
Log-Based Recovery for Middleware Servers

Rui Wang
Microsoft

Redmond, WA

ruiwang@microsoft.com

Betty Salzberg ∗

CCIS, Northeastern University
Boston, MA

salzberg@ccs.neu.edu

David Lomet
Microsoft Research

Redmond, WA

lomet@microsoft.com

ABSTRACT
We have developed new methods for log-based recovery for
middleware servers which involve thread pooling, private in-
memory states for clients, shared in-memory state and mes-
sage interactions among middleware servers. Due to the
observed rareness of crashes, relatively small size of shared
state and infrequency of shared state read/write accesses,
we are able to reduce the overhead of message logging and
shared state logging while maintaining recovery indepen-
dence. Checkpointing has a very small impact on ongoing
activities while still reducing recovery time. Our recovery
mechanism enables client private states to be recovered in
parallel after a crash. On a commercial middleware server
platform, we have implemented a recovery infrastructure
prototype, which demonstrates the manageability of system
complexity and shows promising performance results.

Categories & Subject Descriptors: D.4.5 Reliability,
D.2.4 Software/Program Verification

General Terms: Reliability, Performance

Keywords: Application Fault Tolerance, Exactly-Once Ex-
ecution, Recovery, Optimistic Logging, Distributed Systems

1. INTRODUCTION
Multitier systems have been extensively adopted in elec-

tronic commerce. The front end clients submit requests to
the middle tier middleware servers, which execute the busi-
ness logic and maintain in-memory business state. Middle-
ware servers may further interact with one another. As an
example of middleware servers, Web services are becoming
the standard for middleware services, especially for the inter-
actions among heterogeneous software provided by several
business organizations.

Mission-critical middleware servers require high availabil-
ity. Ideally, server crashes are masked and clients experience

∗

This work was supported by National Science Foundation under
Grant No. 0533625.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

at worst a slower response time rather than a service failure.
Further, when crashes are masked by automatic recovery,
human intervention is avoided, reducing both unavailability
and the possibility of human mistakes that can lead to very
long outages.

High availability can be achieved via several different tech-
niques. Two common techniques are:

Replication: The business state is replicated in more than
one computer nodes. When one node fails, the business state
is available in other nodes. Replication requires duplicate
computing resources and is a relatively expensive solution,
though with the potential of eliminating outages entirely.

Log-Based Recovery: The business state and its changes
are logged on disk. When a node fails and restarts, the busi-
ness state is reconstructed by applying the logged changes.
Log-based recovery is a relatively cheap yet effective tech-
nique of making high availability a commodity feature.

In this paper, we present our methods for log-based re-
covery for Middleware Server Processes or MSPs. Our im-
plemented prototype will restore a failed MSP’s in-memory
business state before the crash, bring it online quickly, mask
the crash from its clients and keep consistency among MSPs.
MSPs may further interact with back end transactional sys-
tems, such as DBMSs. Coordinating recovery of MSPs with
transactional systems’ recovery, part of our prototype, is not
covered in this paper.

1.1 Log-Based Recovery Basics
The purpose of log-based recovery [7] is to restore the last

business state before a crash. When given the same pre-
state, a deterministic re-execution (called redo) will end with
the same post-state. However, a program may have nonde-
terministic events, e.g. receiving an external message. The
nondeterministic events must be logged persistently. During
recovery, the program re-execution is fed this logged infor-
mation as each nondeterministic event is encountered. To
speed up recovery, the system can take checkpoints of the
business state so that re-execution can start from the most
recent checkpointed state.

1.2 Fundamental Challenges
An MSP handles a large number of concurrent client-

initiated service requests with a thread pool. Request and
reply messages are exchanged between an MSP and its clients.
Each client is identified as a session at the MSP. The clients
can be other MSPs. An MSP maintains two types of in-
memory business state: session state and shared state. A
client’s session state is private to the client while the shared
state is shared by all (client) sessions. Upon a crash, MSP

425

log-based recovery replays the logged requests to recover
shared and session states up to the point of the crash. This
guarantees exactly-once execution semantics for requests.

Like all failure masking techniques, log-based recovery
faces some fundamental challenges. In our case these chal-
lenges include:

Recovery Independence: In a distributed system, it
is important to isolate the effects of crashes to the failed
parts of the system. Recovery independence means that one
MSP crash does not affect other MSPs and that one session’s
recovery is isolated from other sessions of the same MSP.

Logging Overhead: It is essential to minimize logging
overhead for high performance. This can be difficult when
dealing with distributed recovery where recovery indepen-
dence is essential.

Shared State: Shared state can be accessed simultane-
ously by multiple sessions on behalf of concurrent clients.
These accesses result in nondeterminism and need to be
logged. They also result in dependency among sessions.
Thus, supporting shared state impacts both logging over-
head and recovery independence.

Lightweight Checkpointing: Checkpointing reduces
recovery time, which is important for high availability. How-
ever, it needs to be lightweight so as to keep its impact low
on normal MSP execution.

Recovery Parallelism: Server computers usually have
multiple processors. We need to exploit these processors by
making recovery parallel to speed up recovery and reduce
service outages.

1.3 Overview of Our Solution
We introduce the concept of service domain, which con-

sists of multiple tightly associated MSPs with fast and re-
liable network communication among them. Our log-based
recovery is layered, with different logging methods at each
of three different layers: client sessions/shared state, MSPs,
and service domains. In addition, the checkpointing method
is lightweight and parallel recovery is supported.

We make all session states and shared state recoverable.
This can lead to more flexible system designs. Most exist-
ing recoverable systems do not support shared in-memory
state, but rather require that different client sessions share
data through the back end databases. However, round trip
accesses to databases have a high runtime overhead. With
shared in-memory state support, MSP programs can boost
system performance. For example, an MSP program can
now cache shared state retrieved from a database, enabling
later requests to have speedy access to it [11].

The logging and recovery methods implemented in our
prototype and described here guarantee exactly-once execu-
tion semantics for requests. Our contribution is the intro-
duction of service domains and the integration of multiple
techniques to address the fundamental challenges faced by
log-based recovery for MSPs. The main features of our so-
lution are:

Locally Optimistic Logging: Because system crashes
are rare, we use locally optimistic logging. This entails both
pessimistic logging [1, 2] involving frequent log flushes and
optimistic logging [5, 17] which reduces log flushes but com-
plicates recovery. For message exchanges between MSPs in
different service domains, pessimistic logging is used, while
optimistic logging is used if they are in the same domain. Lo-
cally optimistic logging balances the conflicting needs for low

shared state

session x session y classical classical

service domain boundary

fuzzy checkpointing

independent recoveryparallel recovery locally optimistic logging

value logging
optimistic logging pessimistic logging

MSP A MSP B MSP C

Figure 1: Contributions (terms in bold fonts).

overhead and recovery independence. Optimistic logging re-
duces overhead while pessimistic logging increases recovery
independence.

Value Logging: Typically in a multitier system, most
business state is stored persistently in transactional systems
that already provide crash recovery. Some business state for
each client is stored as session state, which usually does not
need logging since there is no nondeterminism involved in
its access. The remaining small portion of business state is
stored as shared state, requiring logging to capture its non-
deterministic access. This typical scenario leads us to exploit
a value logging method (sometimes called physical logging)
for both reading and writing shared state by sessions. Value
logging provides recovery independence between sessions in
an MSP. With value logging for reads, any value read from
shared state can be obtained from the log, without involving
other clients. With value logging for writes, shared state can
be recovered from the log without relying on session redo re-
covery. Because of the small size and infrequent access to
shared state, value logging overhead is modest.

