-means on the test
set.

from 60% to close to 100% (on both training and test set) after 70 pairwise
relations, whereas the accuracy of hard-CKmeans remains less than 60%
even with 100 relations. On data set 2, the hard-PPC accuracy is improved
from 75% to close to 95% on the training set and stops at around 90% on
the test set. This divergence happens because the two classes in data set
2 are overlapped and thus defy a perfect GMM classifier. Data set 3 is the
most difficult since it is highly nongaussian. It takes over 100 pairs for the
hard-PPC to reach 95% accuracy, whereas hard-CKmeans never reaches
55%.

The comparison of PPC and constrained-EM is presented in a way to
highlight the difference between the classification accuracy of the two meth-
ods. Basically, we record the classification from PPC and constrained-EM
with the same pairwise relations and initial condition and then calculate

	Accuracy = classification accuracy by PPC

− classification accuracy by CEM

on both the training and test set. In Figure 7, we report the mean and
standard deviation of 	Accuracy estimated over 100 different realiza-
tions of pairwise relations. From Figure 7, the difference between PPC and
constrained-EM is indistinguishable when the number of relations is small,
while PPC is slightly but consistently better than constrained-EM when the
relations are abundant.

We perform the same experiments on three UCI data sets: the Iris data
set has 150 samples and three classes, with 50 samples in each class;
the Waveform data set has 5000 samples and three classes, with around
1700 samples in each class; and the Pendigits data set has four classes
(digits 0, 6, 8, 9), each with 750 samples. The results are summarized in
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Figure 7: Comparison of PPC and constrained EM on artificial data. With each
number of pairwise relations, we show the mean of 	Accuracy ± standard
deviation estimated over 100 random realization of pairwise relations.
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(b) Waveform data
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(c) Pendigits data

Figure 8: Performance of PPC on UCI data sets with various numbers of
relations.
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Figure 9: Comparison of PPC and constrained EM on UCI data sets. With each
number of pairwise relations, we show the mean of 	Accuracy ± standard
deviation estimated over 100 random realization of pairwise relations.

Figures 8 and 9. As indicated by Figure 8, hard-PPC can consistently im-
prove its clustering accuracy on the training set when more pairwise con-
straints are added; also, the effect brought by constraints generalizes to
the test set. In contrast, as in the artificial data set case, the increase of
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accuracy from hard-CKmeans is much less salient than that of hard-PPC.
Figure 9 shows that hard-PPC is slightly better than constrained-EM, espe-
cially when the number of constraints is large.

5.1.4 Experiment 2: Artificial Soft Constraints. In this experiment, we eval-
uate the performance of soft-PPC when the specified pairwise relations con-
tain substantial error. The results are compared to hard-PPC, soft-CKmeans,
and hard-CKmeans.

The artificial constraints are generated the same way as in the previous
experiment. The flipping noise is realized by randomly flipping each pair-
wise relation with a certain probability q ≤ 0.5. For the soft-PPC model, the
weight Wp

i j to each specified pairwise relation is given as follows:

Wp
i j =




1
2 log

(
1−q

q

)
(zi , z j )specified as link

− 1
2 log

(
1−q

q

)
(zi , z j )specified as do-not-link.

(5.1)

We use w to denote the absolute value of the weight for nontrivial
pairs. For soft-PPC, we have w = 1

2 log( 1−q
q ). For soft-CKmeans, we give

equal weights to all specified constraints. Because there is no guiding
rule in the literature on how to choose the weight for the soft-CKmeans
model, we simply use the weight that yields the highest classification
accuracy.

We present the results on the three artificial data sets and three UCI
data sets used in experiment 1. Unlike experiment 1, we use everything
available in clustering. On each data set, we randomly generate a number
of nonoverlapping pairwise relations to have 50% of the data involved.
In this experiment, we try two different noise levels, with q set to 0.15
and 0.3. Figure 10 compares the classification accuracies given by the max-
imum likelihood (ML) solutions of different models.5 The accuracy for
each model is averaged over 20 random realizations of pairwise relations.
On all data sets except artificial data set 3, soft-PPC with the designed
weight gives higher accuracy than hard-PPC (w = ∞) and standard GMM
(w = 0) on both noise levels. On artificial data set 3, when q = 0.3, hard-PPC
gives the best classification accuracy.6 Soft-PPC apparently gives superior
classification accuracy to the K-means models on all six data sets, even
though the weight of soft-CKmeans is optimized. Figure 10 also shows
that it can be harmful to use hard constraints when pairwise relations

5 We choose the one with the highest data likelihood among 100 runs with different
random initialization. For K-means models, including soft-CKmeans and hard-CKmeans,
we use the solutions with the smallest value of cost function.

6 Further experiment shows that on these data, soft-PPC with the optimal w (> the
one suggested by equation 5.1) is still slightly better than hard-PPC.
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Figure 10: Classification accuracy with noisy pairwise relations. We use all the
data in clustering. (A) Standard GMM. (B) Soft-PPC. (C) Hard-PPC. (D) Standard
K-means. (E) Soft-CKmeans with optimal weight. (F) Hard-CKmeans.

are noisy, especially when the noise is significant. Indeed, as shown by
Figures 10d and 10f, hard-PPC can yield accuracy even worse than standard
GMM.

5.2 Real-World Problems. In this section, we present two examples
where pairwise constraints are from domain experts or common sense.
Both examples are about image segmentation based on gaussian mixture
models. In the first problem, experiment 3, hard pairwise relations are de-
rived from image labeling done by a domain expert. In the second problem,
soft pairwise relations are generated based on spatial continuity.

5.2.1 Experiment 3: Hard Do-Not-Links from Partial Class Information. The
experiment in this section shows the application of pairwise constraints
on partial class information. For example, consider a problem with six
classes A, B, . . . , F . The classes are grouped into several class sets C1 =
{A, B, C}, C2 = {D, E}, C3 = {F }. The samples are partially labeled in the
sense that we are told which class set a sample is from but not which
specific class it is from. We can logically derive a do-not-link constraint
between any pair of samples known to belong to different class sets, while
no link constraint can be derived if each class set has more than one class
in it.
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Figure 11: (a) Gray-scale image from the first spectral channel 1. (b) Partial label
given by experts. Black pixels denote nonsnow area, and white pixels denote
snow area. Clustering result of standard GMM (c) and PPC (d). Panels c and d
are colored according to image blocks’ assignment.

Figure 11a is a 120 × 400 region from the Greenland ice sheet from
NASA Langley DAAC (Srivastava, Oza, & Stroeve, 2005).7 Each pixel has
intensities from seven spectrum bands. This region is labeled into snow area
and nonsnow area, as indicated in Figure 11b. The snow area may contain
samples from several classes of interest: ice, melting snow, and dry snow,
while the nonsnow area can be bare land, water, or cloud. The labeling
from the expert contains incomplete but useful information for further
segmentation of the image. To segment the image, we first divide it into
5 × 5 × 7 blocks (175 dim vectors). We use the first 50 principal components
as feature vectors. Our goal is then to segment the image into (typically
more than 2) areas by clustering those feature vectors. With PPC, we can
encode the partial class information into do-not-links.

7 We use the first seven moderate resolution imaging spectroradiometer (MODIS)
channels with bandwidths as follows (in nm): channel 1: 620–670; channel 2: 841–876;
channel 3: 459–479; channel 4: 545–565; channel 5: 1230–1250; channel 6: 1628–1652;
channel 7: 2105–2155.
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For hard-PPC, we use half of the data samples for training and the rest
for test. Hard do-not-link constraints (only on training set) are generated as
follows. For each block in the nonsnow area, we randomly choose (without
replacement) six blocks from the snow area to build do-not-link constraints.
By doing this, we achieve cliques with size seven (1 nonsnow block + 6 snow
blocks). As in section 5.1, we apply the model fit with hard-PPC to the test
set and combine the clustering results on both data sets into a complete
picture. Clearly, the clustering task is nontrivial for any M > 2. Typical
clustering results of three-component standard GMM and three-component
PPC are shown as Figures 11c and 11d, respectively. Standard GMM gives a
clustering that is clearly in disagreement with the human labeling in Figure
11b. The hard-PPC segmentation makes far fewer misassignments of snow
areas (tagged white and gray) to nonsnow (black) than does the GMM. The
hard-PPC segmentation properly labels almost all of the nonsnow regions
as nonsnow. Furthermore, the segmentation of the snow areas into the two
classes (not labeled) tagged white and gray in Figure 11d reflects subtle
differences in the snow regions captured by the gray-scale image from
spectral channel 1, as shown in Figure 11a.