Fuzzy Checkpointing: Sessions and shared state are
checkpointed independently. An MSP is checkpointed fuzzily
to include only positions of its session’s and shared state’s
most recent checkpoints. This fuzzy checkpointing does not
block other activities inside the MSP and has modest impact
on server performance. After a crash, the log scan starts
from the lowest position as recorded in the MSP checkpoint.

Parallel Recovery: We enable parallel recovery of ses-
sion states. Activities inside an MSP are logged in a single
physical log. After a crash, we first identify the log records
for each session so that the session states of all clients can
be recovered in parallel. This results in faster recovery than
replaying all activities sequentially in log order.

Each MSP has a single physical log shared by all its ses-
sions. This sharing lowers the amortized log flush overhead,
but makes log management more challenging. Our log man-
agement is capable of accommodating our logging and check-
pointing methods.

No log-based recovery work of which we are aware, either
research or commercial, balances the conflicting needs of low
logging overhead and high recovery independence in the ef-
fective way that we report here. In addition, we support
shared in-memory state access with low logging overhead
and provide lightweight checkpointing and parallel recovery
to shorten recovery times. Figure 1 summarizes the contri-
butions of this paper.

426

We implemented a log-based recovery infrastructure pro-
totype using a commercial Web services platform. The re-
covery infrastructure is transparent to middleware programs
and can deal with multiple concurrent crashes. Our imple-
mentation demonstrates that system complexity is manage-
able and that performance gains are real. Locally optimistic
logging is the backbone of our other methods. The exper-
imental results show that the overall performance of a re-
coverable middleware server is significantly improved with
locally optimistic logging.

1.4 Paper Organization
Section 2 describes the architecture of MSPs. Section 3

elaborates on normal execution processing. Section 4 ex-
plains recovery processing. Section 5 presents the experi-
mental results on performance measurements. We review
related work in section 6 and conclude, in section 7 with a
short discussion, including future work. Throughout, we use
boldface for definitions and italics for emphasis.

2. SYSTEM ARCHITECTURE
Figure 2 illustrates an MSP’s internal architecture. We

focus on two aspects: message exchanges and business state,
and then wrap up with the recovery correctness requirement.

1

session
client n
n

shared variables

session 1

session n

request queuethread pool

session variables

request/reply
client 1session

Figure 2: Internal architecture of an MSP.

2.1 Message Exchanges
An MSP provides its service through its service meth-

ods. A client, either an end client process or another
MSP, uses the service via (synchronous) remote procedure
calls to service methods. Messages between an MSP and its
clients are request/reply exchanges.

Each MSP maintains a request queue and a thread
pool. A request message arrives first at the request queue
and is served by a thread dispatched from the thread pool.
The thread will execute the required service method, return-
ing the result in a reply message.

A session with an MSP is started or ended by a client
request. Within a session, at most one request is processed
at a time and the client will not send a new request before
receiving the reply for the previous request. Requests over
different sessions are processed concurrently inside the MSP.

Message communication between a client and an MSP is
unreliable, i.e., messages may arrive out of order, may be
duplicated, or get lost. Due to possible message loss, the
client will resend the same request until its reply is received.
The MSP can identify any duplicate or out-of-order request,
and the client can identify any duplicate reply.

In order to process a request, a session SEc of an MSP
MSPc, may further send a new request to another MSP, say

MSPs. This request must be sent over a session of MSPs,
say SEs, which is started by SEc. In this case, SEc is the
client of SEs and SEs is an outgoing session started by
SEc. Figure 3 illustrates this relation.

client side server side

MSPs

SEsSEc

MSPc
requests

Figure 3: SEs is an outgoing session of SEc.

Thus there are message interactions among MSPs. Some
interacting MSPs are provided by the same service provider
and have fast and reliable communication. These MSPs can
be configured to be in a service domain. Less tightly as-
sociated MSPs with less reliable communication will usually
be in separate service domains. Service domains are disjoint
and end client processes are outside of all service domains.

2.2 Business State
The lower half of Figure 2 illustrates the business state

of an MSP, including two types of in-memory state: ses-
sion state and shared state. For each client session, an
MSP maintains private session state consisting of session
variables. An MSP maintains shared state consisting of
shared variables.

A session variable can be accessed only in service methods
which serve the requests of its session. A value can be saved
(written) in a session variable when a request is processed
and can be retrieved (read) any time later when this or a
subsequent request over the same session is processed.

A shared variable is shared by all sessions of an MSP, i.e.,
it can be accessed by any service method over any session.
So multiple threads may access a shared variable concur-
rently. A value can be saved (written) in a shared variable
whenever a request is processed and can be retrieved (read)
later when the same or another request is processed, possibly
over a different session. Shared variables may be accessed
simultaneously by concurrent threads. Read or write locks
are issued when accessing shared variables. The duration of
a lock spans the variable access, i.e., locks are released once
the access is finished.

2.3 Recovery Correctness
After a crash occurs, an MSP must be recovered to its

most recent logged business state which consists of its shared
variables and all session variables, and which satisfies inter-
MSP consistency. Inter-MSP consistency requires causal
consistency of messages, i.e., if the business state of a process
(an MSP or end client process) includes a message receive,
either request or reply, the sender process’s business state
must include the message send [7]. Figure 4 illustrates a
violation of such consistency.

m2
p1

p2

m1(input)

Figure 4: Processes with message logging.

Process p1 receives an input message m1 from outside and

427

m1 (input) m4 (input)
p1

p2

p3

m2 [p1:10] m5 [p1:11]

m3 [p1:10,p2:20]

3130

20

10 11

[p1:10,p2:20,p3:30] [p1:11,p2:20,p3:31]

Figure 5: Messages with dependency vectors.

logs it, but does not flush the log record to disk before send-
ing m2 to p2. Then p1 crashes and the log record for m1 gets
lost. Since we cannot guarantee the same message m1 will
be received again, we cannot guarantee m2 will be recon-
structed and resent by p1. However, p2 believes that m2 has
been sent. Thus message m2 is an orphan message and the
current state of p2 becomes an orphan (process). Inter-MSP
consistency requires there to be no orphans after recovery.
Inter-MSP consistency with a client resend of the same re-
quest until the corresponding reply is received guarantees
exactly-once execution semantics for a request.

3. NORMAL EXECUTION PROCESSING
During normal execution, nondeterminism is logged so

that re-execution can reconstruct the business state from
the log. We elaborate on four aspects: message processing,
session processing, shared state processing and MSP fuzzy
checkpointing.

3.1 Message Processing
To identify duplicate or out-of-order messages, we asso-

ciate a request sequence number with both a request
and its reply [1]. Over each session, the client maintains a
next available request sequence number and the MSP
maintains a next expected request sequence number.
In addition, an MSP buffers the reply of the latest request
for each session, so that this buffered reply can be re-sent
should it get lost due to network failure or client crash [1].

Next we first review classical pessimistic and optimistic
logging of message exchanges. Our innovation in message
processing is to combine these well-understood methods in
a practical way, which we call locally optimistic logging.