5.2.2 Experiment 4: Soft Links from Continuity. In this section, we present
an example where soft constraints come from continuity. As in the previous
experiment, we try to do image segmentation based on clustering. The
image is divided into blocks and rearranged into feature vectors. We use
a GMM to model those feature vectors, with each gaussian component
representing one texture. However, standard GMM often fails to give good
segmentations because it cannot make use of the spatial continuity of image,
which is essential in many image segmentation models, such as random
field (Bouman & Shapiro, 1994). In our algorithm, the spatial continuity is
incorporated as the soft link preferences with uniform weight between each
block and its neighbors. As described in section 2.4, the weight w of the soft
link can be given as

w = 1
2

log
(

1 − q
q

)
, (5.2)

where q is the ratio of softly linked adjacent pairs that are not in the same
class. Usually q is given by an expert or estimated from segmentation results
of similar images. In this experiment, we assume we already know the ratio
q , which is calculated from the label of the image.

The complete data likelihood is

Pp(X, Z|�, Wp) = 1
�

Ps(X, Z|�)
∏

i

∏
j∈U(i)

exp(w δ(zi , z j )), (5.3)
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Figure 12: (a) Texture combination. (b) Clustering result of standard GMM.
(c) Clustering result of soft-PPC with Gibbs sampling. (d) Clustering result of
soft-PPC with mean field approximation. Panels b to d are shaded according to
the blocks assignments to clusters.

where U(i) means the neighbors of the ith block. The EM algorithm can
be roughly interpreted as iterating on two steps: (1) estimating the tex-
ture description (parameters of mixture model) based on segmentation and
(2) segmenting the image based on the texture description given by step
1. Since exact calculation of the posterior probability is intractable due to
the large clique containing all samples, we have to resort to approxima-
tion methods. In this experiment, both the Gibbs sampling (see section 3.2)
and the mean field approximation (see section 3.3) are used for posterior
estimation. For Gibbs sampling, equation 3.1 is reduced to

Pp(zi |Z−i , X,�, Wp) ∝ Ps(xi , zi |�)
∏

j∈U(i)

exp(2w δ(zi , z j )).

The mean field equation, 3.5, is reduced to

Qi (zi ) ← 1
�i

Ps(xi , zi |�)
∏

j∈U(i)

exp(2w Q j (zi )).

The image shown in Figure 12a is built from four Brodatz textures.8 This
image is divided into 7 × 7 blocks and then rearranged to 49-dim vectors.
We use those vectors’ first five principal components as the associated fea-
ture vectors. A typical clustering result of four-component standard GMM is
shown in Figure 12b. For soft-PPC, the soft links with weight w calculated
from equation 5.2 are added between each block and its four neighbors.
Figures 12c and 12d are the clustering result of four-component soft-PPC
with respectively Gibbs sampling and mean field approximation. One run
with Gibbs sampling takes around 160 minutes on a PC with Pentium 4,

8 Downloaded from http://sipi.usc.edu/services/database/Database.html, April
2004.
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2.0 GHZ processor, whereas the algorithm using the mean field approxima-
tion takes only 3.1 minutes. Although mean field approximation is about
50 times faster than Gibbs sampling, the clustering results are comparable
according to Figure 12. Compared to the result given by standard GMM,
soft-PPC with both approximation methods achieves significantly better
segmentation after incorporating spatial continuity.

6 Conclusion and Future Work

We have proposed a probabilistic clustering model that incorporates prior
knowledge in the form of pairwise relations between samples. Unlike pre-
vious work in semisupervised clustering, our model formulates cluster-
ing preferences as a Bayesian prior over the assignment of data points
to clusters and so naturally accommodates both hard constraints and soft
preferences. Unlike many semisupervised learning methods (Szummer &
Jaakkola, 2001; Zhou & Schölkopf, 2004; Zhu, Lafferty, & Ghahramani, 2003)
addressing labeled subsets, PPC returns a fitted parametric density model
and thus can deal with unseen data. Experiments on different data sets have
shown that pairwise relations can consistently improve the performance of
the clustering process.

Despite its success, PPC has limitations. First, PPC often needs a sub-
stantial proportion of samples involved in pairwise relations to give good
results. Indeed, if we have the number of relations fixed and keep adding
samples without any new relations, the algorithm will finally degenerate
into unsupervised learning (clustering). To overcome this, one can instead
build a semisupervised model based on discriminative models such as a
neural network or gaussian process classifier and use the pairwise relations
in the form of hint (Sill & Abu-Mostafa, 1996) or observation (Zhu et al.,
2003). Second, since PPC is based on the gaussian mixture model, it works
well when the data in each class can be approximated by a gaussian distri-
bution. When this condition is not satisfied, PPC could lead to poor results.
One way to alleviate this situation is to use multiple clusters to model one
class, an interesting direction for future exploration. Third, in choosing the
weight matrix Wp , although our design works well on some data sets, it is
not clear how to set the weight for a more general situation.

In this letter, we implement hard constraints using equation 2.10. Al-
ternatively, we can approximate hard constraints by using large |Wi j | for
every constrained pair (xi , xj ). Indeed, from equations 2.5 to 2.8, when a
constraint with large weight is violated in assignments Z, the prior prob-
ability P(Z|�, Wp) will be close to zero. The value of P(Z|�, Wp) with
such a Z can be made arbitrarily small by increasing the corresponding
weight. This is convenient when we want to model soft and hard relations
at the same time. This situation is not covered in this letter, but remains an
interesting direction for future exploration.
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To address the computational difficulty caused by large cliques, we pro-
pose two approximation methods: Gibbs sampling and mean field approx-
imation. We also observe that Gibbs sampling can be fairly slow for large
cliques. One way to address this problem is to use fewer sampling passes
(and thus a cruder approximate inference ) in the early phase of EM training
and gradually increase the number of sampling passes (and a finer approx-
imation) when EM is close to convergence. By doing this, we may be able
to achieve a much faster algorithm without sacrificing too much precision.
For the mean field approximation, the bias brought by the independence
assumption among Qi (·) could be severe for some problems. We can ame-
liorate this, as suggested by Jaakkola (2004), by retaining more substructure
of the original graphical model (for PPC, it is expressed in Wp), while still
keeping the computation tractable.

Appendix A: Hard Constraints Limit

In this appendix, we prove that when |Wi j | → ∞ for each specified pair
(xi , xj ), the complete likelihood of PPC can written as in equation 2.10, and
thus equivalent to the model proposed by Shental et al. (2003).

In the model proposed by Shental et al. (2003), the complete likelihood
is written as

P(X, Z|�, E�) = 1
�

∏
ci

δyci

∏
a1

i �=a2
i

(1 − δ(ya1
i
, ya2

i
))

N∏
i=1

Ps(zi |�)Ps(xi |zi ,�)

= 1
�

∏
ci

δyci

∏
a1

i �=a2
i

(1 − δ(ya1
i
, ya2

i
))Ps(X, Z|�),

where E� stands for the pairwise constraints, δyci
is 1 iff all the points in the

chunklet (the clique of samples connected with only hard links) ci have the
same label, and (a1

i , a2
i ) is the index of the sample pair with hard do-not-link

between them. This is equivalent to

P(X, Z|�, E�) =
{ 1

�
Ps(X, Z|�) Z satisfies all the constraints

0 otherwise
. (A.1)

In the corresponding PPC model with hard constraints, we have

Wp
i j =




+∞ i and j is linked

−∞ i and j is do-not-linked

0 no relation

. (A.2)
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According to equation 2.5 and A.1, to prove

P(X, Z|�, E�) = Pp(X, Z|�, Wp),

we need only to prove

Pp(Z|�, Wp) = 0,

for all the Z that violate the constraints, that is,

Pp(Z|�, Wp) =
∏

k πzk

∏
i �= j exp

(
Wp

i j δ(zi , z j )
)

∑
Z

∏
l πzl

∏
m �=n exp

(
Wp

mn δ(zm, zn)
) = 0.