Pessimistic vs Optimistic Logging
Pessimistic logging guarantees that no orphans are ever
created. One form of pessimistic logging [1, 2] is that mes-
sages are written to a buffer upon receipt. Before this re-
ceiver sends a message, it flushes the buffer to disk. In Figure
4, with pessimistic logging, before m2 is sent, the log record
for m1 must be on disk. Even if p1 crashes, it can still be re-
covered up to having received m1. So m2 never becomes an
orphan. Pessimistic logging incurs logging overhead for this
log flush. (This is called pessimistic logging since crashes
are rare.)

Optimistic logging allows orphans to be created, but or-
phans will later be detected by dependency vectors (DVs)
[5, 17] and recovery will eliminate orphans eventually. A
process’s DV includes a state identifier for each process on
which this process depends and is attached to any message
this process sends. A process’s state identifier consists of
a state number and an epoch number. Its state number
is its most recent log record’s log sequence number (LSN).
A process’s epoch number identifies a failure-free period of

DV

log
MSP2

log

optimistic logging

MSP1

service domain 1

pessimistic logging

log
MSP3

service domain 2

Figure 6: Locally optimistic logging.

its execution and is incremented after recovery from a crash.
A process always depends on itself at its current state iden-
tifier. (We elide the epoch number to simplify the following
discussion.)

Referring to Figure 5, when process p1 receives a message
m1 and posts it to a buffer with log sequence number 10
before sending message m2 to p2, the DV attached in m2

includes 10 as p1’s state number. When p2 sends m3 to p3,
and the log record written by p2 has log sequence number
20, both 10 and 20 are in the DV sent with m3. The DV
is transitive as LSNs from all processes on which a sender
depends are sent with its message. After m3 is received, p3’s
DV is [p1:10, p2:20, p3:30]. When m5 is received, m5’s DV
[p1:11] is merged (via item-wise maximization) into p3’s
DV, which becomes [p1:11, p2:20, p3:31].

Later, if p1 crashes, after crash recovery, p1 broadcasts a
recovery message indicating the state to which it is able
to recover (called the recovered state number). Other
processes log and remember this recovered state number. If
p1 is not able to recover to state 10, both p2 and p3 will know
they are orphans by checking their DVs with this recovered
state number, and must do orphan recovery to roll back
to a state before they got the orphan messages.

Since an output message (to outside) should never become
an orphan, before it is sent, the sender does a distributed
log flush according to its DV. If p3 sends an output message
after getting m5, p1, p2 and p3 are notified to flush their log
up to 11, 20 and 31, respectively.

Optimistic logging reduces logging overhead by reducing
log flushes. However, system complexity increases, and a
process crash may cause another process to roll back. Mes-
sage overhead is increased by recovery message broadcasting
and the notification required for distributed log flush. When
the number of processes is large, the size of DVs becomes
large, increasing message size.

Locally Optimistic Logging
In the place of either classical optimistic logging or classi-
cal pessimistic logging, we use locally optimistic logging.
In this new method, message exchanges across service do-
mains use pessimistic logging, and message exchanges within
a service domain use optimistic logging. To further reduce
logging overhead, all sessions of an MSP share one physical
log. Figure 6 illustrates this logging. Since an end client
process is outside of any service domain, message exchanges
between it and any MSP use pessimistic logging.

A message (request or reply) within the service domain
includes the sender’s DV. When a message is sent across
service domains, a distributed log flush is initiated dictated
by the sender’s DV. The separate local flushes required by
a distributed log flush can be done in parallel, unless the
physical logs of MSPs in the service domain share a disk
controller. Once the distributed log flush completes, this

428

message will never be an orphan and the sender’s DV does
not need to be attached to this message. Figure 7 lists the
actions associated with message exchanges.

Figure 7: Actions for message M (request or reply).

inside service domain across service domains
before attach sender’s DV to M; distributed log flush
send: with sender’s DV;
after check if M is an orphan; log M in buffer;

receive: if yes, discard M and stop;
log M and attached DV in

buffer;
merge attached DV into

receiver’s DV;

Locally optimistic logging combines advantages from op-
timistic and pessimistic logging. Optimistic logging within
a service domain reduces log flushes. With pessimistic log-
ging between service domains, the service domain becomes
the boundary for dependency vector propagation. Since the
DV contains only the dependency on MSPs in the service
domain, it has a limited size and adds only limited overhead
to messages sent within the service domain.

An MSP crash can cause only other MSPs in the same
service domain to roll back. But recovery independence is
maintained between service domains. After crash recovery,
an MSP broadcasts recovery messages only within its ser-
vice domain. Each MSP needs to keep recovered state num-
bers only for MSPs in its service domain. Finally, since
MSPs within a service domain usually have fast and reliable
communication, the message overhead for recovery message
broadcasting and distributed log flushes is usually modest.

3.2 Session Processing
Sessions inside an MSP interact via shared variables, and

accesses to shared variables need to be logged. However
these interactions are relatively infrequent because each ses-
sion executes the relatively independent task [6] of servicing
a single user. Importantly, accesses to session variables need
not be logged, as recovery will re-execute service methods
to reconstruct such private session state.

When one MSP crashes, another MSP in the same service
domain may become an orphan, but usually only some of its
sessions are orphans and need recovery. Non-orphan sessions
can continue normal execution. A session does not crash by
itself but only as part of its MSP crash. So sessions are
recovery units, while MSPs are crash units.

If only one DV is maintained to capture dependencies for
an MSP as a whole, all its sessions will roll back, possibly
unnecessarily. To avoid this, we associate a DV with each
session. This enables sessions to recover separately, avoid-
ing unnecessary rollback cost. Correspondingly each session
must have its own state number, which is the most recent
LSN of the session. This is shown in Figure 7 where sender’s
DV means the DV of the sending session, and receiver’s DV
means the DV of the receiving session.

Session Checkpointing
To speed up recovery of a session, a session checkpoint
is taken whenever its logged information since the previous
checkpoint reaches a threshold. Each session is checkpointed
independently, only between requests during normal execu-
tion. Because of this, a session checkpoint contains only

session variables, the buffered reply, the next expected re-
quest sequence number and every outgoing session’s next
available request sequence number. It does not contain con-
trol state, e.g. stacks and program counters. New requests
are held until the checkpoint is completed. Prior to a ses-
sion checkpoint, we do a distributed log flush as dictated by
the session’s DV to ensure that the state as of checkpoint
completion is never an orphan. On completion, the session’s
previous log records can be discarded.

Position Stream
All sessions of an MSP share one physical log. To recover a
session, its log records need to be extracted from the shared
log. To make such extraction efficient, each session main-
tains a position stream consisting of the positions (inside
the physical log) of its log records since the latest session
checkpoint. An in-memory position buffer is associated
with each position stream. When a session’s log records are
written, their positions are sequentially written to its po-
sition buffer. Only when the buffer becomes full are they
flushed to disk. So the cost of writing positions is low. In
case of an MSP crash, positions which are still in the buffer
get lost. Missing positions of persistent log records will be
reconstructed from the physical log during crash recovery.

After a checkpoint, previous positions are discarded by
truncating the position stream to zero length. The posi-
tion stream’s maximum length is determined by the session
checkpointing frequency and is usually small. When a ses-
sion ends, its position stream is discarded and a log record
is written to mark the end of the session’s log records.

3.3 Shared State Processing
Like a session, a shared variable is a recovery unit. Unlike

a session, a shared variable is passive, accessed by sessions.