First, let us assume Z violates one link between pair (α, β)
(
Wp

αβ = +∞)
. We

have

zα �= zβ ⇒ δ(zα, zβ ) = 0 ⇒ exp(Wp
αβ δ(zα, zβ )) = 1.

We assume the constraints are consistent. In other words, there is at least
one Z that satisfies all the constraints. We can denote one such Z by Z∗. We
also assume each component has a positive prior probability. It is straight-
forward to show that

Pp(Z∗|�, Wp) > 0.

Then it is easy to show

Pp(Z|�, Wp) =
∏

k πzk

∏
i �= j exp

(
Wp

i j δ(zi , z j )
)

∑
Z

∏
l πzl

∏
m �=n exp

(
Wp

mn δ(zm, zn)
)

≤
∏

k πzk

∏
i �= j exp

(
Wp

i j δ(zi , z j )
)

∏
k πz∗

k

∏
i �= j exp

(
Wp

mn δ(z∗
i , z∗

j )
)

=

∏

k

πzk

πz∗
k

∏
(i, j)�=(α,β)

exp
(
Wp

i j δ(zi , z j )
)

exp
(
Wp

i j δ
(
z∗

i , z∗
j

))

 exp

(
2Wp

αβ δ(zα, zβ )
)

exp
(
2Wp

αβ δ
(
z∗
α, z∗

β

))

=

∏

k

πzk

πz∗
k

∏
(i, j)�=(α,β)

exp
(
Wp

i j δ(zi , z j
))

exp
(
Wp

i j δ(z∗
i , z∗

j )
)

 1

exp
(
2Wp

αβ δ
(
z∗
α, z∗

β

)) .
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Since Z∗ satisfies all the constraints, we must have

∏
(i, j)�=(α,β)

exp
(
Wp

i j δ(zi , z j )
)

exp
(
Wp

i j δ
(
z∗

i , z∗
j

)) ≤ 1.

So we have

Pp(Z|�, Wp) ≤
(∏

k

πzk

πz∗
k

)
1

exp
(
2Wp

αβ δ
(
z∗
α, z∗

β

)) .

When

Wp
αβ → +∞,

we have

1
exp

(
2Wp

αβ δ
(
z∗
α, z∗

β

)) → 0

and then

Pp(Z|�, Wp) ≤
(∏

k

πzk

πz∗
k

)
1

exp
(
2Wp

αβ δ
(
z∗
α, z∗

β

)) → 0. (A.3)

The do-not-link case can be proved in a similar way.

Appendix B: Prior for Noisy Pairwise Relations

In this appendix, we show how to derive weight W from the certainty value
γi j for each pair (xi , xj ). Let E denote those original (noise-free) labeled
pairwise relations and Ẽ the noisy version delivered to us. If we know
the original pairwise relations E , we only have to consider the cluster
assignments that are consistent with E and neglect the others, that is, the
prior probability of Z is

P(Z|�, E) =
{ 1

�E
Ps(Z|�) Z is consistent with E

0 otherwise
,

where �E is the normalization constant for E : �E = ∑
Z: consistent with E

Ps(Z|�). Since we know Ẽ and the associated certainty values � = {γi j },
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we know

P(Z|�, Ẽ, �) =
∑

E

P(Z|�, E, Ẽ, �)P(E |Ẽ, �) (B.1)

=
∑

E

P(Z|�, E)P(E |Ẽ, �). (B.2)

Let E(Z) ≡ the unique E that is consistent with Z. From equation B.2, we
know

P(Z|�, Ẽ, �) = Pp(Z|�, E(Z))P(E(Z)|Ẽ, �)

= 1
�E

Ps(Z|�)P(E(Z)|Ẽ, �) = 1
�E

P(E(Z)|Ẽ, �)Ps(Z|�).

If we ignore the variation of �E over E , we can get an approximation of
P(Z|�, Ẽ, �), denoted as Pa (Z|�, Ẽ, �):

Pa (Z|�, Ẽ, �) = 1
�a

Ps(Z|�)P(E(Z)|Ẽ, �)

= 1
�a

Ps(Z|�)
∏
i< j

γ
Hi j (Ẽ,zi ,z j )

i j (1 − γi j )1−Hi j (Ẽ,zi ,z j ),

where �a is the new normalization constant: �a = ∑
Z Ps(Z|�)

P(E(Z)|Ẽ, �) and

Hi j (Ẽ, zi , z j ) =
{

1 (zi , z j ) is consistent with Ẽ
0 otherwise .

We argue that Pa (Z|�, Ẽ, �) is equal to a PPC prior probability Pp(Z|�, Wp)
with

Wp
i j =




1
2 log

(
γi j

1−γi j

)
(zi , z j ) is specified as must-linked in Ẽ

− 1
2 log

(
γi j

1−γi j

)
(zi , z j ) is specified as cannot-linked in Ẽ

0 otherwise.

(B.3)

This can be easily proven by verifying

Pp(Z|�, Wp)
Pa (Z|�, Ẽ, �)

= �a

�w

∏
i< j,Wi j p �=0

γ
sign(Wp

i j )−1
i j (1 − γi j )−sign(Wp

i j ) = constant.
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Since both Pa (Z|�, Ẽ, �) and Pp(Z|�, Wp) are normalized, we know

Pa (Z|�, Ẽ, �) = Pp(Z|�, Wp).

Appendix C: From PPC to Constrained K-Means

In this appendix, we show how to derive K-means model with soft and
hard constraints from PPC.

C.1 From PPC to K-Means with Soft Constraints. The adopted cost
function for K-means with soft constraints is

J (µ, Z) = 1
2

N∑
i=1

||xi − µzi ||2 +
∑

(i, j)∈L
ai j (zi �= z j ) +

∑
(i, j)∈N

bi j (zi = z j ),

(C.1)

where µk is the center of the kth cluster. Equation 4.1 can be rewritten as

J (µ, Z) = 1
2

N∑
i=1

||xi − µzi ||2 −
∑

i j

Wp
i j δ(zi , z j ) + C, (C.2)

with C = −∑
(i, j)∈L ai j is a constant and

Wp
i j =




ai j (i, j) ∈ L
−bi j (i, j) ∈ N
0 otherwise.

(C.3)

The clustering process includes minimizing the cost function J (µ, Z) over
both the model parameters µ = {µ1, µ2, . . . , µM} and cluster assignment
Z = {z1, z2, . . . , zN}. The optimization is usually done iteratively with a
modified Linde-Buzo-Gray (LBG) algorithm. Assume we have the PPC
model with the matrix Wp the same as in equation C.2. We further constrain
each gaussian component to be spherical with radius σ . The complete data
likelihood for the PPC model is

P(X, Z|�, Wp) = 1
�

N∏
i=1

{
πzi exp

(
−

N∑
i=1

||xi − µzi ||2
2σ 2

)}

∏
mn

exp
(
Wp

mnδ(zm, zn)
)
, (C.4)
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where � is the normalizing constant and µk is the mean of the kth gaussian
component. To build its connection to the cost function in equation C.2, we
consider the following scaling:

σ → ασ, Wp
i j → Wp

i j /α
2. (C.5)

The complete data likelihood with the scaling parameters α is

Pα(X, Z|�, Wp) = 1
�(α)

N∏
i=1

{
πzi exp

(
−

N∑
i=1

||xi − µzi ||2
2α2σ 2

)}

∏
mn

exp
(

Wp
mn

α2 δ(zm, zn)
)

. (C.6)

It can be shown that when α → 0, the maximum data likelihood will
dominate the data likelihood:

lim
α→0

maxZ Pα(X, Z|�, Wp)∑
Z Pα(X, Z|�, Wp)

= 1. (C.7)

To prove equation C.7, we first show that when α is small enough, we have

arg max
Z

Pα(X, Z|�, Wp) = Z∗ ≡ arg min
Z

{
N∑

i=1

||xi − µz∗
i
||2

2

−
∑
mn

Wp
mnδ

(
z∗

m, z∗
n

)}
. (C.8)

Proof of Equation C.8. Assume Z′ is any cluster assignment different from
Z∗. We only need to show that when α is small enough,