Shared Variable Locking
Our infrastructure locks shared variables on access transpar-
ent to middleware programs. The lock is directly associated
with the variable and we do not maintain a separate lock
table. Read and write locks are held only for the duration
of the access and thus no deadlocks are involved. Since
the number of shared variables is limited, the total memory
space required for locks is limited.

Dependency Tracking
A shared variable has its own DV and state number, which
is the log record LSN of its most recent write. The DV
indicates whether the variable’s value is an orphan.

Access to a shared variable by a session was modeled as
two messages [6], one from session to variable, and another
from variable back to session. Such modeling requires that
the session’s DV is first merged into the variable’s DV, then
the merged DV is merged back into the session’s DV. This
results in both the session and the variable having the same
dependency on other MSPs after the access.

However, by considering read/write semantics we can see
that this results in false dependency. For a read, the vari-
able’s dependency should be passed to the reader session,
and the reader session’s dependency does not need to be
passed to the variable. For a write, the writer session’s de-
pendency should be passed to the variable, and the variable’s
dependency does not need to be passed to the writer session.
In addition, since a write completely replaces the variable’s

429

existing value with a new value, the variable’s existing de-
pendency can be removed and its dependency will become
the same as the new value’s dependency, which is also the
writer session’s dependency.

Exploiting the above considerations, we refine the depen-
dency tracking as follows: reading a shared variable merges
this variable’s DV into the reader session’s DV, and writing
a shared variable replaces this variable’s DV with the writer
session’s DV.

Value Logging
Access order logging was suggested for shared state access
[16]. That is, the access order is logged and the same access
order is followed during recovery to reconstruct the shared
state. However, this approach increases recovery depen-
dence among sessions. For example, if a session (reader)
reads a shared variable which was written by another ses-
sion (writer), should the reader later become an orphan, its
recovery will require the writer (whether orphan or not) to
roll back. This roll back enables the writer to re-create and
re-write the value for the variable, enabling the reader ses-
sion to read this value for its recovery.

Deadlocks involving thread pooling are also possible. Each
request (or logged request) is processed (or replayed) by a
thread newly dispatched from the thread pool. When a
shared variable becomes an orphan, access order logging re-
quires other orphan sessions to roll back and replay logged
requests to bring the shared variable to its most recent non-
orphan value. Now if a thread processing a new request tries
to read a shared variable and finds this variable an orphan,
it has to be blocked until orphan sessions’ recovery brings
this variable to the most recent non-orphan value. It is pos-
sible that so many threads are blocked for similar reasons
that the thread pool has no threads left for orphan sessions
to recover the orphan shared variable. This is a deadlock
and the MSP hangs.

To overcome the drawbacks of access order logging, we in-
troduce value logging. For a read, the variable’s value with
its DV is logged. Hence, a recovering reader session can ob-
tain the value from the log directly. This increases recovery
independence of the reader session. For a write, in addition
to the written value and the writer session’s DV, the LSN of
the previous write log record for the same variable is logged,
meaning that write log records are chained backward. If any
session tries to read a shared variable and finds this variable
an orphan, it can itself roll this variable back to its most
recent non-orphan value by following this backward chain.
In this way, deadlocks involving thread pooling are avoided.
In addition, due to the relatively small size of shared vari-
ables and infrequency of accesses, value logging incurs only
modest overhead compared to access order logging.

Figure 8 lists actions involved with accessing a shared vari-
able. This includes dependency tracking, value logging and
two more differences between read and write accesses. First,
when a session writes a shared variable, it need not check
whether the variable’s existing value is an orphan, because
this value will be replaced by a new value. (Unlike a writer
session, a reader session needs to check whether the vari-
able is an orphan so that the value returned to the reader
is not an orphan.) Second, reading a shared variable causes
the reader session’s state number to change, while writing a
shared variable causes the variable’s state number to change.

Figure 8: Actions for accessing shared variable SV.
read write (NewValue)
check SV’s DV: if SV is an log writer session’s DV,

orphan, roll SV back to its NewValue and LSN of
most recent non-orphan value; previous write log record;

log SV’s value and DV; replace SV’s DV with writer
merge SV’s DV into reader session’s DV;

session’s DV; change SV’s state number
change reader session’s state to the new log record LSN;

number to the new log set SV’s value to NewValue;
record LSN; return;

return SV’s value;

read write writewrite checkpoint

Figure 9: A log record sequence of a shared variable.

Shared State Checkpointing
To shorten the part of the log that needs to be read to
roll back a shared variable to its most recent non-orphan
value, we take a shared variable checkpoint whenever
the number of writes since the previous checkpoint reaches
a threshold. Shared variable checkpoints are taken indepen-
dently. To checkpoint a shared variable, a distributed log
flush is initiated as indicated by its DV. Then its value is
logged and this value will never become an orphan.

A checkpoint’s subsequent write log record points back to
the checkpoint. But a checkpoint does not point back to
any previous write log record. The backward chain breaks
at checkpoints. Figure 9 illustrates this.

3.4 MSP Fuzzy Checkpointing
To reduce crash induced outages, we take an MSP check-

point, which mainly contains recovered state numbers of
MSPs in the service domain, the LSN of each session’s most
recent checkpoint, and the LSN of each shared variable’s
most recent checkpoint. In order to take an MSP check-
point, ongoing session activities are not blocked. This is
called fuzzy checkpointing and has little impact on server
performance.

The minimal LSN of all sessions’ and all shared variables’
most recent checkpoints will be the start point of the log
scan during crash recovery. Similar to ARIES [12], after
an MSP checkpoint is taken, its LSN is recorded in the log
anchor, a block located at a specific location inside the
physical log such as the log header. After a crash, recovery
will look for the most recent MSP checkpoint’s LSN inside
the log anchor. Figure 10 illustrates an MSP checkpoint and
its relationship with others.

SE1Cp MSPCpSV1Cp

minimal LSN

log anchor
most recent MSP checkpoint’s LSN

Figure 10: SE1Cp and SV1Cp are a checkpoint of ses-
sion SE1 and shared variable SV1, respectively.

430

If a session is inactive for a long period, no new checkpoint
will be taken for this session, causing the minimal LSN to
become very old. To advance the start point and shorten the
log scan, we force a checkpoint for a session if the number of
MSP checkpoints taken since the previous session checkpoint
reaches a threshold. Checkpoints for shared variables are
similarly forced.

4. RECOVERY PROCESSING
After an MSP crashes, MSP crash recovery is conducted

following its physical log. At the end of this crash recovery,
the MSP broadcasts within the service domain its recovered
state number, based on which, sessions or shared variables of
another normally executing MSP within the service domain
may find they themselves have become orphans. Orphan
recovery of these sessions or shared variables are required to
ensure inter-MSP consistency. Thus there are three aspects
to recovery processing: session orphan recovery, shared state
orphan recovery and MSP crash recovery.

4.1 Session Orphan Recovery
During normal execution, when an MSP receives a recov-

ered state number, any idle (i.e. not executing a method)
session’s DV is checked to see if the session has become an
orphan. For a non-idle session, whenever the recovery infras-
tructure is able to intercept the method execution, the ses-
sion’s DV is checked. This interception occurs when the exe-
cuting method sends or receives a message (request or reply),
or accesses (reads or writes) a session or shared variable. In
addition, during the method execution, a distributed log
flush according to the session’s DV may fail with the session
found to be an orphan.

Session orphan recovery is immediately initiated once the
session is found to be an orphan. So when an MSP is run-
ning, some sessions may be in normal execution while others
may be recovering.

To recover a session to the most recent non-orphan state,
the session is initialized from its most recent checkpoint.
Then the session does redo recovery by replaying the logged
requests following its position stream.

Logged Request Replay
To replay a logged request, the requested method is re-
executed. Re-execution follows the subsequent rules:

• Accessing a session variable is done in the same way
as normal execution.

• Reading a shared variable gets its value from the log.

• Writing a shared variable is skipped due to the vari-
able’s own separate recovery.

• Requests to other MSPs are not sent, and their reply
is read from the log.

During re-execution, the session’s state number and DV,
the next expected request sequence number and every out-
going session’s next available request sequence number are
updated in the same way as they were during normal exe-
cution.

Orphan Recovery End
Since the session was found an orphan before session orphan
recovery starts, this recovery must eventually encounter an
orphan log record, that is, a log record containing a DV,
which indicates an orphan. This orphan log record may be
a log record for a request or a reply from the same service
domain, or a log record for reading a shared variable.

When a session encounters such an orphan log record dur-
ing recovery, it shows that the session became an orphan
because of receiving this request or this reply, or because of
reading this shared variable. At this point, the session skips
this orphan log record and all subsequent log records of the
session, and switches to normal execution, hence terminat-
ing replay and eliminating the orphan state.

Before switching to normal execution, the session trun-
cates its position stream to remove the positions of all those
skipped log records. After switching, the session continues
the action occurring at recovery end, i.e., waiting for a new
request or a reply, or reading the shared variable.

Those skipped log records are left in the physical log
(shared by all sessions). However, their positions are re-
moved from the session’s position stream. Since session re-
covery follows the session’s position stream, even if the ses-
sion becomes an orphan again due to another crash of other
MSPs, those log records will be invisible to (skipped without
being read during) the subsequent session orphan recovery.

If the MSP crashes, the session’s position stream gets lost
and has to be reconstructed from the physical log during
crash recovery. To ensure that those skipped log records can
be identified after a crash of the MSP, at orphan recovery
end, in addition to truncating its position stream, the session
writes an end-of-skip (or EOS) log record, which contains
the LSN of the orphan log record just found. In other words,
the EOS log record points back to the orphan log record.

This EOS log record does not need to be flushed to disk
immediately. If it gets to disk before the crash, the session’s
log records beginning with this orphan log record until this
EOS log record can be identified and will be skipped by the
session’s recovery. However, this session’s log records after
the EOS log record will still be read after the crash. On
the other hand, if the EOS log record does not get to disk,
all the session’s log records beginning with this orphan log
record will be skipped.

Orphan Recovery upon Multiple Crashes
During session recovery, the session’s DV is still checked
in case the session has become an orphan due to another
MSP crash within the service domain. Session orphan re-
covery can be initiated during an ongoing session recovery.
This permits us to deal with multiple concurrent crashes
promptly. However, no matter how many concurrent crashes
there are, one crash can cause one session to initiate orphan
recovery at most once. Figure 11 illustrates the only two
possible combinations of (orphan log record, EOS log record)
pairs for a session upon multiple crashes. Log records be-
tween orphanx and EOSx will be skipped during any subse-
quent session recovery.

Specially, the embedded combination could occur in the
subsequent scenario: the session conducts orphan recov-
ery with EOS1 written, then before its session checkpoint
is taken, it becomes an orphan again due to another MSP
crash, finally the subsequent orphan recovery finds the or-
phan log record orphan2 and writes the corresponding EOS2.

431

EOS1 orphan2 EOS2 disjointed

orphan2 orphan1 EOS1 EOS2 embedded

orphan1

Figure 11: Combinations of (orphan, EOS) pairs
upon multiple crashes.

Any future orphan recovery of this session will skip all its
log records between orphan2 and EOS2, including those be-
tween orphan1 and EOS1.

4.2 Shared State Orphan Recovery
During normal execution, before a session reads a shared

variable, the session checks the variable’s DV to see if this
variable has become an orphan. When a shared variable is to
be checkpointed, during the distributed log flush according
to this variable’s DV, its DV will also be checked. So read
and checkpointing during normal execution are the only two
events to trigger an orphan check for a shared variable. Once
a variable is detected as an orphan, orphan recovery of this
variable will be initiated.

To do orphan recovery for a shared variable, the reader
session or the checkpointing thread will follow the backward
chain of write log records of this variable and roll this vari-
able back to the most recent non-orphan value. So shared
state orphan recovery can be considered as undo recovery.
Due to such separate recovery of shared variables, session
redo recovery does not need to recover shared variables. This
simplifies session recovery.

4.3 MSP Crash Recovery
To recover an MSP after a crash, the MSP is re-initialized

from its most recent checkpoint, whose LSN is in the log an-
chor. A single-threaded analysis scan of the physical log is
started at the minimum LSN as recorded in the MSP check-
point, to reconstruct position streams for all sessions and to
update all shared variables to their most recent logged val-
ues. When log records on recovered state numbers of other
MSPs in the service domain are encountered, the scan will
update the MSP’s knowledge about those recovered state
numbers. When the scan is finished, the largest persistent
LSN before the crash has been determined and it is broad-
cast in a recovery message within the service domain as the
MSP’s recovered state number. Next the MSP makes an
MSP checkpoint. Finally, all sessions start to recover in
parallel following their reconstructed position streams and
the MSP can start accepting new sessions.

Now the MSP crash recovery can be considered as fin-
ished. From this point on, recovering sessions and new ses-
sions in normal execution may coexist. New requests of a
recovering session are held until recovery of this session fin-
ishes. Figure 12 lists the actions for MSP crash recovery.

Shared State Roll Forward
During the scan, checkpoints or write log records for a shared
variable are used to roll forward this variable. When a check-
point of a shared variable is encountered, the variable is up-
dated with the checkpointed value. This value will never be
an orphan.

When a write log record of a shared variable is encoun-

Figure 12: Actions for MSP crash recovery.
re-initialize from most recent MSP checkpoint;
scan persistent log:

a. reconstruct position streams;
b. roll forward shared variables;
c. update knowledge about recovered state numbers;

broadcast a recovery message;
make an MSP checkpoint;
recover sessions in parallel and accept new sessions;

tered, both the variable’s value and DV are updated with
the logged value and DV. The logged DV cannot indicate
that the logged value is an orphan. This is because this
logged DV was indeed the writer session’s DV right before
the write during normal execution. This DV was checked
then to see if the session had become an orphan and it did
not indicate an orphan. So the logged value was not an or-
phan then. After a crash, the MSP relies only on its physical
log to recover. During this scan, at the point when this write
log record is encountered, the MSP has no more knowledge
about recovered state numbers than it had when the write
occurred during normal execution. So at this point, this
logged DV cannot indicate an orphan.

At the scan end, each shared variable has been updated
to the most recent logged value. Since all log records about
recovered state numbers have been encountered, the MSP
has built up all its knowledge about recovered state numbers
from its physical log. If a shared variable’s most recent value
is from a write log record, this value may be an orphan ac-
cording to the MSP’s current (more recent) knowledge about
recovered state numbers. However, orphan recovery for this
variable is not initiated immediately, but only possibly later
if a session in normal execution tries to read this variable.