Pα(X, Z∗|�, Wp) > Pα(X, Z′|�, Wp). (C.9)

To prove equation C.9, we notice that

log Pα(X, Z∗|�, Wp) − log Pα(X, Z′|�, Wp)

=
N∑

i=1

(
log πz∗

i
− log πz′

i

) + 1
α2

{
N∑

i=1

(
||xi − µz′

i
||2

2
− ||xi − µz∗

i
||2

2

)

−
∑
mn

Wp
mn

(
δ
(
z′

m, z′
n

) − δ
(
z∗

m, z∗
n

))}
. (C.10)
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Since Z∗ = arg minZ

{∑N
i=1

||xi −µz∗i ||2
2 − ∑

mn Wp
mnδ

(
z∗

m, z∗
n

)}
, we have

N∑
i=1

(
||xi − µz′

i
||2

2
− ||xi − µz∗

i
||2

2

)
−

∑
mn

Wp
mn

(
δ
(
z′

m, z′
n

) − δ
(
z∗

m, z∗
n

))
> 0.

(C.11)

Let ε = ∑N
i=1

(
||xi −µz′i ||

2

2 − ||xi −µz∗i ||2
2

)
− ∑

mn Wp
mn

(
δ
(
z′

m, z′
n

) − δ
(
z∗

m, z∗
n

))
. We

can see that when α is small enough,

log Pα(X, Z∗|�, Wp) − log Pα(X, Z′|�, Wp)

=
N∑

i=1

(
log πz∗

i
− log πz′

i

) + ε

α2 > 0. (C.12)

It is obvious from equation C.12 that for any Z′ different from Z∗,

lim
α→0

log Pα(X, Z∗|�, Wp) − log Pα(X, Z′|�, Wp)

= lim
α→0

N∑
i=1

(
log πz∗

i
− log πz′

i

) + ε

α2

= +∞,

or equivalently

lim
α→0

Pα(X, Z′|�, Wp)
Pα(X, Z∗|�, Wp)

= 0, (C.13)

which proves equation C.7. As the result of equation C.7, when optimizing
the model parameters, we can equivalently maximize maxZ Pα(X, Z|�, Wp)
over �. It is then a joint optimization problem:

max
�,Z

Pα(X, Z|�, Wp).

Following the same thought, we find the soft posterior probability of each
sample (as in conventional mixture model) becomes hard membership (as
in K-means). This fact can be simply proved as follows. The posterior prob-
ability of sample xi to component k is

Pα(zi = k|X,�, Wp) =
∑

Z|zi =k Pα(X, Z|�, Wp)∑
Z Pα(X, Z|�, Wp)

.
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From equation C.7, it is easy to see that

lim
α→0

Pα(zi = k|X,�, Wp) =
{

1 z∗
i = k

0 otherwise.
(C.14)

The negative logarithm of the complete likelihood Pα is then:

Jα(�, Z) =− log Pα(X, Z|�, Wp)

=−
N∑

i=1

log πzi +
N∑

i=1

||xi − µzi ||2
2α2 −

∑
mn

Wp
mn

α2 δ(zm, zn) + log(�(α))

=−
N∑

i=1

log πzi + 1
α2

(
N∑

i=1

||xi − µzi ||2
2

−
∑
mn

Wp
mnδ(zm, zn)

)
+ C,

where C = log �(α) is a constant. It is obvious that when α → 0, we can
neglect the term −∑N

i=1 log πzi . Hence, the only model parameters left for
adjusting are the gaussian means µ. We only have to consider the new cost
function

J̃α(µ, Z) = 1
α2

(
N∑

i=1

||xi − µzi ||2
2

−
∑
mn

Wp
mnδ(zm, zn)

)
, (C.15)

the optimization of which is obviously equivalent to equation C.1. So we
can conclude that when α → 0 in equation C.5, the PPC model shown in
equation 3.4 becomes a K-means model with soft constraints.