Session Recovery after Scan
Session recovery after the scan is similar to session orphan
recovery. The main difference lies in the recovery end condi-
tion. Unlike session orphan recovery, session recovery after
the scan may not encounter an orphan log record. In case a
recovering session does not encounter an orphan log record
after all its log records are consumed, the session simply
switches to normal execution. In case an orphan log record
O is encountered, the session skips those log records begin-
ning with O until the EOS log record EOS which points back
to O, or until the session’s last persistent log record, if such
an EOS does not exist.

EOS Found: In case such an EOS is found, the session
removes from its position stream the positions of all skipped
log records beginning with O and ending with EOS. If there
are no more log records after EOS, the session switches to
normal execution; otherwise, the session continues to recover
with those subsequent log records.

EOS Not Found: In case such an EOS does not exist,
the session writes an EOS log record pointing back to O,
truncates its position stream to remove positions of skipped
log records beginning with O, and then switches to normal
execution. This case is the same as session orphan recovery.

5. PERFORMANCE MEASUREMENTS
We implemented a Web services prototype with the frame-

work of Microsoft ASP.NET [11] on Windows XP. The pro-
totype demonstrates the feasibility of using our recovery

432

methods. We executed a number of performance experi-
ments. We report results on the comparative performance
of locally optimistic logging versus pessimistic logging, the
impact of checkpointing on normal execution, the recovery
performance when crashes are introduced, and finally the
performance of a more fully loaded system. The results are
promising. We first describe our experimental setting.

5.1 Experimental Setting
Figure 13 shows our experimental configuration and hard-

ware parameters. We have one end client and two MSPs
hosted by web servers. The end client starts a session SE1
with MSP1, then sends request1 to ServiceMethod1 a num-
ber of times. SE1 at MSP1 further starts a session SE2
with MSP2. ServiceMethod1 reads and writes shared vari-
able SV0, sends request2 to ServiceMethod2, then reads and
writes SV1, and finally writes SE1’s session variables. Ser-
viceMethod2 reads and writes SV2 and SV3, and writes
SE2’s session variables. Both parameter and returned value
of a request are 100B. The total session state size of each of
SE1 and SE2 is 8KB. ServiceMethod1 and ServiceMethod2
write only 512B of their session state. Each shared variable
is 128B. Such a configuration is consistent with the observa-
tion that the shared in-memory state is relatively small. Our
hardware consists of one client and two server computers in
an Ethernet network.

 read and write SV3

end
client

request1

ServiceMethod2
{

SE2
request2{

SE1

ServiceMethod1

modify session state
}reply2

modify session state
}

reply1

MSP 1

MSP 2

 read and write SV0

read and write SV1
 read and write SV2

network bandwidth 100Mbps
client computer CPU 2.33GHz, memory 512MB

server computers CPU 2.66GHz, memory 1GB
server hard disks 7200RPM

avg seek 10.5ms(W)/9.5ms(R)
track/track seek 1.2ms(W)/1ms(R)
default sectors per track 63

Figure 13: Configuration and hardware parameters.

5.2 Locally Optimistic Logging Performance
To measure the comparative performance of locally opti-

mistic logging versus pure pessimistic logging, we measured
the response time of requests in two different system con-
figurations. Configuration LoOptimistic has two MSPs in
the same service domain and hence uses optimistic logging
locally within this domain. Interactions with the end client
are always logged pessimistically. Configuration Pessimistic
has each MSP in a different service domain and hence uses
only pessimistic logging.

In order to compare log-based recovery with alternative
approaches, we also measured the response time in three
other configurations. Configuration NoLog has no logging
and recovery infrastructure, and hence does not provide re-
covery. Configuration Psession provides persistent sessions
via the web server storing session states inside a local DBMS.
When a request is processed, the session state is fetched
from the database, and after processing, the session state is

written back to the database. In configuration StateServer,
session states are stored in-memory at a state server on a
different computer. Both Psession and StateServer are com-
mon commercial approaches for recovery of session states,
though they do not support shared in-memory state. The
table in Figure 14 lists the average response times for 20K
end client requests.

LoOptimistic Pessimistic NoLog Psession StateServer
24.746 35.227 8.697 48.617 16.658

Figure 14: Table: response time (ms). Chart:
response time versus number of calls to Ser-
viceMethod2 inside ServiceMethod1.

Response Time Analysis
Psession takes a session checkpoint after every request and
requires two database transactions (read and write) at both
MSPs for each request. This is very costly. StateServer
has a much shorter response time, but session states are
not persistent and will not be recovered if the state server
crashes.

Locally optimistic logging has fewer log flushes than pes-
simistic logging, which results in a shorter response time.
For each end client request, pessimistic logging requires three
log flushes in sequence: at MSP1 before sending request2, at
MSP2 before sending reply2, and at MSP1 before sending
reply1. Locally optimistic logging requires one distributed
log flush before sending reply1. This distributed flush incurs
two flushes in parallel, at MSP1 and at MSP2.

The log is written in blocks whose size varies from 1 to 128
disk sectors of 512B. Large log blocks can improve log per-
formance for heavily-loaded servers. Log blocks are aligned
at sector boundaries and when a log block is flushed, its last
sector may not be full. On average, a half sector is wasted
on every flush. Locally optimistic logging, with its fewer log
flushes, results in less log space wasted. In pessimistic log-
ging, each of the two flushes at MSP1 writes 2 sectors and
the flush at MSP2 writes 3 sectors. In locally optimistic log-
ging, the flushes at MSP1 and MSP2 each write 3 sectors.
Thus, locally optimistic logging uses one less sector per end
client request.

Locally optimistic logging requires an extra message round
to request MSP2 to flush as part of the distributed log flush
and it has to do dependency tracking. We can express the
response time difference between the two logging methods
as ∆response = 2 ·TF2 +TF3−max(TF3, TM +TF3)−TDV =
2 ·TF2−TM −TDV , where TFn is the time to flush n sectors,
TM is the time of a message round trip, and TDV is the time
on dependency tracking.

On a server hosting an MSP, a hard disk is mostly ded-

433

icated to the MSP as a log, so writing does not require a
random disk seek of about 10.5ms. Excluding this seek
time, the log flush time is mostly the average disk rota-
tional latency plus the data transfer time together with
the amortized track to track seek time. This suggests that
TFn = (60000/7200/2+n/63·60000/7200+n/63·1.2), yield-
ing TF2 of about 4.5ms. However, the operating system also
uses the hard disk and this incurs occasionally random disk
seeks for log writing. So the actual flush time is slightly more
than 4.5ms, but much less than 15ms (= 10.5+4.5). For our
analysis, we crudely estimate TF2 to be 8ms(= 4.5+10.5/3).

We measured the message round time (TM) between two
MSPs at 3.596ms, which is less than the time of a log flush.
Moreover since TDV is relatively small, ∆response should
have a positive value. Hence locally optimistic logging has
a lower response time than pessimistic logging. ∆response

is calculated as 12.404ms −TDV , which is close to the mea-
sured difference of 10.481ms (= 35.227 − 24.746). Thus,
compared to pessimistic logging, locally optimistic logging
reduces the response time by about 30%. Locally opti-
mistic logging still incurs considerable overhead compared
to NoLog. When more business logic code is incorporated,
however, this overhead becomes a smaller fraction of the
total response time.

Response Time with Intra-Service-Domain Interactions
Suppose now that ServiceMethod1 calls ServiceMethod2 m
times before it accesses SV1. If we, for simplicity, assume
every log flush requires the same time TF , the response time
difference would then grow to 2 · m · TF − TM − TDV . So
the more interactions per request inside the service domain,
the larger the response time difference. To confirm this,
we varied the number of calls to ServiceMethod2 inside Ser-
viceMethod1, and measured the response times for all five
configurations.

Figure 14 charts the result. As the number of calls be-
comes larger, the response time becomes larger and the re-
sponse time difference between locally optimistic logging and
pessimistic logging increases. The number of flushes is the
decisive factor, not the size of the flushed records. While the
number of flushes required by pessimistic logging increases
with the number of calls, locally optimistic logging always
requires only one flush at both MSPs (in parallel).

The response time of pessimistic logging increases faster
than that of Psession, because each call increases the num-
ber of flushes in pessimistic logging by two, while the num-
ber of flushes in Psession increases only by one (due to the
write transaction). Further, the response time difference be-
tween locally optimistic logging and NoLog tends to increase
(slowly) because of the increased log size for locally opti-
mistic logging. Finally, the response time of StateServer in-
creases faster than that of locally optimistic logging. When
the number of calls is 4, the response time of StateServer is
close to that of locally optimistic logging.

5.3 Checkpointing Overhead
Checkpointing speeds up recovery at the cost of extra

overhead during normal execution. We measured the ses-
sion checkpointing overhead for locally optimistic logging by
measuring the throughput at the end client. Figure 15 (a)
shows the result, where the checkpointing threshold is the
amount of log consumed by a session between checkpoints.
The higher the checkpointing frequency (i.e., the lower the

(a) (b)

Figure 15: (a) Throughput (number of requests
per second) versus checkpointing threshold. (b)
Throughput versus crash rate (one crash per cer-
tain number of end client requests).

checkpointing threshold), the lower the throughput. Ses-
sion state size is small (8KB), so even a low checkpointing
threshold of 64KB, leads to only a small throughput reduc-
tion. With a threshold of 4MB, throughput is close to the
no checkpointing case. In the previous section, we set the
threshold to 1MB, which requires with locally optimistic log-
ging, a session checkpoint after about every 682 end client
requests for both MSP1 and MSP2.

5.4 Recovery Performance
We introduced forced crashes to measure recovery perfor-

mance. To generate orphans, in ServiceMethod1 with locally
optimistic logging, when the reply from ServiceMethod2 is
received by MSP1, MSP2 is instructed to kill itself. This
causes the buffered log records of MSP2 to be lost. Thus, the
distributed log flush initiated at the end of ServiceMethod1
will fail, making session SE1 at MSP1 an orphan. We fixed
the session checkpointing threshold at 1MB and measured
the throughput using different crash rates (one crash every
certain number of end client requests). To force performance
differences, the crash rates were set much higher than a real
system would likely encounter.

Throughput Upon Crashes
Figure 15 (b) shows the result. When the crash rate is
0, there are no crashes. When the crash rate is 1/1000,
it is actually very high (equivalent to about one crash ev-
ery half a minute). Locally optimistic logging always has
higher throughput than pessimistic logging. As the crash
rate increases, throughput decreases for both logging meth-
ods. The throughput decrease for locally optimistic logging
is a bit larger than for pessimistic logging because locally
optimistic logging has more crash recovery overhead. Pes-
simistic logging requires only crashed MSP2 to recover. Lo-
cally optimistic logging also requires SE1 at MSP1 to per-
form orphan recovery after MSP2 is recovered.

Maximum Response Time Upon Crashes
When a client knows that an MSP is checkpointing or recov-
ering, it sleeps for 100ms and resends the request. Such de-
layed requests have a larger response time. For both logging
methods, we recorded the maximum response time with-
out crashes with a checkpointing threshold of 1MB, and the
maximum response time with a checkpointing threshold of
1MB when the crash rate is 1/1000, 1/1500 or 1/2000. For
comparison, we also recorded the maximum response time
when there are no crashes for five other cases: locally op-
timistic logging without checkpointing, pessimistic logging
without checkpointing, NoLog, StateServer and Psession.

434

Crash NoCrash NoCp NoLog: 217
LoOptimistic 3,245 490 123 StateServer: 544

Pessimistic 2,360 150 133 Psession: 660

Figure 16: Table: maximum response time (ms).
Chart: throughput for crash rate 1/1000 versus
checkpointing threshold.

The table in Figure 16 shows our results. Even with no
logging, the maximum response time (217ms) is much larger
than the average response time (8.697ms), indicating some
instability. The maximum response time in both StateServer
and Psession is relatively high even without crashes (544ms
and 660ms, respectively). Checkpointing increases the maxi-
mum response time (column NoCrash) in both logging meth-
ods compared with not checkpointing (column NoCp). The
increase for locally optimistic logging is more obvious. With
locally optimistic logging, a distributed log flush is required
before a session checkpoint, while pessimistic logging re-
quires only a local log flush.

When crashes are introduced, maximum response time
for both logging methods increases substantially due to re-
covery. However only a small number of requests experience
large response times. The average response time remains low
(26ms for locally optimistic logging, 36ms for pessimistic
logging). Locally optimistic logging has a larger maximum
response time because of SE1’s orphan recovery at MSP1.
The difference, 885ms (= 3245 − 2360), results from replay-
ing logged requests by SE1’s orphan recovery (about 682
requests in the worst case, with 1MB threshold). So replay-
ing a logged request takes only 1.30ms (= 885/682).

The average response time during normal execution for
locally optimistic logging was measured at the end client as
24.746ms. So processing a request at MSP1 during normal
execution takes 20.846ms (= 24.746 − 3.9), where 3.9ms is
the measured message round trip time between MSP1 and
the end client. Hence replaying a logged request is much
faster than processing a request during normal execution.
Both require the same amount of CPU time at MSP1 for the
method execution. However, normal processing requires ex-
ecution of ServiceMethod2 at MSP2, distributed log flushes
and message exchanges between the two MSPs, while re-
playing involves only efficient local log reads.

Log reads are 128 sectors (= 64KB) and can contain mul-
tiple log blocks. Each log flush is one log block, usually 3
sectors for MSP1. So log reads during recovery are larger
and more efficient than log flushes during normal execution.
SE1’s orphan recovery at MSP1 may read 1MB of log in the
worst case, which is mostly sequential and takes 370ms (=
1M/64K ·(60000/7200/2+128/63·60000/7200+128/63·1)),
following a formula similar to that used for flushes. So, on
average, only 0.54ms (= 370/682) is required to read the log
for each replayed logged request.

Maximum Throughput with Fixed Crash Rate
With the introduction of crashes, throughput decreases. The
Checkpoint frequency trades throughput for recover speed.
It incurs extra overhead during normal execution, which
can decrease throughput, but enables faster recovery. As
checkpointing threshold increases, throughput increases but
eventually reaches a maximum after which further thresh-
old increases lead to increased recovery time and decreased
throughput. The Figure 16 chart shows an optimal check-
pointing threshold (yielding the highest throughput) for a
crash rate of 1/1000 is between 256KB and 1MB, with 512KB
near the maximum. Since the crash rate in real systems is
much lower, a higher threshold should be used.

5.5 Performance with Multiple Clients
With a single end client, the system is underutilized, even

when the client continuously submits requests. To load the
system more heavily, we measure the throughput using mul-
tiple clients. We also implemented batch flushing. A request
to flush the log is not executed immediately, but rather after
a specified timeout, providing a possibility to process sev-
eral flush requests with a single write. With batch flushing,
the amortized logging overhead (both disk and CPU loads
resulting from logging) will decrease and throughput will
improve.