C.2 From PPC to K-Means with Hard Constraints (COPK-Means).
COPK-means is a hard clustering algorithm with hard constraints. The goal
is to find a set of cluster centers µ and clustering result Z that minimizes
the cost function

N∑
i=1

||xi − µzi ||2, (C.16)

while subject to the constraints

zi = z j , if (xi , xj ) ∈ L (C.17)

zi �= z j , if (xi , xj ) ∈ N . (C.18)
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Assume we have the PPC model with soft relations represented with the
matrix Wp such that

Wp
i j =




w (xi , xj ) ∈ L
−w (xi , xj ) ∈ N
0 otherwise,

(C.19)

where w > 0. We further constrain each gaussian component to be spherical
with radius σ . The complete data likelihood for PPC model is

P(X, Z|�, Wp) = 1
�

N∏
i=1

{
πzi exp

(
−

N∑
i=1

||xi − µzi ||2
2σ 2

)}

∏
(m,n)∈L

exp(wδ(zm, zn))
∏

(m′,n′)∈N
exp(−wδ(zm′ , zn′ )), (C.20)

where µk is the mean of the kth gaussian component. There are infinite
ways to get equations C.16 to C.18 from equation C.20, but we consider the
following scaling with factor β:

σ → βσ, Wp
i j → Wp

i j /β
3. (C.21)

The complete data likelihood with the scaled parameters is

Pβ (X, Z|�, Wp) = 1
�(β)

N∏
i=1

{
πzi exp

(
−

N∑
i=1

||xi − µzi ||2
2β2σ 2

)}

∏
(m,n)∈L

exp
(

w

β3 δ(zm, zn)
) ∏

(m′,n′)∈N
exp

(
− w

β3 δ(zm′ , zn′ )
)

.

(C.22)

As established in previous section, when β → 0, the maximum data likeli-
hood will dominate the data likelihood

lim
β→0

maxZ Pβ (X, Z|�, Wp)∑
Z Pβ (X, Z|�, Wp)

= 1.

As a result, when optimizing the model parameters �, we can equiva-
lently maximize maxZ Pβ (X, Z|�, Wp). Also, the soft posterior probability
(as in the conventional mixture model) becomes hard membership (as in
K-means).
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The negative logarithm of the complete likelihood Pβ is then:

Jβ (�, Z) = −
N∑

i=1

log πzi + C + 1
β2

(
N∑

i=1

||xi − µzi ||2
2

+ 1
β


 ∑

(m′,n′)∈N
wδ(zm′ , zn′ ) −

∑
(m,n)∈L

wδ(zm, zn)





, (C.23)

where C = log �(β) is a constant. It is obvious that when β → 0, we can
neglect the term −∑N

i=1 log πzi . Hence, we only have to consider the new
cost function

J̃β (µ, Z) = 1
β2

(
N∑

i=1

||xi − µzi ||2
2

+ 1
β


 ∑

(m′,n′)∈N
wδ(zm′ , zn′ ) −

∑
(m,n)∈L

wδ(z j , zk)





, (C.24)

the minimization of which is obviously equivalent to the following equation
since we can neglect the constant factor 1

β2 :

˜̃J β (µ, Z) =
N∑

i=1

||xi − µzi ||2
2

+ w

β
Jc(Z), (C.25)

where Jc(Z) = ∑
(m′,n′)∈N δ(zm′ , zn′ ) − ∑

(m,n)∈L δ(zm, zn) is the cost function
term from pairwise constraints.

Let SZ = {Z|zi = z j if Wp
i j > 0; zi �= z j if Wp

i j < 0;}. We assume the pair-
wise relations are consistent, that is, SZ �= ∅. Obviously, all Z in SZ achieve
the same minimum value of the term Jc(Z), that is

∀Z ∈ SZ, Z′ ∈ SZ Jc(Z) = Jc(Z′)

∀Z ∈ SZ, Z′′ ∈/ SZ Jc(Z) < Jc(Z′′).

It is obvious that when β → 0, any Z that minimizes ˜̃J β (µ, Z) must be in SZ.
So the minimization of equation C.22 can be finally casted into the following
form,

min
Z,µ

N∑
i=1

||xi − µzi ||2

subject to Z ∈ SZ,
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which is apparently equivalent to equations C.16 to C.18. So we can con-
clude that β → 0 in equation C.21, and the PPC model shown in equation
C.20 becomes a K-means model with hard constraints.
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