LoOptimistic−BatchPessimistic−NoBatch Pessimistic−Batch LoOptimistic−NoBatch

Figure 17: Performance (with/without batch flush-
ing) versus number of end clients: throughput (left)
and response time (ms, right).

Figure 17 shows performance with and without batch flush-
ing for both logging methods when the session checkpoint-
ing threshold is 1MB and there are no crashes. Without
batch flushing, the throughput is highest when the number
of clients reaches 4. To pick a timeout value for batch flush-
ing, we focused on pessimistic logging, fixed the number of
clients at 4 and tried several different timeout values. When
the timeout is 8ms, throughput is highest for pessimistic
logging with 4 clients. This timeout, roughly the time of a
log write, is used in all subsequent experiments with batch
flushing. With batch flushing, throughput is highest when
the number of clients reaches 6.

For pessimistic logging, batch flushing increases the high-
est throughput by about 30%, while for locally optimistic
logging, batch flushing increases the highest throughput by
about 8%. So pessimistic logging benefits more from batch
flushing than locally optimistic logging. However, with batch
flushing, the highest throughput supported by locally opti-
mistic logging is still about 30% higher than that supported
by pessimistic logging.

With more clients, the response time becomes larger in all
cases. Batch flushing reduces the response time for both log-

435

ging methods with more than 3 clients. With 4 clients, batch
flushing reduces the CPU utilization of the MSP1 computer
from about 90% to about 60% for both logging methods.
This shows that batch flushing can reduce both CPU and
disk utilization simultaneously.

The timeout value for batch flushing should take into con-
sideration the specific system configuration and the work-
load, e.g. the number of concurrent clients. The timeout
(8ms) used in our experiments might not lead to the highest
throughput supportable by our recovery system. In addi-
tion, the experimental results should not be interpreted as
the system being limited to support at most several clients.
With a real workload, end clients do not continuously sub-
mit requests, but rather are idle most of the time.

6. RELATED WORK
Pessimistic logging and optimistic logging were invented

in the fault-tolerance community [7] and are used for mes-
sage passing systems, where entities interact with one an-
other via message exchanges only. Individual threads were
considered as separate recovery units with optimistic log-
ging [6], however, log management of a multi-threaded pro-
cess with optimistic logging was not explored. Log-based re-
covery for general application processes over a Java virtual
machine was partially implemented [13], but no consistency
among interacting processes was considered.

Requests from a client are guaranteed to be processed
exactly once by a server via recoverable queues [4]. How-
ever, the client application must be structured as a “string
of beads” style workflow where each bead is a transaction.
More complicated structures are not allowed. Application
recovery in a client/server system was studied with message
logging incorporated with the server internal logging [10].

Recovery for middleware components such as CORBA
components have been studied [14, 15]. Their work uses
replication for fault-tolerance and utilizes an underlying to-
tally ordered multi-cast communication infrastructure. Re-
covery methods for Microsoft .NET components were stud-
ied based on optimized pessimistic message logging [1, 2].
None of these component recovery mechanisms directly sup-
ports concurrent accesses to shared state by multiple threads.
In a Web services setting, idempotent services were advo-
cated to enable recovery of applications via replay if they
do appropriate (optimized pessimistic) message logging [9].

Commercial web servers [3, 8, 11] make session states re-
silient to failures by replicating session states to a standby
process or web server, or saving session states to disk files
or databases synchronously. They do not support fault-
tolerance for shared state.

7. DISCUSSION
We have described our prototype system for log-based re-

covery of middleware servers. By using locally optimistic
logging for message exchanges within service domains, we
reduced logging overhead. We maintained recovery inde-
pendence between service domains via pessimistic logging.
Value logging for shared in-memory state (shared variables)
increased recovery independence inside a middleware server.
It also kept logging overhead modest in the usual case where
shared state is small size and infrequently accessed. Fuzzy
checkpointing incurred only minimal impact during normal
system execution. We enabled parallel recovery of multiple

sessions after a crash while using a common physical log for
all sessions. Finally, we reported the promising performance
produced by our prototype.

In on-going work, we handle middleware server interac-
tions with transactional systems within our recovery infras-
tructure. To support consistent recovery in this case, we
continue our pursuit of efficient logging and recovery that
involves only modest modification to existing transactional
systems.

We believe that our prototype has demonstrated both
the feasibility and the desirability of having the system in-
frastructure transparently provide persistence guarantees for
middleware servers. By relieving application programmers
from the problem of coping with system failures, we greatly
simplify their task, permitting them to focus on the busi-
ness logic of the application. By providing a highly efficient
infrastructure for this, we enable enterprises to achieve the
fault tolerance that they need at an acceptable cost.

8. REFERENCES
[1] R. Barga, S. Chen, and D. Lomet. Improving Logging and

Recovery Performance in Phoenix/App. In Proc IEEE ICDE,
pages 486–497, 2004.

[2] R. Barga, D. Lomet, and G. Weikum. Recovery Guarantees for
General Multi-Tier Applications. In Proc IEEE ICDE, pages
543–554, 2002.

[3] BEA Corp. Deploying and Configuring Web Applications.
http://edocs.bea.com/wls/docs60/, 2000.

[4] P. A. Bernstein, M. Hsu, and B. Mann. Implementing
Recoverable Requests Using Queues. In Proc ACM SIGMOD,
pages 112–122, 1990.

[5] O. P. Damani and V. K. Garg. How to Recover Efficiently and
Asynchronously When Optimism Fail. In Proc IEEE ICDCS,
pages 108–115, 1996.

[6] O. P. Damani, A. Tarafdar, and V. K. Garg. Optimistic
Recovery in Multi-threaded Distributed Systems. In Proc IEEE
SRDS, pages 234–243, 1999.

[7] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson. A
Survey of Rollback-Recovery Protocols in Message Passing
Systems. ACM Comput. Surv., 34(3):375–408, 2002.

[8] B. Hines, T. Alcott, R. Barcia, and K. Botzum. IBM
WebSphere Session Management. http://www.informit
.com/articles/article.asp?p=332851, 2004.

[9] D. Lomet. Robust Web Services via Interaction Contracts. In
VLDB Workshop on Technologies for E-Services, 2004.

[10] D. Lomet and G. Weikum. Efficient Transparent Application
Recovery In Client-Server Information System. In Proc ACM
SIGMOD, pages 460–471, 1998.

[11] Microsoft Corp. ASP.NET. http://msdn.microsoft.com/ library,
2000.

[12] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and
P. M. Schwarz. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[13] J. Napper, L. Alvisi, and H. Vin. A Fault-Tolerant Java Virtual
Machine. In Proc IEEE DSN, pages 425–434, 2003.

[14] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Enforcing Determinism for the Consistent Replication of
Multithreaded CORBA Applications. In Proc IEEE SRDS,
page 263, 1999.

[15] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. State
Synchronization and Recovery for Strongly Consistent
Replicated CORBA Objects. In Proc IEEE DSN, pages
261–270, 2001.

[16] M. Ronsse, K. Bosschere, M. C., J. C. K., and D. K.
Record/Replay for Nondeterministic Program Executions.
Commun. ACM, 46(9):62–67, 2003.

[17] R. E. Strom and S. Yemini. Optimistic Recovery in Distributed
Systems. ACM Transactions on Computer Systems,
3(3):204–226, 1985.

436

